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In this paper, we consider numerical approximations to solving the Cahn-Hilliard phase 
field model for diblock copolymers. We combine the recently developed SAV (scalar 
auxiliary variable) approach with the stabilization technique to arrive at a novel stabilized-
SAV method, where a crucial linear stabilization term is added to enhancing the stability 
and keeping the required accuracy while using the large time steps. The scheme is very 
easy-to-implement and fast in the sense that one only needs to solve two decoupled 
fourth-order biharmonic equations with constant coefficients at each time step. We 
further prove the unconditional energy stability of the scheme rigorously. Through the 
comparisons with some other prevalent schemes like the fully-implicit, convex-splitting, 
and non-stabilized SAV scheme for some benchmark numerical examples in 2D and 3D, 
we demonstrate the stability and the accuracy of the developed scheme numerically.

 2019 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

A diblock copolymer is a polymer consisting of two types of monomers which are arranged such that there is a chain of 
each monomer, and those two chains are grafted together to form a single copolymer chain. Some of the common shapes of 
diblock copolymers that have been observed experimentally are lines (lamellar), hexagonal cylinders, gyroids, and stacked 
balls (body-centered-cubic, BCC for short). Copolymerization is used to modify the properties of manufactured plastics to 
meet specific needs, for example, to reduce crystallinity, modify glass transition temperature, control wetting properties or 
to improve solubility, see [17,22].

In this paper, we consider numerical approximations for solving a phase-field model for diblock copolymers where a 
scalar phase field variable is used to denote the difference between the local volume fractions of two monomers, cf. [2,6,
12,21,28,30]. The governing PDE system is derived by using the Cahn-Hilliard dynamics, i.e., the total free energy (called as 
Ohta-Kawasaki free energy) is minimized in H−1 Sobolev space since the phase field variable represents the difference of 
the local volume fractions of the two constituent monomers which is expected to be conserved with the time. To design 
fast, stable, and accurate time stepping method for the phase-field related model that usually follows the energy dissipa-
tion law, the main challenging issue is to find proper discretization for the nonlinear term. For this particular model, the 
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only nonlinear term is the cubic polynomial term from the double-well potential. In fact, there are quite many prevalent 
temporal discretization methods to handling the nonlinear term for phase-field models, for instances, the fully-explicit [25], 
fully-implicit [10], convex-splitting [9,18,19,26], stabilized-explicit [13,20,25], Invariant Energy Quadratization (IEQ) [3,29,
31–33,35–37], Scalar Auxiliary variable (SAV) [4,5,27], and a variety of other type methods [14–16,23], etc. Some methods 
mentioned above are provably energy stable, i.e., the discrete solution can preserve the energy dissipation law at the dis-
crete level. However, when the mobility parameter or the time step is large, the obtained linear/linearized system could be 
ill-conditioned thereby even those provably energy stable schemes like convex-splitting, IEQ, or SAV method can still blow 
up, or lead to very costly iterations, cf. the accuracy tests shown in Fig. 4.2-Fig. 4.3.

The aim of this paper is to develop a numerical scheme that is fast (free of iterations), stable, and second-order accurate. 
To this end, we combine the SAV approach with the stabilization technique that brings up a novel stabilized-SAV (S-SAV) 
approach, where an extra linear stabilization term is added to enhancing the stability and thus allowing large time steps 
while keeping the required accuracy. Meanwhile, the implementation procedure for the developed S-SAV method is very 
simple, in which, we first transform the total free energy integral into a quadratic function of a new, scalar auxiliary variable 
via a change of variables. Then, for the reformulated model in terms of the new variable, we treat all nonlinear terms in 
a semi-explicit way. Due to the specialty of the new variable that is non-local type formally, one only needs to solve two 
decoupled, linear biharmonic equations with constant coefficients at each time step. In addition to presenting the rigorous 
proof of the unconditional energy stability, we further demonstrate the stability and accuracy numerically through the 
comparisons with some prevalent schemes like the fully-implicit, convex-splitting, and non-stabilized SAV schemes for a 
number of classical benchmark numerical examples in 2D and 3D.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction of the governing PDE system 
for the phase-field diblock copolymer model. In Section 3, we develop the numerical scheme with second-order temporal 
accuracy to solving this model. Various 2D and 3D numerical experiments are given in Section 4 to show the accuracy and 
efficiency of the proposed numerical scheme. Finally, some concluding remarks are given in Section 5.

2. Model equations

We now give a brief introduction to the diblock copolymer model. Assuming a system consists of molecules of two 
monomers, where the state of the system is described by the local volume fraction of these two components, φ(x, t) with 
x ∈ �d, d = 2, 3 and time t . The phenomenological mesoscopic dynamic equation that relates a temporal change of φ(x, t)
is governed by the following Cahn-Hilliard equation (cf. [1,7,8,11]):

⎧
⎨
⎩

φt = M�w,

w =
δE(φ)

δφ
,

(2.1)

where M is the mobility parameter, E(φ) is a coarse-grained free energy functional that is given as

E(φ) =

∫

�

(ε2

2
|∇φ|2 + F (φ)

)
dx+

αε2

2

∫

�

∫

�

G(x− y)(φ(x) − φ̄)(φ(y) − φ̄)dxdy, (2.2)

where ε is the gradient energy coefficient, the function F (φ) = 1
4
(φ2−1)2 is the bulk Ginzburg-Landau double well potential, 

φ̄(t) := 1
|�|

∫
�

φ(x, t)dx, G is the Green’s function such that

G(x− y) = −δ(x − y), (2.3)

with the periodic boundary condition, δ is a Dirac delta function, α is the nonlocal positive parameter to characterizes 
the nonlocal potential and the molecular chain length, and the last term in (2.2) is the so-called nonlocal Ohta-Kawasaki 
functional.

We define the inverse Laplace operator ψ = (−�)−1φ as

⎧
⎪⎨
⎪⎩

− �ψ = φ,∫

�

ψdx = 0, (2.4)

with the periodic boundary conditions, where φ ∈ L20(�) := {φ ∈ L2(�) :
∫
�

φdx = 0}. By taking the total free energy de-
scribed in (2.2), the PDE system (2.1) turns into

φt = M�w, (2.5)

w = −ε2�φ + f (φ) + αε2ψ, (2.6)

ψ = (−�)−1(φ − φ̄), (2.7)
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or an equivalent form as

φt = M(�μ − αε2(φ − φ̄)), (2.8)

μ = −ε2�φ + f (φ), (2.9)

where f (φ) = F ′(φ) = φ3 − φ.

Without the loss of generality, we adopt the periodic boundary condition to remove all complexities associated with the 
boundary integrals in this study. We remark that the boundary conditions can also be the no-flux type as

∂nφ|∂� = ∇w · n|∂� = 0, (2.10)

for (2.5)-(2.7), or

∂nφ|∂� = ∇μ · n|∂� = 0, (2.11)

for (2.8)-(2.9), where n is the outward normal of the computational domain �. All numerical analysis in this paper can be 
carried out to the no-flux boundary conditions without any further difficulties.

The model (2.5)-(2.7) follows the energy dissipation law. By taking the L2 inner product of (2.5) with −w , and of (2.6)
with φt , performing integration by parts, and taking summation of the two equalities, we obtain

d

dt

∫

�

(
ε2

2
|∇φ|2 + F (φ))dx+ αε2(ψ,φt) = −M‖∇w‖2. (2.12)

We rewrite (2.7) as the form (2.4), i.e., −�ψ = φ − φ̄ with 
∫
�

ψdx = 0, and then take the time derivative to obtain

−�ψt = φt − φ̄t . (2.13)

By taking the L2 inner product of the above formula with αε2ψ , we obtain

d

dt

∫

�

αε2

2
|∇ψ |2dx = αε2(ψ,φt), (2.14)

where the zero mean property of ψ is used. By combining (2.12) and (2.14), we obtain

d

dt
E(φ,ψ) = −M‖∇w‖2, (2.15)

where

E(φ,ψ) =

∫

�

(
ε2

2
|∇φ|2 + F (φ) +

αε2

2
|∇ψ |2)dx. (2.16)

3. Numerical schemes

We develop a second-order accurate and provably unconditionally energy stable scheme by combining the SAV approach 
[5,27] with the stabilization technique, that arrives at the stabilized-SAV approach. An extra linear stabilization term is 
particularly efficient to enhancing the energy stability while keeping the computation fast with the required accuracy.

3.1. Stabilized-SAV scheme

We define a scalar, auxiliary variable u(t) as follows:

u(t) =

√√√√
∫

�

F (φ)dx+ B, (3.1)

where B is any constant that ensures the radicand positive (in all numerical examples, we let B = 1). Thus the total free 
energy (2.16) can be rewritten as

E(u, φ,ψ) =

∫

�

(
ε2

2
|∇φ|2 +

αε2

2
|∇ψ |2)dx+ u2 − B. (3.2)
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By taking the time derivative for the new variable u(t), we can rewrite the system (2.5)-(2.7) to be the following system 
in terms of (φ, u, w, ψ),

φt = M�w, (3.3)

w = −ε2�φ + uH + αε2ψ, (3.4)

ut =
1

2

∫

�

H(φ)φtdx, (3.5)

ψ = (−�)−1(φ − φ̄), (3.6)

where

H(φ) =
f (φ)√∫

�
F (φ)dx+ B

. (3.7)

The transformed system (3.3)-(3.6) forms a closed PDE system with the following initial conditions,

⎧
⎪⎪⎨
⎪⎪⎩

φ(t = 0) = φ0,

u(t = 0) =

√√√√
∫

�

F (φ0)dx+ B.
(3.8)

The system (3.3)-(3.6) also preserves the energy dissipative law. By taking the L2 inner product of (3.3) with −w , of (3.4)
with φt , and multiplying (3.4) with 2u, performing integration by parts, taking the time derivative for (3.6) and taking the 
L2 product with ψ , and summing all equalities up, we can obtain the energy dissipation law as

d

dt
E(u, φ,ψ) = −M‖∇μ‖2 ≤ 0. (3.9)

Let δt > 0 be a time step size and set tn = nδt for 0 ≤ n ≤ N with T = Nδt . We also denote the L2 inner product 
of any two spatial functions φ(x) and ψ(x) by (φ(x), ψ(x)) =

∫
�

φ(x)ψ(x)dx, and the L2 norm of the function φ(x) by 
‖φ‖2 = (φ, φ). Let ψn denote the numerical approximation to ψ(·, t)|t=tn for any function ψ .

We now construct a numerical scheme based on the second-order backward differentiation formula (BDF2) for solving 
the system (3.3)-(3.6), that reads as follows.

Assuming φn, un and φn−1, un−1 are known, we update φn+1, un+1 by solving

3φn+1 − 4φn + φn−1

2Mδt
= �wn+1, (3.10)

wn+1 = −ε2�φn+1 + un+1H∗,n+1 + αε2ψn+1 + S(φn+1 − φ∗,n+1), (3.11)

3un+1 − 4un + un−1 =
1

2

∫

�

H∗,n+1(3φn+1 − 4φn + φn−1)dx, (3.12)

ψn+1 = −(�−1)(φn+1 − φ̄n+1), (3.13)

where

φ∗,n+1 = 2φn − φn−1, H∗,n+1 = H(φ∗,n+1), (3.14)

and S is a positive stabilizing parameter.

Remark 3.1. We add a second-order linear stabilizer (associated with S) in the scheme to balance the explicit treatment of 
the nonlinear term f (φ) in term H . Therefore the magnitude of S should be around ‖φ‖L∞ heuristically. Numerical examples 
show that this stabilizer is crucial to enhancing the stability while keeping the required accuracy, cf. the comparisons with 
the non-stabilized SAV (i.e., the scheme (3.10)-(3.13) but with S = 0), fully-implicit, and convex-splitting approaches shown 
in Fig. 4.1-Fig. 4.3.

Remark 3.2. To initiate the second-order scheme (3.10)-(3.13), we need the values of φ1, u1 , that can be obtained by the 
following similar first-order scheme based on backward Euler formulation that reads as,
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φ1 − φ0

Mδt
= �w1, (3.15)

w1 = −ε2�φn+1 + u1H0 + αε2ψ1 + S(φ1 − φ0), (3.16)

u1 − u0 =
1

2

∫

�

H0(φ1 − φ0)dx, (3.17)

ψ1 = −(�−1)(φ1 − φ̄1), (3.18)

where H0 = H(φ0).

Apparently, we arrive at a linear but nonlocal and coupled system for φn+1 , ψn+1 , and un+1 in the scheme (3.10)-(3.13)
that need costly iterative solvers to compute. But in practice, we can implement the scheme through the following decou-
pling procedure.

We first rewrite (3.12) as follows,

un+1 =
1

2

∫

�

H∗,n+1φn+1dx+ gn, (3.19)

where

gn =
4un − un−1

3
−

1

2

∫

�

H∗,n+1 4φ
n − φn−1

3
dx. (3.20)

Then the scheme (3.10)-(3.11) can be combined together to be

3

2Mδt
φn+1 − S�φn+1 + ε2�2φn+1 + αε2(φn+1 − φ̄n+1)

−
1

2
�H∗,n+1

∫

�

H∗,n+1φn+1dx = g̃n,
(3.21)

where g̃n is an explicit term defined as

g̃n =
4φn − φn−1

2Mδt
− S�φ∗,n+1 + �(gnH∗,n+1). (3.22)

By taking L2 inner product of (3.21) with 1, we obtain the explicit formula for φ̄n+1 that reads as

φ̄n+1 =
2Mδt

3|�|

∫

�

g̃ndx. (3.23)

Thus (3.21) can be written as

P(φn+1) −
1

2
�H∗,n+1

∫

�

H∗,n+1φn+1dx = ĝn, (3.24)

where P(·) is the linear operator that is defined as

P(ψ) = (
3

2Mδt
− S� + ε2�2 + αε2)ψ, (3.25)

and ĝn = g̃n + 2Mαε2δt
3|�|

∫
�
g̃ndx.

Define a linear operator P−1(·), such that for any periodic function φ ∈ L2(�), ψ = P−1(φ) is the solution of the 
following linear system

P(ψ) = φ, (3.26)

with periodic boundary conditions. By applying the operator P−1 to (3.24), then we obtain

φn+1 −
1

2
P

−1(�H∗,n+1)

∫

�

H∗,n+1φn+1dx = P
−1(̂gn). (3.27)
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By taking the L2 inner product of (3.27) with H∗,n+1 , we obtain

∫

�

H∗,n+1φn+1dx =

∫
�
H∗,n+1

P
−1(̂gn)dx

1− 1
2

∫
�
H∗,n+1P−1(�H∗,n+1)dx

. (3.28)

It is easy to check the term in the denominator − 
∫
�
H∗,n+1P−1(�H∗,n+1)dx ≥ 0 since −P−1(�) is a positive definite 

operator.

Furthermore, (3.28) actually provides an explicit formulation for the nonlocal term 
∫
�
H∗,n+1φn+1dx. Therefore, in 

computations, we first find ψ1 = P−1 (̂gn) and ψ2 = P−1(�H∗,n+1), that means to solve the following two decoupled, 
biharmonic equations,

(
3

2Mδt
− S� + ε2�2 + αε2)ψ1 = ĝn, (3.29)

and

(
3

2Mδt
− S� + ε2�2 + αε2)ψ2 = �H∗,n+1, (3.30)

with the periodic boundary conditions. And then, after by applying (3.28) to update 
∫
�
H∗,n+1φn+1dx, we can obtain φn+1

from (3.27) directly.
To summarize, the nonlocal coupled scheme (3.10)-(3.13) can be easily implemented in the following manner:

• Compute ψ1 and ψ2 by solving two linear biharmonic equations with constant coefficients, (3.29) and (3.30);
• Compute 

∫
�
H∗,n+1φn+1dx from (3.28) and update un+1 from (3.19);

• Update φn+1 from (3.27).

Hence, the total cost at each time step is essentially solving two decoupled biharmonic equations with constant coefficients. 
We note that these equations with periodic boundary conditions can be easily computed by the Fourier-Spectral method. 
Hence, this scheme is extremely efficient and easy to implement. We can also break the biharmonic equation into two 
elliptic equations so that the finite element method with lower order element can be used.

Now we prove the scheme (3.10)-(3.13) is unconditionally energy stable as follows.

Theorem 3.1. The scheme (3.10)-(3.13) is unconditionally energy stable which satisfies the following discrete energy dissipation law,

1

δt
(En+1 − En) ≤ −M‖∇wn+1‖2 ≤ 0, (3.31)

where

En+1 =
ε2

2
(
‖∇φn+1‖2 + ‖2∇φn+1 − ∇φn‖2

2
) +

αε2

2
(
‖∇ψn+1‖2 + ‖2∇ψn+1 − ∇ψn‖2

2
)

+
(un+1)2 + (2un+1 − un)2

2
+ S

‖φn+1 − φn‖2

2
.

(3.32)

Proof. By taking the L2 inner product of (3.10) with −2Mδtwn+1 , we obtain

−(3φn+1 − 4φn + φn−1, wn+1) = 2δtM‖∇wn+1‖2. (3.33)

By taking the L2 inner product of (3.11) with 3φn+1 − 4φn + φn−1 , and using integration by parts, we obtain

(wn+1,3φn+1 − 4φn + φn−1) =ε2(∇φn+1,3∇φn+1 − 4∇φn + ∇φn−1)

+ un+1(H∗,n+1,3φn+1 − 4φn + φn−1)

+ S(φn+1 − 2φn + φn−1,3φn+1 − 4φn + φn−1)

+ αε2(ψn+1,3φn+1 − 4φn + φn−1).

(3.34)

From (3.13), we can derive

−�(3ψn+1 − 4ψn + ψn−1) = 3φn+1 − 4φn + φn−1 − (3φ̄n+1 − 4φ̄n + φ̄n−1). (3.35)

By taking the L2 inner product of (3.35) with αε2ψn+1 , we obtain
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αε2(3∇ψn+1 − 4∇ψn + ∇ψn−1,∇ψn+1) = αε2(3φn+1 − 4φn + φn−1,ψn+1), (3.36)

where we use (3φ̄n+1 − 4φ̄n + φ̄n−1, ψn+1) = 0 since 
∫
�

ψn+1dx = 0.

By multiplying (3.12) with −2un+1 , we obtain

−2(3un+1 − 4un + un−1)un+1 = −un+1

∫

�

H∗,n+1(3φn+1 − 4φn + φn−1)dx. (3.37)

Combining the above equations and applying the following two identities

2a(3a − 4b + c) = a2 + (2a − b)2 − b2 − (2b − c)2 + (a − 2b + c)2,

(3a − 4b + c)(a − 2b + c) = (a − b)2 − (b − c)2 + 2(a − 2b + c)2,
(3.38)

we obtain

ε2

2
(‖∇φn+1‖2 + ‖2∇φn+1 − ∇φn‖2) −

ε2

2
(‖∇φn‖2 + ‖2∇φn − ∇φn−1‖2)

+
αε2

2
(‖∇ψn+1‖2 + ‖2∇ψn+1 − ∇ψn‖2) −

αε2

2
(‖∇ψn‖2 + ‖2∇ψn − ∇ψn−1‖2)

+

(
(un+1)2 + (2un+1 − un)2

)
−

(
(un)2 + (2un − un−1)2

)

+ S‖φn+1 − φn‖2 − S‖φn − φn−1‖2

+
ε2

2
‖∇φn+1 − 2∇φn + ∇φn−1‖2 +

αε2

2
‖∇ψn+1 − 2∇ψn + ∇ψn−1‖2

+ (un+1 − 2un + un−1)2 + 2S‖φn+1 − 2φn + φn−1‖2 = −2δtM‖∇μn+1‖2.

Finally, we obtain the desired result after dropping some positive terms. �

Remark 3.3. Heuristically, 1
δt

(En+1 − En) is a second-order approximation of d
dt
E(u, φ) at t = tn+1 . For any smooth variable 

ψ with time, we have

‖ψn+1‖2 − ‖2ψn+1 − ψn‖2

2δt
−

‖ψn‖2 − ‖2ψn − ψn−1‖2

2δt

∼=
‖ψn+2‖2 − ‖ψn‖2

2δt
+ O (δt2) ∼=

d

dt
‖ψ(tn+1)‖2 + O (δt2), (3.39)

and

‖ψn+1 − ψn‖2 − ‖ψn − ψn−1‖2

2δt
∼= O (δt2). (3.40)

Remark 3.4. It is straightforward to develop the second-order Crank-Nicolson scheme by using the same linear stabilization 
term. We omit the details to the interested readers since the proof of energy stability is quite similar to Theorem 3.1. The 
SAV type scheme is particularly suitable for the equations that is derived by the gradient flow approach as long as the total 
free energy is bounded from below. It is worthy to mention that the SAV or IEQ method can only ensure the stability of 
the modified energy instead of the original energy. In addition, although we consider only time discrete schemes in this 
study, the results can be carried over to any consistent finite-dimensional Galerkin approximations in the space since the 
proofs are all based on a variational formulation with all test functions in the same space as the space of the trial functions. 
Moreover, it is expected that optimal error estimates can be obtained without any essential difficulties since the H1 bound 
for φ is satisfied naturally. We will implement the subsequent error analysis in the future work by following the same lines 
as the analytical work for isotropic Allen-Cahn/Cahn-Hilliard models in [24,34].

3.2. Other type schemes

In comparisons with the S-SAV scheme developed above, we also apply several other prevalent techniques to discretize 
the nonlinear terms, including the fully-implicit and convex splitting schemes listed below.

3.2.1. Fully-implicit scheme

The second-order fully-implicit scheme based on the BDF2 formula reads as follows.

3φn+1 − 4φn + φn−1

2Mδt
= �wn+1, (3.41)

wn+1 = −ε2�φn+1 + f (φn+1) + αε2ψn+1, (3.42)

ψn+1 = −(�−1)(φn+1 − φ̄n+1). (3.43)
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About the detailed discussions about the stability, solvability for the fully-implicit scheme for the Cahn-Hilliard phase-field 
model without the nonlocal potential (i.e., α = 0), we refer to [10,25]. It is expected similar arguments can be applied to 
the above scheme. The details are left to the interested readers.

3.2.2. Convex-splitting scheme

The second-order convex-splitting scheme based on Crank-Nicolson formula reads as follows.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φn+1 − φn

Mδt
= �wn+ 1

2 ,

wn+ 1
2 = −ε2�φn+ 1

2 +
(φn+1)2 + (φn)2

2

φn+1 + φn

2
+ αε2ψn+ 1

2 ,

ψn+ 1
2 = −(�−1)(φn+ 1

2 − φ̄n+ 1
2 ),

(3.44)

where φn+ 1
2 =

φn+1+φn

2
and ψn+ 1

2 =
ψn+1+ψn

2
. By using the similar approach given in [18,19], one can prove that the scheme 

is unconditionally energy stable. Thus we omit the detailed derivations of the energy stability proof in this paper.

4. Numerical simulation

In this section, we present a number of 2D and 3D numerical examples to demonstrate the accuracy, energy stability, 
and efficiency of the developed stabilized-SAV scheme (3.10)-(3.13). In all examples, we consider a computational domain 
� = [0, 2π ]d , d = 2, 3 with periodic boundary conditions and we adopt the Fourier-spectral method to discretize the space.

If not explicitly specified, the default values of parameters are set as follows,

M = 1, ε = 0.06, S = 2, B = 1,α = 100. (4.1)

4.1. Accuracy test

We first perform numerical simulations to test the convergence rates of the proposed stabilized-SAV scheme (3.10)-(3.13), 
denoted by S-SAV. For comparisons, we also compute the convergence rates by using the non-stabilized version of SAV 
scheme, i.e., scheme (3.10)-(3.13) but with S = 0, denoted by SAV; the fully-implicit scheme, denoted by Imp; and the 
convex-splitting scheme, denoted by CS. For the latter two nonlinear schemes, we use Newton iterative method to linearize 
the nonlinear system.

We perform refinement tests for temporal convergence by setting the initial condition of two circles as follows,

φ(x, y, t = 0) =
1

4

2∑

i=1

−tanh(

√
(x− xi)2 + (y − yi)2 − ri

1.5ε
) +

3

4
, (4.2)

where (x1, y1, r1) = (π − 0.8, π , 1.4) and (x2, y2, r2) = (π + 1.7, π , 0.5). Since the exact solution is not known, we choose 
the solution obtained with the time step size δt = 1e–9 computed by the scheme S-SAV as the benchmark solution (ap-
proximately the exact solution) for computing errors. We discretize the space using Nx = N y = 129 Fourier modes for x and 
y directions so that the errors from the spatial discretization are negligible compared to the temporal discretization errors. 
In Fig. 4.1-Fig. 4.3, we plot the L2 errors of the phase variable between the numerical solution and the exact solution at 
t = 0.2 with different time step sizes by varying the mobility parameter M increasingly. Some observed features are listed 
as follows.

• First, in Fig. 4.1(a), we set M = ε and plot the errors computed by using all four schemes, S-SAV, SAV, CS, and Imp. 
We observe these schemes not only present the good convergence rate that almost perfectly matches the second-order 
accuracy for the time step but also good approximations to the exact solution, regardless of whether they are stabilized 
or not. Meanwhile, for fixed δt , the magnitude of errors is Imp<SAV<S-SAV< CS, since the stabilization term added 
in the scheme S-SAV actually increases the splitting errors. In Fig. 4.1(b), we plot the average number of iterations 
that these schemes need for each time step. We can see that the scheme S-SAV (or SAV) can significantly save the 
computational cost while using large time steps since they are free of iterations (we omit the plots of the scheme SAV 
in Fig. 4.1(b) since its computational cost is the same as that of S-SAV).

• Second, in Fig. 4.2(a), we set M = 1. We observe that, when δt > 1.25e–3, the non-stabilized scheme SAV totally loses 
the accuracy. When δt ≤ 1.25e–3, it can present good approximations and second-order accuracy. On the contrary, the 
other three schemes, S-SAV, CS, and Imp, are stable for all tested time steps and perform good approximations and 
corresponding orders of accuracy all along. The average number of iterations for each time step are also plotted in 
Fig. 4.2(b). The computational cost of the scheme S-SAV is quite low compared to the nonlinear schemes. For instances, 
when δt = 0.01, for each times step, the fully-implicit scheme needs around 500 times iterations, the convex-splitting 
scheme needs around 250 times, while the scheme S-SAV does not need any iterations at all.
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Fig. 4.1. (a) The L2 numerical errors for the phase field variable φ that are computed using the four schemes, S-SAV, SAV, CS, and Imp with various temporal 
resolutions with the mobility parameter M = ε . (b) The average number of iterations that these schemes need for each time step (the plots of the scheme 
SAV is omitted here since its computational cost is the same as that of S-SAV).

Fig. 4.2. (a) The L2 numerical errors for the phase field variable φ that are computed using the four schemes, S-SAV, SAV, CS, and Imp with various temporal 
resolutions with the mobility parameter M = 1. (b) The average number of iterations that these schemes need for each time step.

• Finally, we set M = ε−2 and the errors are plotted in Fig. 4.3(a). We observe that the non-stabilized scheme SAV totally 
loses the accuracy for all tested time steps. When δt ≥ 7.8125e–5, the scheme CS blows up quickly thus its error 
points are missing. The scheme Imp blows up for all tested time steps, thus its error points are missing as well. On 
the contrary, the stabilized scheme S-SAV is stable for all tested time steps and perform good approximations and 
corresponding orders of accuracy all along. The average number of iterations for the schemes S-SAV and CS for each 
time step is plotted in Fig. 4.3(b).

Therefore, through these numerical tests, we conclude that (i) if the mobility parameter is low, all schemes can solve 
the model well; (ii) if the mobility parameter is high, the stabilized scheme S-SAV overwhelmingly defeats all other three 
schemes from the stability and/or accuracy; and (iii) the scheme S-SAV overwhelmingly defeats the other two nonlinear 
schemes considering the computational cost.

We finally test the convergence rate for the spatial discretization for the S-SAV scheme. In Fig. 4.4(a) and (b), for three 
mobility parameters of M = ε , 1, and ε−2 , we plot the L2 errors of the phase field variable φ at time t = 0.2 by refining the 
grid points along the x and y directions, respectively. We use a very small time step δt = 0.0001 so that the errors from the 
temporal discretization are negligible compared to the spatial discretization errors. For the x-direction, we fix the number 
of Fourier modes N y = 257 and vary the number of Fourier modes Nx starting from 33 with an increment of 32, with a 
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Fig. 4.3. (a) The L2 numerical errors for the phase field variable φ that are computed using the three schemes, S-SAV, SAV, and CS with various temporal 
resolutions when the mobility parameter M = ε−2 (the scheme CS blows up quickly when δt > 7.8125e–5, thus its corresponding error points are missing; 
the scheme Imp blows up for all tested time steps, thus its error points are missing as well). (b) The average number of iterations that these schemes need 
for each time step.

Fig. 4.4. (a) L2 errors for mesh refinement tests in x-direction, (b) (a) L2 errors for mesh refinement tests in y-direction. The L2 numerical errors for φ that 
are computed using the scheme S-SAV with the initial condition is (4.2) and three mobility parameters M = ε, 1, ε−2 are used.

reference solution obtained using the finest resolution of Nx = N y = 257. The convergence in the y-direction is obtained in 
a similar way. We see that the S-SAV scheme achieves the spectral accuracy in the L2 norm.

4.2. Evolution of two 2D circles

In this example, we investigate how the coarsening effect competes with the nonlocal Ohta-Kawasaki potential by us-
ing the scheme S-SAV and the initial condition of two circles given by (4.2). The time step is δt = 0.001 and the space 
is discretized using Nx = N y = 129 Fourier modes. We vary the nonlocal parameter α and all other parameters are 
from (4.1).

In Fig. 4.5(a), we set α = 0 which means the nonlocal effect vanishes and there exists only the coarsening effect. Snap-
shots of the profiles of the phase field variable φ are taken at t = 0, 1, 2, 5, and 10. We observe that the small circle is 
absorbed into the big circle, and the complete absorption happens around t = 5. In Fig. 4.5(b), we set α = 100 and the 
snapshots of the profiles of the phase field variable φ are taken at t = 0, 10, 20, 40, and 100. We observe that the nonlocal 
effect dominates thus the coarsening effect is totally reversed where the volume of the big circle is continuously absorbed 
by the smaller one until these two circles finally form the peanut shape with equal volumes. In Fig. 4.5(c), we further in-
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Fig. 4.5. The dynamical evolutions of the phase variable φ with various nonlocal parameter α where (a) α = 0, (b) α = 100 and (c) α = 300. (d) Time 
evolution of the two total free energy functionals, (2.16) and (3.2), with the three values of α.

crease the nonlocal effect by setting α = 300. The snapshots of the profiles of the phase field variable φ are taken at t = 0, 
10, 20, 40, and 200. While the small circle is forming the peanut shape, we observe that the big circle pinches off at the 
nearest position to the smaller one. Finally, both circles evolve into two elongated and bending peanut shapes with equal 
volumes.

In Fig. 4.5(d), for the above three cases, we plot time evolutions of the two total free energies, the original energy (2.16)
and the modified energy (3.2), where these two energy curves are almost identical and they both decay monotonically at 
all times.

We further show the scheme S-SAV is unconditionally energy stable. In Fig. 4.6, we plot the evolution curves of the 
total free energy (2.16) computed by eight different time step sizes until t = 10 for α = 100 and α = 300, respectively. 
For all tested time steps, the obtained energy curves show the monotonic decays that confirms that the algorithm S-SAV 
is unconditionally stable. We also observe that, for δt ≤ 0.0125, the four energy curves coincide very well. But when δt >

0.0125, the energy curves deviate viewable away from others. This means the adopted time step size should not be larger 
than 0.0125, in order to get reasonably good accuracy (we set δt = 0.001 in the computations of Fig. 4.5).
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Fig. 4.6. Time evolutions of the total free energy (2.16) computed by eight different time step sizes until t = 10 for (a) α = 100 and (b) α = 300. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4.7. The 2D dynamical evolution of the local volume fraction phase variable φ with the initial condition φ̄0 = 0 and time step δt = 0.001. Snapshots of 
the numerical approximation are taken at t = 0.04, 0.2, 0.4, 2, 5, and 20.

4.3. Spinodal decomposition

In this example, we study the phase separation dynamics that is called spinodal decomposition using the developed 
scheme S-SAV. By considering a homogeneous binary mixture, the spontaneous growth of the concentration fluctuations 
can lead the system from the homogeneous to the two-phase state.

4.3.1. 2D case
We set the initial condition as the randomly perturbed concentration field as follows,

φ(x, y, t = 0) = φ̄0 + 0.001rand(x, y), (4.3)

where the rand(x, y) is the random number in [−1, 1] that follows the normal distribution. We use the scheme S-SAV 
with the time step δt = 0.001 and discretize the space using Nx = N y = 257 Fourier modes. We set the parameters as 
α = 250000, ε = 0.02, M = 1, S = 2, B = 1.
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Fig. 4.8. The 2D dynamical evolution of the local volume fraction phase variable φ with the initial condition φ̄0 = 0.1 and time step δt = 0.001. Snapshots 
of the numerical approximation are taken at t = 0.04, 0.2, 0.4, 2, 5, and 20.

Fig. 4.9. The 2D dynamical evolution of the local volume fraction phase variable φ with the initial condition φ̄0 = 0.2 and time step δt = 0.001. Snapshots 
of the numerical approximation are taken at t = 0.04, 0.2, 0.4, 2, 5, and 20.

In Fig. 4.7, we perform numerical simulations for the initial value φ̄0 = 0 and snapshots of the phase field variable φ
are taken at t = 0.04, 0.2, 0.4, 2, 5, and 20. We observe that the blue region is totally entangled with the red region, and 
the final equilibrium solution forms the cylindrical phase. In Fig. 4.8, we set φ̄0 = 0.1. We observe that the final solution is 
quite different from the previous case. Although most of the blue region still graft and entangle with the red region, a small 
quantity of the blue region starts to form the BCC phase. The final equilibrium solution, shown at t = 20, is the co-existence 
of the cylindrical and BCC phases but the former phase dominates obviously. When the initial value is φ̄0 = 0.2, in Fig. 4.9, 
we observe that more blue regions form the BCC phase and a small quantity of it still forms the cylindrical phase. The final 
equilibrium solution, shown at t = 20, is the co-existence of the cylindrical and BCC phases but the latter phase dominates. 
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Fig. 4.10. The 2D dynamical evolution of the local volume fraction phase variable φ with the initial condition φ̄0 = 0.3 and time step δt = 0.001. Snapshots 
of the numerical approximation are taken at t = 0.04, 0.2, 0.4, 2, 5, and 20.

Fig. 4.11. (a) Time evolution of the total free energy functional (2.16) for the spinodal decomposition examples with three different initial values of φ̄0 = 0, 
0.1, 0.2, and 0.3 in (4.3). (b) A close-up view for t ∈ [0, 0.45].

Finally, we set φ̄0 = 0.3 in Fig. 4.10. We then observe that a small quantity of cylindrical phase initially appears and turns 
to the BCC phase immediately. Thus the final equilibrium solution is the pure BCC phase in the whole domain.

In Fig. 4.11, we present the evolution of the total free energy functional (2.16) for all four initial conditions φ̄0 = 0, 0.1, 
0.2, and 0.3. The energy curves show the decays with the time that confirms that the scheme S-SAV is unconditionally 
stable.

4.3.2. 3D case
We further perform the 3D simulation where the initial condition is set as follows,

φ(x, y, z, t = 0) = φ̄0 + 0.001rand(x, y, z), (4.4)

where the rand(x, y, z) is the random number in [−1, 1] that follows the normal distribution. We use the scheme S-SAV 
with the time step δt = 0.001 and discretize the space using Nx = N y = Nz = 129 Fourier modes. We set the parameters as 
α = 10000, ε = 0.05, M = 1, S = 2, B = 1.
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Fig. 4.12. The 3D dynamical evolution of the isosurface of the phase variable φ with the initial condition φ̄0 = 0 and time step δt = 0.001. Snapshots of the 
numerical approximation are taken at t = 0.6, 2, 6, 10, 50, and 80.

In Fig. 4.12 with the initial value φ̄0 = 0, the dynamical behaviors of the phase field variable φ are shown in which the 
isosurfaces of {φ(x, y, z) = 0} are plotted at various times. We observe that the final equilibrium solution forms the gyroidal 
shape. By increasing the φ̄0 to 0.2 in Fig. 4.13, the obtained final equilibrium solution presents the gyroidal shape but with a 
small quantity of spherical shape. In Fig. 4.14 with φ̄0 = 0.4, we find that the final equilibrium solution presents the spherical 
shape in the whole domain. In order to obtain a more accurate view, we present the views through different cut-off planes 
for the equilibrium solutions in Fig. 4.15. It is quite clear that these equilibrium solutions actually present three different 
phases, i.e., gyroidal phase (φ̄0 = 0), gyroidal-spherical mixed phase (φ̄0 = 0.2), and spherical phase (φ̄0 = 0.4).
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Fig. 4.13. The 3D dynamical evolution of the isosurface of the phase variable φ with the initial condition φ̄0 = 0.2 and time step δt = 0.001. Snapshots of 
the numerical approximation are taken at t = 0.2, 2, 8, 20, 60, and 80.

5. Concluding remarks

In this paper, we have developed a semi-discrete in time, easy-to-implement, fast, and second-order scheme for solving 
the Cahn-Hilliard phase field model for Diblock copolymers. The novelty of the proposed stabilized-SAV scheme is that 
iterations are successfully avoided in an artful manner, and one only needs to solve two biharmonic equations at each time 
step. The added linear stabilization term is shown to be crucial to enhancing the stability and keeping the required accuracy 
while using large time steps. We further prove the unconditional energy stability of the developed scheme rigorously. 
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Fig. 4.14. The 3D dynamical evolution of the local volume fraction phase variable φ with the initial condition φ̄0 = 0.4 and time step δt = 0.001. Snapshots 
of the numerical approximation are taken at t = 0.6, 2, 6, 20, 40, and 80.

Through the comparisons with some other prevalent schemes like the non-stabilized SAV, fully-implicit, and convex-splitting 
schemes for some benchmark numerical examples in 2D and 3D, we demonstrate the stability and the accuracy of the 
developed scheme numerically.
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