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Abstract

In this paper, we carry out stability and error analyses for two first-order, semi-discrete time

stepping schemes, which are based on the newly developed invariant energy quadratization

approach, for solving the well-known Cahn–Hilliard and Allen–Cahn equations with general

nonlinear bulk potentials. Some reasonable sufficient conditions about boundedness and

continuity of the nonlinear functional are given in order to obtain optimal error estimates. The

well-posedness, unconditional energy stabilities and optimal error estimates of the numerical

schemes are proved rigorously. Through the comparisons with some other prevalent schemes

for several benchmark numerical examples, we demonstrate the stability and the accuracy of

the schemes numerically.
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1 Introduction

In this paper, we carry out stability analyses and error estimates for two first-order, semi-

discrete time-stepping numerical schemes, that are based on the newly developed invariant

energy quadratization approach, for solving the Cahn–Hilliard and Allen–Cahn equations

with general nonlinear bulk potentials. These two equations are typical representatives of

the phase field (diffusive interface) method, which is a popular modeling/numerical tool to

resolve the motion of free interfaces between multiple material components, see [3,14,29,31]

and the references therein about the extensive theoretical/numerical work, as well as their

wide applications in various science and engineering fields.

For algorithm developments of any phase field models, a significant goal is to verify the

energy stable property at the discrete level irrespectively of the coarseness of the discretization

in time and space. In what follows, those algorithms are called unconditionally energy stable.

Scheme with this property is especially preferred since it is not only critical for a numerical

scheme to capture the correct long-time dynamics, but also provides sufficient flexibility for

dealing with the stiffness issue. Meanwhile, since the dynamics of coarse-graining (macro-

scopic) process may undergo rapid changes near the interface, the noncompliance of energy

dissipation laws may lead to spurious numerical solutions if the mesh and time step size is

not carefully controlled.

It is a challenging task to develop unconditionally energy stable schemes to resolve the

stiffness issue that is induced by the thin interface for the phase field models. Traditional

fully-implicit or explicit discretizations for the nonlinear term can cause severe time step

constraints (conditionally energy stable) relying on the interfacial width (cf. [17,34] and

the numerical Example 5.1). Many efforts had been done (cf. [13,16,17,21,33–35,47] and

the references therein) in the direction of developing unconditionally energy stable schemes

without any time step constraints. Among those, the convex splitting approach [16,33,35]

and the semi-implicit linear stabilization approach [12,18,26,34] are the two most commonly

used numerical techniques. In the convex splitting approach, the convex part of the potential

is treated implicitly and the concave part is treated explicitly. The scheme is unconditionally

energy stable, however, it usually produces nonlinear type schemes, thus the implementation

is complicated and the computational cost might be high. Moreover, it is rather challenging

to construct convex–concave combinations for many complicated nonlinear potentials, see

[4,5,39,40,42]. The linear stabilization approach treats the nonlinear term explicitly thus it

is efficient and very easy to implement. However, in order to remove the time step constraint

dependent on the interfacial width, a linear stabilizer term is added and its magnitude usually

depends on the interfacial width which in turn results in additional accuracy issues, see

[25,26].

Recently, a novel numerical method, called invariant energy quadratization (IEQ)

approach, has been developed and successfully applied to solve a variety of gradient flow

models (cf. [4,5,9,39–42,44,46]). Its essential idea is to transform the bulk potential into a

quadratic form (since the nonlinear potential is usually bounded from below) using a set of

new variables. For the reformulated model, all nonlinear terms are treated semi-explicitly,

which in turn yields a linear and unconditionally energy stable system. This method bypasses

those typical challenges such as the justification/adjustment of convexity or implicit/explicit

terms, and provides many flexibilities to treat the complicated nonlinear terms since the only

request for the nonlinear potential is bounded from below.

Although one might think that it could be natural to derive the corresponding error analysis

for the IEQ type schemes by analogy with the proof of stability, the reality is quite the opposite.
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An exceptional case is the double well potential where many terms can be simplified (cf.

Remark 3.1). For general nonlinear potentials, the essential difficulty arises from the way of

quadratization to introduce the new variable, that actually leads the new variable to act as a

encapsulation, making it difficult to estimate the quantitative relation between the new and

original variables. To the best of the authors’ knowledge, we are not aware of any results about

the error analysis of IEQ type schemes with general nonlinear potentials and almost all works

had been focused on the remarkable unconditional energy stability. In view of the scarce of

error analysis, the main objective of this paper is to derive optimal error estimates for the IEQ

schemes for solving the Cahn–Hilliard and Allen–Cahn equations. We give some reasonable

sufficient conditions about boundedness and continuity for the nonlinear functionals in order

to obtain optimal error estimates. These conditions are naturally satisfied by the commonly

used double well potential and regularized logarithmic Flory–Huggins potential. Moreover,

the analytical approach developed in this paper is general enough and thus it can work as

a standard framework to derive error estimates of IEQ type schemes for various gradient

flow models with diverse nonlinear potentials. Through the comparisons with some other

prevalent numerical schemes such as the fully-implicit, convex-splitting, stabilized-semi-

implicit schemes for some classical benchmark numerical examples, we demonstrate the

stability and the accuracy of the proposed IEQ schemes as well.

The rest of paper is organized as follows. In Sect. 2, we give a brief introduction to the

Cahn–Hilliard and Allen–Cahn equations. In Sect. 3, for solving the fourth order Cahn–

Hilliard equation, we propose the IEQ scheme, prove the unconditional energy stability, and

derive the optimal error estimates. In Sect. 4, similar analytical work is performed for solving

the second-order Allen–Cahn equation. In Sect. 5, we present some numerical examples to

validate the schemes, and compare their performances with some other prevalent schemes.

In Sect. 6, some concluding remarks are given.

2 PDEModels and Their Energy Laws

We consider the following Lyapunov energy functional,

E(φ) =
∫

�

(ε2

2
|∇φ|2 + F(φ)

)
dx, (2.1)

where φ(x, t) is the unknown scalar function, x ∈ � ⊆ R
d (d = 2, 3), F(φ) is the nonlinear

bulk potential, ε is an interface/penalty parameter causing stiffness issue into the PDE system

when ε � 1. There are two commonly used nonlinear bulk potentials for F(φ):

(i) Ginzburg–Landau double-well type potential, cf. [3,29]:

Fdb(x) =
1

4
(x2 − 1)2, x ∈ (−∞,∞); (2.2)

(ii) Logarithmic Flory–Huggins potential, cf. [2,3,10,15]:

F f h(x) = x lnx + (1 − x)ln(1 − x) + θ(x − x2), θ > 0, x ∈ (0, 1). (2.3)

For either of these two nonlinear potentials, we note there always exists a positive constant

A such that
{

Fdb(x) > −A, ∀x ∈ (−∞,∞);
F f h(x) > −A, ∀x ∈ (0, 1),

(2.4)
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where we can simply choose A = 1 for both cases.

By applying the variational approach for the total free energy (2.1) in H−1(�), we obtain

the Cahn–Hilliard type system that reads as:

φt − M�w = 0, (2.5)

w = −ε2�φ + f (φ), (x, t) ∈ � × (0, T ], (2.6)

where M is the mobility constant, w is the chemical potential, and f (φ) = F ′(φ). The initial

condition is φ|(t=0) = φ0. For simplicity, we choose the suitable boundary conditions so that

all complexities from the boundary integrals can be removed, i.e.,

(i) φ, w are periodic; or (i i) ∂nφ|∂� = ∂nw|∂� = 0. (2.7)

By applying the variational approach for the total free energy (2.1) in L2(�), we obtain

the Allen–Cahn type system that reads as:

φt + M(−ε2�φ + f (φ)) = 0, (x, t) ∈ � × (0, T ]. (2.8)

Its boundary conditions are

(i) φ is periodic; or (i i) ∂nφ|∂� = 0. (2.9)

An important feature of the Cahn–Hilliard and Allen–Cahn equations is that they both

satisfy energy dissipation law. For the Cahn–Hilliard system (2.5)–(2.6), by taking the L2

inner product of (2.5) with −w, of (2.6) with φt , performing integration by parts and summing

up two equalities, we obtain

d

dt
E(φ) = −M‖∇w‖2 ≤ 0. (2.10)

For the Allen–Cahn system (2.8), by taking the L2 inner product of with φt , performing

integration by parts, we obtain

d

dt
E(φ) = −

1

M
‖φt‖2 ≤ 0. (2.11)

3 Cahn–Hilliard Equation

We first introduce some notations that will be used throughout the paper. We let L p(�)

denote the usual Lebesgue space on � with the norm ‖ · ‖L p . The inner product and norm in

L2(�) are denoted by (·, ·) and ‖ · ‖, respectively. W k,p(�) stands for the standard Sobolev

spaces equipped with the standard Sobolev norms ‖ · ‖k,p . For p = 2, we write H k(�) for

W k,2(�), and the corresponding norm is ‖·‖k . We define several Sobolev spaces: Hper (�) =
{φ is periodic, φ ∈ H1(�)}, H̄per (�) = {φ ∈ Hper (�) and

∫
�

φdx = 0}, and H̄1(�) =
{φ ∈ H1(�) and

∫
�

φdx = 0}.

3.1 Unconditional Energy Stable Linear Scheme Using the IEQ Approach

We recall that the main challenge to develop efficient, unconditionally energy stable schemes

for solving the system (2.5)–(2.6) lies in how to discretize the nonlinear term f (φ). Note

F(φ) is bounded from below as (2.4), we choose a positive constant B such that B > A,
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and introduce a new variable U (φ) through the following quadratization formula ([4,5,8,9,

23,27,30,32,37,39–44,46]), that is

U (φ) =
√

F(φ) + B. (3.1)

Since F(φ) + B > −A + B > 0, we denote H(φ) = 2 d
dφ

U (φ) = f (φ)√
F(φ)+B

, then the

Cahn–Hilliard equation (2.5)–(2.6) can be rewritten as:

φt − M�w = 0, (3.2)

w = −ε2�φ + H(φ)U , (3.3)

Ut =
1

2
H(φ)φt , (3.4)

with the initial conditions φ|t=0 = φ0, U |t=0 =
√

F(φ0) + B. Note (3.4) is actually an ODE

for the new variable U , therefore, the boundary conditions for the new system (3.2)–(3.4)

are still (2.7).

The new transformed system (3.2)–(3.4) also follows an energy dissipative law in terms of

φ and the new variable U . By taking the L2 inner product of (3.2) with −w, of (3.3) with φt ,

of (3.4) with −2U , performing integration by parts, and summing up all obtained equalities,

we can obtain the energy dissipation law of the new system (3.2)–(3.4), that reads as

d

dt
E(φ, U ) = −M‖∇w‖2, (3.5)

where

E(φ, U ) =
∫

�

(
ε2

2
|∇φ|2 + U 2

)
dx. (3.6)

Note the transformed system (3.2)–(3.4) is exactly equivalent to the original system (2.5)–

(2.6) since (3.1) can be easily obtained by integrating (3.4) with respect to the time. Thus the

energy law (3.5) for the transformed system is exactly the same as the energy law (2.10) for

the original system for the time-continuous case. We will develop energy stable numerical

schemes for time stepping of the new transformed system (3.2)–(3.4). Consequently, the

proposed schemes should follow the new energy dissipation law (3.5) formally instead of the

energy law for the original system (2.10).

Let δt > 0 denote the time step size and set tn = nδt for 0 ≤ n ≤ N with T = Nδt , then

a first-order, semi-discrete time discretization IEQ scheme for solving the new transformed

system (3.2)–(3.4) reads as,

φn+1 − φn

δt
− M�wn+1 = 0, (3.7)

wn+1 = −ε2�φn+1 + HnU n+1, (3.8)

U n+1 − U n =
1

2
Hn(φn+1 − φn), (3.9)

where Hn = H(φn). The boundary conditions are as follows,

(i) φn+1, wn+1 are periodic; or (i i) ∂nφn+1|∂� = ∂nwn+1|∂� = 0. (3.10)

We show the unconditionally energy stablilty of the scheme (3.7)–(3.9) as follows.

Theorem 3.1 The scheme (3.7)–(3.9) is unconditionally energy stable in the sense that

E(φn+1, U n+1) ≤ E(φn, U n) − δt M‖∇wn+1‖2, (3.11)
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where

E(φn+1, U n+1) =
ε2

2
‖∇φn+1‖2 + ‖U n+1‖2. (3.12)

Proof By taking the L2 inner product of (3.7) with −δtwn+1 and performing integration by

parts, we derive

− (φn+1 − φn, wn+1) − Mδt‖∇wn+1‖2 = 0. (3.13)

By taking the L2 inner product of (3.8) with φn+1 − φn , using the identity of

2(a, a − b) = a2 − b2 + (a − b)2, (3.14)

and performing integration by parts, we get

(φn+1 − φn, wn+1) =
ε2

2
(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 − ∇φn‖2)

+(HnU n+1, φn+1 − φn).

By taking the L2 inner product of (3.9) with −2U n+1 and using (3.14), we get

−(‖U n+1‖2 − ‖U n‖2 + ‖U n+1 − U n‖2) = −(Hn(φn+1 − φn), U n+1).

By combining the above equations together, we have

ε2

2
(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 − ∇φn‖2) + ‖U n+1‖2

−‖U n‖2 + ‖U n+1 − U n‖2 = −δt M‖∇wn+1‖2,

which concludes the energy stability (3.11) by dropping some unnecessary positive terms. �

Remark 3.1 The idea of the IEQ method is to transform the complicated nonlinear potentials

into a simple quadratic form in terms of some new variables via a change of variables.

When the nonlinear potential is the double well potential, one can choose B = 0 and thus

this method is exactly the same as the so-called Lagrange multiplier method developed in

[20]. We remark that the Lagrange multiplier method in [20] only works for the fourth order

polynomial potential φ4 since its derivative φ3 can be decomposed into λ(φ)φ with λ(φ) = φ2

which can be viewed as a Lagrange multiplier term. However, for other type potentials, the

Lagrange multiplier method is not applicable. For example, one cannot separate a factor of

φ from the logarithmic term.

Remark 3.2 One can easily construct the second-order version of the IEQ type schemes, for

instances, the Adam–Bashforth (BDF2) scheme or the Crank–Nicolson scheme, cf. [9,20,

39]). Due to the page limits, we will not present the error analysis of second-order schemes

in this paper since they are quite similar to the first-order scheme.

3.2 Implementations andWell-Posedness

The introduction of the new variable U may lead to an increase of the computational cost if

one attempts to solve the coupled system (3.7)–(3.9). In fact, note the nonlinear coefficient

H of the new variable U is treated explicitly in (3.8), thus we can rewrite it as follows,

U n+1 =
1

2
Hnφn+1 + U n −

1

2
Hnφn . (3.15)
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Using this equality, (3.8)–(3.9) can be rewritten as

φn+1 − δt M�wn+1 = φn, (3.16)

−wn+1 + P(φn+1) = −HnU n +
1

2
Hn Hnφn, (3.17)

where P(φ) = −ε2�φ + 1
2

Hn Hnφ. Therefore, in practice one can solve φn+1 and wn+1

directly from (3.16)–(3.17). Once φn+1 is obtained, U n+1 is automatically given by (3.15).

The scheme (3.17) includes a variable-coefficient 1
2

Hn Hn for the term φn+1 that leads

to time-dependent dense matrices. Explicitly building those time-dependent dense matrices

are extremely expensive (note that, if one use finite element methods, the corresponding

matrices will be sparse but time-dependent). So in practice, an efficient way is to use a

conjugate gradient type solver with preconditioning (PCG), that only needs a subroutine

to calculate the matrix–vector product instead of building the mass matrix explicitly. An

efficient preconditioner is to replace the variable coefficient term 1
2

Hn Hnφn+1 by a term

with a constant coefficient being the maximum, i.e., 1
2
‖Hn Hn‖L∞φ.

Furthermore, for any φ,ψ satisfy the boundary conditions (3.10), we have

(P(φ), ψ) =
ε2

2
(∇φ,∇ψ) +

1

2
(Hnφ, Hnψ), (3.18)

that means the linear operator P(φ) is symmetric (self-adjoint). Meanwhile, for φ that satisfies

the boundary conditions (3.10) and
∫
�

φdx = 0, we have

(P(φ), φ) =
ε2

2
‖∇φ‖2 +

1

2
‖Hnφ‖2 ≥ 0, (3.19)

where “ = ” is valid if and only if φ ≡ 0. These facts imply that the linear operator P is

symmetric positive definite in H̄per (�) or H̄1(�).

We now show the well-posedness of the scheme (3.16)–(3.17). In the following arguments,

we will only consider the periodic boundary condition for convenience. For the case of

homogenous Neumann boundary conditions, as long as the space of H̄per (�) is replaced by

H̄1(�), all theoretical results are still valid.

By taking the L2 inner product of (3.16) with 1, we derive
∫
�

φn+1dx =
∫
�

φndx =
· · · =

∫
�

φ0dx. Let Vφ = 1
|�|

∫
�

φ0dx, Vw = 1
|�|

∫
�

wn+1dx, and we define

φ̂n+1 = φn+1 − Vφ, ŵn+1 = wn+1 − Vw, (3.20)

then the weak form for (3.16)–(3.17) is the system with unknowns φ, w ∈ (H̄per , H̄per )(�):

(φ, μ) + δt M(∇w,∇μ) = (φ̂n, μ), μ ∈ H̄per (�), (3.21)

(−w,ψ) + ε2(∇φ,∇ψ) +
1

2
(Hnφ, Hnψ)

=
(

−HnU n +
1

2
Hn Hnφ̂n, ψ

)
, ψ ∈ H̄per (�). (3.22)

We denote the above linear system as

(L(X), Y) = (B, Y), (3.23)

where X = (w, φ)T , Y = (μ,ψ)T , B = (φ̂n,−HnU n + 1
2

Hn Hn φ̂n)T , and X, Y ∈
(H̄per , H̄per )(�).

The well-posedness of the linear system (3.23) is shown as follows.
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Theorem 3.2 The linear system (3.23) admits a unique solution (w, φ) in (H̄per , H̄per )(�).

Proof (i) For any X = (w, φ)T , Y = (μ,ψ)T with X, Y ∈ (H̄per , H̄per )(�), we have

(L(X), Y) ≤ c1(‖φ‖1 + ‖w‖1)(‖ψ‖1 + ‖μ‖1), (3.24)

where c1 is a postive constant dependent on δt, M, ε and ‖Hn‖L∞ . Therefore, the bilinear

form (L X, Y) is bounded.

(ii) For any X = (w, φ)T ∈ (H̄per , H̄per )(�), we derive

(L(X), X) = δt M‖∇w‖2 + ε2‖∇φ‖2 +
1

2
‖Hnφ‖2 ≥ c2(‖w‖2

1 + ‖φ‖2
1), (3.25)

where c2 is a constant dependent on δt, M, ε. Thus the bilinear form (L(X), Y) is coercive.

Then from the Lax–Milgram theorem, we conclude that the linear system (3.23) admits a

unique solution (w, φ) ∈ (H̄per , H̄per )(�). Namely, the scheme (3.16)–(3.17) admits a

unique solution (wn+1, φn+1) ∈ (Hper , Hper )(�) from (3.20). �

3.3 Error Estimates

We now focus on the error estimates. To simplify the notations, without loss of generality,

in the below, we let M = ε = 1. We use x � y to denote there exists a constant C that is

independent on δt and n such that x ≤ Cy.

To derive the error estimates of (3.7)–(3.9), we first give the following two Lemmas to

establish the quantitative relation between the L2 and H1 norms of H(φ(tn)) − H(φn) and

φ(tn) − φn under some reasonable assumptions.

Lemma 3.1 Suppose (i) F(x) is uniformly bounded from below: F(x) > −A for any x ∈
(−∞,∞); (ii) F(x) ∈ C2(−∞,∞); and (iii) there exists a positive constant C0 such that

max
n≤M

(‖φ(tn)‖L∞ , ‖φn‖L∞) ≤ C0, (3.26)

then we have

‖H(φ(tn)) − Hn‖ ≤ Ĉ0‖φ(tn) − φn‖, (3.27)

for n ≤ M, where Ĉ0 is a positive constant that is only dependent of C0, A and B.

Proof First, for any θ ∈ [0, 1] (3.26), can ensure ψn = θφ(tn) + (1 − θ)φn is uniformly

bounded, i.e., ψn ∈ [−2C0, 2C0] for n ≤ M . Thus from assumption (ii), we can always find

a positive constant C1 such that

max
n≤M

(
‖F(ψn)‖L∞ , ‖ f (ψn)‖L∞ , ‖ f ′(ψn)‖L∞ , ‖

√
F(ψn) + B‖L∞

)
≤ C1. (3.28)

Second, for any x, y ∈ (−A,∞), by applying the intermediate value Theorem, there

exists some value ξ ∈ (−A,∞) that is between x and y, such that
√

x + B −
√

y + B =
1

2
√

ξ+B
(x − y), that implies

|
√

x + B −
√

y + B| ≤
1

2
√

B − A
|x − y| . (3.29)
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Thus, using (3.28), (3.29), and applying the intermediate value Theorem again, we derive

∣∣∣
√

F(φ(tn)) + B −
√

F(φn) + B

∣∣∣ ≤
1

2
√

B − A

∣∣F(φ(tn)) − F(φn)
∣∣

=
1

2
√

B − A
| f (θφ(tn) + (1 − θ)φn)||φ(tn) − φn |

≤
C1

2
√

B − A
|φ(tn) − φn |. (3.30)

Third, for n ≤ M , from (3.28) and (3.30), we derive

|H(φ(tn)) − Hn | =
∣∣∣∣

f (φ(tn))
√

F(φ(tn)) + B
−

f (φn)
√

F(φn) + B

∣∣∣∣

=
∣∣ f (φ(tn))

√
F(φn) + B − f (φn)

√
F(φ(tn)) + B

∣∣
√

F(φ(tn)) + B
√

F(φn) + B

≤
1

B − A

∣∣∣ f (φ(tn))
√

F(φn) + B − f (φn)
√

F(φ(tn)) + B

∣∣∣

≤
1

B − A
| f (φ(tn))|

∣∣∣
√

F(φ(tn)) + B −
√

F(φn) + B

∣∣∣

+
1

B − A

√
F(φ(tn)) + B

∣∣ f (φn) − f (φ(tn))
∣∣

≤
C1

B − A

C1

2
√

B − A
|φ(tn) − φn | +

C1

B − A
| f ′(ψn)||φ(tn) − φn |

≤

(
C2

1

2
√

(B − A)3
+

C2
1

B − A

)
|φ(tn) − φn |, (3.31)

where we have used 1√
F(x)+B

≤ 1√
B−A

for any x ∈ (−∞,∞).

Finally, let Ĉ0 = C2
1

2
√

(B−A)3
+ C2

1
B−A

, we derive

‖H(φ(tn)) − Hn‖ =
(∫

�

|H(φ(tn)) − H(φn)|2dx

) 1
2

≤ Ĉ0

(∫

�

|φ(tn) − φn |2dx

) 1
2

= Ĉ0‖φ(tn) − φn‖.

�

Remark 3.3 Lemma 3.1 establishes a quantitative relation between the L2 norm of H(φ(tn))−
H(φn) and φ(tn) − φn under some reasonable assumptions, where the Lipschitz property

(3.29) of the quadratization function
√

x + B (x > −A) plays a critical role. We note

assumptions (i) and (ii) are automatically valid for the fourth order polynomial type double-

well potential. Indeed, for the double well potential, one can choose B = 0 and Hn = φn ,

thus Lemma 3.1 is trivial and the error analysis is straightforward for this case, see [20].

However, for the logarithmic Flory–Huggins potential, B �= 0 and assumption (ii) is not true

since the domain is the open interval (0, 1) instead of (−∞,∞). This issue can be overcome

by extending the logarithmic functional near the domain boundary with a continuous, convex,

piecewise function, see [10,15,39]. Such a regularized method is also a common practice to

remove the difficulty about that any small fluctuation near the domain boundary (0, 1) can

cause the overflow, numerically. In this way, the domain is regularized to (−∞,∞) and thus

the assumptions (ii) will become valid.
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Similarly, we further establish the relation between their H1 norms, as follows.

Lemma 3.2 Suppose (i) F(x) is uniformly bounded from below: F(x) > −A for any x ∈
(−∞,∞); (ii) F(x) ∈ C3(−∞,∞); and (iii) there exists a positive constant D0 such that

max
n≤M

(‖φ(tn)‖L∞ , ‖φn‖L∞ , ‖∇φ(tn)‖L3) ≤ D0, (3.32)

then we have

‖∇ H(φ(tn)) − ∇ Hn‖ ≤ D̂0(‖φ(tn) − φn‖ + ‖∇φ(tn) − ∇φn‖), (3.33)

for n ≤ M, where D̂0 is a positive constant dependent on �, D0, A and B.

Proof First, from assumption (ii) and (iii), for any ψn = θφ(tn)+(1−θ)φn where θ ∈ [0, 1],
we can always find a positive constant D1 that is dependent on D0, such that

max
n≤M

(
‖F(ψn)‖L∞ , ‖ f (ψn)‖L∞ , ‖ f ′(ψn)‖L∞ , ‖ f ′′(ψn)‖L∞ , ‖F(ψn) + B‖L∞

)
≤ D1.

(3.34)

Second, for convenience, we denote G(u) = f ′(u)(F(u) + B) − 1
2

f 2(u). From (3.34),

assumption (i), (ii) and (iii), we derive

|∇ H(φ(tn)) − ∇ H(φn)| = |H ′(φ(tn))∇φ(tn) − H ′(φn)∇φn |
≤ |∇φ(tn)||H ′(φ(tn)) − H ′(φn)| + |H ′(φn)||∇φ(tn) − ∇φn |

≤ |∇φ(tn)||H ′(φ(tn)) − H ′(φn)| +

∣∣∣∣∣
G(φn)

(F(φn) + B)
3
2

∣∣∣∣∣ |∇φ(tn) − ∇φn |

≤ |∇φ(tn)||H ′(φ(tn)) − H ′(φn)| +
3
2

D2
1

(B − A)
3
2

|∇φ(tn) − ∇φn |,

(3.35)

where we have used |G(φn)| ≤ 3
2

D2
1 from (3.34) and 1

(F(φn) + B)
3
2

≤ 1

(B − A)
3
2

from assump-

tion (i).

Third, we estimate

|H ′(φ(tn)) − H ′(φn)| =

∣∣∣∣∣
G(φ(tn))

(F(φ(tn)) + B)
3
2

−
G(φn)

(F(φn) + B)
3
2

∣∣∣∣∣

=

∣∣∣(F(φn) + B)
3
2 G(φ(tn)) − (F(φ(tn)) + B)

3
2 G(φn)

∣∣∣

(F(φ(tn)) + B)
3
2 (F(φn) + B)

3
2

≤
1

(B − A)3

∣∣∣(F(φn) + B)
3
2 G(φ(tn)) − (F(φ(tn)) + B)

3
2 G(φn)

∣∣∣

≤
1

(B − A)3

∣∣∣(F(φn) + B)
3
2 − (F(φ(tn)) + B)

3
2

∣∣∣ |G(φ(tn))|

+
1

(B − A)3
(F(φ(tn)) + B)

3
2

∣∣ f ′(φ(tn))(F(φ(tn)) + B) − f ′(φn)(F(φn) + B)
∣∣

+
1

(B − A)3
(F(φ(tn)) + B)

3
2

1

2

∣∣ f 2(φn) − f 2(φ(tn))
∣∣

≤
3
2

D2
1

(B − A)3

∣∣∣(F(φn) + B)
3
2 − (F(φ(tn)) + B)

3
2

∣∣∣ (: term I1)
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+
D

3
2

1

(B − A)3

∣∣ f ′(φ(tn))(F(φ(tn)) + B) − f ′(φn)(F(φn) + B)
∣∣ (: term I2)

+
1

2

D
3
2

1

(B − A)3

∣∣ f 2(φn) − f 2(φ(tn))
∣∣ (: term I3). (3.36)

For term I1, by applying the intermediate value theorem twice and using (3.34), we derive

I1 ≤
3
2

D2
1

(B − A)3

3

2

√
(ξ1 + B)

∣∣∣F(φn) − F(φ(tn))

∣∣∣

≤
3
2

D2
1

(B − A)3

3

2

√
(ξ1 + B)| f (ξ2)|

∣∣∣φn − φ(tn)

∣∣∣

≤
9
4

D3
1

√
(2D1 + B)

(B − A)3

∣∣∣φn − φ(tn)

∣∣∣, (3.37)

where ξ1 = θ1 F(φ(tn))+(1−θ1)F(φn), ξ2 = θ2φ(tn)+(1−θ2)φ
n for some θ1, θ2 ∈ [0, 1],√

ξ1 + B ≤
√

2D1 + B and f (ξ2) ≤ D1.

For term I2, using the intermediate value Theorem for F and f ′ and (3.34), we derive

I2 ≤
D

3
2

1

(B − A)3

( ∣∣ f ′(φ(tn))(F(φ(tn)) − F(φn))
∣∣ +

∣∣( f ′(φ(tn)) − f ′(φn))(F(φn) + B)
∣∣
)

≤
D

5
2

1

(B − A)3

( ∣∣(F(φ(tn)) − F(φn))
∣∣ +

∣∣ f ′(φ(tn)) − f ′(φn)
∣∣
)

≤
D

7
2

1

(B − A)3
|φn − φ(tn)|.

(3.38)

For term I3, using the intermediate value theorem for f and (3.34), we derive

I3 ≤
1

2

D
3
2

1

(B − A)3
| f (φ(tn)) + f (φn)|| f (φ(tn)) − f (φn)|

≤
D

5
2

1

(B − A)3
| f (φ(tn)) − f (φn)| ≤

D
7
2

1

(B − A)3
|φn − φ(tn)|. (3.39)

Thus, by combining (3.37)–(3.39), and denote D̂1 =
9
4 D3

1

√
(2D1+B)

(B−A)3 + 2D
7
2

1

(B−A)3 , we have

|H ′(φ(tn) − H ′(φn)| ≤ D̂1|φn − φ(tn)|. (3.40)

Therefore, from (3.35), we derive

‖∇ H(φ(tn)) − ∇ H(φn)‖2 =
∫

�

|∇ H(φ(tn)) − ∇ H(φn)|2dx

≤ 2

∫

�

|∇φ(tn)|2 D̂2
1 |φ(tn) − φn |2 +

9
4

D4
1

(B − A)3
|∇φ(tn) − ∇φn |2dx

= 2D̂2
1

∫

�

|∇φ(tn)|2|φ(tn) − φn |2dx +
9
2

D4
1

(B − A)3
‖∇φ(tn) − ∇φn‖2

≤ 2D̂2
1‖∇φ(tn)‖2

L3‖φ(tn) − φn‖2
L6 +

9
2

D4
1

(B − A)3
‖∇φ(tn) − ∇φn‖2
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≤ 2D̂2
1 D2

0C2
�‖φ(tn) − φn‖2

1 +
9
2

D4
1

(B − A)3
‖φ(tn) − φn‖2

1

= D̂2
0‖φ(tn) − φn‖2

1, (3.41)

where D̂2
0 = 2D̂2

1 D2
0C2

� +
9
2 D4

1

(B−A)3 , that concludes (3.33). �

We now establish the error estimates for scheme (3.7)–(3.9). To this end, we formulate

the Cahn–Hilliard system (3.2)–(3.4) as a truncation form:

φ(tn+1) − φ(tn)

δt
= �w(tn+1) + Rn+1

φ , (3.42)

w(tn+1) = −�φ(tn+1) + H(φ(tn))U (tn+1) + Rn+1
w , (3.43)

U (tn+1) − U (tn) =
1

2
H(φ(tn))(φ(tn+1) − φ(tn)) + δt Rn+1

u , (3.44)

where

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Rn+1
φ =

φ(tn+1) − φ(tn)

δt
− φt (tn+1),

Rn+1
w = H(φ(tn+1))U (tn+1) − H(φ(tn))U (tn+1),

Rn+1
u =

U (tn+1) − U (tn)

δt
− Ut (tn+1) +

1

2
H(φ(tn+1))φt (tn+1) −

1

2
H(φ(tn))

φ(tn+1) − φ(tn)

δt
.

(3.45)

We assume the exact solution φ,w, U of the system (3.2)–(3.4) possesses the following

regularity conditions,

{
φ ∈ L∞(0, T ; H2(�)), U ∈ L∞(0, T ; W 1,∞(�)), w ∈ L∞(0, T ; H1(�)),

φt ∈ L2(0, T ; H1(�)) ∩ L∞(0, T ; L∞), φt t , Ut t ∈ L2(0, T ; L2(�)).
(3.46)

One can easily establish the following estimates for the truncation errors, provided that the

exact solutions of the system (3.2)–(3.4) satisfy (3.46).

Lemma 3.3 Under the regularity conditions (3.46), the truncation errors satisfy

δt

[ T
δt

]∑

n=0

(‖Rn+1
φ ‖2 + ‖Rn+1

w ‖2
1 + ‖Rn+1

u ‖2) � δt2. (3.47)

Proof Since the proof is rather straight forward, we leave this to the interested readers. �

To derive the error estimates, we denote the error functions as
{

en
φ = φ(tn) − φn, en

w = w(tn) − wn,

en
u = U (tn) − U n, en

H = H(φ(tn)) − H(φn).
(3.48)

By subtracting (3.7)–(3.9) from (3.42)–(3.44), we derive the error equations:

en+1
φ − en

φ

δt
= �en+1

w + Rn+1
φ , (3.49)

en+1
w = −�en+1

φ + en
H U (tn+1) + Hnen+1

u + Rn+1
w , (3.50)

en+1
u − en

u =
1

2
(en

H (φ(tn+1) − φ(tn)) + Hn(en+1
φ − en

φ)) + δt Rn+1
u . (3.51)
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We first prove the L∞ stability of φn , which plays the key point in the error estimates.

From (3.46), we define a positive constant κ such that

κ = max
0≤t≤T

‖φ(t)‖L∞ + 1. (3.52)

The preliminary result is given in the following lemma.

Lemma 3.4 Suppose (i) F(x) is uniformly bounded from below: F(x) > −A for any x ∈
(−∞,∞); (ii) F(x) ∈ C3(−∞,∞); and (iii) the exact solutions of (3.2)–(3.4) satisfy the

regularity conditions (3.46), then there exists a positive constant s0 that is given in the proof,

such that when δt ≤ s0, the solution φn of (3.7)–(3.9) is uniformly bounded as

‖φn‖L∞ ≤ κ, n = 0, 1, . . . , N =
T

δt
. (3.53)

Proof We use the mathematical induction to prove this Lemma.

For n = 0, ‖φ0‖L∞ ≤ κ is true naturally. Assuming that ‖φn‖L∞ ≤ κ is valid for all

n ≤ M , we show ‖φM+1‖L∞ ≤ κ is also valid through the following two steps.

(i) By taking the L2 inner product of (3.49) with δten+1
w , we obtain

(en+1
φ − en

φ, en+1
w ) + δt‖∇en+1

w ‖2 = δt(Rn+1
φ , en+1

w ). (3.54)

By taking the L2 inner product of (3.50) with −(en+1
φ − en

φ), we obtain

−(en+1
w , en+1

φ − en
φ) +

1

2
(‖∇en+1

φ ‖2 − ‖∇en
φ‖2 + ‖∇en+1

φ − ∇en
φ‖2)

= −(en
H U (tn+1) + Hnen+1

u , en+1
φ − en

φ) − (Rn+1
w , en+1

φ − en
φ). (3.55)

By taking the L2 inner product of (3.51) with 2en+1
u , we get

‖en+1
u ‖2 − ‖en

u‖2 + ‖en+1
u − en

u‖2

= (en
H (φ(tn+1) − φ(tn)) + Hn(en+1

φ − en
φ), en+1

u ) + 2δt(Rn+1
u , en+1

u ). (3.56)

By taking the L2 inner product of (3.49) with δten+1
φ , we get

1

2
(‖en+1

φ ‖2 − ‖en
φ‖2 + ‖en+1

φ − en
φ‖2) = δt(�en+1

w , en+1
φ ) + δt(Rn+1

φ , en+1
φ ). (3.57)

By taking the L2 inner product of (3.50) with δten+1
w , we derive

δt‖en+1
w ‖2 = −δt(�en+1

φ , en+1
w ) + δt(en

H U (tn+1) + Hnen+1
u , en+1

w ) + δt(Rn+1
w , en+1

w ).

(3.58)

Combining (3.54)–(3.58) together, we obtain

1

2
(‖en+1

φ ‖2 + ‖∇en+1
φ ‖2 − ‖en

φ‖2 − ‖∇en
φ‖2)

+ (‖en+1
u ‖2 − ‖en

u‖2) + δt(‖en+1
w ‖2 + ‖∇en+1

w ‖2)

+
1

2
(‖en+1

φ − en
φ‖2 + ‖∇en+1

φ − ∇en
φ‖2) + ‖en+1

u − en
u‖2

= −(en
H U (tn+1), en+1

φ − en
φ) +

(
en

H (φ(tn+1) − φ(tn)), en+1
u

)

+ δt(en
H U (tn+1) + Hnen+1

u , en+1
w )
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− (Rn+1
w , en+1

φ − en
φ) + δt(Rn+1

φ , en+1
w ) + 2δt(Rn+1

u , en+1
u )

+ δt(Rn+1
φ , en+1

φ ) + δt(Rn+1
w , en+1

w ). (3.59)

By using Lemmas 3.1, 3.2 and (3.46), for n ≤ M , we estimate terms on the right hand

side as follows.

|(en
H U (tn+1), en+1

φ − en
φ)| = δt |(en

H U (tn+1),
en+1
φ − en

φ

δt
)|

= δt |(en
H U (tn+1),�en+1

w + Rn+1
φ )|

= δt |(∇(en
H U (tn+1)),∇en+1

w ) + (en
H U (tn+1), Rn+1

φ )|

= δt |(U (tn+1)∇en
H + en

H ∇U (tn+1),∇en+1
w )

+ (en
H U (tn+1), Rn+1

φ )|

≤ δt‖U (tn+1)‖L∞‖∇en
H ‖‖∇en+1

w ‖

+ δt‖en
H ‖‖∇U (tn+1)‖L∞‖∇en+1

w ‖

+ δt‖en
H ‖‖U (tn+1)‖L∞‖Rn+1

φ ‖

� δt‖∇en
H ‖‖∇en+1

w ‖ + δt‖en
H ‖‖∇en+1

w ‖ + δt‖en
H ‖‖Rn+1

φ ‖

�
1

4
δt‖∇en+1

w ‖2 + δt‖∇en
H ‖2 + δt‖en

H ‖2 + δt‖Rn+1
φ ‖2

�
1

4
δt‖∇en+1

w ‖2 + δt‖∇en
φ‖2 + δt‖en

φ‖2 + δt‖Rn+1
φ ‖2;

(3.60)
∣∣(en

H (φ(tn+1) − φ(tn)), en+1
u

)∣∣ ≤ ‖en
H ‖L4‖φ(tn+1) − φ(tn)‖L4‖en+1

u ‖

� δt‖en
H ‖L4‖en+1

u ‖

� δt‖en
H ‖2

L4 + δt‖en+1
u ‖2

� δt(‖en
H ‖2 + ‖∇en

H ‖2) + δt‖en+1
u ‖2

� δt(‖en
φ‖2 + ‖∇en

φ‖2) + δt‖en+1
u ‖2; (3.61)

δt |(en
H U (tn+1) + Hnen+1

u , en+1
w )| ≤ δt(‖en

H ‖‖U (tn+1)‖L∞ + ‖Hn‖L∞‖en+1
u ‖)‖en+1

w ‖

� δt(‖en
H ‖ + ‖en+1

u ‖)‖en+1
w ‖

�
1

6
δt‖en+1

w ‖2 + δt‖en
H ‖2 + δt‖en+1

u ‖2

�
1

6
δt‖en+1

w ‖2 + δt‖en
φ‖2 + δt‖en+1

u ‖2, (3.62)

where, ‖Hn‖L∞ is bounded since ‖φn‖L∞ is bounded, f is continuous, and F(x) > −A;

|(Rn+1
w , en+1

φ − en
φ)| = δt

∣∣∣∣∣

(
Rn+1

w ,
en+1
φ − en

φ

δt

)∣∣∣∣∣

= δt |(Rn+1
w ,�en+1

w + Rn+1
φ )|

= δt |(∇ Rn+1
w ,∇en+1

w ) + (Rn+1
w , Rn+1

φ )|
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≤ δt‖∇ Rn+1
w ‖‖∇en+1

w ‖ + δt‖Rn+1
w ‖‖Rn+1

φ ‖

�
1

4
δt‖∇en+1

w ‖2 + δt‖∇ Rn+1
w ‖2 + δt‖Rn+1

w ‖2 + δt‖Rn+1
φ ‖2;

(3.63)

|δt(Rn+1
φ , en+1

w )| ≤ δt‖Rn+1
φ ‖‖en+1

w ‖ �
1

6
δt‖en+1

w ‖2 + δt‖Rn+1
φ ‖2; (3.64)

2δt |(Rn+1
u , en+1

u )| � δt‖Rn+1
u ‖2 + δt‖en+1

u ‖2; (3.65)

|δt(Rn+1
φ , en+1

φ )| � δt‖Rn+1
φ ‖2 + δt‖en+1

φ ‖2; (3.66)

|δt(Rn+1
w , en+1

w )‖ ≤ δt‖Rn+1
w ‖‖en+1

w ‖ �
1

6
δt‖en+1

w ‖2 + δt‖Rn+1
w ‖2. (3.67)

Combining the above estimates with (3.59), we obtain

‖en+1
φ ‖2 + ‖∇en+1

φ ‖2 − ‖en
φ‖2 − ‖∇en

φ‖2 + 2(‖en+1
u ‖2 − ‖en

u‖2)

+ δt(‖en+1
w ‖2 + ‖∇en+1

w ‖2)

� δt(‖en
φ‖2 + ‖∇en

φ‖2 + ‖en+1
u ‖2 + ‖en+1

φ ‖2)

+ δt(‖Rn+1
w ‖2 + ‖∇ Rn+1

w ‖2 + ‖Rn+1
φ ‖2 + ‖Rn+1

u ‖2). (3.68)

Summing up the above inequality from n = 0 to m (m ≤ M) and using Lemma 3.3, we

have

‖em+1
φ ‖2 + ‖∇em+1

φ ‖2 + 2‖em+1
u ‖2 + δt

m∑

n=0

(‖en+1
w ‖2 + ‖∇en+1

w ‖2)

� δt

m∑

n=0

(‖en
φ‖2 + ‖∇en

φ‖2 + ‖en+1
u ‖2 + ‖en+1

φ ‖2)

+δt

m∑

n=0

(‖Rn+1
w ‖2

1 + ‖Rn+1
φ ‖2 + ‖Rn+1

u ‖2)

� δt

m∑

n=0

(‖en+1
φ ‖2 + ‖∇en+1

φ ‖2 + ‖en+1
u ‖2) + δt2.

Then, by using the Gronwall’s inequality, there exist two positive constants s1, s2 such that

when δt ≤ s1, the following inequality holds for any m ≤ M ,

‖em+1
φ ‖2 + ‖∇em+1

φ ‖2 + ‖em+1
u ‖2 + δt

m∑

n=0

(‖en+1
w ‖2 + ‖∇en+1

w ‖2) ≤ s2δt2. (3.69)

(ii) By using the H2 regularity of elliptic problem of (3.8), and (3.69), there exists a

positive constant s3 such that we have

‖φM+1‖2 � ‖wM+1‖ + ‖H MU M+1‖

� ‖eM+1
w ‖ + ‖w(tM+1)‖ + ‖H M‖L∞(‖U (tM+1)‖ + ‖eM+1

u ‖)
≤ s3. (3.70)

Thus, from (3.70) and (3.46), we can find a positive constant s4 to get

‖eM+1
φ ‖2 ≤ ‖φM+1‖2 + ‖φ(tM+1)‖2 ≤ s4. (3.71)
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Furthermore, from (3.69) and (3.71), we derive

‖φM+1‖L∞ = ‖eM+1
φ ‖L∞ + ‖φ(tM+1)‖L∞

≤ C�‖eM+1
φ ‖

1
2

1 ‖eM+1
φ ‖

1
2

2 + ‖φ(tM+1)‖L∞

≤ C�
4
√

s2

√
δt

√
s4 + ‖φ(tM+1)‖L∞ . (3.72)

where we have used the Sobolev inequality ‖φ‖L∞ ≤ C�‖φ‖
1
2

1 ‖φ‖
1
2

2 where C� is a constant

that only depends on �.

Thus, if C�
4
√

s2

√
δt

√
s4 ≤ 1, i.e., δt ≤ 1

C2
�

√
s2s4

, we have

‖φM+1‖L∞ ≤ 1 + ‖φ(tM+1)‖L∞ = κ. (3.73)

Then we obtain the conclusion (3.53) by induction provided that δt ≤ s0 =
min(s1,

1

C2
�

√
s2s4

). �

Theorem 3.3 Suppose the conditions of Lemma 3.4 hold, then for 0 ≤ m ≤ T
δt

− 1, there

holds

‖em+1
φ ‖2 + ‖∇em+1

φ ‖2 + ‖em+1
u ‖2 + δt

m∑

n=0

(‖en+1
w ‖2 + ‖∇en+1

w ‖2) � δt2. (3.74)

Proof Since ‖φn‖L∞ ≤ κ for any 0 ≤ n ≤ T
δt

when δt ≤ s0, by following the first step in

the proof of Lemma 3.4, we obtain the conclusion (3.74). �

Corollary 3.1 Suppose the conditions of Lemma 3.4 hold, then for 0 ≤ m ≤ T
δt

− 1, there

holds

∣∣∣‖∇φm+1‖ − ‖∇φ(tm+1)‖
∣∣∣ � δt,

∣∣∣‖U m+1‖ −

√∫

�

(F(φ(tm+1)) + B)dx

∣∣∣ � δt .

(3.75)

Proof The conclusion is easily obtained from Theorem 3.3, the triangle inequality, and note

U (t) =
√

F(φ(t)) + B by integrating (3.4). �

Remark 3.4 From Corollary 3.1, the discrete energy (3.12) is actually the first-order approx-

imation to the original energy (2.1) at t = tm+1, which will be verified by Table 1 in the

Sect. 5.3.

4 Allen–Cahn Equation

4.1 Unconditional Energy Stable Linear Scheme Using the IEQ Approach

For the Allen–Cahn equation, by using the same quadratization formula, we obtain a trans-

formed PDE system as:

φt + M(−ε2�φ + H(φ)U ) = 0, (4.1)

Ut =
1

2
H(φ)φt , (4.2)
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where the new variable U is defined as (3.1). The initial conditions φ|t=0 = φ0, U |t=0 =√
F(φ0) + B and boundary conditions are (2.9). By taking the L2 inner product of (4.1) with

φt , and of (4.2) with −2U , performing integration by parts, and summing up two equalities,

we can obtain the energy dissipation law of the new system (4.1)–(4.2), that reads as

d

dt
E(φ, U ) = −

1

M
‖φt‖2. (4.3)

The first-order, semi-discrete in time, IEQ scheme for solving the Allen–Cahn system

(4.1)–(4.2) reads as follows,

φn+1 − φn

δt
+ M(−ε2�φn+1 + HnU n+1) = 0, (4.4)

U n+1 − U n =
1

2
Hn(φn+1 − φn), (4.5)

where Hn = H(φn). The boundary conditions are:

(i) φn+1 is periodic; or (i i) ∂nφn+1|∂� = 0. (4.6)

The unconditional energy stability of the scheme (4.4)–(4.5) is shown as follows.

Theorem 4.1 The scheme (4.4)–(4.5) is unconditionally energy stable in the sense that

E(φn+1, U n+1) ≤ E(φn, U n) −
1

Mδt
‖φn+1 − φn‖2. (4.7)

Proof By taking the L2 inner product of (4.4) with 1
M

(φn+1 − φn) and using (3.14), we get

1

Mδt
‖φn+1 − φn‖2 +

ε2

2
(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 − ∇φn‖2)

+ (HnU n+1, φn+1 − φn) = 0. (4.8)

By taking the L2 inner product of (4.5) with 2U n+1 and using (3.14), we get

‖U n+1‖2 − ‖U n‖2 + ‖U n+1 − U n‖2 = (Hn(φn+1 − φn), U n+1).

By combining the above equations together, we have

ε2

2
(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 − ∇φn‖2)

+ ‖U n+1‖2 − ‖U n‖2 + ‖U n+1 − U n‖2 = −
1

Mδt
‖φn+1 − φn‖2, (4.9)

which concludes the energy stability (4.7) by dropping some unnecessary positive terms. �

4.2 Implementations andWell-Posedness

Similar to the Cahn–Hilliard equation, we can rewrite (4.5) as follows,

U n+1 =
1

2
Hnφn+1 + U n −

1

2
Hnφn, (4.10)

then (4.4) can be rewritten as

1

Mδt
φn+1 − ε2�φn+1 +

1

2
Hn Hnφn+1 =

1

Mδt
φn − HnU n +

1

2
Hn Hnφn . (4.11)
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Therefore, in practice one can solve φn+1 directly from (4.11) and then update U n+1 by

(4.10).

The weak form for (4.11) can be written as the following system with unknowns φ ∈
Hper (�),

1

Mδt
(φ, ψ) + ε2(∇φ,∇ψ) +

1

2
(Hnφ, Hnψ) = (b, ψ), ψ ∈ Hper (�). (4.12)

where b = 1
Mδt

φn − HnU n + 1
2

Hn Hnφn . We denote the above linear system as

(L(φ), ψ) = (b, ψ), φ,ψ ∈ Hper (�). (4.13)

The well-posedness of the linear system (4.13) is shown as follows.

Theorem 4.2 The linear system (4.13) admits a unique solution φ ∈ Hper (�). Furthermore,

the bilinear form (L(φ), ψ) is symmetric positive definite.

Proof (i) For any φ,ψ ∈ Hper (�), we have

(L(φ), ψ) ≤ ĉ1‖φ‖1‖ψ‖1, (4.14)

where ĉ1 is a positive constant dependent on δt, M, ε and ‖Hn‖L∞ . Therefore, the bilinear

form (L(φ), ψ) is bounded.

(ii) For any φ ∈ Hper (�), we derive

(L(φ), φ) =
1

δt M
‖φ‖2 + ε2‖∇φ‖2 +

1

2
‖Hnφ‖2 ≥ ĉ2‖φ‖2

1, (4.15)

where ĉ2 is a constant dependent on δt, M, ε. Thus the bilinear form (L(φ), ψ) is coercive.

Then from the Lax–Milgram theorem, we conclude that the linear system (4.13) admits a

unique solution φ ∈ Hper (�).

Furthermore, for any φ,ψ ∈ Hper (�) we have (L(φ), ψ) = (φ, Lψ) that means the

bilinear form is symmetric. Meanwhile, for φ ∈ Hper (�), we have (L(φ), φ) ≥ 0 and the

“ =′′ is valid if and only if φ ≡ 0, that means the bilinear form is positive definite. �

4.3 Error Estimates

For simplicity, we still assume ε = M = 1, and then formulate the Allen–Cahn system

(4.1)–(4.2) as a truncation form:

φ(tn+1) − φ(tn)

δt
− �φ(tn+1) + H(φ(tn))U (tn+1) = Rn+1

φ , (4.16)

U (tn+1) − U (tn) =
1

2
H(φ(tn))(φ(tn+1) − φ(tn)) + δt Rn+1

u , (4.17)

where

⎧
⎪⎪⎨
⎪⎪⎩

Rn+1
φ =

φ(tn+1) − φ(tn)

δt
− φt (tn+1) − H(φ(tn+1))U (tn+1) + H(φ(tn))U (tn+1),

Rn+1
u =

U (tn+1) − U (tn)

δt
− Ut (tn+1) +

1

2
H(φ(tn+1))φt (tn+1) −

1

2
H(φ(tn))

φ(tn+1) − φ(tn)

δt
.

(4.18)

123



Journal of Scientific Computing            (2020) 82:55 Page 19 of 28    55 

We assume the exact solution φ, U of the system (4.1)–(4.2) possesses the following

regularity conditions,

{
φ ∈ L∞(0, T ; H2(�)), U ∈ L∞(0, T ; L∞(�)),

φt ∈ L∞(0, T ; L∞(�)), Ut t , φt t ∈ L2(0, T ; L2(�)).
(4.19)

One can easily establish the following estimates for the truncation errors, provided that

the exact solutions of (4.1)–(4.2) satisfy the regularity conditions (4.19).

Lemma 4.1 If the exact solutions of (4.1)–(4.2) satisfy the regularity conditions (4.19), then

the truncation errors satisfy

δt

[ T
δt

]∑

n=0

(‖Rn+1
φ ‖2 + ‖Rn+1

u ‖2) � δt2. (4.20)

Proof Since the proof is rather standard, due to the page limit, we leave it to the interested

readers. �

To derive the error estimates, we denote the error functions as

en
φ = φ(tn) − φn, en

H = H(φ(tn)) − H(φn), en
u = U (tn) − U n . (4.21)

By subtracting (4.4)–(4.5) from (4.16)–(4.17), we derive the error equations:

en+1
φ − en

φ

δt
− �en+1

φ + en
H U (tn+1) + Hnen+1

u = Rn+1
φ , (4.22)

en+1
u − en

u =
1

2
(en

H (φ(tn+1) − φ(tn)) + Hn(en+1
φ − en

φ)) + δt Rn+1
u . (4.23)

Let κ = max0≤t≤T ‖φ(t)‖L∞ + 1, we first prove the L∞ stability of solution φn .

Lemma 4.2 Suppose (i) F(x) is uniformly bounded from below: F(x) > −A for any x ∈
(−∞,∞); (ii) F(x) ∈ C3(−∞,∞); and (iii) the exact solutions of (4.1)–(4.2) satisfy the

regularity conditions (4.19), then there exists a positive constant ŝ0 that is given in the proof,

such that when δt ≤ ŝ0, the solution φn of (4.4)–(4.5) is uniformly bounded as

‖φn‖L∞ ≤ κ, n = 0, 1, . . . , N =
T

δt
. (4.24)

Proof For n = 0, ‖φ0‖L∞ ≤ κ is true naturally. Assuming that ‖φn‖L∞ ≤ κ is valid for all

n ≤ M , we show ‖φM+1‖L∞ ≤ κ is also valid through the following two steps.

(i) By taking the L2 inner product of (4.22) with en+1
φ − en

φ , we get

1

δt
‖en+1

φ − en
φ‖2 +

1

2
(‖∇en+1

φ ‖2 − ‖∇en
φ‖2 + ‖∇en+1

φ − ∇en
φ‖2)

+(en
H U (tn+1), en+1

φ − en
φ) + (Hnen+1

u , en+1
φ − en

φ) = (Rn+1
φ , en+1

φ − en
φ). (4.25)

By taking the L2 inner product of (4.23) with 2en+1
u , we get

‖en+1
u ‖2 − ‖en

u‖2 + ‖en+1
u − en

u‖2 − (en
H (φ(tn+1)

−φ(tn)), en+1
u ) − (Hn(en+1

φ − en
φ), en+1

u ) = 2δt(Rn+1
u , en+1

u ). (4.26)
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By taking the L2 inner product of (4.22) with 2δten+1
φ , we get

‖en+1
φ ‖2 − ‖en

φ‖2 + ‖en+1
φ − en

φ‖2 + 2δt‖∇en+1
φ ‖2

+2δt(en
H U (tn+1), en+1

φ ) + 2δt(Hnen+1
u , en+1

φ ) = 2δt(Rn+1
φ , en+1

φ ). (4.27)

By combining the above three equalities, we derive

‖en+1
φ ‖2 − ‖en

φ‖2 +
1

2
(‖∇en+1

φ ‖2 − ‖∇en
φ‖2) + ‖en+1

u ‖2 − ‖en
u‖2 + 2δt‖∇en+1

φ ‖2

+
1

δt
‖en+1

φ − en
φ‖2 + ‖en+1

φ − en
φ‖2 + ‖en+1

u − en
u‖2 +

1

2
‖∇en+1

φ − ∇en
φ‖2

= −(en
H U (tn+1), en+1

φ − en
φ) + (en

H (φ(tn+1) − φ(tn)), en+1
u )

− 2δt(en
H U (tn+1), en+1

φ ) − 2δt(Hnen+1
u , en+1

φ )

+ 2δt(Rn+1
φ , en+1

φ ) + 2δt(Rn+1
u , en+1

u ) + (Rn+1
φ , en+1

φ − en
φ). (4.28)

By applying Lemmas 3.1, 3.2, and regularity conditions (4.19), for n ≤ M , we estimate

terms on the right hand side:

|(en
H U (tn+1), en+1

φ − en
φ)| ≤ ‖en

H ‖‖U (tn+1)‖L∞‖en+1
φ − en

φ‖

� ‖en
H ‖‖en+1

φ − en
φ‖

�
1

2δt
‖en+1

φ − en
φ‖2 + δt‖en

H ‖2

�
1

2δt
‖en+1

φ − en
φ‖2 + δt‖en

φ‖2; (4.29)

∣∣(en
H (φ(tn+1) − φ(tn)), en+1

u

)∣∣ ≤ ‖en
H ‖L4‖φ(tn+1) − φ(tn)‖L4‖en+1

u ‖

� δt‖en
H ‖L4‖en+1

u ‖

� δt‖en
H ‖2

L4 + δt‖en+1
u ‖2

� δt(‖en
H ‖2 + ‖∇en

H ‖2) + δt‖en+1
u ‖2

� δt(‖en
φ‖2 + ‖∇en

φ‖2) + δt‖en+1
u ‖2; (4.30)

2δt |(en
H U (tn+1), en+1

φ )| ≤ 2δt‖en
H ‖‖U (tn+1)‖L∞‖en+1

φ ‖

� δt‖en
H ‖‖en+1

φ ‖

� δt‖en
H ‖2 + δt‖en+1

φ ‖2

� δt‖en
φ‖2 + δt‖en+1

φ ‖2; (4.31)

2δt |(Hnen+1
u , en+1

φ )| ≤ 2δt‖Hn‖L∞‖en+1
u ‖‖en+1

φ ‖

� δt‖en+1
u ‖‖en+1

φ ‖

� δt‖en+1
u ‖2 + δt‖en+1

φ ‖2; (4.32)

2δt |(Rn+1
φ , en+1

φ ) + (Rn+1
u , en+1

u )| ≤ 2δt(‖Rn+1
φ ‖‖en+1

φ ‖ + ‖Rn+1
u ‖‖en+1

u ‖)

≤ δt(‖Rn+1
φ ‖2 + ‖Rn+1

u ‖2) + δt‖en+1
φ ‖2 + δt‖en+1

u ‖2;
(4.33)
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and

|(Rn+1
φ , en+1

φ − en
φ)| ≤ ‖Rn+1

φ ‖‖en+1
φ − en

φ‖ �
1

2δt
‖en+1

φ − en
φ‖2 + δt‖Rn+1

φ ‖2. (4.34)

By combining the above estimates with (4.28), we derive

‖en+1
φ ‖2 − ‖en

φ‖2 +
1

2
(‖∇en+1

φ ‖2 − ‖∇en
φ‖2) + ‖en+1

u ‖2 − ‖en
u‖2 + 2δt‖∇en+1

φ ‖2

� δt(‖en
φ‖2 + ‖∇en

φ‖2 + ‖en+1
φ ‖2 + ‖en+1

u ‖2) + δt(‖Rn+1
φ ‖2 + ‖Rn+1

u ‖2).

Summing up the above inequality from n = 0 to m (m ≤ M) and dropping some unnecessary

positive terms, we get

‖em+1
φ ‖2 +

1

2
‖∇em+1

φ ‖2 + ‖em+1
u ‖2 � δt

m∑

n=0

(‖en+1
φ ‖2 + ‖∇en+1

φ ‖2 + ‖en+1
u ‖2) + δt2.

By Gronwall’s inequality, there exist two positive constants ŝ1, ŝ2 such that when δt ≤ ŝ1,

‖em+1
φ ‖2 + ‖∇em+1

φ ‖2 + ‖em+1
u ‖2 ≤ ŝ2δt2. (4.35)

(ii) By using the H2 regularity of elliptic problem (4.4) and the estimate (4.35), there

exists a positive constant ŝ3, such that the following inequality holds,

‖φM+1‖2 �

∥∥∥∥
φM+1 − φM

δt

∥∥∥∥ + ‖H(φM )U M+1‖

�

∥∥∥∥∥
eM+1
φ − eM

φ

δt

∥∥∥∥∥ +
∥∥∥∥
φ(tM+1) − φ(tM )

δt

∥∥∥∥ + ‖H(φM )‖L∞‖‖U M+1‖ ≤ ŝ3,

(4.36)

that implies, there exists a constant ŝ4 such that,

‖eM+1
φ ‖2 ≤ ‖φ(tM+1)‖2 + ‖φM+1‖2 ≤ ŝ4. (4.37)

Therefore, by (4.37) and (4.35), we obtain

‖φM+1‖L∞ ≤ ‖eM+1
φ ‖L∞ + ‖φ(tM+1)‖L∞

≤ C�‖eM+1
φ ‖

1
2

1 ‖eM+1
φ ‖

1
2

2 + ‖φ(tM+1)‖L∞

≤ C�
4
√

ŝ2

√
δt

√
ŝ4 + ‖φ(tM+1)‖L∞ ≤ κ,

(4.38)

as long as δt ≤ 1

C2
�

√
ŝ2 ŝ4

. Thus the proof is finished by setting ŝ0 = min(̂s1,
1

C2
�

√
ŝ2 ŝ4

). �

Theorem 4.3 Suppose the conditions of Lemma 4.2 hold, then for 0 ≤ m ≤ T
δt

− 1, there

holds

‖em+1
φ ‖2 + ‖∇em+1

φ ‖2 + ‖em+1
u ‖2 � δt2. (4.39)

Proof When δt ≤ ŝ0, we have ‖φn‖L∞ ≤ κ for any 0 ≤ n ≤ T
δt

. Thus, by following the first

step in the proof of Lemma 4.2, we obtain the conclusion (4.39). �

Remark 4.1 For the Allen–Cahn equation, although we consider only time discrete schemes

in this study, the error analyses can be carried over to any consistent finite-dimensional

Galerkin approximations since the proofs are all based on a variational formulation with all

test functions in the same space as the space of the trial functions. However, for the fully
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Fig. 1 The L2 numerical errors at t = 0.1 for the approximate phase variable φ of the presumed exact solution

(5.2), that are computed using four different first-order schemes: stabilized-semi-implicit, convex-splitting,

fully-implicit, and IEQ schemes. The left subfigure is the accuracy curve for δt ∈ [1e − 6, 1e − 1]), and the

right subfigure is a close-up view for larger time steps, i.e., δt ∈ [1e − 3, 1e − 1])

discrete IEQ scheme of the Cahn–Hilliard equations, we are not clear on how to derive the

corresponding error analysis using the Galerkin type approximations, where the challenge is

to estimate (3.60) since it is not easy to find a proper discrete space for en
H U (tn+1).

5 Numerical Tests

We now present several two dimensional numerical examples to validate the proposed

schemes and demonstrate their accuracy, energy stability and efficiency. Here, we choose

the periodic boundary conditions and set the computational domain as � = [0, 2π]2. We

use the Fourier-spectral method to discretize the space, where 129 × 129 Fourier modes are

used for 2D simulations.

If not explicitly specified, the default values of order parameters are set as follows,

M = ε = 6e − 2. (5.1)

5.1 Accuracy Test

We first perform numerical simulations to test the convergence rates of the IEQ scheme

for solving the Allen–Cahn equation (2.8) with the double well potential. We assume the

following function

φ(x, y, t) = sin(x)cos(y)cos(t) (5.2)

to be the exact solution, and impose some suitable force fields such that the given solution

can satisfy the system (2.8). We compare four schemes here, including three unconditionally

energy stable schemes: the IEQ scheme (4.4)–(4.5), the convex splitting scheme (see Eqn. (7)

in [16]), and the stabilized-semi-implicit scheme (see Eqn. (2.6) with stabilizer S = 2 in [34]),

and one conditionally energy stable fully-implicit scheme (see Eqn. (7) in [17]).

In Fig. 1, we plot the L2 errors of the phase variable φ between the numerically simulated

solution and the exact solution at t = 0.1 with different time step sizes. Some remarkable

features are listed as follows.
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Fig. 2 Time evolution of the area and total free energy functional using the three schemes: stabilized semi-

implicit, convex-splitting, and IEQ, for three different time steps a δt = 1e − 1, b δt = 1e − 2, and c

δt = 1e − 3. For each subfigure, the left one is the area, and the right one is the total free energy. The small

inset figure is a close-up view for corresponding time intervals

• When δt ≤ 1e − 2, all four schemes achieve almost perfect first-order accuracy in time.

But obviously, the magnitude of errors computed by the stabilized-semi-implicit scheme

is much bigger than that of the other three schemes.

• When δt > 1e − 2, the IEQ, convex-splitting, and stabilized-semi-implicit schemes only

present 0th order of accuracy.

• For the fully-implicit scheme, although apparently it always keeps the first-order accuracy

for all time steps, its performance is actually worse than others since, (i) when δt = 0.1,

it blows up quickly thus the point of δt = 0.1 does not show up in Fig. 1; and (ii) when

δt ≥ 0.01, the magnitude of errors computed by it is much bigger than that of the other

three schemes.

• For the stabilized-semi-implicit scheme, since the stabilizing term S
ε2 (φn+1 − φn) intro-

duces an extra consistency error of Sδt
ε2 φt (ξn), this scheme does not enter the convergence

zone for relative big time step size.
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Fig. 3 Snapshots of the phase field variable φ are taken at t = 0.2, 1.02, 1.14, and 2, by using the initial

condition (5.3) and the time step δt = 1e − 3

Fig. 4 Time evolution of the total free energy functional using four time steps, δt = 1e − 3, 5e − 4, 2.5e − 4

and 1.25e − 4. The left subfigure is the energy profile for t ∈ [0, 1.5], the middle subfigure is a close-up view

for t ∈ [0.95, 1.2], and the right subfigure is the comparison of the modified energy and the original energy

with the time step δt = 1e − 3

Therefore, in this example, when concerning the stability or accuracy, the three uncondi-

tionally energy stable schemes (IEQ, convex-splitting, and stabilized-semi-implicit) perform

better than the fully-implicit scheme. Furthermore, the performance of the stabilized-semi-

implicit scheme is slightly worse than that of the IEQ and convex-splitting schemes.

5.2 Coarsening Effects for the Allen–Cahn Equation

In this example, we compare the accuracy of three unconditionally energy stable schemes,

the IEQ, convex-splitting, and stabilized-semi-implicit schemes, for a benchmark problem

of coarsening effects for the Allen–Cahn equation. We set the initial condition as

φ(x, y, t = 0) = −tanh
( (x − π)2 + (y − π)2 − π

2
2

4ε

)
. (5.3)

The initial profile of φ is a circular interface which is unstable, it will shrink and eventually

disappear. Since the exact solutions are not known, we choose the solution computed by the

fully-implicit scheme with a very tiny time step size δt = 1e − 5 as the benchmark solution.

In Fig. 2, we plot the time evolution curves of the area and the total free energy obtained

by the IEQ, stabilized-semi-implicit, and convex-splitting schemes, with three time step sizes

δt = 1e − 1, 1e − 2, and 1e − 3. For each time step, we can observe that the magnitude of

errors is: IEQ scheme < convex-splitting scheme < stabilized-semi-implicit scheme.
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Table 1 The relative errors e|E (tn) between the discrete energy E(φn , Un) and the free energy of the exact

solution E(φ(tn)) at tn = 0.8, 1, 1.2, in which, the discrete free energy E(φn , Un) is computed using five

different time steps δt = 1e − 3, 5e − 4, 2.5e − 4, 1.25e − 4 and 6.25e − 5

δt e|E (t = 0.8) Order e|E (t = 1) Order e|E (t = 1.2) Order

1e − 3 9.20e − 3 2.20e − 2 6.50e − 3

5e − 4 4.50e − 3 1.03 1.07e − 2 1.04 3.10e − 3 1.07

2.5e − 4 2.10e − 3 1.09 4.40e − 3 1.23 1.50e − 3 1.04

1.25e − 4 9.36e − 4 1.17 1.50e − 3 1.55 6.34e − 4 1.24

6.25e − 5 3.19e − 4 1.55 6.38e − 4 1.23 2.59e − 4 1.29

5.3 Coarsening Effects for the Cahn–Hilliard Equation

In this example, we perform the numerical simulation using the IEQ scheme (3.7)–(3.9) for

a benchmark problem of coarsening effects for the Cahn–Hilliard equation, see [5,6]. We set

the initial condition as

φ(x, y, t = 0) =
2∑

i=1

−tanh

(√
(x − xi )2 + (y − yi )2 − ri

1.2ε

)
+ 1, (5.4)

where (x1, y1, r1) = (π − 0.7, π − 0.6, 1.5) and (x2, y2, r2) = (π + 1.65, π + 1.6, 0.7).

In Fig. 3, we show the evolutions of the phase field variable φ at various time by using

the time step δt = 1e − 3. We observe the coarsening effect that the small circle is absorbed

into the big circle, and the total absorption happens at around t = 1.2. In Fig. 4, we compare

the time evolution of the discrete energy E(φn, U n) [defined in (3.12)] up to the equilibrium

for four different time steps with the exact (benchmark) solution, that is computed by the

fully-implicit scheme with a tiny time step size δt = 1e − 6. We observe that all four energy

curves show decays monotonically, which numerically confirms that the IEQ algorithm is

unconditionally energy stable. When δt gets smaller, the four energy curves present behaviors

of asymptotic approximations to that of the exact solution. We also compare the modified

energy (3.6) and (2.1) with the time step δt = 1e − 3 and the both energies agree very well.

Theoretically, the approximation of E(φn, U n) → E(φ(tn)) is of first-order accuracy from

the Corollary 3.1. We verify it by presenting the relative error e|E (t = tn) that is defined as

e|E (t = tn) :=
|E(φn, U n) − E(φ(tn))|

E(φ(tn))
. (5.5)

We choose three time points of tn = 0.8, 1, 1.2, and the discrete energy E(φn, U n) is

computed by using five different time steps δt = 1e − 3, 5e − 4, 2.5e − 4, 1.25e − 4 and

6.25e − 5. The computed results are shown in Table 1, where we observe that the order

asymptotically match the first-order accuracy in time.

6 Concluding Remarks

We carry out the stability and error analysis of two first-order, semi-discrete time stepping

schemes for solving the Cahn–Hilliard and Allen–Cahn equations, respectively. Some gen-

eral, sufficient conditions about the boundedness/continuity of the nonlinear functional are

given in order to obtain the optimal error estimates. These conditions are naturally satisfied
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by the commonly use polynomial type double well potential. For the logarithmic Flory–

Huggins potentials of the regularized version, these conditions are appropriate as well. By

utilizing the Lipschitz property of the quadratic formula together with the mathematical

inductions, we rigorously derive the optimal error estimates for the first-order IEQ schemes.

The analytical approach developed in this paper is general enough and thus it can work as

a standard framework to derive error estimates of IEQ type schemes for various gradient

flow models with diverse nonlinear potentials. For the fully discrete scheme of the Allen–

Cahn equation, the error analyses can be carried over without any further difficulties when

using finite-dimensional Galerkin approximations ([1,7,11,19,22,24,28,36,38,45,48]). But

for Cahn–Hilliard equation, there maybe exist some substantial challenges to derive the con-

vergence analysis for the fully discrete version with Galerkin approximations, which will be

considered in the future work.
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