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Abstract		

Characterization	of	the	accuracy	of	the	pressure	reconstruction	methods	is	of	critical	importance	in	
understanding	 their	 capabilities	 and	 limitations.	 This	 paper	 reports	 for	 the	 first	 time	 a	
comprehensive	theoretical	analysis,	numerical	simulation	and	experimental	validation	of	the	error	
propagation	 characteristics	 for	 the	omni‐directional	 integration	method,	which	has	been	used	 for	
pressure	 reconstruction	 from	 the	 PIV	measured	 pressure	 gradient.	 	 The	 analysis	 shows	 that	 the	
omni‐directional	 integration	 provides	 an	 effective	 mechanism	 in	 reducing	 the	 sensitivity	 of	 the	
reconstructed	pressure	to	the	random	noise	imbedded	in	the	measured	pressure	gradient.	Both	the	
numerical	and	experimental	validation	results	show	that	the	omni‐directional	integration	methods,	
especially	 the	 rotating	 parallel	 ray	 method,	 have	 better	 performance	 in	 data	 accuracy	 than	 the	
conventional	 Poisson	 equation	 approach	 in	 reconstructing	 pressure	 from	 noise	 embedded	
experimental	data.	
	

1 Introduction	

Back	 in	 September,	 2005,	 at	 the	 6th	 ISPIV	 at	 Pasadena,	 California,	 the	 first	 author	 of	 this	 paper	
delivered	an	oral	presentation	with	 the	 title	of	 “Instantaneous	pressure	and	material	acceleration	
measurements	using	a	four	exposure	PIV	system”,	which	introduced	the	principle	of	non‐intrusive	
pressure	 measurement	 based	 on	 PIV	 and	 the	 novel	 omni‐directional	 integration	 algorithm	 for	
pressure	 reconstruction	 from	 the	measured	 pressure	 gradient,	 for	 which	 the	measured	material	
acceleration	 constitutes	 its	 dominant	 contributing	 term	 for	 high	 Reynolds	 number	 flow	 and	 in	
regions	 away	 from	 walls.	 Based	 on	 that	 presentation,	 a	 journal	 paper	 (Liu	 and	 Katz	 2006)	 was	
published	 in	 Experiments	 in	 Fluids,	 marking	 the	 official	 introduction	 of	 the	 omni‐directional	
integration	pressure	reconstruction	method.	The	real	advantage	of	the	omni‐directional	integration	
method	 is	 its	 robust	 capability	 in	 accurate	 pressure	 reconstruction	 from	 the	 error‐embedded	
experimental	 data,	 for	 which	 the	 conventional	 Poisson	 equation	 approach	 often	 encounters	
difficulty	in	defining	the	correct	boundary	conditions.		The	omni‐directional	integration	method	was	
further	tested	and	applied	to	turbulent	cavity	flows	(Liu	and	Katz	2008,	2013,	2018)	and	turbulent	
boundary	 layer	 flows	 (Joshi	 et	 al.	 2014).	 Especially,	 the	 method	 recently	 evolved	 to	 an	 updated	
algorithm	featuring	rotating	parallel	ray	(Liu	et	al.	2016)	as	integration	path	guidance,	which	brings	
improved	 accuracy	 in	 reconstructed	 pressure	 result.	 Subsequently,	 the	 new	 rotating	 parallel	 ray	
omni‐directional	 integration	algorithm	was	applied	 to	3D	pressure	reconstruction	based	on	 time‐
resolved	tomographic	PIV	measurement	of	a	turbulent	channel	flow	over	compliant	wall	(Zhang	et	
al.	2017).	
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Characterization	 of	 the	 accuracy	 of	 the	 PIV	 pressure	 reconstruction	 methods	 is	 of	 critical	
importance	 in	 understanding	 the	 capabilities	 and	 limitations	 of	 these	 methods.	 Charonko	 et	 al.	
(2010),	using	a	decaying	Taylor	vortex	flow	and	two	simulated	pulsatile	flow	fields,	demonstrated	
that	 the	 omni‐directional	 method	 exhibits	 robust	 performance	 over	 the	 conventional	 Poisson	
equation	approach	for	a	wide	range	of	resolutions,	flow	conditions	and	noise	levels.	Most	recently,	
Wang	et	al.	 (2019)	also	demonstrated	using	DNS	 isotropic	 turbulence	channel	 flows	 that	 the	new	
rotating	 parallel	 ray	 omni‐directional	 method	 has	 better	 performance	 than	 the	 conventional	
Poisson	 equation	 approach.	 As	 for	 theoretical	 analysis	 on	 error	 propagation,	 Pan	 et	 al.	 (2016)	
demonstrated	in	theory	how	the	error	propagates	from	the	pressure	gradient	to	the	reconstructed	
pressure	 for	 the	Poisson	equation	approach.	However,	up	 to	date,	 there	 is	no	 theoretical	 analysis	
available	that	characterizes	the	error	propagation	of	the	omni‐directional	integration	method	from	
the	measured	pressure	gradient	 to	 the	reconstructed	pressure.	To	 fill	 the	gap,	and	help	settle	 the	
question	of	why	the	omni‐directional	method	has	better	performance	over	the	conventional	Poisson	
equation	 approach,	 this	 paper	 introduces	 a	 theoretical	 analysis	 for	 the	 error	 propagation	
characterization	 of	 the	 omni‐directional	 integration	 method.	 The	 theoretical	 analysis	 is	 further	
validated	by	using	both	a	direct	numerical	simulation	database	of	isotropic	turbulence	flow	and	an	
experimental	database	for	a	turbulent	shear	layer	flow.	
	

2		 The	Omni‐Directional	Integration	Method	

2.1	Overview	
Pressure	can	be	obtained	from	PIV	experiments	in	a	two‐step	process:	first	the	pressure	gradient	is	
computed	from	the	velocity	fields,	then	the	second	step	is	the	integration	of	the	pressure	gradient	to	
obtain	the	pressure	field.	The	pressure	gradient	can	be	obtained	using	either	the	Eulerian	approach	
(e.g.	Gurka	et	al.	1999,	Violato	et	al.	2011,	de	Kat	and	van	Oudheusden	2012)	where	the	unsteady	
and	convection	terms	of	the	Eulerian	expansion	of	the	material	acceleration	are	calculated	directly	
as	shown	in	equation	(1),	or	the	Lagrangian	approach	where	the	material	acceleration	is	calculated	
directly	by	 tracing	 imaginary	 fluid	particles	along	their	 trajectories	based	on	the	so‐called	pseudo	
tracking	method	 (e.g.	 Jensen	 et	 al.	 2003,	 Liu	 and	 Katz	 2006,	 Violato	 et	 al	 2011,	 de	 Kat	 and	 van	
Oudheusden	2012)	as	shown	in	equation	(2).	For	high	Reynolds	number	flows	in	regions	away	from	
walls,	the	viscous	term	is	usually	3‐4	orders	of	magnitude	smaller	than	the	pressure	gradient	term	
and	 therefore	 is	 negligible	 (Liu	 and	 Katz,	 2006).	 In	 this	 case,	 the	 pressure	 gradient	 can	 be	
determined	from	the	measured	material	acceleration.		

	 ݌׏ ൌ 	െߩ ൤
࢛߲
ݐ߲

൅ ሺ࢛ ∙ ࢛ሻ׏ െ 	൨࢛ଶ׏ߥ (1)	
	

	 ݌׏ ൌ െߩ ൤
࢛ܦ
ݐܦ

െ 	൨࢛ଶ׏ߥ (2)	

The	 error	 propagation	 from	 velocity	 to	 acceleration	 was	 investigated	 by	 Jensen	 and	 Pedersen	
(2004),	Violato	et	al.	(2011),	de	Kat	and	van	Oudheusden	(2012),	van	Oudheusden	(2013),	Wang	et	
al.	 (2016)	 and	 van	 Gent	 et	 al.	 (2017).	 Those	 investigations	 demonstrate	 that	 for	 advection	
dominated	flows,	the	Lagrangian	approach	showed	consistently	less	sensitivity	to	noise.	

To	 reconstruct	 the	 pressure	 from	 the	 pressure	 gradient,	 one	 can	 use	 the	 Poisson	 equation	 for	
pressure	 as	 shown	 in	 equations	 (3)	 or	 (4),	 which	 are	 obtained	 by	 taking	 divergence	 of	 either	
Equation	 (1)	 or	 equation	 (2),	 respectively.	 An	 example	 of	 the	 implementation	 of	 the	 Poisson	
equation	for	pressure	reconstruction	can	be	 found	in	de	Kat	and	van	Oudheusden	(2012)	and	the	
error	bounds	for	the	Poisson	solution	can	be	found	in	Pan	et	al.	(2016).	

	 ݌ଶ׏ ൌ 	െ׏ߩ ⋅ ൤
࢛߲
ݐ߲

൅ ሺ࢛ ∙ ࢛ሻ׏ െ 	൨࢛ଶ׏ߥ (3)	
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	 ݌ଶ׏ ൌ െ׏ߩ ⋅ ൤
࢛ܦ
ݐܦ

െ 	൨࢛ଶ׏ߥ (4)	

Equations	 (1)	 and	 (2)	 can	 be	 integrated	 directly	 by	 means	 of	 line	 integrals.	 While	 several	
approaches	were	proposed	to	perform	the	 line	 integration	(e.g.,	Baur	and	Kongeter	1999,	Liu	and	
Katz	2006,	and	Dabiri	et	al.	2014),	the	omnidirectional	integration	proposed	by	Liu	and	Katz	(2006)	
showed	the	most	robust	results	in	the	assessments	of	Charonko	et	al.	(2010)	and	Wang	et	al.	(2016).	

In	 this	 paper,	we	 present	 an	 analysis	 of	 the	 error	 propagation	 from	 the	 pressure	 gradient	 to	 the	
reconstructed	 pressure	 for	 the	 omni‐directional	 integration	 methods	 (Liu	 and	 Katz	 2003,	 2006,	
2008,	2013,	and	Liu	et	al.	2016)	so	as	to	elucidate	the	mechanisms	for	the	random	noise	reduction	
that	 grants	 the	 robustness	 of	 the	method.	 To	 facilitate	 the	 analysis,	 details	 about	 the	 history	 and	
principle	of	the	omni‐directional	integration	method	are	described	below.	

2.2	The	Omni‐directional	Integration	
The	 omni‐directional	 integration	 of	 the	 pressure	 gradient	 for	 obtaining	 pressure	 from	 PIV	
experiments	 was	 proposed	 by	 Liu	 and	 Katz	 (2003),	 which	 integrates	 the	 measured	 pressure	
gradient	by	 following	the	shortest	 integration	paths	across	 the	 integration	domain	connecting	 the	
domain	boundary	points.	To	determine	the	pressure	at	an	internal	nodal	point	in	the	field	of	view,	
the	local	pressure	values	obtained	from	the	integration	paths	passing	by	the	internal	nodal	point	are	
averaged	 so	 as	 to	 minimize	 the	 influence	 of	 the	 error	 embedded	 in	 the	 pressure	 gradient	
measurement.		This	method	was	later	improved	by	placing	a	virtual	boundary	outside	the	real	flow	
field	domain	and	allowing	the	integration	paths	originate	from	and	end	at	the	virtual	boundary	(Liu	
and	 Katz	 2006)	 so	 as	 to	 reduce	 the	 path	 clustering	 close	 to	 the	 real	 boundaries.	 A	 further	
development	was	introduced	by	Liu	and	Katz	(2008,	2013)	by	using	a	circular	virtual	boundary.	The	
most	recent	improvement	in	the	omnidirectional	integration	methods	was	introduced	by	Liu	et	al.	
(2016),	using	rotating	parallel	rays	as	integration	guide	lines.	

The	 essence	 of	 the	 Omni‐Directional	 Integration	 is	 to	 minimize	 the	 influence	 of	 the	 errors	
embedded	in	the	measured	acceleration	data	on	the	final	pressure	result,	to	achieve	a	reliable	and	
accurate	pressure	measurement.		The	pressure	integration	arrangement	is	based	on	the	fact	that	the	
pressure	 is	 a	 scalar	 potential,	 therefore	 the	 spatial	 integration	 of	 the	 pressure	 gradient	must	 be	
independent	of	the	integration	path.	As	shown	in	Fig.	1(a),	the	discrete	points	distributed	uniformly	
along	the	circular	virtual	boundary	serve	as	guiding	points	to	define	the	orientation	and	position	of	
the	integration	paths.	A	group	of	“virtual”	 integration	paths	start	 from	one	point	and	end	at	other	
points	on	the	virtual	boundary,	creating	a	ray	pattern	of	integration	paths	that	cover	the	real	field	of	
view.	 The	 actual	 integration	 starts	 from	 and	 stops	 at	 the	 real	 boundaries,	 in	 a	 "zig‐zag"	 fashion,	
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Figure 1. The omnidirectional algorithms.  (a) The  circular  virtual boundary omni‐directional  integration algorithm.  (b) The
rotating  parallel  ray  omni‐directional  integration  algorithm.  (c)  Ray  orientation with  respect  to  the  pressure  calculation
domain as a function of ࢊ (distance from the domain center) and ࢻ (ray rotation angle).	
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along	 real	 nodal	 points	 that	 have	 the	 shortest	 distance	 to	 the	 integration	 paths.	 Each	 time	 the	
integration	 path	 crosses	 a	 certain	 internal	 node,	 the	 result	 of	 integration	 is	 stored	 in	 a	 data	 bin	
associated	with	 that	 internal	node.	This	procedure	 is	 repeated	 for	all	 the	virtual	boundary	nodes.	
Averaging	all	the	values	stored	in	data	bins	provides	the	result	of	the	omni‐directional	integration.	

One	 shortcoming	 of	 the	 Circular	 Virtual	 Boundary	
omnidirectional	 integration	method	 is	 that	 except	 the	points	
near	 the	 geometric	 center	 of	 the	 real	 integration	 domain,	
points	at	other	places	do	not	see	an	axisymmetric	distribution	
of	 the	 integration	 paths,	 which	 results	 in	 a	 non‐uniform	
weight	contribution	to	the	final	integration.	To	overcome	this	
inherent	defect,	Liu	et	al.	 (2016)	 introduces	a	new	algorithm	
featuring	 rotating	 parallel	 ray	 (Fig.	 1b)	 as	 integration	 path	
guidance.	 Unlike	 the	 virtual	 boundary	 omni‐directional	
method,	 the	 new	 Rotating	 Parallel	 Ray	 Omni‐Directional	
Integration	 method	 utilizes	 parallel	 rays	 as	 guidance	 for	
integration	 paths.	 The	 parallel	 rays	 can	 be	 viewed	 as	 being	
originated	from	a	virtual	boundary	at	an	infinity	distance	from	
the	 real	 boundary.	 Effectively,	 by	 rotating	 the	 parallel	 rays,	
omni‐directional	 paths	 with	 equal	 weights	 coming	 from	 all	
directions	toward	the	point	of	 interest	at	any	location	within	
the	 computation	 domain	will	 be	 generated.	 In	 this	 way,	 the	
location	 dependence	 of	 the	 integration	 weight	 due	 to	 an	
inherent	 defect	 (though	 not	 significant)	 in	 virtual	 path	
arrangement	in	the	old	algorithm	will	be	eliminated. 	

For	 all	 the	 omnidirectional	 integration	 methods	 the	 following	 procedures	 must	 be	 applied	
adequately	to	reduce	error	propagation	from	the	boundaries:	
1) Boundary	pressure	calculation.		

a) Set	a	pressure	reference	point.	
b) Initialize	pressure	values	on	the	boundary	points.	
c) Integrate	the	pressure	gradient	field	using	the	specific	method	of	the	omni	integration.	
d) Update	the	boundary	pressure	values	with	the	newly	calculated	data.	
e) Iterate	until	prescribed	accuracy	is	achieved.	

2) Inner	domain	pressure	calculation.	

3	 Error	Propagation	Analysis	

We	 can	 show	 that	 for	 the	 omni‐directional	 integration	 methods,	 the	 pressure	 error	 ߳௡
ሺ௤ାଵሻ	 at	 a	

boundary	point	ݏ௡	(Figure	2)	after	each	ݍ	round	of	iteration	contains	three	terms,	as	shown	below.	
 

߳௡
ሺ௤ାଵሻ ൌ ௡஻ߝ

௤ ൅ ௡஺ߝ ൅ ߳௥௘௙ 
(5)	

where	߳௥௘௙	denotes	the	error	embedded	in	the	reference	pressure	point,			

௡஺ߝ  ൌ෍ቈ
ܴሺ݈, ݊ሻ

௡ܰ
ቆ߳௧ሺ೗,೙ሻ ൅ න ௣׏߳

௦೙

௦೗

⋅ ቇ࢙ࢊ െ
ܴሺ݈, ሻݎ

௥ܰ
ቆ߳௧ሺ೗,ೝሻ ൅ න ௣׏߳

௦ೝ

௦೗

⋅ ቇ቉࢙ࢊ

ெ

௟ୀଵ

 (6)	

and   

୬୆ߝ
௤ ൌ෍൜൬

ܴሺ݈, ݊ሻ

௡ܰ
െ
ܴሺ݈, ሻݎ

௥ܰ
൰ ߳௟

௤ൠ ≡෍൫ݓሺ݈, ݊ሻ ⋅ ߳௟
௤൯

ெ

௟ୀଵ

ெ

௟ୀଵ

	
(7)	

Figure  2.  (a)  Integration  path  connections
among boundary points for omni‐directional
integration;  (b)  Integration  path  connection
between  inner  nodal  point  and  boundary
points. 
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where	the	weight	ݓሺ݈, ݊ሻ	that	is	applied	to	the	boundary	pressure	value	is	defined	as	

,ሺ݈ݓ ݊ሻ ൌ
ܴሺ݈, ݊ሻ

௡ܰ
െ
ܴሺ݈, ሻݎ

௥ܰ
 (8)	

In	 the	 above	 equations,	 ܴሺ݈, ݊ሻ	 represents	 the	 number	 of	 repetitive	 integration	 path	 connections	
(ܴሺ݈, ݊ሻ ൒ 1ሻ	between	boundary	points	ݏ௟	and	ݏ௡;	 ௡ܰ ൌ ∑ ܴሺ݈, ݊ሻெ

௟ୀଵ ;	 ௥ܰ ൌ ∑ ܴሺ݈, ሻெݎ
௟ୀଵ ,	with	ܯ	being	

the	 total	number	of	 the	boundary	points	over	 the	entire	computation	domain,	ݎ	corresponding	 to	
reference	boundary	point	ݏ௥;	߳௧ሺ೗,೙ሻ	the	numerical	truncation	error	for	the	pressure	integration	along	
the	path	connecting	boundary	points	ݏ௟	and	ݏ௡;	߳௧ሺ೗,ೝሻ 	the	numerical	truncation	error	for	the	pressure	
integration	along	the	path	connecting	boundary	points	ݏ௟	and	ݏ௥;	and	߳׏௣	the	error	embedded	in	the	
measured	 pressure	 gradient	 field.	 	 Consequently,	 according	 to	 equation	 (6),	 	௡஺ߝ is	 a	 fixed	 value	
which	is	independent	of	the	number	of	iterations	at	the	given	boundary	point	location	ݏ௡.	

For	 a	 given	 measurement	 domain,	 the	 weight	 ,ሺ݈ݓ ݊ሻ	 depends	 only	 on	 the	 omnidirectional	
integration	method	used	in	the	pressure	reconstruction.	It	does	not	depend	on	the	noise	level	in	the	
measured	pressure	gradient	field.	For	the	rotating	parallel	ray	method,	the	weight	ݓሺ݈, ݊ሻ	depends	
on	the	ray	density,	i.e,	the	parameter	of	ሺΔߙ, Δ݀ሻ,	as	defined	in	Fig.	1(c).	Increasing	the	ray	density	
decreases	 the	weight	magnitude.	 For	 a	 dense	 enough	 ray	 configuration	 used	 in	 this	 study	 ሺΔα ൌ
0.20, Δ݀ ൌ 0.4ሻ,	the	weight	magnitude	is	on	the	order	of	ܱሺ10ିଷሻ.			

It	can	be	shown	that	the	implicit	recursive	relation	for	the	pressure	error	at	the	domain	boundary	as	
shown	in	equation	(5)	can	be	written	as:	

	 ߳௡
௤ ൌ ௡,௠௔௫ߣ

௤ ௡,௠௔௫ܥ ൅ ௡஺ߝ ൅ ߳௥௘௙	 (9)	

where	ܥ௡,௠௔௫	is	a	constant	that	depends	on	the	pressure	initialization	at	the	boundary	points	(ݍ ൌ
0)	and	ߣ௡,௠௔௫	is	the	characteristic	error	decay	rate	that	depends	on	the	omnidirectional	integration	
algorithm	 used.	 For	 the	 rotating	 parallel	 ray	 omnidirectional	 integration	 with	 an	 adequate	 ray	
density,	หߣ௡,௠௔௫ห ൏ 1.	After	sufficient	amount	of	iterations,	the	final	error	converges	to:	

 ߳௡
௤೐೙೏ ൎ ௡஺ߝ ൅ ߳௥௘௙ (10)	

which	implies	that,	according	to	equation	(5),		߳௡஻
௤೐೙೏ ൎ 0.	The	characteristic	error	decay	rate	หߣ௡,௠௔௫ห	

can	be	obtained	from	the	following	relationship,	with	 ௡ܲ,௠௔௫ሺݍሻ	being	a	constant:	

 logଵ଴ห߳௡
௤ െ ߳௡

௤೐೙೏ห ൌ ௡,௠௔௫หߣlogଵ଴หݍ ൅ logଵ଴ห ௡ܲ,௠௔௫ሺݍሻห (11)	

For	the	pressure	error	߳௜௝௞	at	an	inner	nodal	point	(Fig.	2b),	it	can	be	shown	that	

 ߳௜௝௞ ൌ
1

௜ܰ௝௞
෍ቈܴሺ݈, ݆݅݇ሻ ቆ߳௟ ൅ ߳௧ሺ೗,೔ೕೖሻ ൅ න ௣׏߳

௦೔ೕೖ

௦೗

⋅ ቇ቉࢙ࢊ

ெ

௟ୀଵ

 (12)	

Equation	 (12)	 shows	 that	 the	 pressure	 error	 at	 an	 inner	 nodal	 point	 is	 the	 average	 over	 all	 the	
number	of	integration	paths	 ௜ܰ௝௞	for	the	combination	of	the	pressure	error	(߳௟)	at	boundary	point	ݏ௟,	
the	truncation	error	(߳௧ሺ೗,೔ೕೖሻ)	along	the	path	from	boundary	point	ݏ௟	to	inner	nodal	point	ݏ௜௝௞,	and	the	
line	integration	of	the	error	embedded	in	the	pressure	gradient	߳׏௣	along	the	path	from	ݏ௟	to	ݏ௜௝௞.		
Assuming	the	error	embedded	in	the	pressure	gradient	is	random	and	homogeneously	distributed	
in	 space,	 the	 third	 term	 in	 equation	 (12)	 will	 vanish	 after	 the	 spatial	 averaging	 over	 all	 the	
integration	paths	involved	in	the	calculation.		Consequently,	in	that	case,	the	error	at	an	inner	nodal	
point	can	be	simplified	as:	

߳௜௝௞ ൎ
1

௜ܰ௝௞
෍ቂܴሺ݈, ݆݅݇ሻ ቀ߳௟ ൅ ߳௧ሺ೗,೔ೕೖሻቁቃ

ெ

௟ୀଵ

 (13)	



13th International Symposium on Particle Image Velocimetry – ISPIV 2019 
Munich, Germany, July 22‐24, 2019 

4		 Results	

To	 validate	 the	 error	 propagation	 model	 for	
omnidirectional	 integration,	 we	 utilize	 direct	
numerical	 simulation	 (DNS)	 data	 of	
homogeneous	 isotropic	 turbulence	 flow	
available	 to	 the	public	 from	the	 John	Hopkins	
University	 Turbulence	 Database	 (JHTDB,	 see	
details	 about	 the	 database	 in	 Perlman	 et	 al.	
2007	 and	 Li	 et	 al.	 2008).	 From	 the	 database,	
we	select	a	 sample	plane	containing	256256	
grid	 nodal	 points.	 At	 each	 of	 these	 nodal	
points,	 the	 exact	 pressure	 value	 and	 the	
pressure	 gradient	 components	

ௗ௣

ௗ௫
	 and	

ௗ௣

ௗ௬
	

obtained	 using	 central	 finite	 difference	 are	
available.	 To	 simulate	 the	 measurement	
uncertainties,	 1000	 statistically	 independent	
random	 noise	 with	 standard	 uniform	 spatial	
distributions	 and	 zero	 mean	 value	 are	
embedded	 in	 the	 pressure	 gradient,	 creating	
1000	sample	realizations	of	pressure	gradient	
distribution	 for	 the	 pressure	 reconstruction	
error	 investigation.	 The	 random	 noise	 is	
generated	 using	 a	 built‐in	 Matlab®	 function	
“rand”,	with	1000	distinct	 seed	numbers.	The	
noise	amplitude	is	set	as	40%	of	the	maximum	
magnitude	 of	 the	 pressure	 gradient	 in	 the	
sample	DNS	planar	data.	

As	 shown	 in	 equations	 (5)	 and	 (7),	 the	
convergence	 of	 the	 boundary	 pressure	 error	
߳௡
ሺ௤ାଵሻ	is	achieved	through	the	error	term	ߝ௡஻

௤ ,	
which	 in	 turn	 relies	on	 the	weight	 coefficient	
matrix	 ,ሺ݈ݓ ݊ሻ	 that	 applies	 to	 the	 boundary	
pressure	 error	 ߳௟

௤	 to	 reduce	 the	 error.	 As	
discussed	 in	 Section	 3,	 ,ሺ݈ݓ| ݊ሻ| ≪ 1	 for	 a	
sufficiently	 dense	 parallel	 ray	 configuration,	
which	 provides	 the	 basis	 for	 ߳௡஻

௤೐೙೏ ൎ 0	 and	 ߳௟
௤	 eventually	 reduced	 to	 ߳௡

௤೐೙೏ ൎ ௡஺ߝ ൅ ߳௥௘௙	 (i.e.,	
equation	 10).	 	 To	 show	 this	 evolution	 process,	 Figure	 3	 presents	 the	 boundary	 pressure	 error	
convergence	 process	 for	 pressure	 error	 ߳௡

௤	 and	 error	 components	 	௡஺ߝ and	 ௡஻ߝ
௤ 	 with	 respect	 to	

iteration	round	ݍ	at	all	boundary	points	for	representative	isotropic	turbulence	test	cases	with	and	
without	 added	 noise.	 As	 mentioned	 in	 Section	 3,	 	௡஺ߝ does	 not	 change	 through	 iteration.	 This	
observation	 is	verified	 in	Fig.	3	by	examining	the	evolution	process	of	ߝ௡஺	 for	both	test	cases	(i.e.,	
with	 and	 without	 added	 noise).	 In	 contrast,	 the	 overall	 amplitudes	 for	 both	 ߳௡

௤	 and	 ௡஻ߝ
௤ 	 decay	

gradually	 through	 iteration,	with	 their	 final	 values	 converged	 to	 ߳௡
௤೐೙೏ ൎ ௡஺ߝ ൅ ߳௥௘௙ ൌ 	௡஺ߝ (where	

߳௥௘௙ ൌ 0	for	both	cases)	and	߳௡஻
௤೐೙೏ ൎ 0,	respectively,	as	expected.	

The	 characteristic	 error	 decay	 rate	 หߣ௡,௠௔௫ห	 for	 pressure	 error	 at	 each	 boundary	 point	 can	 be	
obtained	from	equation	(11).	To	facilitate	a	conservative	evaluation,	the	maximum	absolute	values	
of	 the	 characteristic	 error	 decay	 rate	 of	 the	 boundary  pressure  error	 for	 all	 boundary	 points	 at	

Figure  3.  The  evolution  of  the  boundary  pressure  error

convergence for the pressure error ࣕ࢔
ࢗ
 and the error components

࡮࢔ࢿ and ,࡭࢔ࢿ
ࢗ

 at representative iteration rounds.  The left column

shows the error evolution for the  isotropic turbulence test case
without  noise  added.  The  right  column  shows  the  error
evolution for the test case with 40% noise added to the pressure
gradient  field.  For both  cases, ࣕࢌࢋ࢘ ൌ ૙. Please note  the y‐axis
scales  for 1=ࢗ and 2 on  the  left column are different  from  the
rest  plots  in  that  column.  Also  please  note,  the  initial  error

distributions ࣕ࢔૚   for both testing cases are the same because of
the zero boundary value initialization for both cases.   
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different	 parallel	 ray	 configuration	 and	noise	 conditions	 (e.g.,	with	 and	without	 added	noise)	 are	
listed	in	Table	1.		From	Table	1	it	can	be	seen	that	൫หݔܽ݉,݊ߣห൯݉ܽݔ ൏ 1		for	all	cases	tested	as	expected,	

indicating	 หߣ௡,௠௔௫ห ൏ 1	 for	 all	 boundary	 pressure	 errors	 for	 these	 cases.	 The	 high	 values	 of	 the	
minimum	 coefficient	 of	 determination	 ሺܴଶሻ௠௜௡	 indicate	 the	 logarithmic	 relationship	 shown	 in	
equation	(11)	has	a	high	degree	of	correlation	if	the	density	of	the	integration	paths	are	adequately	
high.  		

Table 1. The maximum value of the characteristic error decay rateof boundary pressure error for all boundary points. 

Percentage	
noise	added	

Parallel	Ray	configuration	
parameters	

The	maximum	characteristic	error	
decay	rate൫ห࢞ࢇ࢓,࢔ࣅห൯࢞ࢇ࢓	

The minimum coefficient of 
determination ൫ࡾ૛൯

࢔࢏࢓
 

0.0%	 ሺΔα ൌ 0.04°, Δ݀ ൌ 0.4ሻ 0.36	 0.9997	

0.0%	 ሺΔα ൌ 0.20°, Δ݀ ൌ 0.4ሻ 0.41	 0.9991	

0.0%	 ሺΔα ൌ 3.00°, Δ݀ ൌ 0.4ሻ 0.57	 0.8252	

40.0%	 ሺΔα ൌ 0.04°, Δ݀ ൌ 0.4ሻ 0.38	 0.9981	

40.0%	 ሺΔα ൌ 0.20°, Δ݀ ൌ 0.4ሻ 0.39	 0.9999	

40.0%	 ሺΔα ൌ 3.00°, Δ݀ ൌ 0.4ሻ 0.57	 0.8682	

Following	equation	(11),	the	decay	of	the	averaged	boundary	pressure	error	is	examined	in	Figure	
4.	It	can	be	seen	from	Figure	4	that	both	the	dense	integration	lines	(Fig.	4a_i	and	b_i)	and	the	high	
grid	 spatial	 resolution	 (Fig.	 4a_ii	 and	 b_ii)	 help	 expedite	 the	 overall	 rate	 of	 convergence.	 The	
imbedded	noise	level	also	has	an	effect	of	reducing	the	error	decay	rate	by	comparing	Fig.	4(a)	and	
(b).						

Figure	 5	 presents	 the	
cumulative	 average	 of	
the	 standard	 deviation	
error	 ߳௦௧ௗ	 and	 the	
maximum	 and	
minimum	error	bounds	
found	 for	 the	 pressure	
reconstructed	 using	
the	 aforementioned	
integration	methods.	In	
Fig.	5,	all	quantities	are	
normalized	 by	 the	
standard	 deviation	 of	
the	 DNS	 pressure	 	௦௧ௗ݌
obtained	in	the	original	
256256	 sample	
planar	 domain.	 From	
Fig.	5(a),	it	can	be	seen	
that	 there	 exists	 a	
significant	 difference	
between	 the	 error	 bounds	 for	 the	 omnidirectional	 integration	 methods	 and	 that	 of	 the	 Poisson	
method	with	Neumann	 boundary	 condition	 (Poisson	NBC).	 For	 the	 omnidirectional	methods,	 the	
errors	are	always	bellow	0.25	while	the	upper	error	bound	for	the	Poisson	NBC	exceeds	2.67,	 i.e.,	
about	one	order	of	magnitude	higher.	Also,	 the	average	errors	 for	 the	omnidirectional	 integration	
methods	are	below	0.17	and	the	average	error	for	Poisson	NBC	is	about	0.86.	To	further	discern	the	
performance	 difference	 between	 the	 two	 omnidirectional	 integration	 methods	 investigated,	 a	
zoomed‐in	version	of	Fig.	5(a)	is	shown	in	Fig.	5(b),	 from	which	the	improvement	in	performance	

Figure  4.  Boundary  pressure  error  convergence  for  the  pressure  reconstructed  from  a
pressure gradient field (a) without added noise and (b) with the 40% embedded noise. Please
note in (a‐ii) and (b‐ii),  The three grids have the same domain size but different cell size. N =

1011 corresponds to a grid of (254254), i.e., the original grid; N = 503 corresponds to a grid
of  (1271274), achieved by  sampling every other point over  the original grid; and N = 335

corresponds to (8585), achieved by skipping two points for sampling. 
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from	the	circular	virtual	boundary	omnidirectional	 integration	method	to	the	rotating	parallel	ray	
omnidirectional	integration	method	can	be	clearly	seen.	It	is	important	to	note	that,	as	shown	in	Liu	
et	al.	(2016),	the	performance	of	the	rotating	parallel	ray	depends	on	the	incremental	rotation	angle	
Δߙ	and	the	distance	between	rays	Δ݀	(normalized	by	the	grid	spacing).	For	the	isotropic	turbulence	
DNS	 data	 investigated	 in	 this	work,	 the	 optimal	 pressure	 reconstruction	 result	 is	 obtained	when	
Δ݀ ൌ 0.4		 and	 Δߙ ൌ 0.2଴	for	 the	 rotating	
parallel	ray	pressure	reconstruction	method. 	

Figure	 5(b)	 also	 highlights	 the	 benefit	 of	
using	 the	 rotating	 parallel	 ray	 omni‐
directional	 integration	 to	 generate	 Dirichlet	
boundary	conditions	that	are	then	applied	to	
the	 Poisson	 equation	 for	 pressure	 (Poisson	
DBCParallel	 Ray).	 It	 can	 be	 seen	 from	 Fig.	 5(b)	
that	using	 the	Dirichlet	 boundary	 conditions	
achieved	 by	 the	 optimal	 parallel	 ray	 omni‐
directional	 integration,	 the	 Poisson	 DBC	
method	 performs	 better	 than	 the	 virtual	
boundary	 omni‐directional	 integration	
method,	while	it	is	still	slightly	outperformed	
by	 the	 optimal	 parallel	 ray	 omni‐directional	
integration	method	 by	 0.2%	with	 respect	 to	
	.௦௧ௗ݌ 	Table	2	summarizes	the	average	error,	
the	 standard	 deviation	 of	 the	 error	 and	 the	
maximum	 error	 for	 the	 1000	 pressure	 field	
realizations	 reconstructed	 from	 the	
corresponding	 pressure	 gradient	 field	 of	 a	
DNS	 of	 isotropic	 turbulence	 with	 the	 40%	
embedded	 random	 noise.	 As	 can	 be	 seen	
from	Table	2,	the	mean	error	for	the	Poisson	
NBC	 approach	 is	 one	 order	 of	 magnitude	
higher	than	the	omnidirectional	methods.	

To	 verify	 the	 performance	 of	 the	 pressure	
reconstruction	 methods	 in	 processing	
experimental	data,	the	methods	tested	above	
are	also	applied	to	pressure	reconstruction	from	a	measured	pressure	gradient	field	database	for	a	
turbulent	 shear	 layer	 flow	 over	 an	 open	 cavity	 (Liu	 and	 Katz	 2013	 and	 2018).	 The	 results	 are	
compared	 in	 terms	of	mean	 and	 rms	pressure	distributions	 (Fig.6)	 as	well	 as	 probability	 density	
function	 profiles	 of	 pressure	 fluctuation	 at	 selected	 locations	 in	 the	 shear	 layer	 (Fig.	 7).	 The	
experiment	regarding	the	turbulent	cavity	shear	layer	flow	has	been	described	in	detail	in	Liu	and	
Katz	(2013	and	2018).	A	turbulent	boundary	 layer	with	a	shape	factor	of	1.70	separates	 from	the	
leading	edge	of	 a	2‐D	open	cavity,	 forming	a	 turbulent	 shear	 layer	over	 the	 cavity.	Time‐resolved	
planar	PIV	data,	sampled	at	4500	frames	per	second,	have	been	obtained	at	a	Reynolds	number	of	
4.0104	 based	 on	 the	 cavity	 length	 of	 38.1mm	 and	 the	 free	 stream	 speed	 of	U∞	=	 1.20	m/s.	 The	
pressure	gradient	 field	has	been	obtained	based	on	 the	Lagrangian	acceleration	measurement,	 as	
discussed	 in	 Section	 1.	 A	 sample	 of	 9,994	 sequentially	 obtained	 instantaneous	 realizations	 of	
pressure	gradient	field	with	a	field	of	view	of	2525	mm	located	immediately	upstream	of	the	cavity	
trailing	edge	are	utilized	in	the	current	study	to	compare	the	pressure	reconstruction	performance.	

From	Fig.	6,	it	can	be	seen	that,	similar	to	the	performance	comparison	results	based	on	the	error‐
embedded	DNS	 isotropic	 turbulence,	 for	 the	 experimental	 data,	 except	 the	Poisson	 equation	NBC	
approach,	the	performance	for	the	other	three	pressure	reconstruction	methods	evaluated,	i.e.,	the	

Figure  5.  (a)  Cumulatively  averaged  standard  deviation  of  the
pressure error for the 1000 reconstructed pressure realizations of
the isotropic turbulence flow with 40% random noise embedded in
the pressure gradient field. (b) Zoomed‐in plot showing the details
of the comparison among the methods tested.	
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Circular	Virtual	Boundary	Omnidirectional	Integration,	the	Rotational	Parallel	Ray	Omnidirectional	
Integration	(Δߙ ൌ 0.2଴, Δ݀ ൌ 0.4),	and	the	Poisson	equation	method	with	the	parallel	ray	generated	
Dirichlet	boundary	condition,	can	all	capture	the	essential	 features	of	 the	mean	and	rms	pressure	
distributions	 if	 compared	with	 the	 corresponding	 results	 in	 Liu	 and	Katz	 (2013).	 In	 contrast,	 the	
Poisson	equation	with	Neumann	boundary	condition	fails	to	capture	the	pressure	field	correctly.	

Table 2: Average error and the error standard deviation of the 1000 statistically independent reconstructed pressure 
realizations based on a sample pressure gradient field from the JHU isotropic turbulence database embedded with random 

noise at an amplitude of 40% of the maximum pressure gradient. 

Method	
૚

૚૙૙૙
෍ ൬

ࢊ࢚࢙ࣕ
ࢊ࢚࢙࢖

൰
࢔

૚૙૙૙

ୀ૚ܖ

	 ൬
ࢊ࢚࢙ࣕ
ࢊ࢚࢙࢖

൰
ࢊ࢚࢙
	 ൬

ࢊ࢚࢙ࣕ
ࢊ࢚࢙࢖

൰
࢞ࢇ࢓

	

Rotating	Parallel	Ray	∆ݎ ൌ ߙ∆	,	0.4 ൌ 0.2	 ૙. ૚૝ૢ		 ૙. ૙૚૞		 ૙. ૛૜૚		

Rotating	Parallel	Ray	∆ݎ ൌ ߙ∆	,	0.4 ൌ 3.0	 0.170		 0.014		 0.249		

Circular	Virtual	Boundary	Integration	 0.154		 0.015	 0.232	

Poisson	Solution	with	Parallel	Ray	results	as	Dirichlet	
Boundary	Condition	

0.151		 0.015		 0.230		

Poisson	Solution	Neumann	Boundary	Condition	 ૙. ૡ૞૝		 ૙. ૝૙૟		 ૛. ૟ૠૡ		

To	 further	 verify	 the	 above	 results,	 Figure	 7	 shows	 the	 comparison	 of	 the	 probability	 density	
function	 profiles	 for	 the	 fluctuation	 pressure	 obtained	 by	 these	 four	 pressure	 reconstruction	
methods	at	 representative	 sample	 locations	L1	 (in	 the	 free	 stream	region),	L2	 (in	 the	 shear	 layer)	
and	L3	(in	the	cavity	recirculation	region)	as	indicated	in	Fig.	6.	It	can	be	seen	that,	except	the	result	
obtained	by	the	Poisson	equation	with	Neumann	boundary	condition,	the	fluctuation	pressure	range	
predicted	by	the	other	three	methods	agree	with	each	other.	The	mismatch	at	the	tails	of	the	profiles	
shown	 in	Fig.	6(d),	 (e)	and	 (f)	 is	presumably	due	 to	 lack	of	 convergence	because	of	 the	rare	 flow	
events	corresponding	 to	 those	 fluctuation	range.	 In	contrast,	 the	Poisson	equation	with	Neumann	

Figure  6. Mean  and  rms  pressure  distributions  obtained  using  the  Circular Virtual  Boundary Omnidirectional  Integration

(abbreviated  as CVB),  the Rotational Parallel Ray Omnidirectional  Integration with ࢻࢤ ൌ ૙. ૛૙	ࢊ࢔ࢇ		ࢊࢤ ൌ ૙. ૝  (RPR),  the
Poisson  Equation method with  the  parallel  ray  generated Dirichlet  Boundary  Condition  (DBC)  and  the  Poisson  Equation
method with Neumann Boundary Condition (NBC) pressure reconstruction methods. for a turbulent shear layer flow over a

2D open cavity at Reynolds number of ૝ ൈ ૚૙૝ . 
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boundary	 condition	 once	 again	 brings	 a	 significantly	 over‐predicted	 pressure	 fluctuation	 range,	
which	is	unrealistic.			

5		 Conclusion	

This	 paper	 reports	 for	 the	 first	 time	 a	 theoretical	 analysis	 and	 the	 corresponding	 numerical	 and	
experimental	validation	of	the	error	propagation	characteristics	for	the	omni‐directional	integration	
method,	which	has	been	used	for	pressure	reconstruction	from	the	PIV	measured	pressure	gradient.	
The	 analysis	 shows	 that	 the	 omni‐directional	 integration	 provides	 an	 effective	 mechanism	 in	
reducing	 the	 sensitivity	 of	 the	 reconstructed	 pressure	 to	 the	 random	 noise	 imbedded	 in	 the	
measured	pressure	 gradient.	 Accurate	 determination	 of	 the	 boundary	pressure	 values	 is	 the	 first	
step	 in	 ensuring	 the	 accuracy	 of	 the	 final	 reconstructed	 pressure.	 The	 boundary	 pressure	 error	
consists	of	two	parts,	with	one	part	decaying	in	magnitude	and	eventually	vanishing,	and	the	other	
remaining	as	a	constant	with	small	magnitude	through	an	iteration	process.			

These	results	are	verified	by	using	a	direct	numerical	simulation	database	of	 isotropic	 turbulence	
flow	 with	 homogeneously	 distributed	 random	 noise	 added	 to	 the	 entire	 field	 of	 the	 pressure	
gradient	to	simulate	noise	embedded	data.	For	the	1000	statistically	independent	pressure	gradient	
field	 realizations	 with	 a	 40%	 added	 noise,	 the	 nondimensionalized	 average	 error	 of	 the	
reconstructed	pressure	is	0.854±0.406	for	the	pressure	Poisson	equation	with	Neumann	boundary	
condition,	 0.154±0.015	 for	 the	 circular	 virtual	 boundary	 omni‐directional	 integration	 and	
0.149±0.015	 for	 the	 rotating	parallel	 ray	omni‐directional	 integration.	 If	 the	 converged	boundary	
pressure	 values	 obtained	 by	 the	 rotating	 parallel	 ray	method	 are	 used	 as	 the	Dirichlet	 boundary	
conditions,	 the	 nondimensionalized	 average	 error	 of	 the	 reconstructed	 pressure	 by	 Poisson	 is	
reduced	to	0.151±0.015.	Of	the	different	variations	of	the	omni‐directional	methods,	the	parallel	ray	
method	shows	the	best	performance	and	therefore	is	the	method	of	choice.		

Comparisons	of	these	pressure	reconstruction	methods	using	an	experimentally	obtained	turbulent	
shear	layer	flow	over	an	open	cavity	are	in	agreement	with	the	conclusions	obtained	with	the	DNS	

Figure 7. Comparison of the probability density function profiles for the fluctuation pressure at sample locations L1, L2 and L3
indicated in Fig. 6 for a turbulent shear layer flow over a 2D open cavity at Reynolds number of 4.0104. The PDF profiles in
the lower row are zoomed‐in plots for the corresponding upper row plots. 
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turbulence	data.	Both	the	numerical	and	experimental	validation	results	demonstrate	that	the	omni‐
directional	 integration	 methods,	 especially	 the	 rotating	 parallel	 ray	 method,	 have	 better	
performance	 in	data	accuracy	 than	 the	conventional	Poisson	equation	approach	 in	 reconstructing	
pressure	from	noise	embedded	experimental	data.	

Since	there	are	numerous	occasions	in	science	and	engineering	practice	that	require	the	solution	of	
a	scalar	potential	from	a	conservative	vector	field	using	Poisson	equation,	e.g.,	the	reconstruction	of	
temperature	 or	wavefront	 distributions	 from	 their	 corresponding	 gradients,	 the	 omni‐directional	
integration	 methods,	 especially	 the	 parallel	 ray	 omni‐directional	 integration	 method,	 are	 readily	
applicable	 to	 those	 generic	 occasions	 in	 scalar	 reconstruction	 from	 their	 error	 contaminated	
gradient	data.	
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