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auxiliary variable) approach with the stabilization technique to arrive at a novel stabilized-
SAV method, where a crucial linear stabilization term is added to enhancing the stability
and keeping the required accuracy while using the large time steps. The scheme is very
easy-to-implement and fast in the sense that one only needs to solve two decoupled

{n(g;‘;f_?esid fourth-order biharmonic equations with constant coefficients at each time step. We
S-SAV further prove the unconditional energy stability of the scheme rigorously. Through the
Diblock copolymer comparisons with some other prevalent schemes like the fully-implicit, convex-splitting,
Cahn-Hilliard and non-stabilized SAV scheme for some benchmark numerical examples in 2D and 3D,
Second _O_rder B we demonstrate the stability and the accuracy of the developed scheme numerically.

Unconditional energy stability © 2019 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

A diblock copolymer is a polymer consisting of two types of monomers which are arranged such that there is a chain of
each monomer, and those two chains are grafted together to form a single copolymer chain. Some of the common shapes of
diblock copolymers that have been observed experimentally are lines (lamellar), hexagonal cylinders, gyroids, and stacked
balls (body-centered-cubic, BCC for short). Copolymerization is used to modify the properties of manufactured plastics to
meet specific needs, for example, to reduce crystallinity, modify glass transition temperature, control wetting properties or
to improve solubility, see [17,22].

In this paper, we consider numerical approximations for solving a phase-field model for diblock copolymers where a
scalar phase field variable is used to denote the difference between the local volume fractions of two monomers, cf. [2,6,
12,21,28,30]. The governing PDE system is derived by using the Cahn-Hilliard dynamics, i.e., the total free energy (called as
Ohta-Kawasaki free energy) is minimized in H~! Sobolev space since the phase field variable represents the difference of
the local volume fractions of the two constituent monomers which is expected to be conserved with the time. To design
fast, stable, and accurate time stepping method for the phase-field related model that usually follows the energy dissipa-
tion law, the main challenging issue is to find proper discretization for the nonlinear term. For this particular model, the
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only nonlinear term is the cubic polynomial term from the double-well potential. In fact, there are quite many prevalent
temporal discretization methods to handling the nonlinear term for phase-field models, for instances, the fully-explicit [25],
fully-implicit [10], convex-splitting [9,18,19,26], stabilized-explicit [13,20,25], Invariant Energy Quadratization (IEQ) [3,29,
31-33,35-37], Scalar Auxiliary variable (SAV) [4,5,27], and a variety of other type methods [14-16,23], etc. Some methods
mentioned above are provably energy stable, i.e., the discrete solution can preserve the energy dissipation law at the dis-
crete level. However, when the mobility parameter or the time step is large, the obtained linear/linearized system could be
ill-conditioned thereby even those provably energy stable schemes like convex-splitting, IEQ, or SAV method can still blow
up, or lead to very costly iterations, cf. the accuracy tests shown in Fig. 4.2-Fig. 4.3.

The aim of this paper is to develop a numerical scheme that is fast (free of iterations), stable, and second-order accurate.
To this end, we combine the SAV approach with the stabilization technique that brings up a novel stabilized-SAV (S-SAV)
approach, where an extra linear stabilization term is added to enhancing the stability and thus allowing large time steps
while keeping the required accuracy. Meanwhile, the implementation procedure for the developed S-SAV method is very
simple, in which, we first transform the total free energy integral into a quadratic function of a new, scalar auxiliary variable
via a change of variables. Then, for the reformulated model in terms of the new variable, we treat all nonlinear terms in
a semi-explicit way. Due to the specialty of the new variable that is non-local type formally, one only needs to solve two
decoupled, linear biharmonic equations with constant coefficients at each time step. In addition to presenting the rigorous
proof of the unconditional energy stability, we further demonstrate the stability and accuracy numerically through the
comparisons with some prevalent schemes like the fully-implicit, convex-splitting, and non-stabilized SAV schemes for a
number of classical benchmark numerical examples in 2D and 3D.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction of the governing PDE system
for the phase-field diblock copolymer model. In Section 3, we develop the numerical scheme with second-order temporal
accuracy to solving this model. Various 2D and 3D numerical experiments are given in Section 4 to show the accuracy and
efficiency of the proposed numerical scheme. Finally, some concluding remarks are given in Section 5.

2. Model equations

We now give a brief introduction to the diblock copolymer model. Assuming a system consists of molecules of two
monomers, where the state of the system is described by the local volume fraction of these two components, ¢ (x, t) with
xc Q4 d=2,3 and time t. The phenomenological mesoscopic dynamic equation that relates a temporal change of ¢ (x, t)
is governed by the following Cahn-Hilliard equation (cf. [1,7,8,11]):

¢ =MAwWw,
_%E@ 1)
¢
where M is the mobility parameter, E(¢) is a coarse-grained free energy functional that is given as
e 5 ae? . .
E(¢)= (?|V¢>| + F(¢))dx+ - Cx—y)(9(x) —P)(y) — p)dxdy, (2.2)
Q Q Q

where € is the gradient energy coefficient, the function F(¢) = }l(dbz —1)2 is the bulk Ginzburg-Landau double well potential,
o(t) = ﬁ fQ ¢ (%, t)dx, G is the Green’s function such that
CEx—y)=—8x-y), (2.3)

with the periodic boundary condition, § is a Dirac delta function, ¢ is the nonlocal positive parameter to characterizes
the nonlocal potential and the molecular chain length, and the last term in (2.2) is the so-called nonlocal Ohta-Kawasaki
functional.

We define the inverse Laplace operator ¢ = (—A)~1¢ as

/ Ydx =0, (2.4)

with the periodic boundary conditions, where ¢ € L%(Q) = (¢ € L(Q) : fQ ¢dx = 0}. By taking the total free energy de-
scribed in (2.2), the PDE system (2.1) turns into

¢r = MAw, (2.5)
w=—€>Ad + f(¢) +ae’y, (2.6)
v ==A)"1p—-9), (2.7)
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or an equivalent form as

de = M(Ap — ae’(p — §)), (2.8)
pw=—€2Ad + f(9), (2.9)
where f(¢) =F'(¢) = ¢> — ¢.

Without the loss of generality, we adopt the periodic boundary condition to remove all complexities associated with the
boundary integrals in this study. We remark that the boundary conditions can also be the no-flux type as

olao =Vw - nlye =0, (2.10)
for (2.5)-(2.7), or

Inglag =V -nlze =0, (2.11)

for (2.8)-(2.9), where n is the outward normal of the computational domain 2. All numerical analysis in this paper can be
carried out to the no-flux boundary conditions without any further difficulties.

The model (2.5)-(2.7) follows the energy dissipation law. By taking the L? inner product of (2.5) with —w, and of (2.6)
with ¢¢, performing integration by parts, and taking summation of the two equalities, we obtain

d 2
m f(%wmz + F(¢)dx + ae’ (Y, ) = —M | Vw|>. (212)
Q

We rewrite (2.7) as the form (2.4), i.e., —Ay = ¢ — ¢ with fQ Ydx =0, and then take the time derivative to obtain

— Ay = — ¢t (213)
By taking the L? inner product of the above formula with ae?y, we obtain
d [ ae?
— | =-IVyPdx=ae’ W, ¢, (214)
dt 2
Q

where the zero mean property of ¥ is used. By combining (2.12) and (2.14), we obtain

d
aE<¢,w>=—Mqun2, (2.15)

where

e _ 5 ae? )
E(¢,1//)=/(?|V¢| +F(@) + = IVy[Ddx. (2.16)
Q

3. Numerical schemes

We develop a second-order accurate and provably unconditionally energy stable scheme by combining the SAV approach
[5,27] with the stabilization technique, that arrives at the stabilized-SAV approach. An extra linear stabilization term is
particularly efficient to enhancing the energy stability while keeping the computation fast with the required accuracy.

3.1. Stabilized-SAV scheme

We define a scalar, auxiliary variable u(t) as follows:

u(t) = / F(¢)dx+ B, (3.1)

Q

where B is any constant that ensures the radicand positive (in all numerical examples, we let B = 1). Thus the total free
energy (2.16) can be rewritten as

€ 2 ae? 2 2
E(u,qb,gﬁ):/(TIVd)l +T|V¢| )dx +u“ — B. (3.2)

Q
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By taking the time derivative for the new variable u(t), we can rewrite the system (2.5)-(2.7) to be the following system
in terms of (¢, u, w, ),

¢t = MAw, (3.3)
w=—€?A¢ + uH + ae?y, (34)
1
w=s / H($)edx, (3.5)
Q
VEICTSRICESOR (36)
where
H(¢) = & (3.7)
/fsz F(¢)dx+ B
The transformed system (3.3)-(3.6) forms a closed PDE system with the following initial conditions,
p(t=0)=¢",

(3.8)

ut=0)= /F(¢0)dx+ B.

Q

The system (3.3)-(3.6) also preserves the energy dissipative law. By taking the L2 inner product of (3.3) with —w, of (3.4)
with ¢, and multiplying (3.4) with 2u, performing integration by parts, taking the time derivative for (3.6) and taking the
L2 product with v, and summing all equalities up, we can obtain the energy dissipation law as

d
g e.v) = —M|Vpu|?* <o. (3.9)

Let 5t > 0 be a time step size and set t" =nét for 0 <n < N with T = N§t. We also denote the L% inner product
of any two spatial functions ¢(x) and ¥ (x) by (¢(x), ¥ (x)) = f9¢(X)I//(X)dX, and the L% norm of the function ¢ (x) by
o)1 = (¢, $). Let ¥" denote the numerical approximation to ¥ (-, t)|;— for any function 1.

We now construct a numerical scheme based on the second-order backward differentiation formula (BDF2) for solving
the system (3.3)-(3.6), that reads as follows.

Assuming ¢", u" and ¢"~ !, u"~! are known, we update ¢"+1, u"t1 by solving

3¢n+1 _4¢n +¢n—1 B

— AW”+1, (310)
2Mét
whtl — _€2A¢n+l 4y e +a€2wn+l + S(¢”+] _ ¢*,n+1)’ (3.11)
1
3yt Ay 4y = 5 f H*M 13" _ 49" + p"Vydx, (3.12)
Q
Iﬁn+1 — _(Afl)(¢n+] _ ¢_)TH»1)’ (313)
where

¢*,n+1 — 2¢n _ ¢n—1’ H*J‘H-] — H((p*,ﬂ-‘r]), (3.14)

and S is a positive stabilizing parameter.

Remark 3.1. We add a second-order linear stabilizer (associated with S) in the scheme to balance the explicit treatment of
the nonlinear term f(¢) in term H. Therefore the magnitude of S should be around ||¢||;~ heuristically. Numerical examples
show that this stabilizer is crucial to enhancing the stability while keeping the required accuracy, cf. the comparisons with
the non-stabilized SAV (i.e., the scheme (3.10)-(3.13) but with S = 0), fully-implicit, and convex-splitting approaches shown
in Fig. 4.1-Fig. 4.3.

Remark 3.2. To initiate the second-order scheme (3.10)-(3.13), we need the values of ¢!, u!, that can be obtained by the
following similar first-order scheme based on backward Euler formulation that reads as,
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¢! —¢°

=Aw!, (3.15)
Mst
w! = —e?A¢" !+ u'HO + ey + S(p! — ¢0), (3.16)
u' —ul = %fHO(qsl — ¢%)dx, (317)
Q
yl=—(a"He' —éh), (3.18)

where HO = H(¢?).

Apparently, we arrive at a linear but nonlocal and coupled system for ¢"t!, ¥"*1 and u™*! in the scheme (3.10)-(3.13)
that need costly iterative solvers to compute. But in practice, we can implement the scheme through the following decou-
pling procedure.

We first rewrite (3.12) as follows,

1
= E/H*‘”qu"“dx—i-g”, (3.19)
Q
where
4un —y"n 11 4" — "1
P L e 320

Q
Then the scheme (3.10)-(3.11) can be combined together to be

3 ¢n+1 _ SA¢”+1 + 62A2¢n+] +a€2(¢ﬂ+1 _ (511“1’1)
2Mést . (3.21)
_ —AH*’n+l f H*,n—H n+1dx — ~n7 .
3 ¢ g
Q
where g" is an explicit term defined as
. 4¢n _ ¢n71
n_" ¥ _SA *,n+1 A nH*,n-H . (322)
T, ¢ + A(g )
By taking L? inner product of (3.21) with 1, we obtain the explicit formula for ¢"*! that reads as
- 2Mst
=T | gdx. 3.23
¢ 3 ) & (3.23)
Q
Thus (3.21) can be written as
1
(@(¢n+l) _ 5AH*,n+l / H*’”H(p”de =’g\n7 (3‘24)
Q
where Z2(-) is the linear operator that is defined as
3
PW) =(—— — SA+ €2 A2 + ae)y, (3.25)

2Mét

o~ ~ 2 ~
and g" = g" 4 Mt [0 ghdx.

Define a linear operator #2~1(.), such that for any periodic function ¢ € L%(Q), ¥ = &~ 1(¢) is the solution of the
following linear system

PWY) =0, (3.26)

with periodic boundary conditions. By applying the operator 42~ to (3.24), then we obtain

1
¢l’l+1 _ 5@—1 (AH$,H+1) / H*’"+1¢”+1dx — y—l @n) (327)
Q
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By taking the L2 inner product of (3.27) with H*"*1 we obtain

fg H*,n—H gz—l(’g\n)dx
1— %fg H*n+1 gp—1 (AH*’"+1)dX'

/ H*" g ldx = (3.28)

Q

It is easy to check the term in the denominator — [, H*"*1 2~ 1(AH*"1)dx > 0 since —2?~1(A) is a positive definite
operator.

Furthermore, (3.28) actually provides an explicit formulation for the nonlocal term fQ H*mt1gn+1dx. Therefore, in
computations, we first find v = 2~ 1(8") and v = £~ 1(AH*"1), that means to solve the following two decoupled,
biharmonic equations,

3
(M—SA+62A2+0462)¢1 =3", (3.29)
and
3
(——— — SA+ €?A% + aed)yp = AHHMT, (3.30)
2Mst

with the periodic boundary conditions. And then, after by applying (3.28) to update [, H*"+1¢"1dx, we can obtain ¢"+1
from (3.27) directly.
To summarize, the nonlocal coupled scheme (3.10)-(3.13) can be easily implemented in the following manner:

e Compute 11 and v, by solving two linear biharmonic equations with constant coefficients, (3.29) and (3.30);
e Compute [, H*"*1¢"*1dx from (3.28) and update u"*! from (3.19);
e Update ¢"*! from (3.27).

Hence, the total cost at each time step is essentially solving two decoupled biharmonic equations with constant coefficients.
We note that these equations with periodic boundary conditions can be easily computed by the Fourier-Spectral method.
Hence, this scheme is extremely efficient and easy to implement. We can also break the biharmonic equation into two
elliptic equations so that the finite element method with lower order element can be used.

Now we prove the scheme (3.10)-(3.13) is unconditionally energy stable as follows.

Theorem 3.1. The scheme (3.10)-(3.13) is unconditionally energy stable which satisfies the following discrete energy dissipation law,

1
s BT = = =MW <o, (331)
where
ne1 €2 IV + 2Vt — Vo2 ae? VY2 4 2Vt — vyt 2

B == : )+ > ) )

3.32
N (un+l)2 + (2un+1 _ un)z vs ||¢n+1 _ ¢n||2
2 2 '

Proof. By taking the L2 inner product of (3.10) with —2Mstw™+!, we obtain
—(B¢" —4g" + 4" W) = 28tM | VW2, (333)
By taking the L2 inner product of (3.11) with 3¢™t1 — 4¢" + ¢"~!, and using integration by parts, we obtain

(Wn+l’3¢n+] _4¢n +¢ﬂ71) :EZ(V¢H+1’3v¢H+1 _4v¢n + V¢ﬂ71)
+ un+1 (H*,nJr‘l’ 3¢n+l _ 4¢ﬂ +¢n71)

3.34
+S(¢n+l_2¢n+¢'n—173¢n+1_4¢n+¢n—1) ( )
+a€2(wn+1,3¢ﬂ+1 _4¢n +¢ﬂ—1).

From (3.13), we can derive
_A(3wn+1 _41#11 + ,(//n—l) =3¢n+1 _4¢n +¢n—] _ (3&”“‘1 _4(1_51’! +(5ﬂ—1). (335)

By taking the L? inner product of (3.35) with are?y"*1, we obtain



J. Zhang et al. / Applied Numerical Mathematics 151 (2020) 263-281 269

a62(3vwn+] _ 4vwn + lel‘l—‘l7 an-i—l) — a€2(3¢ﬂ+1 _ 4¢n + ¢n—1’ .()hTH—])7 (336)
where we use (3" —4¢" + "1, y"*1) =0 since [, y"1dx=0.

By multiplying (3.12) with —2u™t1, we obtain

_z(auﬂ+1 —4u" + un—l)un+1 — _un-‘rl / H*,n-H (3¢ﬂ+1 _44)71 +¢n—1)dx' (337)
Q

Combining the above equations and applying the following two identities
2a(3a —4b+c) =a® + 2a — b)?> —b* — (2b — ¢)® + (a — 2b +¢)?,
(Ba—4b+c)a—2b+c)=(@—b)>—(b—c)* +2@—2b+0c)>?,

we obtain

(3.38)

2 2
€ € _
> V™% + 2V — Vo' |?) — > (IVP"[I* + 12Ve" — Vo 1|12)

aEZ n+12 n+1 npy2 Ol€2 ny2 n n—1,2
+T(I|VW I“+12Vy ™" = Vg )—T(HVW I“+12Vy™ = VY1)
+ ((uﬂ+1)2 + (zun+] _ un)2) _ <(un)2 + (Zun _ unfl)Z)
+S[g™ — @12 = Sllg" — "I

62 n+1 n n—1y2 an n+1 n n—1y2
+3||V¢ —2Ve" + Vo' +TIIV1/f =2VYyt + VYt
+ (un-H _ 2Un + un—l)z + 25”¢n+1 _ 2¢n +¢n—1 ”2 — —ZStM”VH/rH—] ”2

Finally, we obtain the desired result after dropping some positive terms. O

Remark 3.3. Heuristically, %(E”“ — E™) is a second-order approximation of %E(u, ¢) at t =t"*1, For any smooth variable
Y with time, we have

™2 — 2y =yt R 12y — gt

26t 26t
N e 2~ d n+1y 2 2
=+ 00t = — t O (St 3.39
o + 0(5t%) dtnw( 7+ 067, (3.39)
and
n+1 _ g ny2 _ n__ . n—12
(Al A el Vet i POPPNEN) (3.40)

26t

Remark 3.4. It is straightforward to develop the second-order Crank-Nicolson scheme by using the same linear stabilization
term. We omit the details to the interested readers since the proof of energy stability is quite similar to Theorem 3.1. The
SAV type scheme is particularly suitable for the equations that is derived by the gradient flow approach as long as the total
free energy is bounded from below. It is worthy to mention that the SAV or IEQ method can only ensure the stability of
the modified energy instead of the original energy. In addition, although we consider only time discrete schemes in this
study, the results can be carried over to any consistent finite-dimensional Galerkin approximations in the space since the
proofs are all based on a variational formulation with all test functions in the same space as the space of the trial functions.
Moreover, it is expected that optimal error estimates can be obtained without any essential difficulties since the H! bound
for ¢ is satisfied naturally. We will implement the subsequent error analysis in the future work by following the same lines
as the analytical work for isotropic Allen-Cahn/Cahn-Hilliard models in [24,34].

3.2. Other type schemes

In comparisons with the S-SAV scheme developed above, we also apply several other prevalent techniques to discretize
the nonlinear terms, including the fully-implicit and convex splitting schemes listed below.

3.2.1. Fully-implicit scheme
The second-order fully-implicit scheme based on the BDF2 formula reads as follows.
3¢n+1 _ 4¢n +¢n71
2Mst -
n+1 _ 2 A gntl n+1 2 nt1
W' =—€“Ad"T + f(@"T) +aetYT, (3.42)

wn—ﬁ-l — _(A—l)(¢n+1 _ én—%—l). (343)

AW (3.41)
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About the detailed discussions about the stability, solvability for the fully-implicit scheme for the Cahn-Hilliard phase-field
model without the nonlocal potential (i.e., & = 0), we refer to [10,25]. It is expected similar arguments can be applied to
the above scheme. The details are left to the interested readers.

3.2.2. Convex-splitting scheme
The second-order convex-splitting scheme based on Crank-Nicolson formula reads as follows.

¢n+1 _ ¢n _ Awn-f-%
Mst , 1\2 2 1
Wb ciagrrh L GTENG ey (344)

Y = (AT (" — ¢TI,

where ¢”+% = W%‘bn and 1//”+% = ‘”M;W. By using the similar approach given in [18,19], one can prove that the scheme
is unconditionally energy stable. Thus we omit the detailed derivations of the energy stability proof in this paper.

4. Numerical simulation

In this section, we present a number of 2D and 3D numerical examples to demonstrate the accuracy, energy stability,
and efficiency of the developed stabilized-SAV scheme (3.10)-(3.13). In all examples, we consider a computational domain
Q=1[0,271%, d =2, 3 with periodic boundary conditions and we adopt the Fourier-spectral method to discretize the space.

If not explicitly specified, the default values of parameters are set as follows,

M=1,€=0.06, S=2, B=1,a =100. (4.1)
4.1. Accuracy test

We first perform numerical simulations to test the convergence rates of the proposed stabilized-SAV scheme (3.10)-(3.13),
denoted by S-SAV. For comparisons, we also compute the convergence rates by using the non-stabilized version of SAV
scheme, i.e., scheme (3.10)-(3.13) but with S =0, denoted by SAV; the fully-implicit scheme, denoted by Imp; and the
convex-splitting scheme, denoted by CS. For the latter two nonlinear schemes, we use Newton iterative method to linearize
the nonlinear system.

We perform refinement tests for temporal convergence by setting the initial condition of two circles as follows,

2
a1 VEx—x)2+(y—y)?-r_ 3
dx, y,t=0)= 3 ;—tanh( Y+ 2, (4.2)

1.5¢ 4

where (x1,y1,71) = (T —0.8,7,1.4) and (X2, y2,12) = (w + 1.7, 7, 0.5). Since the exact solution is not known, we choose
the solution obtained with the time step size §t = 1e-9 computed by the scheme S-SAV as the benchmark solution (ap-
proximately the exact solution) for computing errors. We discretize the space using Ny = N, = 129 Fourier modes for x and
y directions so that the errors from the spatial discretization are negligible compared to the temporal discretization errors.
In Fig. 4.1-Fig. 4.3, we plot the L? errors of the phase variable between the numerical solution and the exact solution at
t = 0.2 with different time step sizes by varying the mobility parameter M increasingly. Some observed features are listed
as follows.

e First, in Fig. 4.1(a), we set M = € and plot the errors computed by using all four schemes, S-SAV, SAV, CS, and Imp.
We observe these schemes not only present the good convergence rate that almost perfectly matches the second-order
accuracy for the time step but also good approximations to the exact solution, regardless of whether they are stabilized
or not. Meanwhile, for fixed §t, the magnitude of errors is Imp<SAV<S-SAV< CS, since the stabilization term added
in the scheme S-SAV actually increases the splitting errors. In Fig. 4.1(b), we plot the average number of iterations
that these schemes need for each time step. We can see that the scheme S-SAV (or SAV) can significantly save the
computational cost while using large time steps since they are free of iterations (we omit the plots of the scheme SAV
in Fig. 4.1(b) since its computational cost is the same as that of S-SAV).

e Second, in Fig. 4.2(a), we set M = 1. We observe that, when §t > 1.25e-3, the non-stabilized scheme SAV totally loses
the accuracy. When 6§t < 1.25e-3, it can present good approximations and second-order accuracy. On the contrary, the
other three schemes, S-SAV, CS, and Imp, are stable for all tested time steps and perform good approximations and
corresponding orders of accuracy all along. The average number of iterations for each time step are also plotted in
Fig. 4.2(b). The computational cost of the scheme S-SAV is quite low compared to the nonlinear schemes. For instances,
when §t = 0.01, for each times step, the fully-implicit scheme needs around 500 times iterations, the convex-splitting
scheme needs around 250 times, while the scheme S-SAV does not need any iterations at all.
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Fig.4.1. (a) The L2 numerical errors for the phase field variable ¢ that are computed using the four schemes, S-SAV, SAV, CS, and Imp with various temporal
resolutions with the mobility parameter M = €. (b) The average number of iterations that these schemes need for each time step (the plots of the scheme
SAV is omitted here since its computational cost is the same as that of S-SAV).
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Fig.4.2. (a) The L? numerical errors for the phase field variable ¢ that are computed using the four schemes, S-SAV, SAV, CS, and Imp with various temporal
resolutions with the mobility parameter M = 1. (b) The average number of iterations that these schemes need for each time step.

e Finally, we set M = e~2 and the errors are plotted in Fig. 4.3(a). We observe that the non-stabilized scheme SAV totally
loses the accuracy for all tested time steps. When &t > 7.8125e-5, the scheme CS blows up quickly thus its error
points are missing. The scheme Imp blows up for all tested time steps, thus its error points are missing as well. On
the contrary, the stabilized scheme S-SAV is stable for all tested time steps and perform good approximations and
corresponding orders of accuracy all along. The average number of iterations for the schemes S-SAV and CS for each
time step is plotted in Fig. 4.3(b).

Therefore, through these numerical tests, we conclude that (i) if the mobility parameter is low, all schemes can solve
the model well; (ii) if the mobility parameter is high, the stabilized scheme S-SAV overwhelmingly defeats all other three
schemes from the stability and/or accuracy; and (iii) the scheme S-SAV overwhelmingly defeats the other two nonlinear
schemes considering the computational cost.

We finally test the convergence rate for the spatial discretization for the S-SAV scheme. In Fig. 4.4(a) and (b), for three
mobility parameters of M =€, 1, and €2, we plot the L? errors of the phase field variable ¢ at time t = 0.2 by refining the
grid points along the x and y directions, respectively. We use a very small time step §t = 0.0001 so that the errors from the
temporal discretization are negligible compared to the spatial discretization errors. For the x-direction, we fix the number
of Fourier modes Ny, =257 and vary the number of Fourier modes Ny starting from 33 with an increment of 32, with a
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Fig. 4.3. (a) The L2 numerical errors for the phase field variable ¢ that are computed using the three schemes, S-SAV, SAV, and CS with various temporal
resolutions when the mobility parameter M = e ~2 (the scheme CS blows up quickly when 8t > 7.8125e-5, thus its corresponding error points are missing;
the scheme Imp blows up for all tested time steps, thus its error points are missing as well). (b) The average number of iterations that these schemes need
for each time step.
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Fig.4.4. (a) L? errors for mesh refinement tests in x-direction, (b) (a) L? errors for mesh refinement tests in y-direction. The L? numerical errors for ¢ that
are computed using the scheme S-SAV with the initial condition is (4.2) and three mobility parameters M =€, 1, € 2 are used.

reference solution obtained using the finest resolution of Ny = Ny = 257. The convergence in the y-direction is obtained in
a similar way. We see that the S-SAV scheme achieves the spectral accuracy in the L? norm.

4.2. Evolution of two 2D circles

In this example, we investigate how the coarsening effect competes with the nonlocal Ohta-Kawasaki potential by us-
ing the scheme S-SAV and the initial condition of two circles given by (4.2). The time step is 6t = 0.001 and the space
is discretized using Ny = N, = 129 Fourier modes. We vary the nonlocal parameter « and all other parameters are
from (4.1).

In Fig. 4.5(a), we set @ = 0 which means the nonlocal effect vanishes and there exists only the coarsening effect. Snap-
shots of the profiles of the phase field variable ¢ are taken at t =0, 1, 2, 5, and 10. We observe that the small circle is
absorbed into the big circle, and the complete absorption happens around t = 5. In Fig. 4.5(b), we set o = 100 and the
snapshots of the profiles of the phase field variable ¢ are taken at t =0, 10, 20, 40, and 100. We observe that the nonlocal
effect dominates thus the coarsening effect is totally reversed where the volume of the big circle is continuously absorbed
by the smaller one until these two circles finally form the peanut shape with equal volumes. In Fig. 4.5(c), we further in-
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a) Snapshots of ¢ at t =0, 1, 2, 5, and 10 with o = 0.

b) Snapshots of ¢ at t = 0, 10, 20, 40, and 100 with o = 100.

¢) Snapshots of ¢ at ¢ = 0, 10, 20, 40, and 200 with a = 300.
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(d) Energy evolutions with time where a = 0 (left), & = 100 (middle), and o = 300 (right).

Fig. 4.5. The dynamical evolutions of the phase variable ¢ with various nonlocal parameter o where (a) &« =0, (b) & =100 and (c) o = 300. (d) Time
evolution of the two total free energy functionals, (2.16) and (3.2), with the three values of «.

crease the nonlocal effect by setting o = 300. The snapshots of the profiles of the phase field variable ¢ are taken at t =0,
10, 20, 40, and 200. While the small circle is forming the peanut shape, we observe that the big circle pinches off at the
nearest position to the smaller one. Finally, both circles evolve into two elongated and bending peanut shapes with equal
volumes.

In Fig. 4.5(d), for the above three cases, we plot time evolutions of the two total free energies, the original energy (2.16)
and the modified energy (3.2), where these two energy curves are almost identical and they both decay monotonically at
all times.

We further show the scheme S-SAV is unconditionally energy stable. In Fig. 4.6, we plot the evolution curves of the
total free energy (2.16) computed by eight different time step sizes until t =10 for ¢ = 100 and « = 300, respectively.
For all tested time steps, the obtained energy curves show the monotonic decays that confirms that the algorithm S-SAV
is unconditionally stable. We also observe that, for §t < 0.0125, the four energy curves coincide very well. But when §t >
0.0125, the energy curves deviate viewable away from others. This means the adopted time step size should not be larger
than 0.0125, in order to get reasonably good accuracy (we set 6t = 0.001 in the computations of Fig. 4.5).
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Fig. 4.6. Time evolutions of the total free energy (2.16) computed by eight different time step sizes until t = 10 for (a) &« = 100 and (b) o = 300. (For

interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4.7. The 2D dynamical evolution of the local volume fraction phase variable ¢ with the initial condition ¢o =0 and time step §t = 0.001. Snapshots of

the numerical approximation are taken at t = 0.04, 0.2, 0.4, 2, 5, and 20.

4.3. Spinodal decomposition

In this example, we study the phase separation dynamics that is called spinodal decomposition using the developed
scheme S-SAV. By considering a homogeneous binary mixture, the spontaneous growth of the concentration fluctuations

can lead the system from the homogeneous to the two-phase state.

4.3.1. 2D case

We set the initial condition as the randomly perturbed concentration field as follows,

¢(x,y,t=0)=¢o+0.001rand(x, y),

where the rand(x, y) is the random number in [—1, 1] that follows the normal distribution. We use the scheme S-SAV
with the time step 8t = 0.001 and discretize the space using Ny = N, = 257 Fourier modes. We set the parameters as
a =250000,¢e =0.02,M=1,5=2,B=1.
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Fig. 4.8. The 2D dynamical evolution of the local volume fraction phase variable ¢ with the initial condition ¢9 =0.1 and time step 5t = 0.001. Snapshots
of the numerical approximation are taken at t =0.04, 0.2, 0.4, 2, 5, and 20.
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Fig. 4.9. The 2D dynamical evolution of the local volume fraction phase variable ¢ with the initial condition ¢g = 0.2 and time step 5t = 0.001. Snapshots
of the numerical approximation are taken at t = 0.04, 0.2, 0.4, 2, 5, and 20.

In Fig. 4.7, we perform numerical simulations for the initial value ¢y = 0 and snapshots of the phase field variable ¢
are taken at t = 0.04, 0.2, 0.4, 2, 5, and 20. We observe that the blue region is totally entangled with the red region, and
the final equilibrium solution forms the cylindrical phase. In Fig. 4.8, we set ¢y = 0.1. We observe that the final solution is
quite different from the previous case. Although most of the blue region still graft and entangle with the red region, a small
quantity of the blue region starts to form the BCC phase. The final equilibrium solution, shown at t = 20, is the co-existence
of the cylindrical and BCC phases but the former phase dominates obviously. When the initial value is ¢o = 0.2, in Fig. 4.9,
we observe that more blue regions form the BCC phase and a small quantity of it still forms the cylindrical phase. The final
equilibrium solution, shown at t =20, is the co-existence of the cylindrical and BCC phases but the latter phase dominates.
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Fig. 4.10. The 2D dynamical evolution of the local volume fraction phase variable ¢ with the initial condition ¢ = 0.3 and time step 8t = 0.001. Snapshots
of the numerical approximation are taken at t = 0.04, 0.2, 0.4, 2, 5, and 20.
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Fig. 4.11. (a) Time evolution of the total free energy functional (2.16) for the spinodal decomposition examples with three different initial values of ¢o =0,
0.1, 0.2, and 0.3 in (4.3). (b) A close-up view for t € [0, 0.45].

Finally, we set ¢o = 0.3 in Fig. 4.10. We then observe that a small quantity of cylindrical phase initially appears and turns
to the BCC phase immediately. Thus the final equilibrium solution is the pure BCC phase in the whole domain.

In Fig. 4.11, we present the evolution of the total free energy functional (2.16) for all four initial conditions ¢¢ =0, 0.1,
0.2, and 0.3. The energy curves show the decays with the time that confirms that the scheme S-SAV is unconditionally
stable.

4.3.2. 3D case
We further perform the 3D simulation where the initial condition is set as follows,

o (x,y,z,t=0)=¢o+0.001rand(x, y, 2), (4.4)

where the rand(x, y, z) is the random number in [—1, 1] that follows the normal distribution. We use the scheme S-SAV
with the time step §t =0.001 and discretize the space using Ny = Ny = N, = 129 Fourier modes. We set the parameters as
a =10000,¢ =0.05,M=1,5=2,B=1.
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(f) t = 80.

Fig. 4.12. The 3D dynamical evolution of the isosurface of the phase variable ¢ with the initial condition ¢o =0 and time step §t = 0.001. Snapshots of the
numerical approximation are taken at t = 0.6, 2, 6, 10, 50, and 80.

In Fig. 4.12 with the initial value ¢ = 0, the dynamical behaviors of the phase field variable ¢ are shown in which the
isosurfaces of {¢(x, y, z) = 0} are plotted at various times. We observe that the final equilibrium solution forms the gyroidal
shape. By increasing the ¢ to 0.2 in Fig. 4.13, the obtained final equilibrium solution presents the gyroidal shape but with a
small quantity of spherical shape. In Fig. 4.14 with ¢g = 0.4, we find that the final equilibrium solution presents the spherical
shape in the whole domain. In order to obtain a more accurate view, we present the views through different cut-off planes
for the equilibrium solutions in Fig. 4.15. It is quite clear that these equilibrium solutions actually present three different
phases, i.e., gyroidal phase (¢ = 0), gyroidal-spherical mixed phase (¢ = 0.2), and spherical phase (¢o = 0.4).
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(e) t = 60.

Fig. 413. The 3D dynamical evolution of the isosurface of the phase variable ¢ with the initial condition ¢y = 0.2 and time step 8t = 0.001. Snapshots of
the numerical approximation are taken at t =0.2, 2, 8, 20, 60, and 80.

5. Concluding remarks

In this paper, we have developed a semi-discrete in time, easy-to-implement, fast, and second-order scheme for solving
the Cahn-Hilliard phase field model for Diblock copolymers. The novelty of the proposed stabilized-SAV scheme is that
iterations are successfully avoided in an artful manner, and one only needs to solve two biharmonic equations at each time
step. The added linear stabilization term is shown to be crucial to enhancing the stability and keeping the required accuracy
while using large time steps. We further prove the unconditional energy stability of the developed scheme rigorously.
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2 4 2

(e) t = 40. (f) t = 80.

Fig. 4.14. The 3D dynamical evolution of the local volume fraction phase variable ¢ with the initial condition ¢ = 0.4 and time step §t = 0.001. Snapshots
of the numerical approximation are taken at t = 0.6, 2, 6, 20, 40, and 80.

Through the comparisons with some other prevalent schemes like the non-stabilized SAV, fully-implicit, and convex-splitting
schemes for some benchmark numerical examples in 2D and 3D, we demonstrate the stability and the accuracy of the
developed scheme numerically.
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