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a b s t r a c t

In this paper, we develop an unconditionally energy stable, second-order accurate time

marching scheme for solving a penalized Allen–Cahn type Ohta–Kawasaki phase-field

model for diblock copolymers, where the total free energy of the system consists of

the double-well potential, the nonlocal Ohta–Kawasaki free energy functional, and a pe-

nalization potential to enforce the conservation of the modified volume approximately.

The developed scheme combines the SAV (scalar auxiliary variable) approach with the

stabilization technique, where a crucial linear stabilization term is added to enhance the

stability while using the large time steps. The scheme is very easy-to-implement and one

only needs to solve two decoupled elliptic equations with constant coefficients at each

time step. We further prove the unconditional energy stability of the scheme rigorously

and demonstrate the stability and the accuracy of the developed scheme numerically

through simulating numerous numerical examples in 2D and 3D.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider numerical approximations for solving a penalized Allen–Cahn type Ohta–Kawasaki phase-

field model for diblock copolymers that was recently developed in [1]. A diblock copolymer is a polymer consisting of

two types of monomers which are arranged such that there is a chain of each monomer, and those two chains are grafted

together to form a single copolymer chain. The phase-field type model for diblock copolymers usually adopts a scalar

phase field variable to denote the difference between the local volume fractions of two monomers, cf. [2–8]. By postulating

total free energy that incorporates some specific potentials such as the well-known nonlocal Ohta–Kawasaki potential,

the governing model is derived by using the variational approach in a certain metric to minimize it. The commonly-used

phase-field model is derived by using the variational approach in H−1-space (or called the Cahn–Hilliard dynamics). This

is because the phase-field variable is interpreted as the local volume fraction of the two monomers in this particular

surroundings and thus it is expected to be conserved with the time which can be easily fulfilled by using the H−1 gradient

flow approach [2,9–13].

Remarkably, we recall that there is another well-known gradient flow approach in the phase-field modeling, the so-

called Allen–Cahn dynamics (the variational approach in the L2-space). The Allen–Cahn type model usually generates a

PDE system which is second-order less than the Cahn–Hilliard type model, thus it is relatively easier to solve numerically.
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However, the volume fraction in the Allen–Cahn model is not conserved with the time [14,15]. In [1], Xu and Zhao

proposed an Allen–Cahn type phase-field model for diblock copolymers where the function in the nonlocal Ohta–Kawasaki

potential is changed to a nonlinear fifth-order polynomial instead of the linear polynomial since a much better hyperbolic

tangent profile can be generated and the interfacial structures can be described more accurately in turn. The model further

adopts a strong nonlinear penalization potential to conserve the ‘‘modified’’ volume approximately. Hence, even though

the order of the system is decreased from fourth-order (Cahn–Hilliard) to be second-order by using Allen–Cahn dynamics,

this new model presents more numerical challenges on how to design proper temporal discretizations for numerous

nonlinear and nonlocal terms to obtain stable and accurate schemes.

To develop efficient algorithms for solving this new Allen–Cahn diblock copolymer model, traditional temporal

discretization approaches like simple implicit [15], explicit [14,16–19], convex splitting [20,21], or other various tricky

Taylor expansions to discretize these terms [22–24], will produce either non-linear schemes which need some efficient

iterative solvers or schemes which might fail to preserve energy stability [16,25]. In [1], the authors develop an energy

stable scheme based on the linear stabilized explicit approach where all nonlinear terms are treated explicitly and two

linear stabilizers are added for the stability reason. The scheme is very efficient, however, it is only first-order accurate in

time. It is worth mentioning that the recently developed IEQ (Invariant Energy Quadratization) and SAV (Scalar Auxiliary

Variable) methods (cf. [26–32]) can produce linear and provably unconditional energy stable schemes for gradient flow

models. However, when the stiffness of the system is very high, the obtained linear/linearized system could be ill-

conditioned thereby these methods lead to very costly iterations or cause the loss of accuracy, cf. the accuracy/stability

tests shown in Figs. 4.2, 4.3 and 4.9.

The paper aims to develop a second-order accurate numerical scheme with more desired properties such as easy-to-

implement and unconditionally energy stable. To this end, we combine the SAV approach [28,31,32] with the stabilization

technique to arrive the stabilized-SAV approach, where an extra linear stabilization term is added to enhance the stability

while using large time steps. Meanwhile, the implementation procedure for the developed scheme is very simple and one

only needs to solve two decoupled, linear elliptic equations with constant coefficients at each time step. We present the

rigorous proof of the unconditional energy stability and demonstrate the stability and accuracy numerically through the

comparison with the non-stabilized SAV scheme, and the first-order stabilized explicit scheme in simulating numerous

numerical examples in 2D and 3D.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction of the governing PDE system

for penalized Allen–Cahn phase-field diblock copolymer model. In Section 3, we develop the numerical scheme with

second-order temporal accuracy to solve this model. Various 2D and 3D numerical experiments are given in Section 4

to show the accuracy and efficiency of the proposed numerical scheme. Finally, some concluding remarks are given in

Section 5.

2. Model equations

We now give a brief introduction to the penalized Allen–Cahn diblock copolymer model proposed in [1]. We consider

a system that consists of molecules of two monomers, where the state of the system is described by the local volume

fraction of these two components, φ(x, t) with x ∈ Ωd, d = 2, 3 and time t . The total free energy E(φ) is postulated as

E(φ) =

∫

Ω

(ϵ2

2
|∇φ|2 + F (φ)

)

dx

  

I

+
αϵ2

2

∫

Ω

⏐
⏐
⏐∇
(

(−∆)−1(g(φ) − ḡ(φ))
)
⏐
⏐
⏐

2

dx

  

II

+
βϵ2

2

(∫

Ω

g(φ)dx −

∫

Ω

g(φ0)dx

)2

  

III

,

(2.1)

where ϵ, α, β are all positive parameters. We give a brief introduction for the total free energy (2.1) as follows.

Part I is the well-known mixing energy potential for the phase-field model. The linear gradient part contributes to the

hydrophilic type (tendency of mixing) of interactions and the double-well potential F (φ) = 1
4
φ2(φ − 1)2 represents the

hydrophobic type (tendency of separation) of interactions. The parameter ϵ is related to the width of the interface. As

the consequence of the competition between the two types of interactions, the equilibrium configuration will include a

diffusive interface.

Part II is the so-called nonlocal Ohta–Kawasaki potential, α is a positive parameter to characterize the nonlocal potential

and the molecular chain length. The inverse Laplace operator ψ = (−∆)−1φ is defined as
⎧

⎨

⎩

−∆ψ = φ,
∫

Ω

ψdx = 0,
(2.2)
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Fig. 4.1. The L2 numerical errors for the phase field variable φ that are computed using the three schemes with various temporal resolutions where

(a) SSAV and SAV, (b) SSAV and SExpl-1st. The order parameters are set as (M, α, β, ϵ) = (6e−2, 1e−2, 1e−2, 6e−2) (low stiffness case). (Note: the

two straight lines labeled as ref-2nd-order and ref-1st-order are the standard lines representing the second-order accuracy and first-order accuracy,

respectively.).

Fig. 4.2. The L2 numerical errors for the phase field variable φ that are computed using the three schemes with various temporal resolutions where

(a) SSAV and SAV, (b) SSAV and SExpl-1st. The order parameters are set as (M, α, β, ϵ) = (1e1, 1e3, 1e5, 2e−2) (high stiffness case).

Fig. 4.3. The L2 numerical errors for the phase field variable φ that are computed using the three schemes with various temporal resolutions where

(a) SSAV and SAV, (b) SSAV and SExpl-1st. The order parameters are set as (M, α, β, ϵ) = (1e3, 1e5, 1e7, 2e−2) (high stiffness case).
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Fig. 4.4. The 2D dynamical evolution of the local volume fraction phase variable φ with the initial condition φ̂0 = 0.5, the time step δt = 0.01, and

model parameters (4.3). Snapshots of the numerical approximation are taken at t = 60, 80, 120, 200, 500, and 1000.

with suitable boundary conditions, where φ ∈ L20(Ω) := {φ ∈ L2(Ω) :
∫

Ω
φdx = 0}. The scalar function ḡ(φ) is defined

as

ḡ(φ) =
1

|Ω|

∫

Ω

g(φ)dx. (2.3)
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Fig. 4.5. The 2D dynamical evolution of the local volume fraction phase variable φ with the initial condition φ̂0 = 0.55, the time step δt = 0.01,

and model parameters (4.3). Snapshots of the numerical approximation are taken at t = 60, 80, 120, 200, 500, and 1000.

The function g(φ) satisfies the following condition

g(0) = 0, g(1) = 1, g ′(0) = g ′(1) = 0, (2.4)

hence in [1], g(φ) takes the following polynomial form

g(φ) = 6φ5 − 15φ4 + 10φ3. (2.5)
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Fig. 4.6. The 2D dynamical evolution of the local volume fraction phase variable φ with the initial condition φ̂0 = 0.6, the time step δt = 0.01, and

model parameters (4.3). Snapshots of the numerical approximation are taken at t = 60, 80, 120, 200, 500, and 1000.

For comparison, we remark that the choice g(φ) = φ is common in the classical phase-field models for diblock copolymers,

cf. [2–8]. About the advantages/disadvantages for these two choices of g(φ), we refer to [1] for the detailed discussions.
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Fig. 4.7. The 2D dynamical evolution of the local volume fraction phase variable φ with the initial condition φ̂0 = 0.65, the time step δt = 0.01,

and model parameters (4.3). Snapshots of the numerical approximation are taken at t = 60, 80, 120, 200, 500, and 1000.

Part III is the penalization potential to enforce the ‘‘modified’’ volume conserved approximately, i.e.,

∫

Ω

g(φ)dx ≈

∫

Ω

g(φ0)dx, (2.6)



8 J. Zhang, C. Chen, X. Yang et al. / Journal of Computational and Applied Mathematics 378 (2020) 112905

Fig. 4.8. (a) Time evolution of the free energy functional (3.3) for the 2D spinodal decomposition example with the initial values of φ̂0 = 0.5, 0.55,

0.6, and 0.65; (b)–(e) Time evolution of the modified volume difference
∫

Ω
g(φ)dx −

∫

Ω
g(φ0)dx.

where φ0 is the initial condition and the parameter is set as β ≫ 1. When g(φ) = φ, the modified volume degenerates

to the real volume. The similar penalization approach had been widely used in Allen–Cahn type equations with some

constraints, for example, the liquid crystal models with unit length constraint [33,34], and phase-field elastic bending

models for vesicle membranes with conserved volume constraint [35], etc.



J. Zhang, C. Chen, X. Yang et al. / Journal of Computational and Applied Mathematics 378 (2020) 112905 9

Fig. 4.9. Time evolutions of the total free energy (3.3) computed by seven different time step sizes until t = 200 using the two schemes SSAV and

SAV.

The phenomenological mesoscopic dynamic equation that relates a temporal change of φ(x, t) is governed by the

following Allen–Cahn equation (cf. [14,15,36,37]):

1

M
φt +

δE(φ)

δφ
= 0, (2.7)

where M is the mobility parameter and
δE(φ)

δφ
is the variational derivative. By taking the total free energy described in

(2.1), the PDE system (2.7) turns into

1

M
φt − ϵ2∆φ + f (φ) + αϵ2ψg ′(φ) + βϵ2(

∫

Ω

g(φ)dx −

∫

Ω

g(φ0)dx)g
′(φ) = 0, (2.8)

ψ = (−∆)−1(g(φ) − ḡ(φ)), (2.9)

where f (φ) = F ′(φ). Without loss of generality, we adopt the periodic boundary condition to remove all complexities

associated with the boundary integrals in this study. We remark that the boundary conditions can also be the no-flux

type as

∂nφ|∂Ω= ∂nψ |∂Ω= 0, (2.10)

where n is the outward normal of the computational domain Ω . All numerical analysis in this paper can be carried out

to the no-flux boundary conditions without any further difficulties.
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The model (2.8)–(2.9) follows the energy dissipation law. By taking the L2 inner product of (2.8) with φt , performing

integration by parts, we obtain

d

dt

(
∫

Ω

(
ϵ2

2
|∇φ|2 + F (φ))dx +

βϵ2

2

(∫

Ω

g(φ)dx −

∫

Ω

g(φ0)dx

)2
)

+ αϵ2(ψg ′(φ), φt )

= −
1

M
∥φt∥

2.

(2.11)

We rewrite (2.9) as
⎧

⎨

⎩

∆ψ = g(φ) − ḡ(φ),
∫

Ω

ψdx = 0,
(2.12)

and then take the time derivative for the first equation of (2.12) to obtain

−∆ψt = g ′(φ)φt −
1

|Ω|

∫

Ω

g ′(φ)φtdx. (2.13)

By taking the L2 inner product of the above equation with αϵ2ψ , we obtain

d

dt

∫

Ω

αϵ2

2
|∇ψ |2dx = αϵ2(g ′(φ)φt , ψ), (2.14)

where the zero mean property of ψ is used. By combining (2.11) and (2.14), we obtain

d

dt
E(φ,ψ) = −

1

M
∥φt∥

2, (2.15)

where

E(φ,ψ) =

∫

Ω

(
ϵ2

2
|∇φ|2 + F (φ) +

αϵ2

2
|∇ψ |2)dx +

βϵ2

2

(∫

Ω

g(φ)dx −

∫

Ω

g(φ0)dx

)2

. (2.16)

3. Numerical schemes

We develop a second-order accurate and provably unconditionally energy stable scheme by combining the SAV

approach [28] with the stabilization technique, that arrives at the stabilized-SAV approach. An extra linear stabilization

term is particularly efficient to enhance the energy stability while keeping the computation fast with the required

accuracy.

We define a scalar, auxiliary variable u(t) as follows:

u(t) =

√
∫

Ω

F (φ)dx + G(φ) + B, (3.1)

where

G(φ) =

∫

Ω

αϵ2

2
|∇(−∆)−1(g(φ) − ḡ(φ))|

2
dx +

βϵ2

2

(∫

Ω

g(φ)dx −

∫

Ω

g(φ0)dx

)2

(3.2)

where B is any constant that ensures the radicand positive (in all numerical examples, we let B = 1). Thus the total free

energy (2.16) can be rewritten as

E(u, φ) =

∫

Ω

ϵ2

2
|∇φ|2dx + u2 − B. (3.3)

By taking the time derivative for the new variable u(t), we can rewrite the system (2.8)–(2.9) to be the following

system in terms of φ and u,

1

M
φt − ϵ2∆φ + uH = 0, (3.4)

ut =
1

2

∫

Ω

H(φ)φtdx, (3.5)

where

H(φ) =
f (φ) + αϵ2

(

(−∆)−1(g(φ) − ḡ(φ))
)

g ′(φ) + βϵ2(
∫

Ω
g(φ)dx −

∫

Ω
g(φ0)dx)g

′(φ)
√
∫

Ω
F (φ)dx + G(φ) + B

. (3.6)
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The transformed system (3.4)–(3.5) forms a closed PDE system with the following initial conditions,
⎧

⎪
⎨

⎪
⎩

φ(t = 0) = φ0,

u(t = 0) =

√
∫

Ω

F (φ0)dx + G(φ0) + B.
(3.7)

The system (3.4)–(3.5) also preserves the energy dissipative law. By taking the L2 inner product of (3.4) with φt , and
multiplying (3.5) with 2u, performing integration by parts, and summing two obtained equalities up, we can obtain the
energy dissipation law as

d

dt
E(u, φ) = −

1

M
∥φt∥

2 ≤ 0. (3.8)

Let δt > 0 be a time step size and set tn = nδt for 0 ≤ n ≤ N with T = Nδt . We also denote the L2 inner product
of any two spatial functions φ(x) and ψ(x) by (φ(x), ψ(x)) =

∫

Ω
φ(x)ψ(x)dx, and the L2 norm of the function φ(x) by

∥φ∥2 = (φ, φ). Let ψn denotes the numerical approximation to ψ(·, t)|t=tn for any function ψ .
We now construct a numerical scheme based on the second-order backward differentiation formula (BDF2) for solving

the system (3.4)–(3.5), that reads as follows.
Assuming φn, un and φn−1, un−1 are known, we update φn+1, un+1 by solving

3φn+1 − 4φn + φn−1

2Mδt
− ϵ2∆φn+1 + un+1H∗,n+1 + S(φn+1 − φ∗,n+1) = 0, (3.9)

3un+1 − 4un + un−1 =
1

2

∫

Ω

H∗,n+1(3φn+1 − 4φn + φn−1)dx, (3.10)

where

φ∗,n+1 = 2φn − φn−1, H∗,n+1 = H(φ∗,n+1), (3.11)

and S is a positive stabilizing parameter.

Remark 3.1. In (3.9), an extra second-order linear stabilizer (associated with S) is added in the scheme. The error that
this term introduces is of the order Sδt2φtt (·) that is of the same order as the error introduced by the second-order
extrapolation of the nonlinear term f (φ). Numerical simulations show that as long as S ∼ ∥f (φ)∥L∞ , the scheme can
get better accuracy and stability result. This stabilizer term is crucial to enhance the stability while keeping the required
accuracy, cf. the comparison with the non-stabilized SAV scheme in Figs. 4.2, 4.3 and 4.9.

Remark 3.2. To initiate the second-order scheme (3.9)–(3.10), we need the values of φ1, u1, that can be obtained by the
following similar first-order scheme based on backward Euler formulation that reads as,

φ1 − φ0

Mδt
− ϵ2∆φ1 + u1H0 + S(φ1 − φ0) = 0, (3.12)

u1 − u0 =
1

2

∫

Ω

H0(φ1 − φ0)dx, (3.13)

where H0 = H(φ0), φ0 = φ0.

Apparently, one has to solve a linear but nonlocal and coupled system for φn+1 and un+1 in the scheme (3.9)–(3.10)
that might need costly iterative solvers. But in practice, we can implement the scheme through the following decoupling
procedure.

We first rewrite (3.10) as follows,

un+1 =
1

2

∫

Ω

H∗,n+1φn+1dx + rn, (3.14)

where

rn =
4un − un−1

3
−

1

2

∫

Ω

H∗,n+1 4φ
n − φn−1

3
dx. (3.15)

Then the scheme (3.9)–(3.10) can be combined together to be

(
3

2Mδt
+ S)φn+1 − ϵ2∆φn+1 +

1

2
H∗,n+1

∫

Ω

H∗,n+1φn+1dx = r̃n, (3.16)

where r̃n is an explicit term defined as

r̃n =
4φn − φn−1

2Mδt
+ Sφ∗,n+1 − rnH∗,n+1. (3.17)
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Thus (3.16) can be written as

P(φn+1) +
1

2
H∗,n+1

∫

Ω

H∗,n+1φn+1dx = r̃n, (3.18)

where P(·) is the linear operator that is defined as

P(ψ) = (
3

2Mδt
+ S − ϵ2∆)ψ. (3.19)

Define a linear operator P
−1(·), such that for any periodic function φ ∈ L2(Ω), ψ = P

−1(φ) is the solution of the
following linear system

P(ψ) = φ, (3.20)

with periodic boundary conditions. By applying the operator P
−1 to (3.18), then we obtain

φn+1 +
1

2
P

−1(H∗,n+1)

∫

Ω

H∗,n+1φn+1dx = P
−1(r̃n). (3.21)

By taking the L2 inner product of (3.21) with H∗,n+1, we obtain
∫

Ω

H∗,n+1φn+1dx =

∫

Ω
H∗,n+1

P
−1(r̃n)dx

1 + 1
2

∫

Ω
H∗,n+1P−1(H∗,n+1)dx

. (3.22)

It is easy to check the term in the denominator
∫

Ω
H∗,n+1

P
−1(H∗,n+1)dx ≥ 0 since P

−1 is a positive definite operator,
that implies the explicit formula (3.22) is uniquely solvable.

Furthermore, (3.22) actually provides an explicit formulation for the nonlocal term
∫

Ω
H∗,n+1φn+1dx. Therefore, in

computations, we first find ψ1 = P
−1(r̃n) and ψ2 = P

−1(H∗,n+1), that means to solve the following two decoupled
elliptic equations,

(
3

2Mδt
+ S − ϵ2∆)ψ1 = r̃n, (3.23)

and

(
3

2Mδt
+ S − ϵ2∆)ψ2 = H∗,n+1, (3.24)

with the periodic boundary conditions. And then, after by applying (3.22) to update
∫

Ω
H∗,n+1φn+1dx, we can obtain φn+1

from (3.21) directly.
To summarize, the nonlocal coupled scheme (3.9)–(3.10) can be easily implemented in the following manner:

• Compute ψ1 and ψ2 by solving two linear elliptic equations with constant coefficients, (3.23) and (3.24);

• Compute
∫

Ω
H∗,n+1φn+1dx from (3.22) and update un+1 from (3.14);

• Update φn+1 from (3.21).

Hence, the total cost at each time step is essentially solving two decoupled elliptic equations in the above process and
one elliptic equation in the computations of G(φ) in (3.2). All elliptic equations are equipped with the constant coefficients.
We note that these equations with periodic boundary conditions can be easily computed by the Fourier-Spectral method.
Hence, this scheme is extremely efficient and easy to implement.

Now we prove the scheme (3.9)–(3.10) is unconditionally energy stable as follows.

Theorem 3.1. The scheme (3.9)–(3.10) is unconditionally energy stable which satisfies the following discrete energy dissipation
law,

1

δt
(En+1 − En) ≤ −

1

M
∥
3φn+1 − 4φn + φn−1

2δt
∥2 ≤ 0, (3.25)

where

En+1 =
ϵ2

2
(
∥∇φn+1∥2 + ∥2∇φn+1 − ∇φn∥2

2
) +

(un+1)2 + (2un+1 − un)2

2

+ S
∥φn+1 − φn∥2

2
.

(3.26)

Proof. By taking the L2 inner product of (3.9) with 3φn+1 − 4φn + φn−1, and using integration by parts, we obtain

1

2Mδt
∥3φn+1 − 4φn + φn−1∥2 + ϵ2(∇φn+1, 3∇φn+1 − 4∇φn + ∇φn−1)

+ un+1(H∗,n+1, 3φn+1 − 4φn + φn−1)

+ S(φn+1 − 2φn + φn−1, 3φn+1 − 4φn + φn−1) = 0

(3.27)
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By multiplying (3.10) with 2un+1, we obtain

2(3un+1 − 4un + un−1)un+1 = un+1

∫

Ω

H∗,n+1(3φn+1 − 4φn + φn−1)dx. (3.28)

Combining the above equations and applying the following two identities

2a(3a − 4b + c) = a2 + (2a − b)2 − b2 − (2b − c)2 + (a − 2b + c)2,

(3a − 4b + c)(a − 2b + c) = (a − b)2 − (b − c)2 + 2(a − 2b + c)2,
(3.29)

we obtain

ϵ2

2
(∥∇φn+1∥2 + ∥2∇φn+1 − ∇φn∥2) −

ϵ2

2
(∥∇φn∥2 + ∥2∇φn − ∇φn−1∥2)

+
(

(un+1)2 + (2un+1 − un)2
)

−
(

(un)2 + (2un − un−1)2
)

+ S∥φn+1 − φn∥2 − S∥φn − φn−1∥2

+
ϵ2

2
∥∇φn+1 − 2∇φn + ∇φn−1∥2 + (un+1 − 2un + un−1)2

+ 2S∥φn+1 − 2φn + φn−1∥2 = −
1

2Mδt
∥3φn+1 − 4φn + φn−1∥2.

Finally, we obtain the desired result after dropping some positive terms. □

Remark 3.3. Heuristically, 1
δt
(En+1−En) is a second-order approximation of d

dt
E(u, φ) at t = tn+1. For any smooth variable

ψ with time, we have

∥ψn+1∥2 − ∥2ψn+1 − ψn∥2

2δt
−

∥ψn∥2 − ∥2ψn − ψn−1∥2

2δt

∼=
∥ψn+2∥2 − ∥ψn∥2

2δt
+ O(δt2) ∼=

d

dt
∥ψ(tn+1)∥2 + O(δt2), (3.30)

and

∥ψn+1 − ψn∥2 − ∥ψn − ψn−1∥2

2δt
∼= O(δt2). (3.31)

Remark 3.4. Although we consider only time discrete schemes in this study, the results can be carried over to any

consistent finite-dimensional Galerkin approximations in the space since the proofs are all based on a variational

formulation with all test functions in the same space as the space of the trial functions.

Remark 3.5. In comparison with the stabilized SAV scheme developed above, we also present the first-order linear

stabilized explicit scheme that was developed in [1], where the nonlinear terms are treated in an explicit way and some

stabilizers are added to enhance the stability. About the detailed proof of its unconditional energy stability, we refer to [1].

The first-order linear stabilized explicit scheme reads as follows.

φn+1 − φn

Mδt
− ϵ2∆φn+1 + S(φn+1 − φn) + αϵ2(−∆)−1(φn+1 − φn)

= −f (φn) − αϵ2((−∆)−1(g(φn) − ḡ(φn)))g ′(φn)

−βϵ2
∫

Ω

g(φn)dx −

∫

Ω

g(φ0)dxg
′(φn).

(3.32)

4. Numerical simulations

In this section, we present numerous 2D and 3D numerical examples to demonstrate the accuracy and energy stability

the developed stabilized-SAV scheme (3.9)–(3.10). In all examples, we consider a computational domain Ω = [0, 2π ]d,
d = 2, 3 with periodic boundary conditions and we adopt the Fourier-spectral method to discretize the space.

4.1. Accuracy tests

We perform numerical simulations to test the convergence rates of the proposed stabilized-SAV scheme (3.9)–(3.10),

denoted by SSAV for short. For comparison, we also compute the convergence rates by using the non-stabilized version

of SAV scheme, i.e., scheme (3.9)–(3.10) but with S = 0, denoted by SAV for short, and the first-order linear stabilized

explicit scheme (3.32), denoted by SExpl-1st for short.
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Fig. 4.10. Qualitative comparison of numerical simulations at t = 200 computed by using the scheme SSAV with four different time steps.

We perform refinement tests for temporal convergence by setting the initial condition of a circle as follows,

φ(x, y, t = 0) = −
1

2
tanh(

√

(x − π )2 + (y − π )2 − 1.5

2.5ϵ
) +

1

2
. (4.1)

We set the values of parameters as S = 2, B = 1 and vary the other four model parameters (M, α, β, ϵ).

Since the exact solution is not known, we choose the solution obtained with the time step size δt = 1e−9 computed

by the scheme SSAV as the benchmark solution (approximately the exact solution) for computing errors. We discretize

the 2D domain Ω = [0, 2π ]2 by using Nx = Ny = 129 Fourier modes for x and y directions so that the errors from the

spatial discretization are negligible compared to the temporal discretization errors. The L2 errors of the phase variable

between the numerical solution and the exact solution at t = 10 with different time step sizes are then plotted.

We first test the convergence rates for the low stiffness case, where we use (M, α, β, ϵ) = (1, 1e−2, 1e−2, 6e−2)

that corresponds to small mobility, small nonlocal parameter, small penalization parameter, and large interfacial width

parameter. The L2 errors computed by three schemes SSAV, SAV, and SExpl-1st are shown in Fig. 4.1. We observe that

these three schemes present very good convergence rate that almost perfectly matches their respective orders of accuracy

for the time step. This implies the stabilization parameter S is not necessary in the SAV scheme for the low stiffness

case.

We further test the convergence rates for the high stiffness case, where we set order parameters as (M, α, β, ϵ) =

(1e1, 1e3, 1e5, 2e−2) and (M, α, β, ϵ) = (1e2, 1e5, 1e7, 2e−2) in Figs. 4.2 and 4.3, respectively. This corresponds to

large mobility, large nonlocal parameter, large penalization parameter, and small interfacial width parameter. We note
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Fig. 4.11. The 3D dynamical evolution of the isosurface of the phase variable φ at t = 80, 200, 400, and 1000 with the initial condition φ̂0 = 0.5,

time step δt = 0.01 and model parameter (4.5).

the non-stabilized scheme SAV can only present good approximations and the second-order accuracy for smaller time

steps, δt ≤ 1.5625e−2 shown in Fig. 4.2(a) and δt ≤ 7.8125e−5 shown in Fig. 4.3(a). On the contrary, the stabilized

scheme SSAV and SExpl-1st are stable for all tested time steps and perform good approximations and corresponding

orders of accuracy all along. However, the second-order scheme SSAV performs with much better accuracy than that of

the first-order scheme SExpl-1st.

Therefore, through these numerical tests, we conclude that (i) if the stiffness is low, both of the stabilized and non-

stabilized schemes can solve the model well; (ii) if the stiffness is high, the stabilized scheme SSAV overwhelmingly

defeats the non-stabilized scheme from the stability and/or accuracy; (iii) the second-order scheme SSAV presents much

better accurate results than the first-order scheme SExpl-1st.
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Fig. 4.12. The 3D dynamical evolution of the isosurface of the phase variable φ at t = 80, 200, 400, and 1000 with the initial condition φ̂0 = 0.65,

time step δt = 0.01 and model parameter (4.5).

4.2. Spinodal decomposition

In this example, we study the phase separation dynamics that is called spinodal decomposition using the developed
scheme SSAV. By considering a homogeneous binary mixture, the spontaneous growth of the concentration fluctuations
can lead the system from the homogeneous to the two-phase state.

4.2.1. 2d case
We set the initial condition as the randomly perturbed concentration field as follows,

φ(x, t = 0) = φ̂0 + 0.001rand(x), (4.2)

where x = (x, y) and rand(x) is the random number in [−1, 1] that follows the normal distribution. We use the stabilized
scheme SSAV with the time step δt = 0.01 and discretize the domain [0, 2π ]2 using Nx = Ny = 513 Fourier modes. Other



J. Zhang, C. Chen, X. Yang et al. / Journal of Computational and Applied Mathematics 378 (2020) 112905 17

Fig. 4.13. The 3D dynamical evolution of the isosurface of the phase variable φ at t = 80, 200, 400, and 1000 with the initial condition φ̂0 = 0.7,

time step δt = 0.01 and model parameter (4.5).

model parameters are set as

M = 1, α = 1e6, β = 5e5, ϵ = 6e−3, S = 2, B = 1. (4.3)

In Fig. 4.4, we perform numerical simulations for the initial value φ̂0 = 0.5 and snapshots of the phase variable φ(x, t)

are taken at various times. We observe that the blue region is entangled with the red region everywhere and the final

equilibrium solution forms the cylindrical phase. In Fig. 4.5, by using φ̂0 = 0.55, we observe that a small quantity of the

blue region starts to form the stacked balls (body-centered-cubic, BCC for short) but most of the blue region still grafts

and entangles with the red region. When the initial value is φ̂0 = 0.6, shown in Fig. 4.6, we observe that more blue

regions form the BCC phase and a small quantity of it still forms the cylindrical phase. Finally, by using φ̂0 = 0.65, shown

in Fig. 4.7, we observe that the final equilibrium solution becomes to be the pure BCC phase in the whole domain.

In Fig. 4.8(a), we present the evolution of the total free energy functional (3.3) for all above four cases. The energy

curves show the decays with the time that confirms that the scheme SSAV is unconditionally stable. In Fig. 4.8(b), for the
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Fig. 4.14. The 3D dynamical evolution of the isosurface of the phase variable φ at t = 80, 200, 400, and 1000 with the initial condition φ̂0 = 0.75,

time step δt = 0.01 and model parameter (4.5).

above four cases, we plot the evolutions for the modified volume difference
∫

Ω
g(φ)dx −

∫

Ω
g(φ0)dx and the magnitude

of it for each case is very small.

Finally, we verify whether the stabilized scheme SSAV is unconditionally energy stable for various time steps. We still

use the same model parameters and choose φ̂0 = 0.5. In Fig. 4.9, we plot the evolution curves of the total free energy (3.3)

computed by using the two schemes SSAV and SAV. For all tested time steps, the energy curves computed by SSAV show

the monotonic decays which confirm that the stabilized algorithm is unconditionally stable, shown in Fig. 4.9(a). On the

contrary, when the time step δt > 6.25e−3, the energies blow up which implies the non-stabilized scheme SAV is not

stable for large time steps, shown in Fig. 4.9(b). Only when the time step is small (δt ≤ 6.25e−3) shown in Fig. 4.9(c), the

total free energy is computed by SAV decays. In Fig. 4.10, we compare the snapshots of φ at t = 200 computed by using

the stabilized scheme SSAV and four different time steps δt = 0.1, 0.05, 0.025, and 1.5625e−3 and no visible difference

is noticeable.



J. Zhang, C. Chen, X. Yang et al. / Journal of Computational and Applied Mathematics 378 (2020) 112905 19

Fig. 4.15. (a) Time evolution of the free energy functional (3.3) for the 3D spinodal decomposition example with the initial values of φ̂0 = 0.5, 0.65,

0.7, and 0.75; (b)–(d) Time evolution of the modified volume difference
∫

Ω
g(φ)dx −

∫

Ω
g(φ0)dx for the four cases.

4.2.2. 3D Case

We further perform the 3D simulations for spinodal decomposition example. We set the initial condition as the

randomly perturbed concentration field as follows,

φ(x, t = 0) = φ̂0 + 0.001rand(x), (4.4)
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Fig. 4.16. The 2D dynamical evolution of the phase variable φ under the imposed electric field where the initial condition φ̂0 = 0.5, time step

δt = 0.01, and the electric magnitude parameter β = 5e2. Snapshots of the numerical approximation are taken at t = 80, 120, 200, and 2000.

where x = (x, y, z). We use the scheme SSAV with the time step δt = 0.01 and discretize the space using Nx = Ny =
Nz = 129 Fourier modes. The computed domain is [0, 2π ]3 and the parameters are set as

M = 1, α = 1e4, β = 1e4, ϵ = 2e−2, S = 2, B = 1. (4.5)

In Figs. 4.11–4.14, we set the initial value φ̂0 = 0.5, 0.65, 0.7, and 0.75, respectively. We plot the snapshots of the

isosurfaces of {φ(x) = 0.5} at various times. The final equilibrium solution forms the gyroidal (cylindrical) shape for

φ̂0 = 0.5, the mixed gyroidal and spherical shapes for φ̂0 = 0.65 (dominant cylindrical phase) and φ̂0 = 0.7 (dominant

spherical phase), and the pure spherical phase for φ̂0 = 0.75. In Fig. 4.15, we present the evolution of the total free energy

functional (3.3) and the modified volume difference
∫

Ω
g(φ)dx −

∫

Ω
g(φ0)dx for these four 3D simulations.

4.3. The imposed electric field

The application of electric fields is an efficient approach to produce various patterns of nano-structured materials.

When an external electric field is applied along some direction, an additional term contributed by the electric field is

added to the model system (2.8) which reads as follows,

1

M
φt − ϵ2∆φ + f (φ) + αϵ2ψg ′(φ)

+βϵ2(

∫

Ω

g(φ)dx −

∫

Ω

g(φ0)dx)g
′(φ) + γ ϵ2(−∆)−1φxx = 0.

(4.6)
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Fig. 4.17. The equilibrium solutions under the imposed electric field with the initial condition φ̂0 = 0.5, 0.55, 0.6 and 0.65. The time step is δt = 0.01

and electric magnitude parameter is γ = 5e3.

Notice that the imposed electric term is linear, therefore we can simply modify (3.9) in the SSAV scheme as

3φn+1 − 4φn + φn−1

2Mδt
− ϵ2∆φn+1 + un+1H∗,n+1

+βϵ2(−∆)−1φn+1
xx + S(φn+1 − φ∗,n+1) = 0.

(4.7)

We still keep the computed domain [0, 2π ]2 and the initial condition (4.2), use the model parameters given in (4.3), and
vary the magnitude of the electric field parameter γ to investigate the pattern formation due to electric effects. Note this
model does not have any energy structure due to the imposed external electricity force.

In Fig. 4.16, we set γ = 5e2 and plot the snapshots of the phase-field variable φ at various times. We observe that phase
dislocations gradually disappear and the final equilibrium solution presents curvy lamellar phase with a few dislocations.

Then by varying the initial value of φ̂0 = 0.5, 0.55, 0.6, 0.65 and increasing the magnitude of the electric field to γ = 5e3,
we plot the final equilibrium solutions (t = 2000) in Fig. 4.17, we observe that various patterns of lamellar phases are
obtained accordingly. All these obtained simulations are qualitatively consistent with the numerical results in [3,4,38].

5. Concluding remarks

In this paper, we develop a semi-discrete in time, easy-to-implement, and second-order scheme for solving the
penalized Allen–Cahn type diblock copolymer model. At each time step, one only needs to solve two decoupled linear
elliptic equations. The added linear stabilization term is shown to be crucial to enhance the stability and keep the
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required accuracy when using large time steps. We further prove the unconditional energy stability of the developed

scheme rigorously. Through the comparison with the non-stabilized SAV and first-order stabilized explicit scheme in

simulating many numerical examples in 2D and 3D, we demonstrate the stability and the accuracy of the developed

scheme numerically.
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