

1 **Title:** Exhumation of the Coyote Mountains metamorphic core complex (Arizona): implications for
2 orogenic collapse of the southern North American Cordillera.

3

4 **Authors:** Raphaël Gottardi (a), Ryan McAleer (b), Gabriele Casale (c), Megan Borel (a,d), Alexander
5 Iriondo (e,f), Gilby Jepson (f)

6 (a) University of Louisiana at Lafayette, School of Geosciences, Hamilton Hall, 611 McKinley Street,
7 Lafayette, LA 70504

8 (b) U.S. Geological Survey, Florence Bascom Geoscience Center, 12201 Sunrise Valley Dr, Reston, VA
9 20192

10 (c) Appalachian State University, Department of Geological and Environmental Sciences, 033 Rankin
11 Science West, ASU Box 32067, Boone, NC 28608-2067

12 (d) University of Florida, Department of Geological Sciences, 241 Williamson Hall, 1843 Stadium Road,
13 Gainesville, FL 32611

14 (e) Universidad Nacional Autónoma de México, Centro de Geociencias, Blvd. Juriquilla No. 3001,
15 Querétaro, Querétaro 76230, México

16 (f) Department of Geosciences, University of Arizona, Tucson, Arizona 85721

17

18 **Corresponding Author:** Raphaël Gottardi

19 Email: gottardi@louisiana.edu

20 Office phone: 337-482-6177

21 Cell phone: 651-329-6059

22 Fax: 337-482-5395

23

24 **ABSTRACT**

25 A microstructural and thermochronometric analysis of the Coyote Mountains detachment shear zone
26 provides new insight into the collapse of the southern North American Cordillera. The Coyote Mountains
27 is a metamorphic core complex that makes up the northern end of the Baboquivari Mountains in southern
28 Arizona. The Baboquivari Mountains records several episodes of crustal shortening and thickening, and
29 regional metamorphism, including the Late Cretaceous-early Paleogene Laramide orogeny which is
30 locally expressed by the Baboquivari thrust fault. Thrusting and shortening were accompanied by
31 magmatic activity recorded by intrusion of Paleocene muscovite-biotite-garnet peraluminous granites
32 such as the ~58 Ma Pan Tak Granite, interpreted as anatetic melts representing the culmination of the
33 Laramide orogeny. Following Laramide crustal shortening, the northern end of the Baboquivari
34 Mountains was exhumed along a top-to-the-north detachment shear zone, which resulted in the formation
35 of the Coyote Mountains metamorphic core complex. Structural and microstructural analysis show that
36 the detachment shear zone evolved under a strong component of non-coaxial (simple shear) deformation,
37 at deformation conditions of $\sim 450 \pm 50^\circ\text{C}$, under a differential stress of $\sim 60 \text{ MPa}$, and a strain rate of 1.5
38 $\times 10^{-11} \text{ s}^{-1}$ to $5.0 \times 10^{-13} \text{ s}^{-1}$ at depth of $\sim 11\text{--}14 \text{ km}$. Detailed $^{40}\text{Ar}/^{39}\text{Ar}$ geochronology of biotite and
39 muscovite, in the context of the deformation conditions determined by quartz microstructures, suggests
40 that the mylonitization associated with the formation of the Coyote Mountains metamorphic core complex
41 started at $\sim 29 \text{ Ma}$ (early Oligocene). Apatite fission track ages indicate that the footwall of the Coyote
42 Mountains metamorphic core complex experienced rapid exhumation to the upper crust by $\sim 24 \text{ Ma}$. The
43 fact that mylonitization and rapid extensional exhumation post-dates Laramide thickening by $\sim 30 \text{ Myr}$
44 indicates that crustal thickness alone was insufficient to initiate extensional tectonic and required an
45 additional driving force. The timing of mylonitization and rapid exhumation documented here and in
46 other MCCs are consistent with the hypothesis that slab rollback and the effect of a slab window trailing
47 the Mendocino Triple Junction have been critical in driving the development of the MCCs of the
48 southwest.

49 Our results are consistent with models for orogenic collapse following previous crustal thickening and
50 anatexis.

51

52 **Keywords**

53 Metamorphic core complex, geochronology and thermochronology, microstructural analysis, orogenic
54 collapse, exhumation, Arizona

55

56 **1. INTRODUCTION**

57 The prevalence and distribution of metamorphic core complexes (MCCs) in mountain belts suggests that
58 they are fundamental tectonic features critical for the redistribution of mass during orogenic collapse
59 following crustal thickening (e.g., Coney and Harms, 1984; Lister and Davis, 1989; Rey et al., 2001;
60 Whitney et al., 2013). Additionally, MCCs commonly exhume extensive zones of footwall fault rocks.
61 These rocks provide an opportunity to study variations in deformation mechanisms across strain and
62 temperature gradients and commonly across the brittle-ductile transition in quartzofeldspathic rocks. (e.g.,
63 Platt et al., 2015). Triggering mechanisms for post-orogenic collapse, as well as strain localization and
64 inception of mylonitization and subsequent exhumation requires further examination.

65 MCCs form a discontinuous belt from British Columbia to Mexico (Figure 1; Coney, 1974, 1980;
66 Crittenden et al., 1980; Armstrong, 1982; Coney and Harms, 1984; Lister and Davis, 1989). Based on
67 differences in shallow to deep crust interaction, as well as thermogeochronological datasets, Cordilleran
68 MCCs can be divided into three groups: (1) circa Eocene northern MCCs, (2) Eocene, Oligocene, and
69 Miocene central MCCs, (3) and Oligocene to Miocene southern MCCs associated with possible Laramide
70 extension (Figure 1; Whitney et al., 2013). One of the differences between northern and southern MCCs
71 is the magnitude of Cenozoic exhumation, which is more significant in the northern MCCs (tens of km)
72 than in the south (e.g., Whitney et al., 2013). One explanation for this difference comes from the nature of
73 the lithosphere: unlike the northern MCCs, southern MCCs are formed entirely within the cratonic North-
74 America (Coney, 1980; Sloss, 1988). The core of most of the southern MCC exposes Proterozoic igneous
75 rocks, metaluminous granitoids interpreted as Laramide magmatism (continental arc), or Late Cretaceous
76 to early Paleogene peraluminous granitoids, which have been interpreted as the result of Laramide
77 anatexis (Haxel et al., 1984; Dickinson, 1989, 1991; Sylvester, 1998). This magmatism predates MCC
78 formation and is not the product of partial melting of the lower crust during extension, although syn- and
79 post-tectonic intrusions exist in many southern MCCs. Protracted magmatism associated with partial
80 melting, plutonism, and the release of volatiles has been demonstrated to cause significant weakening of
81 the crust, which may trigger strain localization and orogenic collapse (Gans et al., 1989; Armstrong and

82 Ward, 1991; Lister and Baldwin, 1993; Spencer et al., 1995; Foster et al., 2001; Teyssier and Whitney,
83 2002; Whitney et al., 2013). While little is known about the precise age and origin of the intrusive rocks
84 composing the cores of many of the southern MCCs, some of these intrusions are extensive and are likely
85 to have deep roots (e.g., Anderson et al., 1988), which may have played an important role in localizing
86 strain. In southern Arizona, these Late Cretaceous and early Paleogene plutons are widespread and well
87 exposed in the core of MCCs, presenting an opportunity to investigate this relationship between
88 magmatism and extension. They provide a window to study lower crustal processes that control the
89 geodynamic evolution of the North American lithosphere following the Laramide crustal thickening,
90 especially in an area where Laramide structures have been overprinted.

91 The plutonic rocks exposed in the Coyote Mountains MCC consist of Late Cretaceous and early
92 Paleogene plutonic leucocratic, hornblende-free, garnet-two-mica granites, with a distinctly younger
93 tectonic overprint recording middle Paleogene extensional tectonics (Haxel et al., 1980a,b; Wright and
94 Haxel, 1982; Haxel et al., 1984; Goodwin and Haxel, 1990) (Figures 1 and 2). The goal of this study is to
95 resolve the timing of uplift and exhumation, and deformation style of the detachment shear zone
96 associated with the formation of the Coyote Mountains MCC using microstructural kinematic
97 relationships, new U/Pb geochronology and $^{40}\text{Ar}/^{39}\text{Ar}$ and apatite fission track thermochronology. Our
98 analysis confirms a Late Cretaceous age for the plutonic Pan Tak Granite in the footwall of the Coyote
99 Mountains detachment shear zone, and demonstrates that the footwall cooled rapidly from greenschist
100 facies to less than $\sim 120^\circ\text{C}$ in the Oligocene. We interpret these results as evidence for Late Cretaceous
101 thrusting, thickening, and plutonic activity that was followed ~ 30 Ma later by extension associated with
102 post-orogenic collapse responsible for the formation of the Coyote Mountains MCC and associated
103 detachment shear zone. Our findings have important implications regarding the tectonic evolution of the
104 southwestern US and more generally for the variables that may affect the timing and localities of orogenic
105 collapse

106

107 **2. REGIONAL GEOLOGY**

108 **2.1. Metamorphic Core Complexes**

109 The southern belt of MCCs that extends from southeastern California to the Sonoran Desert of Mexico
110 (Figures 1 & 2) is composed of rocks that range in age from Proterozoic to Miocene (e.g., Keith et al.,
111 1980; Haxel et al., 1980a,b; Wright and Haxel, 1982; Haxel et al., 1984; Reynolds, 1985; Anderson et al.,
112 1988; Richard et al., 1990; Bryant and Wooden, 2008; Singleton and Mosher, 2012; Spencer et al., 2019).
113 The onset of early Miocene mylonitization associated with detachment shear zones in the “Colorado
114 River extensional corridor” (CREC) is well determined by thermochronometric studies of synkinematic
115 minerals, and is coeval across multiple MCCs (see Figure 2): ~24 – 22 Ma Sacramento-Chemehuevi
116 (Foster et al., 1990), ~20 – 18 Ma in the Whipple (Hacker et al., 1992 and references therein), ~24 – 21
117 Ma in the Buckskin-Harcuvar (Scott et al., 1998; Singleton and Wong, 2016), ~22 – 20 Ma in the
118 Harquahala (Richard et al., 1990) Mountains. Similar mylonitization ages recording exhumation are
119 reported in the South Mountains (21–20 Ma, Fitzgerald et al., 1993), and Picacho Mountains (22 – 18 Ma,
120 Gottardi et al., 2018) (Figure 2). In contrast, the onset of detachment faulting in both the Catalina-Rincon
121 and Pinaleño MCCs in southeastern Arizona occurred earlier, and the cooling history is more protracted
122 (29.5 – 23.5 Ma, Davy et al., 1989; Fayon et al., 2000; and 32.8 – 18.5 Ma, Long et al., 1995,
123 respectively) (Figure 2). Geochronological datasets in MCCs located in Mexico report ages for the onset
124 of mylonitization ranging from 35 to 21 Ma, intermediate to overlapping with the times of onset recorded
125 in the CREC and SE Arizona (Wong and Gans, 2008, Wong et al. 2010). However, regardless of the time
126 of onset and locality, nearly all studies demonstrate that detachment systems record rapid cooling, i.e.
127 major slip, in the early Miocene (primarily ~25 – 16 Ma) (Figure 2).

128 The record of deep-seated late Mesozoic and early Paleogene compression and metamorphism, and
129 subsequent middle-Paleogene extensional deformation is well exposed in the Papago terrane (Haxel et al.,
130 1980a,b), situated along the United States – Mexico border near Tucson, AZ (Figure 3). The Papago
131 terrane is characterized by Jurassic volcanic and granitoid rocks that are juxtaposed across

132 synmetamorphic thrust faults and/or intruded by synmetamorphic to postmetamorphic garnet-two-mica
133 peraluminous granites (Figure 3, Haxel et al., 1980a, b, 1984; Goodwin and Haxel, 1990).
134 Geochronological data indicates that metamorphism, thrust-faulting, and plutonism were closely related
135 to the Late Cretaceous to early Paleogene Laramide orogeny (e.g. Haxel et al., 1984) (Figure 3). Most of
136 the Papago terrane was subsequently affected by middle to late Paleogene extension associated with the
137 formation of MCCs, although the precise timing and tectonic affinity of this latter deformation event is
138 poorly constrained.

139

140 **2.2. Coyote Mountains**

141 The Coyote Mountains MCC (Davis et al., 1987) makes up the northern end of the 80 km long
142 Baboquivari Mountains, located in the western part of the southern Papago terrane (Figure 3, Haxel et al.,
143 1980a, b, 1984). The Baboquivari Mountains are composed of Early Jurassic sedimentary, volcanic, and
144 plutonic rocks as well as minor Middle Jurassic diorite. These rocks were metamorphosed in the Late
145 Cretaceous to early Paleogene and metamorphism was coeval with the intrusion of Late Cretaceous to
146 early Paleogene muscovite-biotite-garnet peraluminous granite and associated pegmatite (Figure 3; Haxel
147 et al., 1980a,b, 1984; Wright et al., 1981; Wright and Haxel, 1982). The Baboquivari Mountains
148 experienced crustal shortening and thickening and regional metamorphism during the Late Cretaceous
149 Laramide orogeny (Haxel et al., 1980a,b; Wright and Haxel, 1982; Haxel et al., 1984; Goodwin and
150 Haxel, 1990). In southern Arizona and northern Mexico the Laramide orogeny is characterized by high-
151 angle reverse faults, some of which have reactivated Late Jurassic-Early Cretaceous rift structures (Davis,
152 1980; Krantz et al., 1989; Fitz-Díaz et al., 2018). In the Baboquivari Mountains, erosion has exposed a
153 major regional thrust fault, the Baboquivari thrust fault (Figure 3), which is accompanied by isoclinal
154 folding and regional metamorphism (Wright and Haxel, 1982; Haxel and Wright, 1984) in contrast to the
155 higher angle contractional structures observed elsewhere. The Baboquivari fault thrusts Cretaceous
156 sedimentary and Middle to Late Jurassic volcanic and plutonic rocks, over Early Jurassic granitoids and

157 metamorphic rocks (Haxel and Wright, 1984). The fabric associated with this Late Cretaceous
158 deformation is characterized by a north-south striking foliation and a lineation plunging gently to the
159 southwest. This fabric is associated with kink, crenulation, and isoclinal folds with fold axes that strike
160 west-northwest (Wright and Haxel, 1982; Haxel and Wright, 1984). Altogether, these fabric elements
161 suggest an east-northeast transport direction. Peak metamorphism is interpreted to be contemporaneous
162 with thrusting along the Baboquivari (Wright and Haxel, 1982; Haxel and Wright, 1984). Following
163 deformation these metamorphic rocks were intruded by muscovite-biotite-garnet peraluminous granites
164 and associated pegmatite, such as the ~58 Ma Pan Tak Granite (Figure 3), which have been interpreted as
165 anatetic melts representing the culmination of the Laramide orogeny (Wright and Haxel, 1982; Haxel
166 and Wright, 1984; Goodwin and Haxel, 1990).

167 Exhumation of the Baboquivari Mountains throughout the Paleogene led to the exposure of the
168 footwall rocks of the Baboquivari thrust. In this study area tectonic exhumation was accommodated by
169 the Coyote Mountains detachment shear zone to the north (Figure 3), resulting in the formation of the
170 Coyote Mountains MCC. A second detachment fault along the southern margin of the Baboquivari
171 Mountains, the Pozo Verde Mountains detachment—is outside the field area, but likely also
172 accommodated exhumation (Davis, 1980; Goodwin and Haxel, 1990).

173 The footwall of the Coyote Mountains detachment shear zone is principally composed of Late
174 Cretaceous/early Paleogene Pan Tak Granite and pegmatite, which are injected lit-par-lit into the
175 Cambrian Bolsa Quartzite, Cambrian to Devonian Abrigo and Martin Formations, and Jurassic diorite.
176 Quartzite mylonite is locally interlayered with mylonitized pegmatite sills; such pendants are particularly
177 abundant in the eastern part of the detachment shear zone (Gardulski, 1980; Davis et al., 1987). The
178 mylonitic fabric of the Coyote Mountains detachment shear zone is characterized by a gently north-
179 dipping foliation and north plunging lineation, and top-to-the-north kinematic shear sense indicators are
180 common (Figure 3) (Goodwin and Haxel, 1990; Davis et al., 1987). The Ajo road décollement separates
181 the footwall mylonites from the hanging wall which is composed of unmetamorphosed sedimentary and
182 volcanic rocks of the Cretaceous Roadside and Sand Wells Formations (Gradulski, 1980; Davis et al.,

183 1987). Kinematic analysis indicates that brittle deformation along the Ajo Road décollement was
184 achieved by normal faulting in a direction similar to the lineation in footwall mylonite (Gardulski, 1980;
185 Davis et al., 1987). Along the décollement, footwall rocks are intensively brecciated and shattered and
186 displacement on the décollement imparted a brittle foliation that locally over prints the mylonitic foliation
187 (Gardulski, 1980). These field relationships suggest that the development of the mylonitic foliation was
188 completed before displacement on the Ajo Road décollement.

189 Scattered lamprophyric dikes, generally near vertical and trending north-south, intrude the Pan Tak
190 Granite throughout the Coyote Mountains, and crosscut the mylonitic foliation (Gardulski, 1980; Haxel
191 and others, 1980b; Haxel and Wright, 1982). Haxel and Wright (1982) infer a minimum age for the
192 lamprophyric dikes in the Coyote Mountains of 24 Ma.

193

194 3. MICROSTRUCTURAL ANALYSIS

195 Modal assemblages for the Pan Tak Granite range from 33–26% alkali feldspar, 31–24% plagioclase
196 feldspar, 34–27% quartz, 8–18% mica (muscovite and biotite) with trace amounts of garnet, magnetite,
197 apatite, chlorite, zircon and titanite. The youngest phase of the Pan Tak Granite is an equigranular, coarse-
198 grained peraluminous leucocratic monzogranite, which is generally typical of melts derived by partial
199 melting of the crystalline basement (e.g., Clarke, 1981; Sylvester, 1998; Turpin et al., 1990; Barbarin,
200 1996). Multi-grain U/Pb TIMS analysis of multiple aliquots of zircon from the Pan Tak Granite yielded a
201 lower intercept age of 58 ± 2 Ma consistent with emplacement during the Laramide orogeny (Wright and
202 Haxel, 1982).

203 The Pan Tak Granite consists of a granitic and pegmatitic phase, both of which are overprinted by a
204 mylonitic fabric, forming both a granite and a pegmatite mylonite. The fabric ranges from protomylonitic,
205 weakly foliated, with limited recrystallization, and few porphyroclasts (Figure 4A), to mylonitic, strongly
206 foliated, with extensive recrystallization (up to 90% grain size reduction) and a strong preferred grain
207 orientation (Figure 4B, C, D). The mylonites with the strongest fabric are also generally characterized by

208 a higher modal content of muscovite (Figure 4D) perhaps suggesting strain partitioning into locally more
209 micaceous granite or new growth (neoformation).

210

211 **3.1. Quartz microstructures and deformation mechanisms**

212 In the mylonites quartz occurs either as elongated, stretched ribbons, or forms domains of finely
213 recrystallized grains, mixed with recrystallized feldspar (Figures 4 and 5). Quartz domains show grains
214 with straight boundaries and of uniform sizes (~20 – 50 μm), characteristic of recrystallization by
215 subgrain rotation (Figure 5A-B, regime II of dislocation creep, Hirth and Tullis, 1992). In these bands, the
216 long axis of recrystallized quartz grains typically form an oblique secondary foliation inclined ~15–30° to
217 the mylonitic shear plane, consistent with a top-to-the-north shear sense. Large quartz ribbons exhibit
218 both small subgrains (Figure 5C) and larger grains with serrated boundaries (Figure 5D), suggesting
219 recrystallization by both subgrain rotation and limited grain boundary migration, respectively (regime II
220 & III of dislocation creep of Hirth and Tullis, 1992). In the protomylonite and mylonitized pegmatite,
221 quartz grains have serrated grain boundaries and variable sizes, consistent with recrystallization by grain
222 boundary migration (Figure 5D, regime III of dislocation creep, Hirth and Tullis, 1992). These relatively
223 low strain microstructures are only found in the samples collected farthest from the detachment shear
224 zone.

225 Quartz ribbons (up to 4 mm in length) are present in all the mylonite samples. The elongate
226 quartz ribbons impart a strong foliation to the mylonite (Figure 4D for example). Stretched and deformed
227 ribbons are commonly wrapped around rigid feldspar porphyroclasts (Figure 5A, B). Larger quartz grains
228 and ribbons display undulose extinction (Figure 5E) as well as intracrystalline dislocation glide quartz
229 microstructures, such as deformation lamellae, patchy extinction, and chessboard textures, indicating that
230 quartz deformed under high flow stress conditions (Hirth and Tullis, 1992).

231 Evidence for pressure solution in quartz is also infrequently observed in Pan Tak Granite samples as
232 dissolution creep along the edges of large quartz grains forming digitated margins. Finally, fluid inclusion

233 bands, oriented at 15° to 40° to the foliation plane are present in quartz grains and these bands are
234 commonly continuous across several grains (Figure 5F).

235 For mylonites that have undergone recrystallization at average strain rates typical of most shear zones
236 (10^{-14} to 10^{-12} s $^{-1}$), the different regimes of dynamic recrystallization of quartz have been correlated to
237 temperatures of deformation by Stipp et al. (2002a, 2002b). Bulging recrystallization is dominant from
238 ~280 to 400°C; subgrain rotation recrystallization takes over between 400 and 500°C, and the transition
239 to grain boundary migration occurs at ~500°C and above. The microstructures of the Pan Tak Granite
240 mylonite show that quartz recrystallized dominantly by subgrain rotation suggesting that the quartz
241 deformation temperature was \leq 500°C.

242

243 **3.2. Feldspar microstructures and deformation mechanisms**

244 Much of the alkali feldspar grains in the Pan Tak Granite samples have been deformed, fractured with
245 associated rotation, and mildly altered (Figure 6A, B, E). Alkali feldspar often form augen-
246 porphyroclasts, and record top-to-the-north kinematic shear sense (Figure 4, 6B). Alkali feldspar grains
247 commonly exhibit shear fractures (Figure 6A) or extension fractures along cleavage planes at high angle
248 to foliation (Fig. 6B). Alkali feldspar porphyroclasts are also locally embayed by myrmekite (Fig. 6G)
249 that most commonly occurs along margins oriented perpendicular to the maximum shortening direction.
250 This arrangement of myrmekite is consistent with a deformation-induced origin, and typical for upper
251 greenschist- to lower amphibolite-facies deformation conditions (Simpson and Wintsch, 1989; Prys,
252 1993; Ceccato et al., 2018). Flame perthite is also present in the mylonite, and appears as sublinear
253 (wavy), bifurcated features (Fig. 6C, D). Flame perthite, is oriented subparallel with the mylonitic
254 foliation, suggesting it is deformation-induced and formed under locally concentrated high differential
255 stress (Vernon, 1999). About 20% of all alkali feldspar has undergone sericitic alteration, most commonly
256 present within the cores of the alkali feldspar porphyroclasts.

257 Plagioclase typically forms tabular, subhedral laths (~150–1000 μm), and displays polysynthetic
258 (albite) twinning (Figure 6A, D), and patchy zoning microstructures. Locally plagioclase laths also show
259 bent twinning (Figure 6E) and extension and shear microfractures (Figure 6A, B).

260 Recrystallization of feldspar is apparent, particularly along the margins of quartz ribbons in the
261 mylonite. Feldspars also display undulatory extinction, indicating dislocation glide with no recovery
262 (Vernon, 1999; Passchier and Trouw, 2005).

263 In naturally deformed rocks, at low metamorphic grade (< 400°C), feldspar deforms mainly by brittle
264 fracturing and cataclastic flow, while at low to medium metamorphic grade (400–500°C), internal
265 microfracturing is assisted by minor dislocation glide (Passchier and Trouw, 2005). At medium grade
266 temperatures (450–550°C), dislocation climb becomes possible in feldspars and recrystallization by
267 bulging and subgrain rotation becomes important (Fitz Gerald and Stünitz, 1993; Peyer, 1993; Stünitz and
268 Fitz Gerald, 1993; Passchier and Trouw, 2005). The microstructures observed in the Pan Tak Granite
269 mylonite indicate that feldspar predominantly deformed by fracture with subordinate subgrain rotation
270 recrystallization (Figure 6H), recording deformation temperatures between ~400 and 500°C, and
271 consistent with the deformation textures observed in quartz.

272

273 **3.3. Mica Microstructures**

274 Micas form a moderate modal constituent of the Pan Tak Granite. Minor chlorite is present as alteration
275 of biotite along biotite grain boundaries, sericitization of feldspar contributes to the modal abundance of
276 muscovite, and locally in some high strain samples fine micas form contiguous folia. However, coarse-
277 grained muscovite and biotite constitute the majority of the modal mica content (4 to 18%, and up to 4%,
278 respectively). The presence of coarse muscovite and biotite in the undeformed Pan Tak Granite suggest
279 these micas are igneous in origin (Wright and Haxel, 1982).

280 Evidence for deformation of these coarse-grained micas, as well as neocrystallization of fine-
281 grained mica, is limited in the protomylonite samples. In these samples muscovite and biotite remain

282 relatively euhedral (tabular shape) forming rhomb-shaped grains (Figure 7A-C). Bird's eye extinction is
283 visible in micas in most samples where grains are large and deformed. Biotite grains exhibit minor
284 chloritization along grain rims. Neocrystallized fine-grained muscovite occurs as local sericitization of
285 feldspars (Figure 5B, 6B, 7A), in microfractures in quartz and feldspar (Figure 6B), and locally along
286 grain boundaries (Figure 6C).

287 In the mylonite samples, evidence for deformation and neocrystallization of micas is more
288 abundant. Biotite still remains relatively tabular and shows minimal evidence of replacement by chlorite.
289 However, coarse-grained muscovite shows evidence for intense intracrystalline deformation such as bent
290 folia or deformation bands, kink folding, and micro-boudinage. Bent folia are the result of internal lattice
291 slip (Figure 7C-F) (Vernon, 2018). Similarly, kink folding along the (001) crystallographic plane
292 resembles twinning but differs in that kink folding is not restricted to crystallographic planes (Figure 7F).
293 Muscovite grains exhibit micro-boudinage sub-parallel to foliation and in the lineation direction (Figure
294 7D). Microtextural evidence of shear is also recorded in the external shape of muscovite as it commonly
295 occurs in a fish geometry. These fish are typically \sim 150 – 400 μm in length and form parallel to the main
296 foliation along with other (feldspar) porphyroclasts. Muscovite fish in the Coyote Mountains detachment
297 shear zone mylonites typically form fish from groups 1, 2, and rarely 5 according to the ten Grotenhuis et
298 al. (2003) classification (Fig. 7C-F). The fish geometry shows a consistent top-to-the-north sense of
299 motion, consistent with other kinematic indicators. Locally the muscovite fish themselves are also folded.
300 Neocrystallized fine-grained muscovite again occurs as local sericitization of feldspars, in microfractures
301 in quartz and feldspar (Fig. 7B, D) and is more abundant in the matrix than in protomylonite samples
302 (Figure 7D-F). Additionally, fine-grained micas form tails on coarse muscovite porphyroclasts (Figure
303 7D) and locally form contiguous folia that extend for millimeters (Figure 6F, 7D).

304

305 **4. QUARTZ CRYSTALLOGRAPHIC PREFERRED ORIENTATION AND GRAIN**
306 **SIZE ANALYSIS**

307 **4.1. Methodology**

308 The crystallographic preferred orientation (CPO) of quartz was investigated on thin sections cut
309 perpendicular to foliation and parallel to lineation, using the Electron Backscattered Diffraction (EBSD)
310 method. Measurements were acquired on a JEOL IT300 SEM equipped with a LaB₆ filament and an Oxford
311 Instruments EBSD detector on uncoated samples in low vacuum (30Pa) at 25 kV excitation potential and
312 60 μ A probe current.

313 In order to investigate the CPO of a large population of grains and cover a large area of a thin section,
314 a 50 μ m step size was used and the results were plotted by one measure per grain over at least 800 grains,
315 using a 10° misorientation to define grain boundaries. For grain size analysis, smaller areas (\sim 6 mm²)
316 were surveyed with a 2 μ m step size, and a minimum of 3 measurements per grain and a 10°
317 misorientation to define grain boundaries (Figure 8 and Supplementary Figure S1). Recrystallized grains
318 were extracted from the total grain population based on internal misorientation, following the
319 methodology described in Cross et al. (2017). Quartz c- and a-axis (lower hemisphere) pole figures were
320 generated using MTEX MATLAB toolbox.

321

322 **4.2. Quartz Crystallographic Preferred Orientation Results**

323 Quartz deformation is dominated by dislocation creep processes, and recrystallized quartz grains display a
324 strong crystallographic preferred orientation (CPO). Quartz c-axis fabrics show a typical Type-I cross-
325 girdle (Figure 8, Lister, 1977). Analysis of quartz CPO by EBSD reveals that the slip systems active
326 during quartz recrystallization included basal $\langle a \rangle$, rhomb $\langle a \rangle$, and/or prism $\langle a \rangle$ slip (Figure 8, Schmid and
327 Casey, 1986). Sample CM16-04 shows c-axis girdle with a maxima indicating dominant rhomb $\langle a \rangle$ and
328 prism $\langle a \rangle$ slip, with minor basal $\langle a \rangle$ slip. The c-axis girdle is broad and symmetrical, and the a-axis pole
329 figure shows strong peripheral maxima, suggesting that this fabric developed under dominantly coaxial

330 deformation conditions. Samples CM14-01 and CM14-03 show similar c-axis girdles, also dominated by
331 rhomb $\langle a \rangle$ and prism $\langle a \rangle$ slip, and minor basal $\langle a \rangle$ slip. In these cases, however, the c-axis girdle is
332 narrower, and shows a dextral asymmetry, suggesting that these fabrics developed under non-coaxial
333 deformation, with a component of top-to-the north shear (Schmid and Casey, 1986; Barth et al., 2010).
334 Sample CM16-10A shows a c-axis girdle with a prism $\langle a \rangle$ slip maxima, and a stronger contribution of
335 basal $\langle a \rangle$ slip than the previous samples. The c-axis girdle is broad, with a central bullseye; the basal $\langle a \rangle$
336 maxima give a dextral asymmetry to the girdle. The a-axis pole figure shows strong peripheral maxima
337 with a dextral rotation. Samples CM16-11 and CM14-07 c-axis girdles are both characterized by a strong
338 rhomb- and basal $\langle a \rangle$ maxima, with minor prism $\langle a \rangle$. The c-axis girdles have narrow central branch, but
339 wider arms. Quartz a-axis fabrics form a central girdle, with peripheral maxima, indicative of strong basal
340 $\langle a \rangle$ slip (Barth et al., 2010). For these two samples, both c- and a-axis girdles show dextral asymmetry,
341 strongly expressed in CM14-07.

342 The quartz c- and a-axis fabrics change with structural position in the detachment shear zone and
343 associated degree of mylonitization: samples located closest to the top of the DSZ (high strain) show
344 deformation by basal $\langle a \rangle$ slip, while samples located in deeper structural levels (low strain) express a
345 stronger contribution of prism- and rhomb $\langle a \rangle$ slip (Figure 8). In addition, with the exception of sample
346 CM16-04, all the quartz c-axis pole figures show a strong dextral asymmetry compatible with a top-to-
347 the-north sense of shear, suggesting that the detachment shear zone experience a non-coaxial component
348 of deformation (Passchier and Trouw, 2005; Barth et al., 2010).

349 Quartz lattice preferred orientation change as a function of temperature, due to the change in the
350 activity of the dominant slip systems (e.g. Passchier and Trouw, 2005). Basal $\langle a \rangle$ slip is prevailing at low
351 temperature, imparting a strong cluster of c-axes in the periphery of the girdle, associated with $\langle a \rangle$ -axes
352 maxima. Samples CM16-11 and CM14-07, located close to the top of the shear zone, exhibit c-axis
353 girdles with strong rhomb- and basal $\langle a \rangle$ maxima, and $\langle a \rangle$ -axes, with peripheral maxima, suggesting low-
354 to medium deformation temperature.

355 With increasing temperature, prism $\langle a \rangle$ slip becomes more important and the girdle develops a
356 maximum around the center of the pole figure, normal to the flow plane, while $\langle a \rangle$ -axes maxima are
357 replaced by a single $\langle a \rangle$ -axes maximum parallel to the movement direction (e.g. Passchier and Trouw,
358 2005). At deeper structural levels, samples CM16-04 and CM14-01 exhibit a central c-axes girdle
359 dominated by rhomb- and prism $\langle a \rangle$ slip, and a single $\langle a \rangle$ -axes maxima, suggesting deformation lo- to
360 medium deformation temperature. Altogether, the quartz fabrics are indicative of relatively moderate
361 temperatures of deformation, between 400 and 550°C, consistent with our optical observations of quartz
362 and feldspar deformation textures (e.g. Schmid and Casey, 1986; Stipp et al., 2002; Passchier and Trouw,
363 2005).

364

365 **4.3. Recrystallized Grain-Size Paleo-Piezometry**

366 Recrystallized grain size paleopiezometers are based on the relationship between the size of dynamically
367 recrystallized grains and applied differential flow stress, derived from deformation experiments (see
368 Tokle et al., 2019 and references therein). Here we use the Cross et al. (2017) quartz recrystallized grain
369 sized piezometer. This piezometer does not include stereological correction; therefore, our grainsize
370 estimates are not corrected for consistency (Table 1).

371 Grain size analysis was conducted by EBSD on areas covering $\sim 6 \text{ mm}^2$, using a $2 \mu\text{m}$ step size.
372 Recrystallized grains were extracted from the total grain population based on internal misorientation,
373 following the methodology described in Cross et al. (2017). The measured grain size ranges from $13 \mu\text{m}$
374 to $46 \mu\text{m}$, with 5 out of 8 measurement around $\sim 24 \pm 3 \mu\text{m}$ (Table 1). This recrystallized grain size
375 determined yields a flow stress ranging from 39 to 96 MPa (Table 1).

376

377 **5. GEOCHRONOLOGY**378 **5.1. Methodology**379 **5.1.1. U-Th-Pb Dating**

380 Zircon mineral separation for a garnet-two-mica granite sample CM14-04 (~0.5 kg) was performed at the
381 Laboratorio de Caracterización Mineral (CarMINLab) at Centro de Geociencias, Universidad Nacional
382 Autónoma de México (UNAM), using conventional methods (crushing, sieving, magnetic separation, and
383 heavy liquids). Zircons for U-Pb geochronology were mounted in epoxy resin and grounded to nearly half
384 their thickness using abrasives. Transmitted and reflected-light photos (not shown) were taken of all
385 mounted zircon grains to aid in the spot selection to perform the laser ablation ICP-MS studies. In
386 addition, scanning electron microscope-cathodoluminescence images (SEM-CL) of all zircons were
387 obtained at the CarMINLab and used to reveal internal zoning and aide in analytical spot placement.

388 U-Th-Pb zircon geochronology of the granite sample was conducted in the Laboratorio de
389 Estudios Isotópicos (LEI) at Centro de Geociencias, UNAM, using a Resonetics Workstation model
390 M050 equipped with a LPX220 excimer laser coupled with a Thermo ICAP Qc quadrupole ICP-MS
391 (inductively coupled plasma–mass spectrometer) following analytical techniques similar to those reported
392 in previous publications by Solari et al. (2010) and González-León et al. (2016).

393 Sample spot beam locations are ~23 μm in diameter. To account for down-hole fractionation
394 observed in the primary standard zircon, the data reduction was performed using the commercial software
395 “Iolite 2.5” by Paton et al. (2010, 2011), employing the VisualAge data reduction scheme presented in
396 Petrus and Kamber (2012). The primary zircon-bracketing standard used was 91500 (Wiedenbeck et al.,
397 1995; TIMS age of 1065.4 ± 0.6 Ma) whereas PLE standard (Plešovice; Sláma et al., 2008; TIMS age of
398 337.13 ± 0.37 Ma) was used as secondary standard control. All uncertainties were propagated using Iolite
399 protocols and are reported at 2-sigma level of precision (Table 2). The data were exported from Iolite and
400 plotted with computational software “Isoplot 3.0” (Ludwig, 2012) and shown in a concordia diagram and
401 a weighted mean age plot (Figure 9A, B). No common Pb correction was applied to the geochronology

402 data because the ^{204}Pb signal is insignificant in comparison to the overwhelming ^{204}Hg signal present in
403 the system. Zircon trace-element data are presented in Table 3.

404

405 **5.1.2. $^{40}\text{Ar}/^{39}\text{Ar}$ Dating**

406 Biotite and muscovite mineral separate pairs were prepared for 11 of the 20 Pan Tak Granite (Tg) samples
407 examined petrographically. These minerals were selected for dating because their nominal closure
408 temperatures for Ar diffusion span the greenschist facies, which, based on microstructural study (see
409 below) is the grade of deformation in Coyote Mountain shear zone. We selected samples that span the
410 range of deformation intensity, from protomylonite (CM16-02) to mylonite (CM16-14). Samples were
411 crushed and milled down to a millimeter grain size, then sieved. Coarse-grained ($>250\ \mu\text{m}$) muscovite
412 and biotite mineral separates were prepared by iteration between paper shaking and magnetic separation
413 with a Frantz L1 magnetic separator. A final stage of hand picking was done on a binocular microscope to
414 remove remaining impurities and visibly altered biotite grains (but see Discussion). All mineral separates
415 were washed sequentially in acetone, alcohol, and deionized water (3x) prior to irradiation.

416 Single and multi-grain aliquots of the mineral separates were loaded in high purity copper foil
417 and irradiated in the central thimble of the USGS TRIGA reactor in Denver, Colorado, for 20 megawatt
418 hours in a geometry similar to that described in McAleer et al. (2017). Cadmium shielding was not used.
419 All isotopic analyses were completed at the USGS-Reston $^{40}\text{Ar}/^{39}\text{Ar}$ Geochronology Laboratory. Fish
420 Canyon Tuff sanidine, with an astronomically tuned age of 28.201 ± 0.046 Ma (Kuiper et al., 2008) was
421 used as the neutron fluence monitor. Values for interfering isotopes of $(^{40}\text{Ar}/^{39}\text{Ar})_{\text{K}} = 9.1\text{E-}3 \pm 9.3\text{E-}4$;
422 $(^{38}\text{Ar}/^{39}\text{Ar})_{\text{K}} = 1.278\text{E-}2 \pm 3.6\text{E-}5$; $(^{37}\text{Ar}/^{39}\text{Ar})_{\text{K}} = 4.2\text{E-}4 \pm 3.4\text{E-}4$; $(^{39}\text{Ar}/^{37}\text{Ar})_{\text{Ca}} = 7.5\text{E-}5 \pm 1.8\text{E-}5$;
423 $(^{38}\text{Ar}/^{37}\text{Ar})_{\text{Ca}} = 6.80\text{E-}4 \pm 2.7\text{E-}6$; $(^{36}\text{Ar}/^{37}\text{Ar})_{\text{Ca}} = 2.490\text{E-}4 \pm 7.7\text{E-}7$; were determined on co-irradiated
424 CaF_2 and zero-age K-glass.

425 Following irradiation, unknown samples were heated in low-blank furnaces similar to that
426 described by Staudacher et al. (1978). The evolved gasses were then purified in two-stage ultra-high
427 vacuum extraction lines, and analyzed on a VG Micromass 1200 noble gas mass spectrometer, operating

428 in static mode (McAleer et al., 2017). The argon isotopes were measured by peak hopping using a
429 SEV217 electron multiplier. Isotopes were measured in 6 cycles and the time-zero intercepts were
430 determined by linear regressions of the data.

431 Data from the VG1200 were reduced using a modified version of ArAr* (Haugerud and Kunk,
432 1988) and Isoplot (Ludwig, 2012). A plateau age was defined as a set of contiguous steps containing >
433 50% of the $^{39}\text{Ar}_\text{k}$ where the probability of fit of the weighted mean age of the steps is > 5% (Figures 10
434 and 11, Table 4). In cases where the MSWD exceeded 2.5 the uncertainty was expanded by the square
435 root of the MSWD (Ludwig, 2012). To maintain consistency with Kuiper et al. (2008) the decay constants
436 of Min et al. (2000), and the argon isotopic composition of Lee et al. (2006) were used in data reduction.
437 Constants and complete isotopic data can be found in the data tables in Supplementary Table S1.

438

439 **5.1.3. Apatite Fission track Dating and Thermal History Modelling**

440 Apatite fission-track analyses were performed on two Pan Tak Granite samples using the external detector
441 method (Tagami, 1987). Apatite grains were mounted in epoxy and polished, and spontaneous fission
442 tracks were revealed by etching with 5.5-M nitric acid for 20 s at 21°C before irradiation. The neutron
443 fluence was monitored using CN5 U-doped glass (Bellemans et al., 1995). The irradiation was performed
444 at Oregon State University. After irradiation, mica external detectors were etched in 40% hydrofluoric
445 acid for 45 min at 21°C. Analyses were conducted for optical identification of fission-tracks using an
446 Olympus microscope at 1,600X magnification with a drawing tube located above a digitizing tablet and a
447 Kinetek computer-controlled stage driven by the FT Stage program provided by Trevor Dumitru of
448 Stanford University. The fission-track analyses were performed at the Arizona Fission Track Laboratory
449 in the University of Arizona (Table 5 and Supplementary Table S2 & S3).

450 Confined tracks were also measured to enable thermal history modelling (e.g. Gleadow et al. 1986,
451 Donelick & Miller 1991). Confined tracks do not intersect the surface and are revealed within the apatite
452 where the etchant has gained access to the grain sub-surface via other tracks and fractures (Gleadow et al.
453 2002). The distribution of measured confined track lengths provides information on the time spent in the

454 120-60°C apatite partial annealing zone (APAZ), with longer mean confined track lengths defining rapid
455 cooling through ($>13.5\mu\text{m}$) the APAZ and shorter mean confined track lengths demonstrating prolonged
456 residence in the APAZ (e.g. Laslett et al. 1982, Tagami & O'Sullivan 2005).

457

458 **5.1.4. *Thermal History Modelling***

459 A single, combined thermal history model was produced for samples CP-01 and CP-02 using their AFT
460 ages, confined track length distributions, D_{par} (Donelick et al. 2005) as the kinetic parameter and zircon
461 U-Th-Pb, muscovite Ar-Ar, and biotite Ar-Ar ages as high temperature constraints (Figure 12;
462 Supplementary Table S4). The QTQt software (version 5.7.0) was used, which applies Bayesian trans-
463 dimensional Markov Chain Monte Carlo statistics to determine models for the cooling pathway of the
464 sample (Gallagher, 2012). An initial unconstrained run is performed to explore the statistical space,
465 followed by adjustments to the search parameters or the addition of geological constraints where
466 necessary. This approach follows the Bayesian philosophy of the software, which seeks to minimize the
467 complexity of the model by statistical means. Many iterations ($>> 10,000$) are run to generate a range of
468 models that create a probability distribution, from which individual models can be selected, including the
469 maximum likelihood and “expected” (weighted mean) paths. The range of the general prior was set as $t =$
470 AFT central age \pm AFT central age, temperature = $70 \pm 70^\circ\text{C}$. Acceptance rates for models were between
471 0.2 and 0.6 and birth-death ratio was ~ 1 . The annealing model from Ketcham et al. (2007) was used for
472 fission track data with D_{par} (the average etch-pit diameter) as the kinetic parameter as it can be used as a
473 proxy for apatite chemistry. More details on the modelling approach can be found in Gallagher (2012)
474 and Supplementary Table S4.

475

476 **5.2. Results**477 **5.2.1. U-Th-Pb Data**

478 Approximately 150 zircons, mostly euhedral crystals of \sim 70–200 μm in size, were mounted and
479 characterized using transmitted and reflected-light microscopy images in addition to SEM-CL (Figure
480 11). Based on these zircon images 40 grains were selected for U-Pb zircon geochronology using the laser
481 ablation ICP-MS technique (see Table 2). The collected U-Th-Pb zircon data were plotted in a Terra-
482 Wasserburg concordia diagram (Figure 11A) and 39 of 40 analyses overlapped concordia at 2 sigma. A
483 group of 15 concordant zircon analyses were selected to calculate a $^{206}\text{Pb}/^{238}\text{U}$ weighted mean age of 58.1
484 \pm 0.5 Ma (Figure 11B; Mean Squares of Weighted Deviates (MSWD = 2.3; n = 15) that we interpret as
485 the age of crystallization of the Pan Tak garnet-two-mica Granite sample CM14-04. Nine analyses with
486 high uranium content (5800 – 22000 ppm) yielded slightly younger ages and were excluded from the
487 weighted mean age calculation (Figure 11B). Eight older concordant ages of Cretaceous, Jurassic, and
488 Mesoproterozoic are interpreted to be inherited cores (Figure 11A, D).

489

490 **5.2.2. $^{40}\text{Ar}/^{39}\text{Ar}$ Data**

491 **Muscovite** - Ten of the 11 step-heating experiments on muscovite yield plateau ages, and sample CM16-
492 12 also has a flat age spectrum. In most samples there is a small (<1 Ma) increase in age over the last
493 \sim 10% of the $^{39}\text{Ar}_\text{K}$ released, and so the total gas age is slightly higher than the plateau age in all samples
494 (Table 4). This is true for single grain and multi-grain aliquots. Steps included in plateau ages yield Cl/K
495 ratios that are < 0.01 and typically < 0.001 , and Ca/K ratios of < 0.01 , consistent with the degassing of
496 muscovite. Elevated Cl/K and Ca/K ratios are observed in the first and last \sim 5% of the $^{39}\text{Ar}_\text{K}$ release in
497 some samples. Eight of the 11 sample define a narrow age range and yield plateau ages between 29.12
498 and 29.39 Ma. The other three samples yield plateau ages of 30.50, 30.15, and 30.73 Ma (Figures 9 & 10,
499 Table 4).

500

501 **Biotite** - In contrast to the muscovite data, no biotite step-heating experiments yield plateau ages. All
502 biotite age spectra climb steeply in age over the first ~15% of the $^{39}\text{Ar}_\text{K}$ release, and then gently climb in
503 age up to ~70% of the $^{39}\text{Ar}_\text{K}$ release. At 70–80% release there is a steep climb (CM16-04, CM16-06) or
504 drop (all other samples) in age, and this is followed by a climb in age for the remainder of the age
505 spectrum. The age spectrum shape is commonly mirrored by the Ca/K and Cl/K data (Figure 9),
506 indicating significant compositional changes are associated with age changes. Biotite total gas ages vary
507 widely, with 10 of 11 ages falling between 19–28 Ma, and these ages show no systematic trend with
508 elevation. Sample CM16-10A is anomalous and yields a total gas age of 62 Ma (Figure 9, Table 4).

509

510 5.2.3. *Apatite Fission Track Data*

511 Two samples of Pan Tak Granite were obtained for AFT analysis. Samples CP-01 and CP-02 yielded
512 AFT ages of 24.1 ± 2.4 Ma and 24.8 ± 3.1 Ma, respectively. Both samples satisfy the chi-squared test ($>$
513 5%) with $P(\chi^2)$ of 1.0 and 0.13, respectively, implying that both single-grain age distributions represent a
514 single population (Table 5 and Supplementary Tables S1 & S2). Both samples yielded long mean track
515 lengths (MTLs) of 13.7 ± 0.9 μm and 13.6 ± 0.9 μm , respectively (Table 5).

516

517 5.2.4. *Thermal History Modelling*

518 Thermal history modelling was conducted on samples CP-01 and CP-02. Both samples yielded long,
519 unimodal mean track lengths and AFT ages that were within 2σ of the muscovite and biotite Ar-Ar ages
520 identified in the mylonitized zone. Thus, it was deemed geologically viable to perform thermal history
521 modelling. The combined thermal history model, used the AFT annealing model from Ketcham et al.
522 (2007). Zircon U-Pb, muscovite Ar-Ar, and biotite Ar-Ar data from the mylonitized transect were
523 integrated into thermal history models (Figure 12 and Table 2 & 4). Individual models, confined track
524 distributions, and modelling parameters are available in Supplementary Figure S2.

525 Samples CP-01 and CP-02 were combined in a single thermal history model due to their close spatial
526 proximity. The thermal history model constrains two phases of cooling; the first protracted cooling post-

527 emplacement of the Pan Tak Granite between 58 and 30 Ma. Followed by a single, extremely rapid period
528 of cooling from mid-crustal temperatures ($\sim 400^{\circ}\text{C}$) to the apatite partial annealing zone (APAZ, 120 –
529 60°C) from 29 to 25 Ma, constrained through 2σ overlapping Ar-Ar and AFT dates, before experiencing
530 rapid cooling through the APAZ at 24 Ma as constrained by the long MTLs (Figure 12).

531

532 **6. DISCUSSION**

533 Combined structural, microstructural, and geochronologic results provide important new insight into the
534 evolution of the Coyote Mountains MCC. Specifically, the conditions and timing of mylonitization and
535 the exhumation history of the detachment shear zone are discussed below.

536

537 **6.1. Age of the Pan Tak Granite**

538 Wright and Haxel (1982) reported a lower intercept age of 58 ± 2 Ma from multi-grain TIMS analyses of
539 five size fractions of zircon from the Pan Tak granite and an upper intercept age of ~ 1.1 Ga. The new LA-
540 ICP-MS $^{206}\text{Pb}/^{238}\text{U}$ age of 58.1 ± 0.5 Ma confirms and improves the precision of an early Paleogene age
541 for the Pan Tak Granite. These data are consistent with the Pan Tak Granite being a late Laramide pluton
542 as previously suggested (Wright and Haxel, 1982). The documentation of inherited cores (Figure 9A, D)
543 also explains the discordant results of Wright and Haxel (1982), though the presence of Cretaceous,
544 Jurassic, and Mesoproterozoic cores suggests the upper intercept age of Wright and Haxel (1982) is
545 unlikely to have geologic meaning.

546

547 **6.2. Conditions of Mylonitization**

548 The Pan Tak Granite is overprinted by the Coyote Mountains detachment shear zone. Macroscopically,
549 the fabric ranges from protomylonite to mylonite, exhibiting an increase in fabric intensity northward and
550 towards the Ajo Road décollement.

551 Feldspars microstructures, such as flame perthite, myrmekite, bent twins in plagioclase, abundant
552 microfracturing, and patchy zoning (Figure 6), provide evidence for both ductile and brittle deformation,
553 and are collectively consistent with a top to the north sense of shear. Altogether feldspar microstructures
554 suggest that the Coyote Mountains detachment shear zone developed under greenschist facies conditions
555 (~450 ± 50°C), close to the brittle-ductile transition for feldspar. The presence of mica fish in Pan Tak
556 Granite samples is the most informative strain indicators present providing the sense of shear. Pan Tak
557 Granite mica fish indicate a top-to-the-north shear sense, which correlate to macrostructural shear sense
558 indicators

559 Qualitatively, deformation conditions recorded in quartz microstructures are consistent with
560 deformation conditions deduced from feldspar microstructures. Quartz dislocation creep dynamic
561 recrystallization is dominated by subgrain rotation and limited grain boundary migration (regime II and
562 III of dislocation creep of Hirth and Tullis, 1992). The presence of elongated quartz ribbons, in
563 conjunction with intracrystalline dislocation glide quartz microstructures, such as deformation lamellae,
564 and patchy extinction, suggest deformation without brittle fracturing under high differential stress and/or
565 high strain rate condition where recovery within the quartz lattice cannot accommodate strain.

566 EBSD data from quartz provide additional data on deformation conditions. Quartz CPO measured by
567 EBSD reveal that recrystallization occurred by a combination of basal-, rhomb-, and prism $\langle a \rangle$ slip,
568 indicative of relatively moderate temperatures of deformation, between 400 and 550°C, consistent with
569 our optical observations of quartz and feldspar deformation textures. The quartz c- and a-axis fabrics
570 appear to change with degree of mylonitization: mylonitic samples located at deeper structural levels (low
571 strain) in the detachment shear zone show deformation by prism- and rhomb $\langle a \rangle$ slip associated with
572 dominant grain boundary migration recrystallization, while ultramylonitic samples near the top of the
573 detachment shear zone (high strain) express a stronger contribution of basal $\langle a \rangle$ slip associated with
574 recrystallization by subgrain rotation. In addition, a majority of the quartz fabrics show a strong
575 asymmetry compatible with a top-to-the-north sense of shear.

576 The presence of grain boundary migration recrystallization in quartz, combined with prism- and
577 rhomb $\langle a \rangle$ slip observed in quartz c-axis pole figures suggests the maximum temperature of deformation
578 in the Coyote Mountains shear zone was 500°C. However, these microtextures are comparatively rare
579 relative to subgrain rotation recrystallization microstructures associated with basal-, prism-, and rhomb $\langle a \rangle$
580 slip quartz c-axis polefigures, more indicative of deformation at 400 – 450°C (Figure 12). Given that the
581 geometry of these microstructures all display a consistent shear sense (Figure 12) we suggest these
582 microstructures record deformation conditions during extension-driven exhumation along the Coyote
583 Mountains detachment shear zones. Close to the top of the detachment shear zone, the mylonite is locally
584 brecciated (Gardulski, 1980; Wright and Haxel, 1982; Davis et al., 1987), suggesting localization of
585 deformation off the broader Coyote Mountains detachment shear zone and onto the Ajo road décollement
586 as the rocks exhumed into the brittle regime.

587

588 **6.3. Flow stress and strain rate of the Coyote Mountains detachment shear zone**

589 Our microstructural analysis reveal that in the Pan Tak Granite mylonite the quartz is entirely
590 dynamically recrystallized, dominantly by subgrain rotation, with minor grain boundary migration. Quartz
591 recrystallized grain size measured by EBSD ranges from 13 to 46 μm , with an average of $\sim 25 \mu\text{m}$; 5 out
592 of 7 samples displaying an average grain size of $\sim 24 \pm 3 \mu\text{m}$ (Table 1). Using the quartz recrystallized
593 grain size of Cross et al. (2017), this recrystallized grain size suggests that the mylonite recorded a flow
594 stress of $\sim 67 \pm 28 \text{ MPa}$ (Table 1).

595 The paleopiezometry results can be used to further constrain the strain rate experienced by the
596 detachment shear zone, by applying a dislocation creep flow law. We use the Hirth et al. (2001) quartzite
597 dislocation creep flow law, for which the stress exponent n is 4, the activation energy Q is 135 kJ/mol,
598 and a temperature of $500 \pm 50^\circ\text{C}$. Water fugacity has a strong effect on strain rate but is difficult to
599 estimate accurately (e.g. Hirth et al. 2001). The Pan Tak Granite mylonite preserves evidence of water
600 during deformation as indicated by the abundance of fluid inclusions in quartz grains. We estimate a

601 maximum value for the water fugacity during deformation by assuming that water was present at a
602 temperature of 500°C and hydrostatic pressure at 11 – 14 km (108 – 138 MPa). A f_{H2O} of 50 MPa was
603 estimate for these conditions using standard water fugacity coefficients (Töheide, 1972). Using these
604 parameters, we obtain an average strain rate of $5.0 \times 10^{-12} \text{ s}^{-1}$, which is typical for detachment shear zones
605 (Figure 13, Gottardi and Teyssier, 2013). Applying the Rutter and Brodie (2004) flow law to our stress
606 and temperature estimates appear to overestimate the strength of the shear zone, with values beyond the
607 range of geologically reasonable strain rates for actively deforming areas (10^{-12} to 10^{-15} s^{-1}) (Figure 13).
608 Our strain rates results (10^{-11} s^{-1} to 10^{-13} s^{-1}) match early to middle Miocene strain rate estimates in the
609 nearby Colorado River extensional corridor range from 10^{-15} to 10^{-12} s^{-1} (Gans and Bohrson, 1998;
610 Campbell-Stone and John, 2002; Behr and Platt, 2011; Singleton et al., 2018). Using a warm geotherm
611 ranging from 35°C to 45°C/km, as suggested in the CRER during this time period (Foster et al., 1991;
612 Howard and Foster, 1996) we estimate that the detachment shear zone evolved at a depth ranging from 11
613 to 14 km (Figure 13).

614

615 **6.4. Timing of mylonitization of the Coyote Mountains detachment shear zone**

616 Critical to the interpretation of the $^{40}\text{Ar}/^{39}\text{Ar}$ isotopic results is evaluating the relative contributions of
617 thermally activated diffusion and recrystallization in driving the preserved isotopic ratios. Petrographic
618 characterization demonstrates that there are three textural populations of muscovite present in the Pan Tak
619 Granite: (1) coarse-grained porphyroclastic muscovite of presumable igneous origin (Figure 7C-F), (2)
620 ultra-fine aggregates ($<20 \mu\text{m}$) that form tails on the porphyroclasts and define variably contiguous folia
621 (Figure 6E), and (3) ultra-fine aggregates that partially replace feldspars (Figure 6D). The only population
622 amenable to physical mineral separation was the coarse-grained population, and that was what was
623 analyzed in our step-heating experiments. However, the presence of populations 2 and 3 clearly
624 demonstrate that post-magmatic growth of muscovite occurred in these samples, and the presence of some
625 fine micas at the margins of some coarse micas (Figure 7B, D), as well as their fish geometry, suggests

626 that the dated grains may be partially composed of metamorphic muscovite. Given the microstructural
627 evidence that MCC related deformation occurred at upper greenschist facies conditions, it is at least
628 plausible that partial recrystallization of muscovite fish occurred below the closure temperature for argon
629 diffusion in muscovite.

630 All step-heating experiments on muscovite yield plateaus ages, regardless of whether on single grain,
631 several grain (<10), or many grain aliquots. In addition, 8 of the 11 analyzed samples yield plateau ages
632 that define a narrow age range of 29.12 – 29.39 Ma despite being from samples that span a range of
633 deformation intensities (proto- and mylonite). The fact that the step-heating experiments result in plateau
634 ages indicate that if there are multiple age/composition populations in the dated coarse muscovite grains,
635 they do not have different degassing behavior in-vacuo, or that one age component contributes so little to
636 the total Ar budget that it makes little difference to the spectrum. Since the neocrystallized muscovite is
637 very fine grained (<20 μm) (Figure 7B, 7D), it should degas first. If these neocrystallized muscovite
638 grains composed a significant proportion of an aliquot, and were significantly younger, then the early
639 degassing steps should yield a young age; however they do not. We therefore conclude that either (1) the
640 fine-grained recrystallized muscovite is not present at the margins of the dated grains, or that it is in such
641 low proportion that it cannot be detected, or (2) that recrystallized muscovite is present, and yields a
642 distinct age that is within error limits of the age of the coarser muscovite. This latter interpretation would
643 be consistent with a detachment shear zone that was exhumed rapidly. Based on these observations we
644 conclude that the footwall of the Coyote Mountains detachment shear zone passed rapidly through closure
645 temperature of muscovite at ~29 Ma.

646 The biotite age spectra are interpreted to reflect variable alteration of the dated biotite grains
647 rather than strictly the thermal history. Many studies have documented that $^{40}\text{Ar}/^{39}\text{Ar}$ analysis of biotite
648 can be problematic, especially in metamorphosed rocks where fluid ingress leads to chloritization and
649 typically anomalously young ages (e.g., Gabber, 1991; Ruffet et al., 1991; Roberts et al., 2001;
650 DiVincenzo et al., 2003). Additionally, the relatively high solubility of argon in biotite can lead to the
651 incorporation of excess argon and anomalously old ages (e.g., Kelley, 2002). It appears that both cases are

652 present in the Coyote biotites. Although the biotite grains selected for dating appeared unaltered under the
653 binocular microscope, incipient chloritization of biotite was optically apparent in most thin sections
654 (Figure 7). Additionally, the observed age spectrum shape is similar to that published for chloritized
655 biotite (Lo and Onstott, 1989). Coupled with the fact that the step-heating experiments yield, Ca/K and
656 Cl/K ratios inconsistent with the degassing of only biotite, it seems likely that the isotopic data are
657 compromised by alteration of some sort. Additionally, biotite from sample CM16-10A yields age steps
658 older than crystallization age of the granite and is clearly affected by excess argon. The muscovite from
659 this sample also yields the oldest total gas age (31.24 Ma) consistent with the presence of excess argon as
660 well as the lower solubility of argon in muscovite (Kelley, 2002).

661 We interpret the flattest biotite age spectrum (CM16-11, Figure 9) to be the least affected by
662 alteration and to best approximate the time of cooling through closure for biotite in the Coyote
663 Mountains. This sample yields a total gas age of 28.25 Ma only slightly younger than the muscovite total
664 gas age of 29.56 Ma (plateau age at 29.39 ± 0.10 Ma).

665

666 **6.5. Exhumation and Cooling of the Coyote Mountains detachment shear zone**

667 Primary zircon in the Pan Tak Granite crystallized at 58.1 ± 0.5 Ma. The temperature of melt that was
668 extracted to crystallize the Pan Tak Granite is not known, but the relatively common occurrence of
669 inherited cores in Pan Tak zircon grains (Figure 9, see also Wright and Haxel, 1982) suggests that the Pan
670 Tak was a “cold” granite (Miller et al., 2003) and we approximate the melt temperature at 750°C.
671 However, a regional peak metamorphic grade in the lower amphibolite facies (Haxel et al., 1984)
672 indicates that the Pan Tak Granite intruded rocks that were no hotter than 550°C. Our data do not
673 constrain the cooling history of these rocks between 58 and 30 Ma, however the regional geology does
674 not suggest any prograde metamorphism following intrusion (Haxel et al., 1980a, b, 1984), and 29.3 Ma
675 $^{40}\text{Ar}/^{39}\text{Ar}$ muscovite ages suggests very little net cooling and exhumation over this nearly 30 Myr time
676 interval. The period of tectonic quiescence is in marked contrast to the rapid cooling in the Oligocene

677 indicated by the thermochronometric data. Using our best estimate of 29.3 Ma for the passage through
678 muscovite Ar closure and 28.3 Ma for the passage through biotite closure, we can calculate an
679 approximate cooling rate for the Coyote MCC through greenschist facies. Since the muscovite grains are
680 deformed in all samples (Figure 7) it is likely that the diffusion domain size is smaller than the grain size
681 (~1 mm) and we use a nominal diffusion domain size of 100 μm . Additionally, we use the diffusion
682 coefficients ($D_o = 20\text{cm}^2/\text{s}$, $E_a = 268\text{KJ/mol}$) of Harrison et al. (2009) at 5 Kb, as higher pressures are
683 unlikely in an extensional setting. Similarly for biotite, we use a nominal diffusion domain size of 100 μm
684 and the diffusion coefficients from Grove and Harrison (1996) for biotite ($D_o = 7.5\text{E-2 cm}^2/\text{s}$, $E_a = 197$
685 KJ/mol). Using these parameters, the T_c for muscovite and biotite at cooling rates ranging from 10–
686 100°C/Ma is 405 – 435 and 290 – 320°C, respectively. In other words, the rocks cooled \sim 100°C over a \sim 1
687 Ma time period. This estimate is strongly dependent on our interpretation that the flattest biotite age is the
688 best estimate of the time of cooling through biotite closure. However, two AFT ages of \sim 24 Ma strongly
689 support that our discarded younger biotite ages were in fact compromised by alteration. We also note that
690 7 muscovite samples yield the same plateau age despite being from rocks collected over an elevation
691 range of \sim 400 m and despite significant variation in the deformation intensity of muscovite among those
692 samples (Figures 7 and 8). Based on microtextural evidence it might be expected that these muscovite
693 grains would have significantly different average diffusion domain sizes and therefore closure
694 temperatures and ages, yet they yield the same age. One explanation for these results is that samples
695 cooled so rapidly through the greenschist facies that differences in the relative distance in the shear
696 direction, and in the closure temperature, which might result from differences in diffusion domain size
697 (e.g., $\Delta T_c = 35^\circ\text{C}$ from 200 to 50 μm diffusion domain), yield little change in age at the precision of our
698 measurements.

699 Microstructural analysis of the mylonitic fabric suggest that the maximum temperature conditions
700 during initiation of the shear zone were $500 \pm 50^\circ\text{C}$. The temperature of this grade of metamorphism is
701 only slightly higher than the closure temperature for argon diffusion in muscovite. Therefore, we suggest
702 that although the argon isotopic system records a cooling age, that age closely approximates the time of

703 development of the microstructures, i.e. the time of mylonitization and deformation along the shear zone
704 (Figure 12). However, with existing data we cannot unequivocally rule out that the mylonitization
705 occurred significantly earlier.

706 The similar $^{40}\text{Ar}/^{39}\text{Ar}$ muscovite and biotite ages suggest that by early Oligocene, the northern end of
707 the Baboquivari Mountains was exhuming along the Coyote Mountains detachment shear zone to form
708 the Coyote Mountains MCC. Perhaps most striking is the fact that AFT cooling ages and mean track
709 lengths in conjunction with the $^{40}\text{Ar}/^{39}\text{Ar}$ data indicate that a rapid cooling rate of $\sim 75^\circ\text{C/Ma}$, persisted for
710 several million years such that the footwall of this detachment cooled from 400 to 100°C in only ~ 4 Ma
711 (Figure 12). Similar rapid cooling rate have been estimated for other Cordilleran MCCs (Figure 14). Our
712 results are almost identical to cooling rates of $\sim 75^\circ\text{C/M.y.}$ between 350 and $<100^\circ\text{C}$ reported on the
713 nearby Catalina-Rincon MCC by Davy et al. (1989).

714

715 **6.6. Implications for orogenic collapse in southeastern Arizona**

716 The coalescence of several tectonic ingredients help lead orogenic collapse, these include (1) an increase
717 gravitational potential energy, typically driven by crustal thickening; (2) the presence of properly oriented
718 zones of mechanical weakness that act to localize and accommodate strain; (3) a source of thermal energy
719 that can bring thermal instability to the crust (higher geothermal gradient, shallow brittle-ductile
720 transition, or reduction in lower crustal viscosity); and (4) a change in plate boundary conditions (e.g.,
721 Rey et al., 2001; Teyssier et al., 2005). Published work and our new data provide some constraints on
722 each of these ingredients in the Coyote Mountains.

723 The southern MCCs, of which the Coyote Mountains are a part, are unique compared to the
724 northern ones in the fact that they are located within an area characterized by Laramide shortening of the
725 craton (e.g., Coney, 1980; Coney and Harms, 1984; Spencer and Reynolds, 1990). The exact style of
726 Laramide deformation as well as the timing and magnitude of shortening remains poorly constrained,
727 owing to the subsequent widespread extensional tectonics, including both metamorphic core complex and

728 Basin and Range extension that overprinted most of these structures (see Favorito and Seedorff, 2018 and
729 references therein). However, recent work examining the geochemistry of continental-arc rocks by
730 Chapman et al. (2020) suggests that the crust of the southern United States Cordillera (western and
731 southern AZ, northern Sonora) was 57 ± 12 km thick during the Laramide orogeny. This crustal thickness
732 could have supported a high-elevation (~3 km paleoelevation), low-relief orogenic plateau (Chapman et
733 al., 2020) resulting in an excess of gravitational potential energy. As mentioned above, the southern
734 MCCs are in an area characterized by Laramide shortening. As a result, contractional structures are
735 widespread (e.g., Favorito and Seedorff, 2018; Spencer et al., 2019), and include the Baboquivari thrust
736 (Wright and Haxel, 1982; Haxel and Wright, 1984). Evidence for reactivation of an earlier structure is not
737 present here (Gardulski, 1980; Haxel et al., 1984; Davis et al, 1987), and as far as we can tell the
738 microstructures of the Coyote detachment shear zone are entirely extensional. However, in the Catalina-
739 Rincon MCC there is evidence that detachment faulting reactivated a Laramide structure (Spencer et al.,
740 2019). Although we cannot confirm this same relationship here, the Catalina-Rincon MCC is also cored
741 by peraluminous granite, and it seems there is a spatial if not genetic relationship between these syn- to
742 post-tectonic intrusions and later extension.

743 The Laramide orogeny of the southern U.S Cordillera was also accompanied by syntectonic
744 intrusive activity, evidenced by the emplacement of a variety of Late Cretaceous to Paleocene
745 peraluminous granitoids. These plutons have been interpreted to be the products of anatexis driven by
746 Laramide thickening (Haxel et al., 1984; Dickinson, 1989, 1991). The ~58 Ma Pan Tak Granite, which
747 makes up the core of the Coyote Mountains metamorphic core complex is one of these plutons, and in
748 theory intrusion of these rocks into the mid crust could have resulted in a thermal instability
749 accompanying the thickened crust at the end of the Laramide orogeny. However, our thermochronologic
750 data clearly indicate that rapid cooling and extensional exhumation post-dated Laramide plutonism by
751 ~30 Ma in the Coyote Mountains, long after any perturbation to the crustal thermal structure would have
752 equilibrated. Therefore if a thermal perturbation helped to drive the onset of MCC extension, we suggest
753 it likely occurred at ~35 – 30 Ma. Evidence for magmatism of this age is common in southeastern

754 Arizona (e.g. Spencer and Reynolds, 1989). In the Coyote Mountains, the presence of scattered
755 lamprophyric dikes with inferred minimum age of 24 Ma by Haxel and Wright (1982) suggests that
756 exhumation was accompanied by some magmatic activity.

757 The Laramide orogeny was driven by subduction of the Farallon plate to the east under North
758 America, which continued at a shallowing angle from the Paleocene to the Eocene (e.g., Yonkee and
759 Weil, 2015). This resulted in Laramide orogenesis in southern Arizona at ~60 Ma, after which plutonism
760 and deformation moved eastward (Coney and Reynolds, 1977). It is during this time of eastward
761 migration that our thermochronologic data (and others, see Figure 14) suggest tectonic quiescence. Data
762 from regional MCCs further help to constrain the picture. A regional synthesis of published $^{40}\text{Ar}/^{39}\text{Ar}$ ages
763 reveals that interestingly, the 29 Ma age for the Coyote Mountains is slightly older than
764 denudation/exhumation age reported in the Colorado River extensional corridor further west (23 – 18.5
765 Ma, Figures 2 and 14). In fact the ~24 Ma AFT age and the presence of an undeformed lamprophyric dike
766 that crosscuts the brecciated Coyote Mountains detachment shear zone rocks estimated to be ~24 Ma
767 (Wright and Haxel, 1982) suggests that extension was waning here as it was accelerating in the Colorado
768 River extensional corridor (Figure 14). The nearby Catalina-Rincon MCC show a very similar cooling
769 history to the Coyote Mountains (Figure 14). These data, though limited, suggest MCCs further east were
770 exhumed earlier (during the Oligocene, between ~29 and 23 Ma) than the western MCCs (Miocene,
771 between ~22 and 15 Ma). This observation could be explained by the westward propagation of volcanic
772 activity and migration of the Mendocino Triple Junction around that time period. The westward sweeping
773 magmatic activity, expressed by ignimbrites, has also been hypothesized to be associated with the roll-
774 back or foundering of the Farallon plate during late Eocene to Oligocene through Miocene time (e.g.
775 Coney and Reynolds, 1977; Coney, 1980; Armstrong and Ward, 1991; Dickinson, 2002; McQuarrie and
776 Wernicke, 2005; McQuarrie and Osokin, 2010; Putika and Platt, 2012). In southern Arizona and the
777 Mojave region, the magmatic centers sweep westward starting at 36 Ma (McQuarrie and Osokin, 2010 and
778 references therein). In addition, the northward migration of the Mendocino Triple Junction and the initial
779 interaction of the ridge with the trench is estimated to have occurred around 28.5 Ma (e.g., McQuarrie and

780 Oskin, 2010; Putirka and Platt, 2012). The Laramide orogeny may have provided a crustal thickness and a
781 structural architecture susceptible to orogenic collapse. However, the additional activation energy to
782 trigger collapse might have been supplied 30 Myr later, both by heat flow to the lower crust and changes
783 in far-field stresses driven by foundering of the Farallon plate. In as much as the effects of the foundering
784 of the Farallon plate should be widespread, it is clear that the pre-existing structure was critical in
785 defining where MCCs formed in the Cordillera (Coney, 1980; Coney and Harms, 1984). More
786 geochronological datasets are required to better constrain the timing of denudation and exhumation of
787 MCCs in southern Arizona and northern Mexico, and this would provide crucial information about the
788 collapse of the southern Cordillera after the Laramide orogeny.

789

790 7. CONCLUSIONS

791 In this study we investigate the tectonics of the Coyote Mountains through its microstructural and
792 thermochronologic record. The most significant contributions of our work are summarized as follow.

- 793 - The Pan Tak Granite, where the Coyote Mountains detachment shear zone is localized, was
794 emplaced in Paleocene (~58 Ma zircon crystallization age) during the Laramide orogeny.
- 795 - $^{40}\text{Ar}/^{39}\text{Ar}$ geochronology of muscovite suggest that Oligocene mylonitization associated with the
796 formation of the Coyote Mountains MCC occurred at ~29 Ma (early Oligocene).
- 797 - Apatite fission track ages indicate that the footwall of the Coyote Mountains MCC cooled below
798 110°C by ~24 Ma and, in conjunction with the $^{40}\text{Ar}/^{39}\text{Ar}$ data, confirm rapid cooling from the
799 greenschist facies to < 110°C in the Oligocene.
- 800 - Mylonitization is recorded by a suite of microstructures that indicate that the detachment shear
801 zone evolved under a strong component of non-coaxial (simple shear) deformation, at
802 deformation conditions of $\sim 450 \pm 50^\circ\text{C}$, under a stress of $\sim 65 \text{ MPa}$, and a strain rate of $5 \times 10^{-12} \text{ s}^{-1}$,
803 at depth of $\sim 11 - 14 \text{ km}$.

804 - The 30My gap between Laramide shortening and rapid extension suggests that Laramide
805 shortening/thickening may have provided the potential energy to help drive collapse, but an
806 additional driving force, perhaps slab rollback and/or a change in plate boundary dynamics were
807 necessary to trigger orogenic collapse and rapid extension.

808

809 **Acknowledgements**

810 This work was funded by the Louisiana Board of Regent Support Grant LEQSF(2015-18)-RD-A-28
811 (Gottardi). We would like to thank Irene Pérez-Casillas and Concepción Arredondo-de La Rosa from the
812 CarMINLab (CGEO-UNAM) for their help with zircon mineral separation and SEM-CL characterization.
813 In addition, we are very grateful to Carlos Ortega-Obregón (LEI) for his assistance calibrating LA-ICP-
814 MS equipment and for supervising data reduction procedures for the U-Pb zircon geochronology. Andy
815 Calvert is thanked for providing the zero age K-glass. Any use of trade, product, or firm names is for
816 descriptive purposes only and does not imply endorsement by the U.S. Government. The data presented
817 in this publication will be available on ScienceBase <https://www.sciencebase.gov/about/>. Archiving is
818 underway and the data are temporarily available as Supporting Information for review purposes. Finally,
819 we gratefully acknowledge Tectonics editor John Geissman, associate editor, and detailed and
820 constructive reviews by Jay Chapman, John Singleton, Peter Valley and an anonymous reviewer that
821 greatly improved this manuscript.

822 **REFERENCES**

823 Anderson, J. L., Barth, A. P., & Young, E. D. (1988). Mid-crustal Cretaceous roots of Cordilleran
824 metamorphic core complexes. *Geology*, 16(4), 366–369. doi:10.1130/0091-
825 7613(1988)016<0366:MCCROC>2.3.CO;2

826 Armstrong, R. L. (1982). Cordilleran metamorphic core complexes - From Arizona to southern Canada:
827 Annual Review of Earth and Planetary Sciences, v. 10, p. 129–154.

828 Armstrong, R. L., & Ward, P. (1991). Evolving geographic patterns of Cenozoic magmatism in the North
829 American Cordillera: The temporal and spatial association of magmatism and metamorphic core
830 complexes: *Journal of Geophysical Research*, v. 96, p. 13,201–13,224. doi:10.1029/91JB00412

831 Barbarin, B. (1996). Genesis of the two main types of peraluminous granitoids. *Geology*, 24(4), 295-298.
832 doi:10.1130/0091-7613(1996)024<0295:GOTTMT>2.3.CO;2

833 Barth, N. C., Hacker, B. R., Seward, G. G., Walsh, E. O., Young, D., & Johnston, S. (2010). Strain within
834 the ultrahigh-pressure Western Gneiss region of Norway recorded by quartz CPOs. *Geological
835 Society, London, Special Publications*, 335(1), 663–685. doi:10.1144/SP335.27

836 Behr, W. M., & Platt, J. P. (2011). A naturally constrained stress profile through the middle crust in an
837 extensional terrane. *Earth and Planetary Science Letters*, 303(3–4), 181–192.
838 doi:10.1016/j.epsl.2010.11.044

839 Bellemans, F., De Corte, F. & Van den haute, P. (1995). ‘Composition of SRM and CN U-doped glasses:
840 Significance for their use as thermal neutron fluence monitors in fission track dating’, *Radiation
841 Measurements* 24(2), 153–160.
842 <http://www.sciencedirect.com/science/article/pii/135044879400100F>

843 Bryant, B., & Wooden, J. L. (1989). Lower-plate rocks of the Buckskin Mountains, Arizona: a progress
844 report. *Geology and mineral resources of the Buckskin and Rawhide Mountains, west-central
845 Arizona: Arizona Geological Survey Bulletin*, 198, 47–50.
846 [https://repository.arizona.edu/bitstream/handle/10150/630643/b-198-
847 textreduced_buckskinrawhidemtns.pdf](https://repository.arizona.edu/bitstream/handle/10150/630643/b-198-textreduced_buckskinrawhidemtns.pdf)

848 Campbell-Stone, E., & John, B. E. (2002). Temporal changes in deformation mode: from failure to flow
849 in the Colorado River extensional corridor. *International Geology Review*, 44(6), 512–527.
850 doi:10.2747/0020-6814.44.6.512

851 Ceccato, A., Menegon, L., Pennacchioni, G., & Morales, L. F. G. (2018). Myrmekite and strain
852 weakening in granitoid mylonites, *Solid Earth*, 9, 1399–1419. doi:10.5194/se-9-1399-2018

853 Chapman, J. B., Greig, R., & Haxel, G. B. (2020). Geochemical evidence for an orogenic plateau in the
854 southern US and northern Mexican Cordillera during the Laramide orogeny. *Geology*, v. 48.
855 doi.org/10.1130/G47117.1

856 Clarke, D. B (1981). The mineralogy of peraluminous granites; a review. *The Canadian Mineralogist*
857 19.1: 3–17. <https://pubs.geoscienceworld.org/canmin/article-abstract/19/1/3/11498>

858 Coney, P. J. (1974). Structural analysis of the Snake Range “décollement,” east-central Nevada:
859 Geological Society of America Bulletin, v. 88, 1237–1250. doi:10.1130/0016-
860 7606(1974)85<973:SAOTS>2.0.CO;2

861 Coney, P. J., & Reynolds, S. J. (1977). Cordilleran benioff zones. *Nature*, 270(5636), 403.
862 doi.org/10.1038/270403a0

863 Coney, P. J. (1980). Cordilleran metamorphic core complexes: An overview. Geological Society of
864 America Memoirs, 153, 7–31. doi:10.1130/MEM153

865 Coney, P. J., & Harms, T. A. (1984). Cordilleran metamorphic core complexes: Cenozoic extensional
866 relics of Mesozoic compression. *Geology*, 12, 550–554. doi:10.1130/0091-
867 7613(1984)12<550:CMCCCE>2.0.CO;2

868 Crittenden, M. D., Coney, P. J., & Davis, G. H., editors (1980). Cordilleran metamorphic core complexes:
869 Geological Society of America Memoir 153, 490 p.

870 Cross, A. J., Prior, D. J., Stipp, M., & Kidder, S. (2017). The recrystallized grain size piezometer for
871 quartz: An EBSD-based calibration. *Geophysical Research Letters*, 44(13), 6667–6674.
872 doi:10.1002/2017GL073836

873 Davis, G. H. (1980). Structural characteristics of metamorphic core complexes, southern Arizona.
874 Geological Society of America Memoirs, 153, 35–78. doi:10.1130/MEM153

875 Davis, G. H., Gardulski, A. F., & Lister, G. S. (1987). Shear zone origin of quartzite mylonite and
876 mylonitic pegmatite in the Coyote Mountains metamorphic core complex, Arizona. *Journal of
877 structural geology*, 9(3), 289–297. doi:10.1016/0191-8141(87)90053-8

878 Davy, P., Guérin, G., & Brun, J. P. (1989). Thermal constraints on the tectonic evolution of a
879 metamorphic core complex (Santa Catalina Mountains, Arizona). *Earth and Planetary Science
880 Letters*, 94(3–4), 425–440. doi.org/10.1016/0012-821X(89)90159-3

881 Dickinson, W. R. (1989). Tectonic setting of Arizona through geologic time. In J. P. Jenney, S. J.
882 Reynolds (Eds.), *Geologic evolution of Arizona*, Digest (Vol. 17, 1–16). Tucson, AZ: Arizona
883 Geological Society.
884 [https://www.arizonageologicalsoc.org/resources/Documents/Publications/Digests/Digest_17/01_](https://www.arizonageologicalsoc.org/resources/Documents/Publications/Digests/Digest_17/01_AGSDIG17_Title_Table_of_Contents-S.pdf)
885 [AGS_DIG17_Title_Table_of_Contents-S.pdf](https://www.arizonageologicalsoc.org/resources/Documents/Publications/Digests/Digest_17/01_AGSDIG17_Title_Table_of_Contents-S.pdf)

886 Dickinson, W. R. (1991). Tectonic setting of faulted Tertiary strata associated with the Catalina core
887 complex in southern Arizona. *Special Papers* (Vol. 264). Boulder, CO: Geological Society of
888 America. doi:10.1130/SPE264

889 Dickinson, W. R. (2002). The Basin and Range Province as a composite extensional domain.
890 *International Geology Review*, 44(1), 1–38, <https://doi.org/10.2747/0020-6814.44.1.1>

891 Di Vincenzo, G., Viti, C. & Rocchi, S. (2003). The effect of chlorite interlayering on 40 Ar–39 Ar biotite
892 dating: an 40Ar–39Ar laser-probe and TEM investigations of variably chloritised biotites.
893 *Contributions to Mineralogy and Petrology*, 145(6), 643–658. doi:10.1007/s00410-003-0472-z

894 Donelick, R. A., & Miller, D. S. (1991). Enhanced TINT fission track densities in low spontaneous track
895 density apatites using 252Cf-derived fission fragment tracks: A model and experimental
896 observations. *International Journal of Radiation Applications and Instrumentation. Part D:
897 Nuclear Tracks and Radiation Measurements*, 18(3), 301–307. [https://doi.org/10.1016/1359-0189\(91\)90022-A](https://doi.org/10.1016/1359-0189(91)90022-A)

898 Donelick, R. A., O’Sullivan, P. B., & Ketcham, R. A. (2005). Apatite fission-track analysis. *Reviews in
899 Mineralogy and Geochemistry*, 58(1), 49–94. <https://doi.org/10.2138/rmg.2005.58.3>

900 Favorito, D. A., & Seedorff, E. (2018). Discovery of Major Basement-Cored Uplifts in the Northern
901 Galiuro Mountains, Southeastern Arizona: Implications for Regional Laramide Deformation Style
902 and Structural Evolution. *Tectonics*, 37(10), 3916–3940. doi.org/10.1029/2018TC005180

903 Fayon, A. K., Peacock, S. M., Stump, E., & Reynolds, S. J. (2000). Fission track analysis of the footwall
904 of the Catalina detachment fault, Arizona: Tectonic denudation, magmatism, and erosion. *Journal
905 of Geophysical Research: Solid Earth*, 105(B5), 11047–11062. doi:10.1029/1999JB900421

906

907 Fitz-Díaz, E., Lawton, T. F., Juárez-Arriaga, E., & Chávez-Cabello, G. (2018). The Cretaceous-Paleogene
908 Mexican orogen: Structure, basin development, magmatism and tectonics. *Earth-Science
909 Reviews*, 183, 56–84. doi.org/10.1016/j.earscirev.2017.03.002

910 Fitzgerald, P. G., Reynolds, S. J., Stump, E., Foster, D. A., & Gleadow, A. J. W. (1993).
911 Thermochronologic evidence for timing of denudation and rate of crustal extension of the South
912 Mountains metamorphic core complex and Sierra Estrella, Arizona. *Nuclear Tracks and
913 Radiation Measurements*, 21(4), 555–563.

914 Fitz Gerald, J. D., & Stünitz, H. (1993). Deformation of granitoids at low metamorphic grade. I:
915 Reactions and grain size reduction. *Tectonophysics*, 221(3–4), 269–297. doi:10.1016/0040-
916 1951(93)90163-E

917 Fornash, K. F., Patchett, P. J., Gehrels, G. E., & Spencer, J. E., (2013), Evolution of granitoids in the
918 Catalina metamorphic core complex, southeastern Arizona: U–Pb, Nd, and Hf isotopic
919 constraints: Contributions to Mineral Petrology, 165, 1295–1310. doi: 10.1007/s00410-013-0859-
920 4

921 Foster, D. A., Harrison, T. M., Miller, C. F., & Howard, K. A. (1990). The 40Ar/39Ar thermochronology
922 of the eastern Mojave Desert, California, and adjacent western Arizona with implications for the
923 evolution of metamorphic core complexes. *Journal of Geophysical Research: Solid Earth*,
924 95(B12), 20005–20024. doi:10.1029/JB095iB12p20005

925 Foster, D. A., Howard K. A., and John, B. E. (1991). Thermochronological constraints on the
926 development of metamorphic core complexes in the lower Colorado River area, in Eighth
927 International Conference on Geochronology, Cosmochronology, and Isotope Geology, edited by
928 M. A. Lanphere, G. B. Dalrymple, and B. D. Turrin, U.S. Geol. Surv. Circ., 1107, 103 pp., 1994.
929 <https://pubs.usgs.gov/circ/1994/1107/report.pdf>

930 Foster, D. A., & Spencer, J. E. (1992). Apatite and Zircon Fission, Track Dates from the Northern
931 Plomosa Mountains, La Paz County, West-central Arizona. Arizona Geological Survey.
932 http://repository.azgs.az.gov/uri_gin/azgs/dlio/311

933 Foster, D. A., & John, B. E. (1999). Quantifying tectonic exhumation in an extensional orogen with
934 thermochronology: examples from the southern Basin and Range Province. *Geological Society,
935 London, Special Publications*, 154(1), 343–364. <https://doi.org/10.1144/GSL.SP.1999.154.01.16>

936 Foster, D. A., Schafer, C., Fanning, C. M., & Hyndman, D. W. (2001). Relationships between crustal
937 partial melting, plutonism, orogeny, and exhumation: Idaho-Bitterroot batholith: *Tectonophysics*,
938 v. 342, 313–350. doi:10.1016/S0040-1951(01)00169-X

939 Gabber, L.J. (1991). On the Significance of Argon 40/Argon 39 Incremental Heating Of Biotite,
940 Muscovite, And Amphibole, The Ohio State University, PhD Thesis.

941 Gallagher, K. (2012). Transdimensional inverse thermal history modeling for quantitative
942 thermochronology. *Journal of Geophysical Research: Solid Earth*, 117(B2).
943 <https://doi.org/10.1029/2011JB008825>

944 Gans, P. B., & Bohrson, W. A. (1998). Suppression of volcanism during rapid extension in the Basin and
945 Range Province, United States. *Science*, 279(5347), 66–68. doi:10.1126/science.279.5347.66

946 Gans, P. B., Mahood, G. A., & Schermer, E. (1989). Synextensional Magmatism in the Basin and Range
947 Province: A Case Study from the Eastern Great Basin: *Geological Society of America Special
948 Paper* 233, 53 p. doi:10.1130/SPE233

949 Gardulski, A. F. (1980). A structural and petrologic analysis of a quartzite--pegmatite tectonite, Coyote
950 Mountains, southern Arizona.

951 https://repository.arizona.edu/bitstream/handle/10150/557464/AZU_TD_BOX297_E9791_1980_
952 255.pdf?sequence=1

953 Gleadow, A. J. W., Duddy, I. R., Green, P. F., & Lovering, J. F. (1986). Confined fission track lengths in
954 apatite: a diagnostic tool for thermal history analysis. *Contributions to Mineralogy and Petrology*,
955 94(4), 405–415. <https://doi.org/10.1007/BF00376334>

956 Gleadow, A. J., Belton, D. X., Kohn, B. P., & Brown, R. W. (2002). Fission track dating of phosphate
957 minerals and the thermochronology of apatite. *Reviews in mineralogy and geochemistry*, 48(1),
958 579–630. <https://doi.org/10.2138/rmg.2002.48.16>

959 González-León, C. M., Solari, L., Valencia-Moreno, M., Rascon-Heimpler, M. A., Solé, J., González-
960 Becuar, E., Lozano-Santacruz, R., & Pérez-Arvizu, O. (2016). Late Cretaceous to early Eocene
961 magmatic evolution of the Laramide arc in the Nacoziari quadrangle, northeastern Sonora, Mexico
962 and its regional implications: *Ore Geology Reviews*, doi:10.1016/j.oregeorev.2016.07.020

963 Gottardi, R., & Teyssier, C., (2013). Thermomechanics of an extensional shear zone, Raft River
964 metamorphic core complex, NW Utah. *Journal of Structural Geology*, 53, 54–69.
965 doi.org/10.1016/j.jsg.2013.05.012

966 Gottardi, R., Schaper, M. C., Barnes, J. D., & Heizler, M. T. (2018). Fluid–Rock Interaction and Strain
967 Localization in the Picacho Mountains Detachment Shear Zone, Arizona, USA. *Tectonics*, 37(9),
968 3244–3260. doi:10.1029/2017TC004835

969 Goodwin, L. B., & Haxel, G. B. (1990). Structural evolution of the Southern Baboquivari Mountains,
970 south-central and north-central Sonora. *Tectonics*, 9(5), 1077–1095.
971 doi:10.1029/TC009i005p01077

972 ten Grotenhuis, S. M., Trouw, R. A. J., & Passchier, C. W. (2003). Evolution of mica fish in mylonitic
973 rocks. *Tectonophysics*, 372, 1–21. doi:10.1016/S0040-1951(03)00231-2

974 Grove, M. & Harrison, T. M. (1996). 40Ar^* diffusion in Fe-rich biotite. *American Mineralogist*, 81(7–8),
975 940–951.

976 Hacker, B. R., Yin, A., Christie, J. M., & Davis, G. A. (1992). Stress magnitude, strain rate, and rheology
977 of extended middle continental crust inferred from quartz grain sizes in the Whipple Mountains,
978 California. *Tectonics*, 11(1), 36–46, <https://doi.org/10.1029/91TC01291>

979 Harrison, T. M., Célérier, J., Aikman, A. B., Hermann, J. & Heizler, M. T. (2009). Diffusion of 40Ar in
980 muscovite. *Geochimica et Cosmochimica Acta*, 73(4), 1039–1051.
981 doi.org/10.1016/j.gca.2008.09.038

982 Haugerud, R.A., & Kunk, M.J. (1988). ArAr*, a Computer Program for Reduction of $40\text{Ar}/39\text{Ar}$ Data:
983 U.S. Geological Survey Open-File Report 88–261, 68 p. doi:10.3133/ofr88261

984 Haxel, G., May, D. J., Wright, I. E., & Tosdal, R.M. (1980a). Reconnaissance geologic map of the
985 Baboquivari Peak quadrangle, Arizona. U.S. Geological Survey Miscellaneous Field Studies Map
986 MF-1251, scale 1:62,500. doi:10.3133/mf1251

987 Haxel, G., Wright, I. E., May, D. J., & Tosdal, R. M. (1980b). Reconnaissance geology of the Mesozoic
988 and lower Cenozoic rocks of the southern Papago Indian Reservation, Arizona: A preliminary
989 report. *Arizona Geological Society Digest*, v. 12, 17–29.
990 [https://www.arizonageologicalsoc.org/resources/Documents/Publications/Digests/Digest_12/01_](https://www.arizonageologicalsoc.org/resources/Documents/Publications/Digests/Digest_12/01_AGSDIG12_Title%20Page_Table_of_Contents-S.pdf)
991 [AGS_DIG12_Title%20Page_Table_of_Contents-S.pdf](https://www.arizonageologicalsoc.org/resources/Documents/Publications/Digests/Digest_12/01_AGSDIG12_Title%20Page_Table_of_Contents-S.pdf).

992 Haxel, G., Tosdal, R. M., May, D. J., & Wright, I.E. (1984). Latest Cretaceous and early Tertiary
993 orogenesis in southcentral Arizona: thrust faulting, regional metamorphism, and granitic

994 plutonism. *Geological Society of America Bulletin*, v. 95, 631–653. doi:10.1130/0016-
995 7606(1984)95<631:LCAETO>2.0.CO;2

996 Hirth, G. & Tullis, J. (1992). Dislocation creep regimes in quartz aggregates. *Journal of Structural*
997 *Geology*, 14(2), 145–159. doi:10.1016/0191-8141(92)90053-Y

998 Hirth, G., Teyssier, C., & Dunlap, J. W. (2001). An evaluation of quartzite flow laws based on
999 comparisons between experimentally and naturally deformed rocks. *International Journal of Earth*
1000 *Sciences* 90, no. 1, 77–87. doi:10.1007/s005310000152

1001 Howard, K. A., and Foster, D. A. (1996). Thermal and unroofing history of a thick, tilted Basin-and-
1002 Range crustal section in the Tortilla Mountains, Arizona, *Journal of Geophysical Research*, 101,
1003 511–522, 1996. . <https://doi.org/10.1029/95JB02909>

1004 Jepson, G., and Carrapa, B., (2019), Thermochronological and Geochemical Insights on the transition
1005 between the Metamorphic Core Complex and the North American Cordillera, Southern Arizona.
1006 GSA Annual Meeting in Phoenix, Arizona, USA. GSA.

1007 John, B. E., & Foster, D. A. (1993). Structural and thermal constraints on the initiation angle of
1008 detachment faulting in the southern Basin and Range: The Chemehuevi Mountains case study.
1009 *Geological Society of America Bulletin*, 105(8), 1091–1108. [https://doi.org/10.1130/0016-7606\(1993\)105<1091:SATCOT>2.3.CO;2](https://doi.org/10.1130/0016-7606(1993)105<1091:SATCOT>2.3.CO;2)

1011 Keith, S. B., Reynolds, S. J., Damon, P. E., Shafiqullah, M., Livingston, D. E., & Pushkar, P. D. (1980).
1012 Evidence for multiple intrusion and deformation within the Santa Catalina-Rincon-Tortolita
1013 crystalline complex, southeastern Arizona. In M. S. Crittenden Jr., P. J. Coney, G. H. Davis,
1014 (Eds.), *Cordilleran metamorphic core complexes, Memoir* (Vol. 153, 217–267). Boulder, CO:
1015 Geological Society of America. doi:10.1130/MEM153-p217.

1016 Kelley, S. (2002). Excess argon in K–Ar and Ar–Ar geochronology. *Chemical Geology*, 188(1–2), 1–22.
1017 doi:10.1016/S0009-2541(02)00064-5

1018 Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J., & Hurford, A. J. (2007). Improved modeling
1019 of fission-track annealing in apatite. *American Mineralogist*, 92(5–6), 799–810.
1020 <https://doi.org/10.2138/am.2007.2281>

1021 Krantz, R. W., Jenney, J. P., & Reynolds, S. J. (1989). Laramide structures of Arizona. *Geologic*
1022 *Evolution of Arizona: Arizona Geological Society Digest*, 17, 463–483.

1023 Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., & Wijbrans, A. J. (2008).
1024 Synchronizing rock clocks of Earth history. *Science*, 320(5875), 500–504. doi:
1025 10.1126/science.1154339.

1026 Laslett, G. M., Kendall, W. S., Gleadow, A. J. W., & Duddy, I. R. (1982). Bias in measurement of
1027 fission-track length distributions. *Nuclear Tracks and Radiation Measurements* (1982), 6(2–3),
1028 79–85. [https://doi.org/10.1016/0735-245X\(82\)90031-X](https://doi.org/10.1016/0735-245X(82)90031-X)

1029 Lee, J. Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H. S., Lee, J. B., & Kim, J. S. (2006). A
1030 redetermination of the isotopic abundances of atmospheric Ar. *Geochimica et Cosmochimica*
1031 *Acta*, 70(17), 4507–4512. doi:10.1016/j.gca.2006.06.1563

1032 Lister, G. S. (1977). Discussion: crossed-girdle c-axis fabrics in quartzites plastically deformed by plane
1033 strain and progressive simple shear. *Tectonophysics*, 39(1–3), 51–54. doi:10.1016/0040-
1034 1951(77)90087-7

1035 Lister, G. S., & Baldwin, S. L. (1993). Plutonism and the origin of metamorphic core complexes:
1036 *Geology*, v. 21, 607–610. doi:10.1130/0091-7613(1993)021<607:PATOOM>2.3.CO;2

1037 Lister, G. S., & Davis, G. A. (1989). The origin of metamorphic core complexes and detachment faults
1038 formed during Tertiary continental extension in the northern Colorado River region, USA.
1039 *Journal of Structural Geology*, 11(1–2), 65–94. doi:10.1016/0191-8141(89)90036-9

1040 Lo, C-H, & Onstott, T. C. (1989). ³⁹Ar recoil artifacts in chloritized biotite. *Geochimica et*
1041 *Cosmochimica Acta*, 53(10), 2697–2711. doi:10.1016/0016-7037(89)90141-5

1042 Long, S. P., & Soignard, E. (2016). Shallow-crustal metamorphism during Late Cretaceous anatexis in the
1043 Sevier hinterland plateau: Peak temperature conditions from the Grant Range, eastern Nevada,
1044 USA. *Lithosphere*, 8(2), 150–164.

1045 Long, K. B., Gehrels, G. E., & Baldwin, S. L. (1995). Tectonothermal evolution of the Pinaleno-Jackson
1046 Mountain core complex, southeast Arizona. *Geological Society of America Bulletin*, 107(10),
1047 1231–1240. doi:10.1130/0016-7606(1995)107<1231:TEOTPO>2.3.CO;2

1048 Long, S. P., Heizler, M. T., Thomson, S. N., Reiners, P. W., & Fryxell, J. E. (2018). Rapid Oligocene to
1049 early Miocene extension along the Grant Range detachment system, Nevada, USA: Insights from
1050 multipart cooling histories of footwall rocks. *Tectonics*, 37(12), 4752–4779.

1051 Ludwig, K. R. (2012). User's Manual for ISOPLOT 3.75: A Geochronological Toolkit for Microsoft
1052 Excel. Berkeley Geochronology Center, Special Publication No. 5, 75 p.

1053 McAleer, R. J., Bish, D. L., Kunk, M. J., Sicard, K. R., Valley, P. M., Walsh, G. J., Wathen, B. A., &
1054 Wintsch, R. P. (2017). Reaction softening by dissolution–precipitation creep in a retrograde
1055 greenschist facies ductile shear zone, New Hampshire, USA. *Journal of Metamorphic Geology*,
1056 35(1), 95–119. doi:10.1111/jmg.12222

1057 McQuarrie, N., & Wernicke, B. P. (2005). An animated tectonic reconstruction of southwestern north
1058 America since 36 Ma, *Geosphere*, 1, 147–172, doi:10.1130/GES00016.1.

1059 McQuarrie, N., & Oskin, M. (2010). Palinspastic restoration of NAVDat and implications for the origin
1060 of magmatism in southwestern North America. *Journal of Geophysical Research: Solid Earth*,
1061 115(B10), <https://doi.org/10.1029/2009JB006435>.

1062 Miller, E. L., & Gans, P. B. (1989). Cretaceous crustal structure and metamorphism in the hinterland of
1063 the Sevier thrust belt, western US Cordillera. *Geology*, 17(1), 59–62.

1064 Miller, C. F., McDowell, S. M., & Mapes, R. W. (2003). Hot and cold granites? Implications of zircon
1065 saturation temperatures and preservation of inheritance. *Geology*, 31(6), 529–532.
1066 [https://doi.org/10.1130/0091-7613\(2003\)031%3C0529:HACGIO%3E2.0.CO;2](https://doi.org/10.1130/0091-7613(2003)031%3C0529:HACGIO%3E2.0.CO;2)

1067 Min, K., Mundil, R., Renne, P. R., & Ludwig, K. R. (2000). A test for systematic errors in ⁴⁰Ar/³⁹Ar
1068 geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. *Geochimica et*
1069 *Cosmochimica Acta*, 64(1), 73–98. doi:10.1016/S0016-7037(99)00204-5

1070 Passchier, C. W., & Trouw, R. A. J. (2005) *Microtectonics*, Springer-Verlag Berlin Heidelberg,
1071 doi:10.1007/978-3-662-08734-3, ISBN: 978-3-662-08734-3

1072 Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., & Maas, R. (2010). Improved laser
1073 ablation U-Pb zircon geochronology through robust downhole fractionation correction.
1074 *Geochemistry, Geophysics, Geosystems*, 11, Q0AA06. doi: 10.1029/2009GC002618

1075 Petrus, J. A., & Kamber, B. S. (2012). VizualAge: a novel approach to laser ablation ICP-MS U-Pb
1076 geochronology data reduction. *Geostand. Geoanal. Res.* 36, 247–270. doi:10.1111/j.1751-
1077 908X.2012.00158.x

1078 Platt, J. P., Behr, W. M., & Cooper, F. J. (2015). Metamorphic core complexes: windows into the
1079 mechanics and rheology of the crust. *Journal of the Geological Society*, 172(1), 9–27.
1080 doi:10.1144/jgs2014-036

1081 Putirka, K., & Platt, B. (2012). Basin and Range volcanism as a passive response to extensional tectonics.
1082 *Geosphere*, 8(6), 1274–1285, <https://doi.org/10.1130/GES00803.1>

1083 Pryer, L. L. (1993). Microstructures in feldspars from a major crustal thrust zone: the Grenville Front,
1084 Ontario, Canada. *Journal of structural Geology*, 15(1), 21–36. doi:10.1016/0191-8141(93)90076-
1085 M.

1086 Rehrig, W. A., & Reynolds, S. J. (1980). Geologic and geochronologic reconnaissance of a northwest-
1087 trending zone of metamorphic core complexes in southern and western Arizona. *Memoir of the*
1088 *Geological Society of America*, 153, 131–157. doi:10.1130/MEM153-p131

1089 Rey, P., Vanderhaeghe, O., & Teyssier, C. (2001). Gravitational collapse of the continental crust:
1090 definition, regimes and modes. *Tectonophysics*, 342(3–4), 435–449. doi:10.1016/S0040-
1091 1951(01)00174-3

1092 Reynolds, S. J. (1985). Geology of the South Mountains, central Arizona, *Bulletin* (Vol. 195). Tucson,
1093 AZ: Arizona Bureau of Geology and Mineral Technology,
1094 http://repository.azgs.az.gov/uri_gin/azgs/dlio/1655.

1095 Richard, S. M., Fryxell, J. E., & Sutter, J. F. (1990). Tertiary structure and thermal history of the
1096 Harquahala and Buckskin Mountains, west central Arizona: Implications for denudation by a
1097 major detachment fault system. *Journal of Geophysical Research: Solid Earth*, 95(B12), 19973–
1098 19987. doi:10.1029/JB095iB12p19973

1099 Roberts, H. J., Kelley, S. P., & Dahl, P. S. (2001). Obtaining geologically meaningful 40Ar–39Ar ages
1100 from altered biotite. *Chemical Geology*, 172(3–4), 277–290. doi:10.1016/S0009-2541(00)00255-
1101 2

1102 Rutter, E. H., & Brodie, K. H. (2004). Experimental grain size-sensitive flow of hot-pressed Brazilian
1103 quartz aggregates. *Journal of Structural Geology*, 26(11), 2011–2023,
1104 doi:10.1016/j.jsg.2004.04.006

1105 Ruffet, G., Féraud, G., & Amouric, M. (1991). Comparison of 40Ar-39Ar conventional and laser dating
1106 of biotites from the North Trégor Batholith. *Geochimica et Cosmochimica Acta*, 55(6), 1675–
1107 1688. doi:10.1016/0016-7037(91)90138-U

1108 Schmid, S. M., & Casey, M. (1986). Complete fabric analysis of some commonly observed quartz c-axis
1109 patterns. *Geophysical Monograph*, 36, 263–286.

1110 Scott, R. J., Foster, D. A., and Lister, G., S. (1998). "Tectonic implications of rapid cooling of lower plate
1111 rocks from the Buckskin-Rawhide metamorphic core complex, west-central Arizona." *Geological*
1112 *Society of America Bulletin* 110.5 (1998): 588–614. [https://doi.org/10.1130/0016-7606\(1998\)110<0588:TIORCO>2.3.CO;2](https://doi.org/10.1130/0016-7606(1998)110<0588:TIORCO>2.3.CO;2)

1114 Simpson, C., & Wintsch, R. P. (1989). Evidence for deformation-induced K-feldspar replacement by
1115 myrmekite. *Journal of Metamorphic Geology*, 7(2), 261–275. doi:10.1111/j.1525-
1116 1314.1989.tb00588.x

1117 Singleton, J. S., & Mosher, S. (2012). Mylonitization in the lower plate of the Buckskin-Rawhide
1118 detachment fault, west-central Arizona: Implications for the geometric evolution of metamorphic
1119 core complexes. *Journal of Structural Geology*, 39, 180–198. doi:10.1016/j.jsg.2012.02.013

1120 Singleton, J. S., & Wong, M. S. (2016). Polyphase mylonitization in the Harcuvar and Buckskin-Rawhide
1121 metamorphic core complexes, west-central Arizona. In *Geological Society of America Abstracts*
1122 with Programs

1123 Singleton, J. S., Stockli, D. F., Gans, P. B., & Prior, M. G. (2014). Timing, rate, and magnitude of slip on
1124 the Buckskin-Rawhide detachment fault, west central Arizona. *Tectonics*, 33(8), 1596–1615.
1125 doi:10.1002/2013TC003517

1126 Singleton, J. S., Wong, M. S., & Johnston, S. M. (2018). The role of calcite-rich metasedimentary
1127 mylonites in localizing detachment fault strain and influencing the structural evolution of the
1128 Buckskin-Rawhide metamorphic core complex, west-central Arizona. *Lithosphere*, 10(2), 172–
1129 193. doi:10.1130/L699.1

1130 Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A.,
1131 Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., &
1132 Whitehouse, M. J. (2008). Plešovice zircon — A new natural reference material for U–Pb and Hf
1133 isotopic microanalysis: *Chemical Geology* 249, 1–35. doi.org/10.1016/j.chemgeo.2007.11.005

1134 Sloss, L. L. (1988). Tectonic evolution of the craton in Phanerozoic time. *The Geology of North America*,
1135 2, 25–51. doi:10.1130/DNAG-GNA-D2.25

1136 Solari, L.A., Gómez-Tuena, A., Bernal, J.P., Pérez-Arvizu, O., & Tanner, M. (2010). U-Pb zircon
1137 geochronology by an integrated LA-ICPMS microanalytical workstation: achievements in
1138 precision and accuracy: *Geostandards and Geoanalytical Research*, 34(1), 5–18.

1139 Spencer, J. E., & Reynolds, S. J. (1989). Middle Tertiary tectonics of Arizona and adjacent areas.
1140 Geologic evolution of Arizona: *Arizona Geological Society Digest*, 17, 539–574.

1141 Spencer, J. E., & Reynolds, S. J. (1990). Relationship between Mesozoic and Cenozoic tectonic features
1142 in west central Arizona and adjacent southeastern California. *Journal of Geophysical Research: Solid Earth*, 95(B1), 539–555. https://doi.org/10.1029/JB095iB01p00539

1144 Spencer, J.E., Richard, S.M., Reynolds, S.J., Miller, R.J., Shafiqullah, M., Gilbert, W.G., & Grubensky,
1145 M.J. (1995). Spatial and temporal relationships between mid- Tertiary magmatism and extension
1146 in southwestern Arizona: *Journal of Geophysical Research*, 100, 10,321–10,351.
1147 doi:10.1029/94JB02817

1148 Spencer, J. E., Richard, S. M., Lingrey, S. H., Johnson, B. J., Johnson, R. A., & Gehrels, G. E. (2019).
1149 Reconstruction of mid-Cenozoic extension in the Rincon Mountains area, southeastern Arizona,
1150 USA, and geodynamic implications. *Tectonics*, 38, 2338– 2357. doi:10.1029/2019TC005565

1151 Staudacher, T., Jessberger, E., Dorflinger, D., Kiko, J. (1978). A refined ultrahigh-vacuum 103 furnace
1152 for rare gas analysis. *Journal of Physics E: Scientific Instruments* 11, 781. doi:10.1088/0022-
1153 3735/11/8/019

1154 Stipp, M., Stünitz, H., Heilbronner, R., & Schmid, S. M. (2002a). The eastern Tonale fault zone: a
1155 ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to
1156 700 C. *Journal of structural geology*, 24(12), 1861–1884. doi:10.1016/S0191-8141(02)00035-4.

1157 Stipp, M., Stünitz, H., Heilbronner, R., & Schmid, S. M. (2002b). Dynamic recrystallization of quartz:
1158 correlation between natural and experimental conditions. *Geological Society, London, Special
1159 Publications*, 200(1), 171–190. doi:10.1144/GSL.SP.2001.200.01.11

1160 Stünitz, H., & Fitz Gerald, J. D. (1993). Deformation of granitoids at low metamorphic grade. II: Granular
1161 flow in albite-rich mylonites. *Tectonophysics*, 221(3–4), 299–324. doi:10.1016/0040-
1162 1951(93)90164-F

1163 Sylvester, P. J. (1998). Post-collisional strongly peraluminous granites. *Lithos*, 45(1–4), 29–44.
1164 doi:10.1016/S0024-4937(98)00024-3

1165 Tagami, T. (1987). Determination of zeta calibration constant for fission track dating, International
1166 Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation
1167 Measurements 13(2), 127–130. doi.org/10.1016/1359-0189(87)90023-9

1168 Tagami, T., & O'Sullivan, P. B. (2005). Fundamentals of fission-track thermochronology. *Reviews in*
1169 *Mineralogy and Geochemistry*, 58(1), 19–47. <https://doi.org/10.2138/rmg.2005.58.2>

1170 Teyssier, C., & Whitney, D. L. (2002). Gneiss domes and orogeny. *Geology*, 30, 1139–1142.
1171 doi:10.1130/0091-7613(2002)030<1139:GDAO>2.0.CO;2

1172 Teyssier, C., Ferre, E., Whitney, D. L., Norlander, B., Vanderhaeghe, O., & Parkinson, D. (2005). Flow
1173 of partially molten crust and origin of detachments during collapse of the Cordilleran orogen,
1174 *Geol. Soc. Spec. Publ.*, 245, 39–64. doi:10.1144/GSL.SP.2005.245.01.03

1175 Töheide, K (1972). Water at high temperature and pressure. In: Franks, F. (Ed), *Water: a comprehensive*
1176 *treatise*. Pp 463–514.

1177 Tokle, L., Hirth, G., & Behr, W. M. (2019). Flow laws and fabric transitions in wet quartzite. *Earth and*
1178 *Planetary Science Letters*, 505, 152–161. doi:10.1016/j.epsl.2018.10.017

1179 Turpin, L., Cuney, M., Friedrich, M., Bouchez, J. L., & Aubertin, M. (1990). Meta-igneous origin of
1180 Hercynian peraluminous granites in NW French Massif Central: implications for crustal history
1181 reconstructions. *Contributions to Mineralogy and Petrology*, 104(2), 163–172.
1182 doi:10.1007/BF00306440

1183 Tuttle, O. F., & Bowen, N. L. (1958). Origin of Granite in the Light of Experimental Studies in the
1184 System: NaAlSi₃O₈ (No. 74). *Geological Society of America*.

1185 Vanderhaeghe, O., Teyssier, C., McDougall, I., & Dunlap, W. J. (2003). Cooling and exhumation of the
1186 Shuswap Metamorphic Core Complex constrained by ⁴⁰Ar/³⁹Ar thermochronology. *Geological*
1187 *Society of America Bulletin*, 115(2), 200–216. doi:10.1130/0016-
1188 7606(2003)115<0200:CAEOTS>2.0.CO;2

1189 Vernon, R. H. (1999). Review of Microstructural Evidence of Magmatic and Solid-State Flow, *Visual*
1190 *Geosciences*, 5, 1–23. doi:10.1007/s10069-000-0002-3

1191 Vernon, R. H. (2018). *A practical guide to rock microstructure*. Cambridge university press,
1192 ISBN:1108684769, 9781108684767.

1193 Whitney, D., Teyssier, C., Rey, P., & Buck, W. R. (2013). Oceanic and continental core complexes.
1194 *Geological Society of America Bulletin*, 125(3–4); 273–298. doi:10.1130/B30754.1

1195 Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J.C.,
1196 & Speigel, W. (1995). Three natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and
1197 REE analyses. *Geostandards Newsletter* 19, 1–23.

1198 Wong, M. S., & Gans, P. B. (2008). Geologic, structural, and thermochronologic constraints on the
1199 tectonic evolution of the Sierra Mazatán core complex, Sonora, Mexico: New insights into
1200 metamorphic core complex formation. *Tectonics*, 27(4). doi:10.1029/2007TC002173

1201 Wong, M. S., Gans, P. B., & Scheier, J. (2010). The 40Ar/39Ar thermochronology of core complexes and
1202 other basement rocks in Sonora, Mexico: Implications for Cenozoic tectonic evolution of
1203 northwestern Mexico. *Journal of Geophysical Research: Solid Earth*, 115(B7).
1204 <https://doi.org/10.1029/2009JB007032>

1205 Wright, J. E., Haxel, Gordon, & May, D. J. (1981). Early Jurassic uranium-lead isotopic ages for
1206 Mesozoic supracrustal sequences, Papago Indian Reservation, southern Arizona [abs.]:
1207 *Geological Society of America Abstracts with Programs*, 13, 115.

1208 Wright, J. E., & Haxel, G. (1982). A garnet-two-mica granite, Coyote Mountains, southern Arizona:
1209 Geologic setting, uranium-lead isotopic systematics of zircon, and nature of the granite source
1210 region. *Geological Society of America Bulletin*, 93(11), 1176–1188. doi:10.1130/0016-
1211 7606(1982)93<1176:AGGCMS>2.0.CO;2
1212
1213
1214

1215 **FIGURE CAPTIONS**

1216

1217 **Figure 1:** Schematic map of the three belts of metamorphic core complex in the North American
1218 Cordillera, and the location of the Baboquivari Mountains (red) (adapted from Coney, 1980; Whitney et
1219 al., 2013).

1220

1221 **Figure 2:** Schematic map of the southern belt of metamorphic core complexes that extends from the
1222 Colorado extensional corridor down to Mexico (modified from Spencer et al., 2019). Direction of
1223 displacement of the hanging wall indicated by green arrows; ages of mylonitization, estimated from argon
1224 $^{40}\text{Ar}/^{39}\text{Ar}$ (green boxes) or potassium argon (K/Ar) (brown boxes), on hornblende (Hb), biotite (Bt), or
1225 muscovite (Ms) reported next to the metamorphic core complexes. Source for the geochronological data
1226 include the following: (1) Foster et al. (1990); (2) Hacker et al. (1992); (3) Scott et al. (1998) and
1227 Singleton and Wong (2016); (4) Richard et al. (1990); (5) Rehrig and Reynolds (1980); (6) Fitzgerald et
1228 al. (1993); (7) Gottardi et al. (2018); (8) Long et al. (1995); (9) Fayon et al. (2000); (10) Wong et al.
1229 (2010); (11) Wong and Gans (2008).

1230

1231 **Figure 3:** (Left) Geologic map of the Baboquivari Mountains, showing the location of the Laramide
1232 Baboquivari thrust and Coyote Mountain Metamorphic core complex (adapted from Haxel et al., 1984).
1233 (Right) Geologic map of the Coyote Mountain metamorphic core complex; modified from Gardulski
1234 (1980) and Wright and Haxel (1982). Cross section AA' indicate the location of the collected samples
1235 (modified from Davis et al., 1987).

1236

1237 **Figure 4:** Cross-polarized thin section photomicrographs of representative microstructures of the Coyote
1238 Mountain detachment shear zone (A) protomylonite, (B-D) mylonite. Thin sections cut perpendicular to
1239 foliation and parallel to lineation, the photomicrographs are taken oriented top to the North.

1240

1241 **Figure 5:** Cross-polarized thin section photomicrographs of representative quartz microstructures. Bands
1242 of fine quartz grains recrystallized dominantly by subgrain rotation (A-B) and and grain boundary
1243 migration (C-D). Quartz forms stretched and deformed ribbons commonly wrapped around rigid feldspar
1244 porphyroclasts (A-B). (E) Larger quartz grains and ribbons commonly display banded undulose
1245 extinction. (F) Quartz grains are often cross-cut by fluid inclusions bands that cross multiple grains (white
1246 arrows). Thin sections cut perpendicular to foliation and parallel to lineation, the photomicrographs are
1247 taken oriented top to the North (North to the right).

1248

1249 **Figure 6:** Cross-polarized thin section photomicrographs of representative feldspar microstructures. (A-
1250 B) fracturing of feldspar grains along cleavage planes at high angle to foliation, recording top-to-the-north
1251 kinematic shear sense. (C) Flame perthite oriented subparallel to the mylonitic foliation. (D) Bent twins in
1252 plagioclase. (F) Tartan twinning. (E) Myrmekites oriented subparallel to the mylonitic foliation. (F)
1253 Subordinate subgrain rotation recrystallization of feldspar grains (white arrows). Thin sections cut
1254 perpendicular to foliation and parallel to lineation, the photomicrographs are taken oriented top to the
1255 North (North to the right).

1256

1257 **Figure 7:** Cross-polarized thin section photomicrographs of representative biotite and muscovite
1258 microstructures. (A) Biotite grains preserve a rhombohedral shape. (B-F) Coarse-grained muscovite
1259 shows evidence of intracrystalline deformation such as kink folding (B-C), micro-boudinage (D), and
1260 bent folia (E-F). Thin sections cut perpendicular to foliation and parallel to lineation, the
1261 photomicrographs are taken oriented top to the North (North to the right).

1262

1263 **Figure 8:** Quartz crystallographic preferred orientation measured by Electron Backscattered Diffraction.
1264 Quartz c- and a-axis pole figures show that slip systems active during quartz recrystallization included
1265 basal $\langle a \rangle$, rhomb $\langle a \rangle$, and/or prism $\langle a \rangle$ slip. C-axis pole figures show dextral asymmetry compatible with a

1266 top-to-the-north sense of shear, suggesting that the detachment shear zone experience a non-coaxial
1267 constrictional component of deformation.

1268

1269 **Figure 9:** Tera–Wasserburg concordia diagram (A) and weighted mean age plot (B) for two-mica granite
1270 sample CM14-04. The most concordant U-Pb zircon analyses, used for the $^{206}\text{Pb}/^{238}\text{U}$ age calculation ($n =$
1271 15), are shown as black-line error ellipses with black squares in the concordia diagram (A) and as gray
1272 bars in weighted mean age plot (B). C) SEM-Cathodoluminescence images of representative dated zircons
1273 from the granite sample; yellow semicircles and the adjacent numbers represent the spot size ($\sim 23\mu\text{m}$) and
1274 the spot number, respectively. The $^{206}\text{Pb}/^{238}\text{U}$ ages are reported in Ma at the 2-sigma level of precision.
1275 Zircon spots marked as “bad data” in the cathodoluminescence image represent laser ablation analyses
1276 that sampled different proportions of zircon material combined with other unintended mineral phases
1277 (e.g., inclusions of apatite, oxides, etc.) that make the U-Pb geochronology effort ineffective due to large
1278 uncertainties in the isotopic ratios.

1279

1280 **Figure 10:** $^{40}\text{Ar}/^{39}\text{Ar}$ Ms-Bt age spectra pairs for 11 samples from the Coyote Mountains. Replicate
1281 analyses from samples CM16-06 and CM16-10A are also plotted. See Figure 3 for sample locations. *M
1282 = mylonite, P = protomylonite.

1283

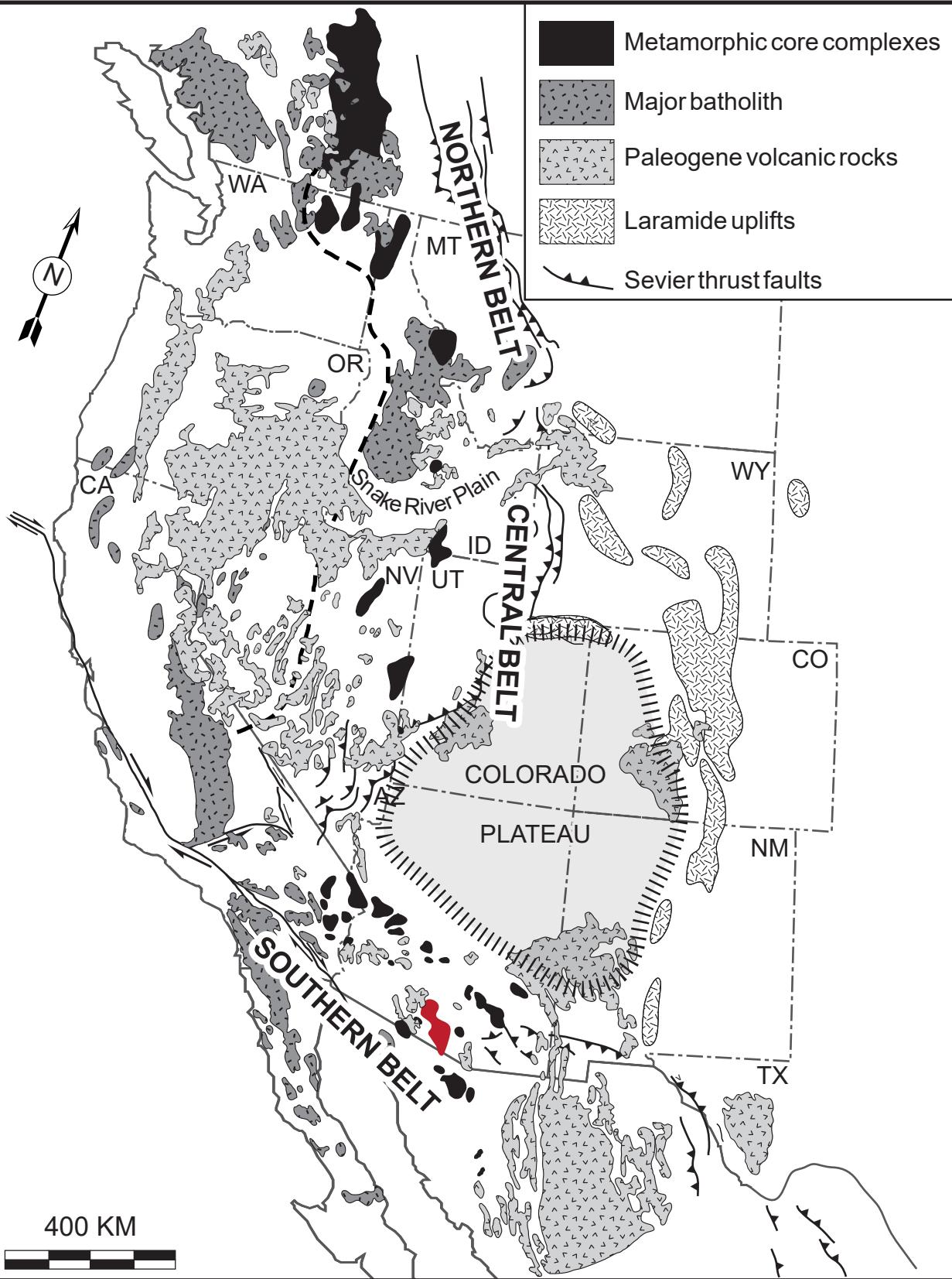
1284 **Figure 11:** Geochronological total gas ages plotted on the AA' transect across the Coyote Mountain
1285 detachment shear zone (see Figure 3 for AA' location). There is little variance in muscovite age across the
1286 transect. Biotite ages vary widely but show no correlation with elevation.

1287

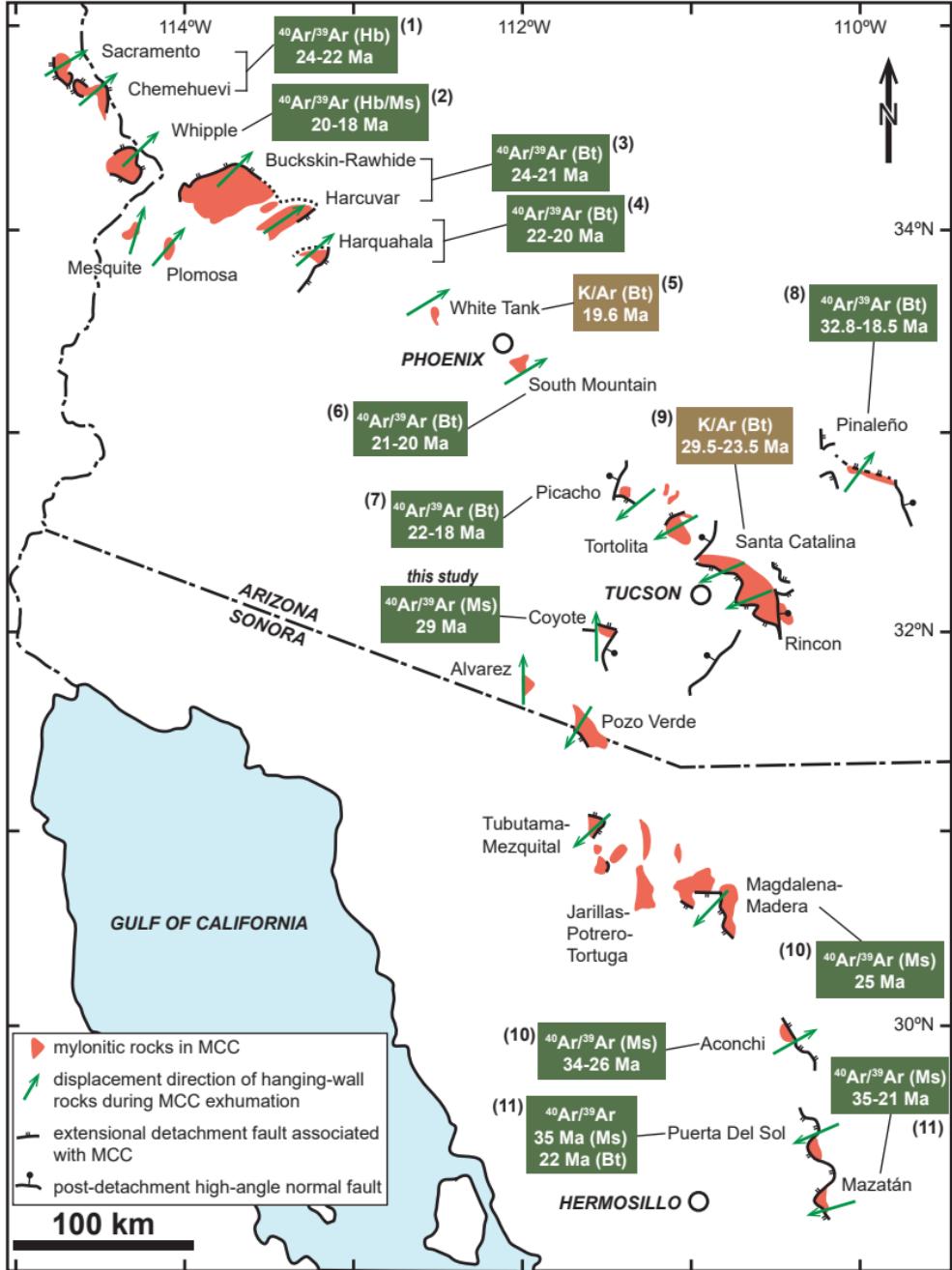
1288 **Figure 12:** Combined thermal history model for samples CP-01 and CP-02. The blue and red lines are the
1289 expected models, grey envelopes are the 95% confidence interval for the expected model. APAZ is the
1290 apatite partial annealing zone. The model predicts monotonic cooling between the zircon U-Pb age (58
1291 Ma) and the muscovite Ar-Ar age (29 Ma), followed by extremely rapid cooling between 29 and 24 Ma.

1292

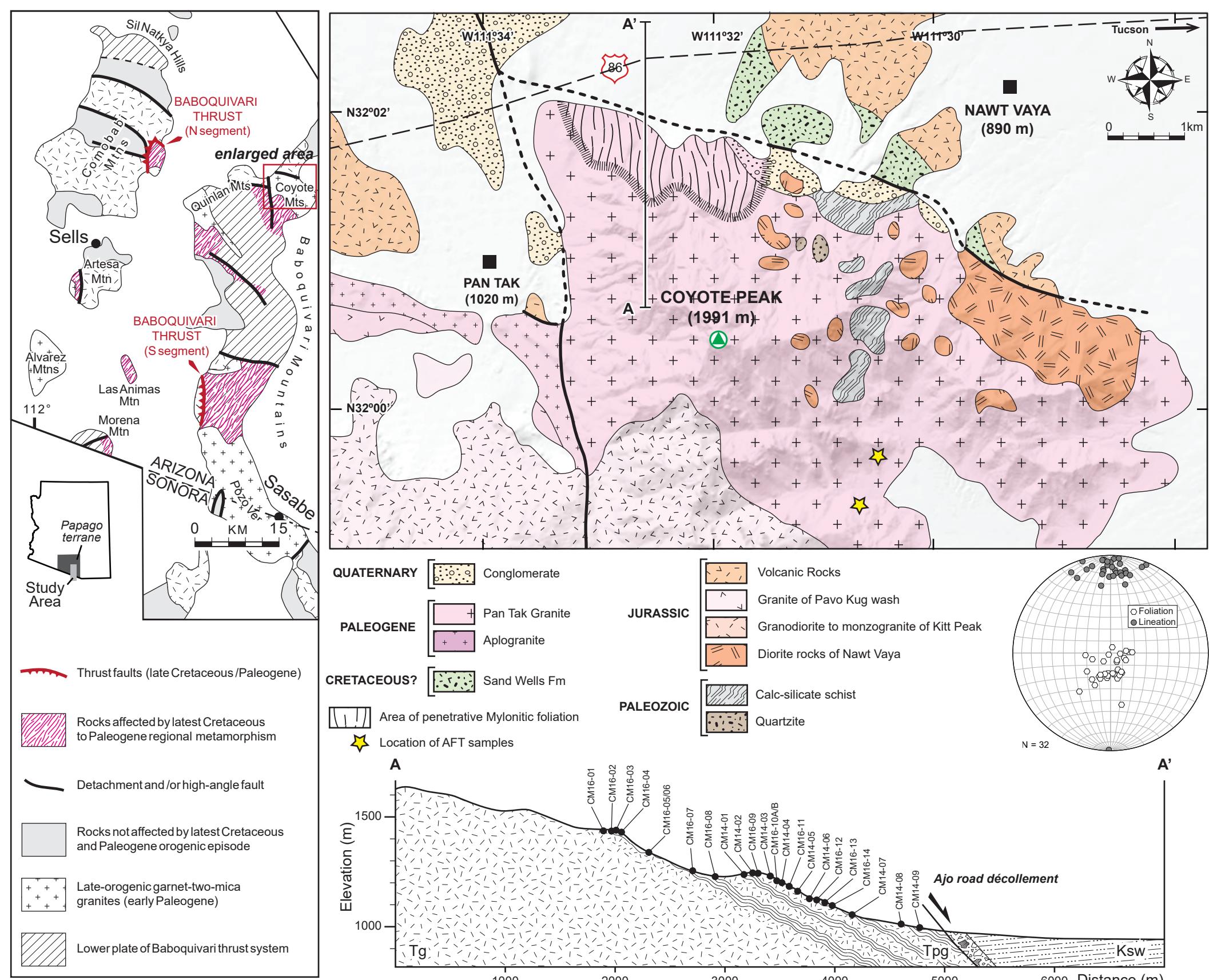
1293 **Figure 13:** Strength profile using the Hirth et al. (2001) and Rutter and Brodie (2004) quartzite
1294 dislocation creep flow law for the lower crust. Vertical axis is temperature; hot geotherms of 35°C/km
1295 and 45°C/km are used to convert temperature to depth, suggesting that the detachment shear zone evolved
1296 at a depth ranging from 11 to 14 km.

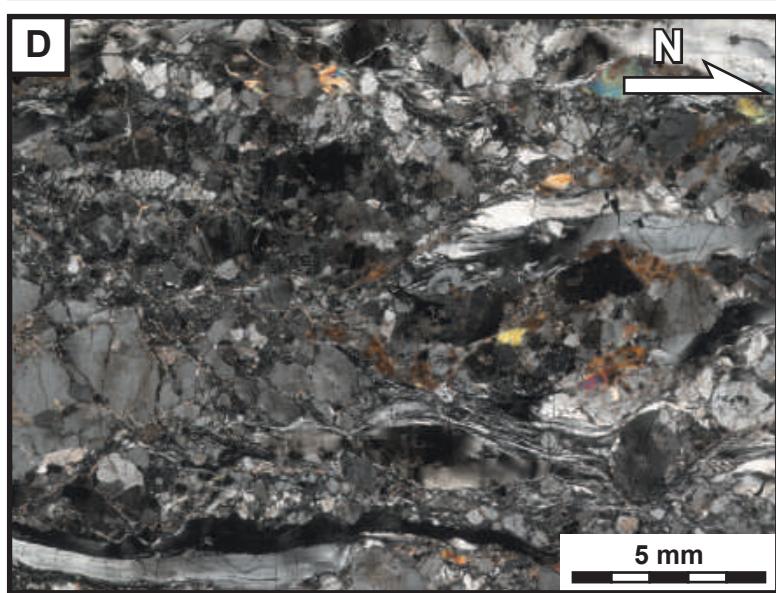
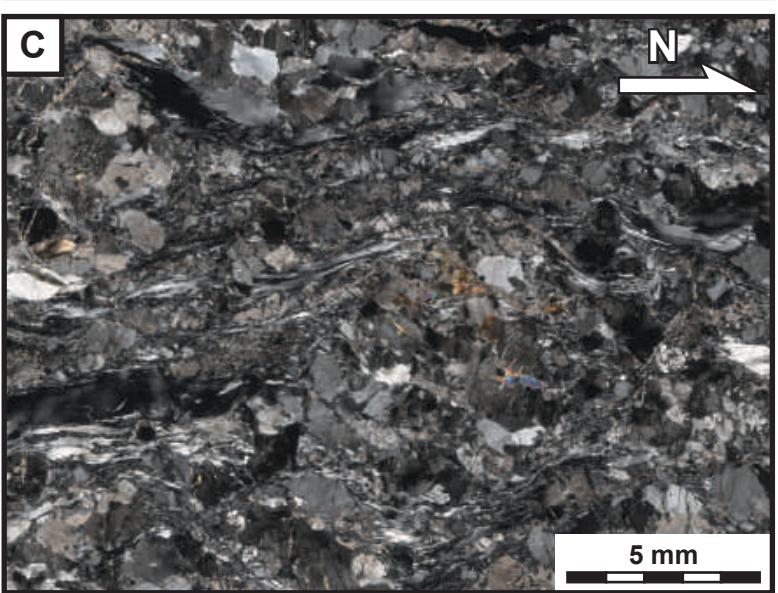
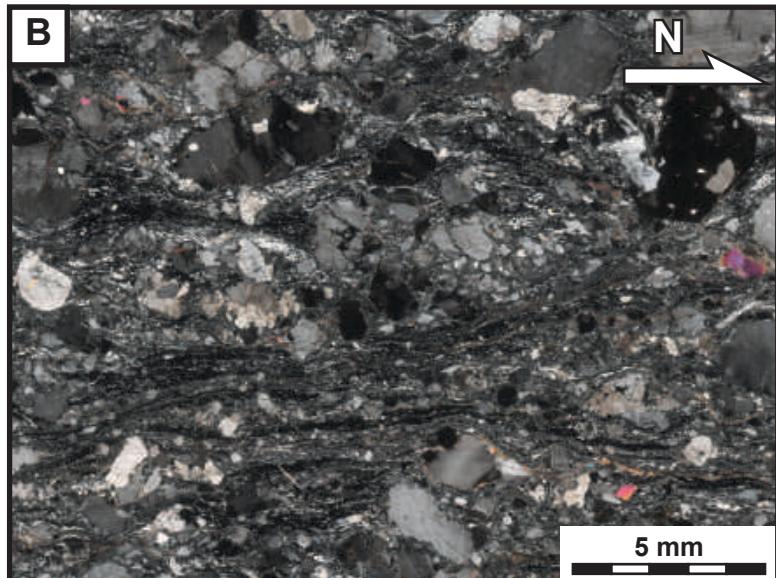
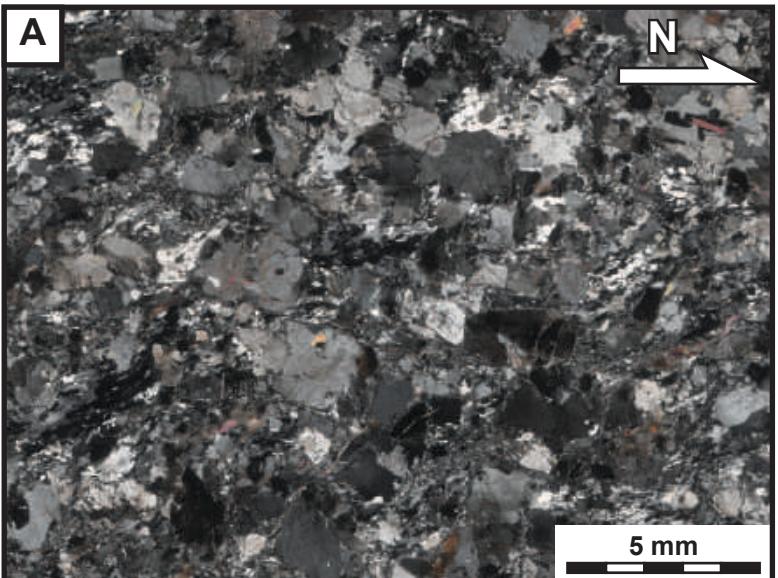

1297

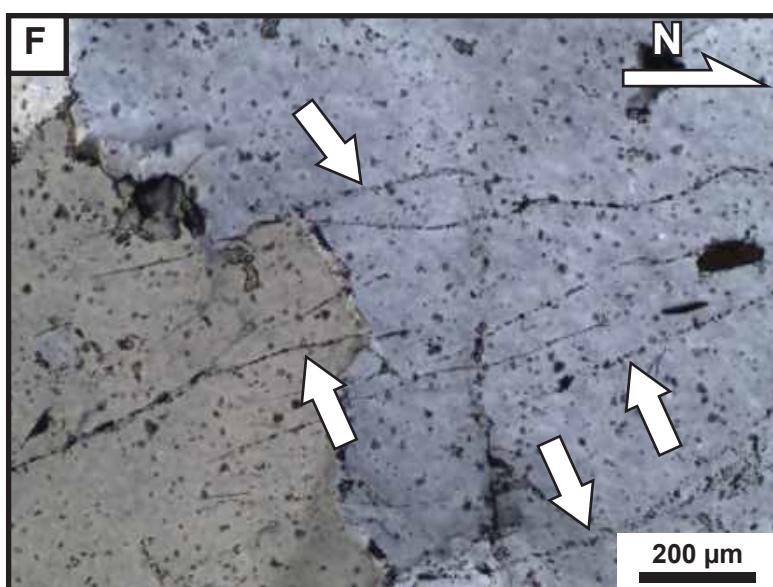
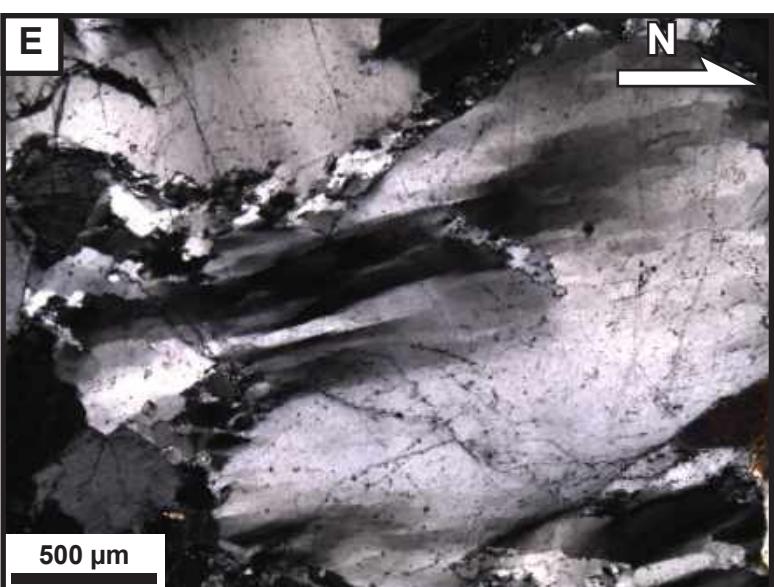
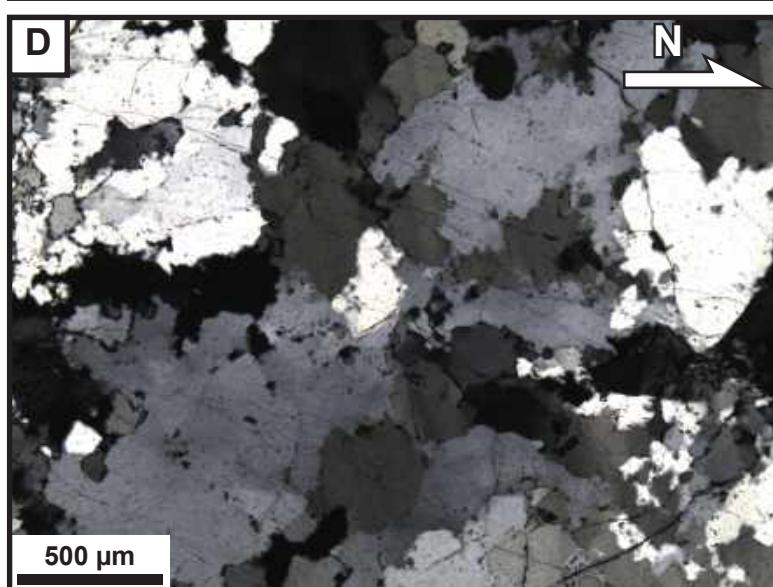
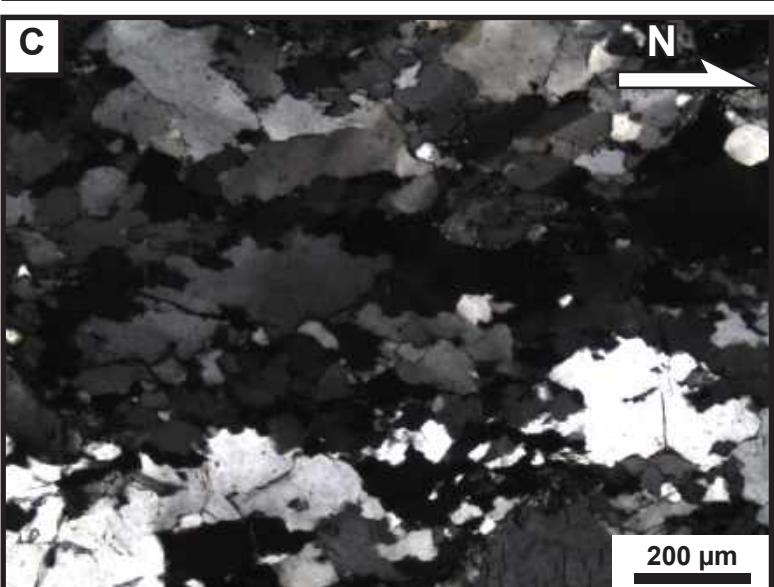
1298 **Figure 14:** Cooling history of 8 metamorphic core complexes (see Figure 2 for location). Given the
1299 uncertainties in closure temperature, we plot a closure temperature of $750 \pm 50^\circ\text{C}$ for zircon U-Pb, $500 \pm$
1300 25°C for hornblende $^{40}\text{Ar}/^{39}\text{Ar}$, $425 \pm 25^\circ\text{C}$ for muscovite Rb-Sr, $400 \pm 50^\circ\text{C}$ for muscovite $^{40}\text{Ar}/^{39}\text{Ar}$ and
1301 K-Ar, $300 \pm 50^\circ\text{C}$ for biotite $^{40}\text{Ar}/^{39}\text{Ar}$ and K-Ar, $275 \pm 40^\circ\text{C}$ for biotite K-Ar, $240 \pm 10^\circ\text{C}$ for zircon
1302 fission track, $180 \pm 10^\circ\text{C}$ for zircon U-Th/He, $100 \pm 10^\circ\text{C}$ for apatite fission track, $60 \pm 10^\circ\text{C}$ for apatite
1303 U-Th/He. Data extracted from John and Foster (1993), and Foster and John (1999) (Chemehuevi); Foster
1304 and Spencer (1992) (Plomosa); Hacker et al. (1992) and reference therein (Whipple), Scott et al. (1998)
1305 and Singleton et al. (2014) (Buckskin); Fitzgerald et al. (1993) (South Mountain); Gottardi et al. (2018)
1306 (Picacho); Davy et al. (1989), Fayon et al. (2000), Fornash et al. (2013), Jepson and Carrapa (2019) for
1307 the Catalina; Wong and Gans (2008) for the Sierra Mazatan. The cooling curves suggests that eastern
1308 MCCs were denuded/exhumed earlier (during the Oligocene, between ~ 29 and 23 Ma) than the western
1309 MCCs of the Colorado River Extensional Corridor (Miocene, between ~ 22 and 15 Ma).

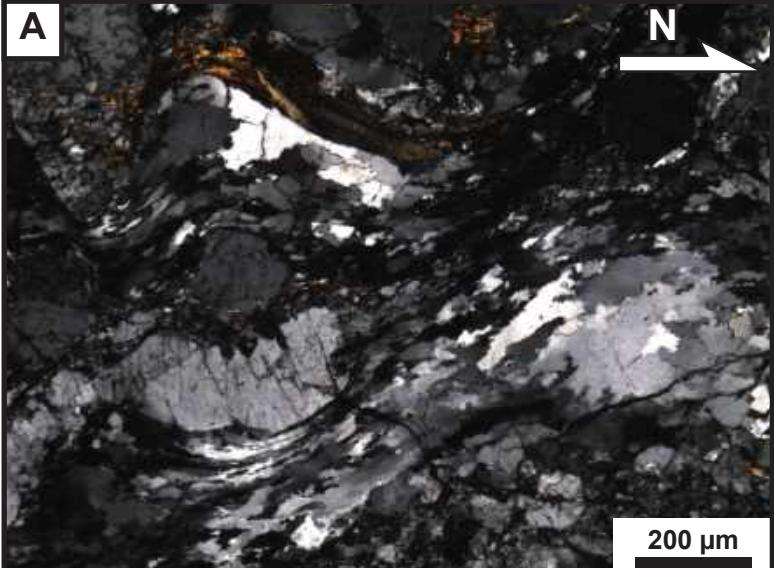

1310

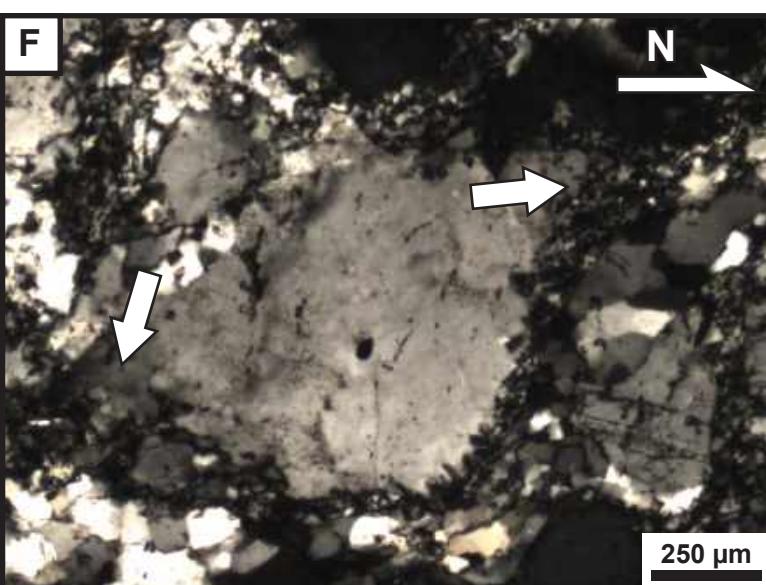
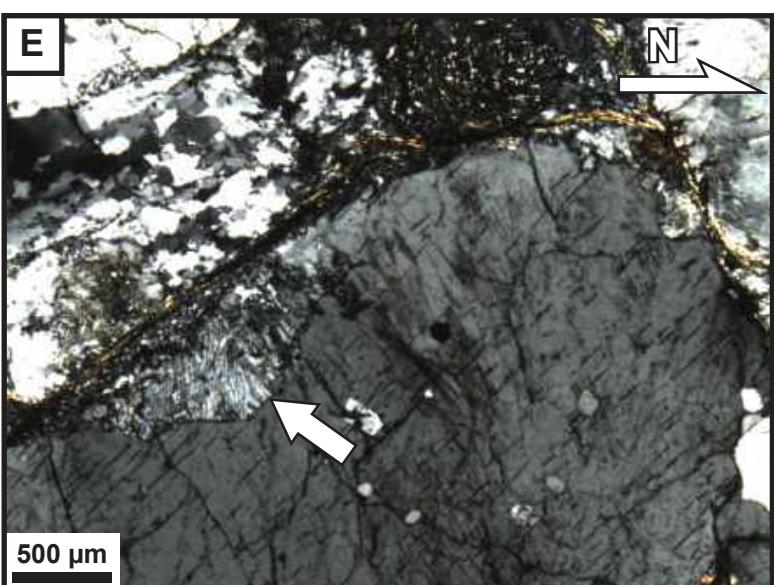
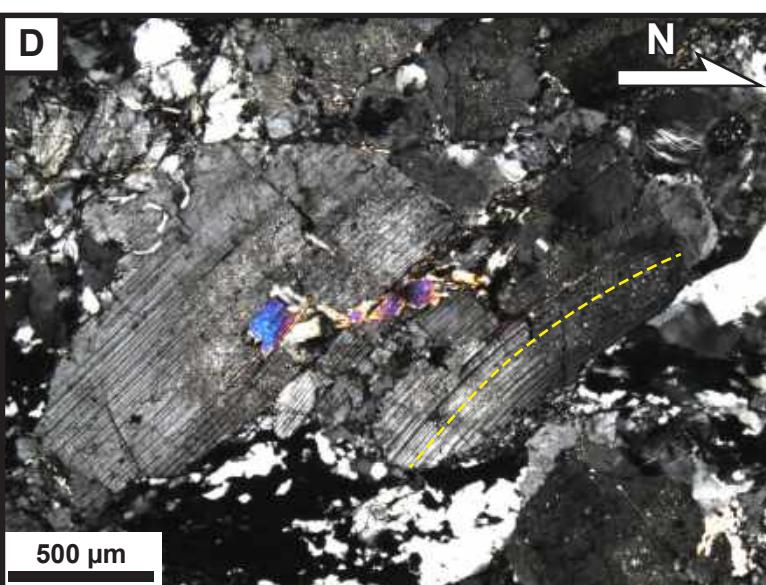
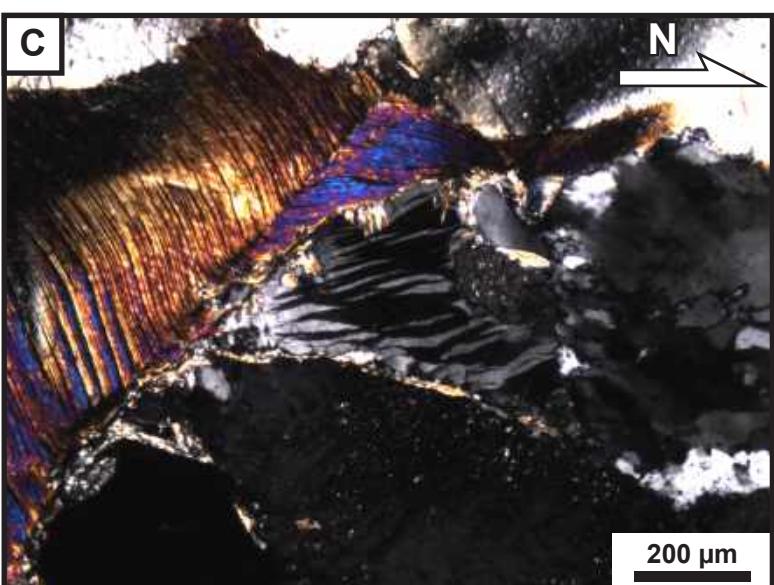
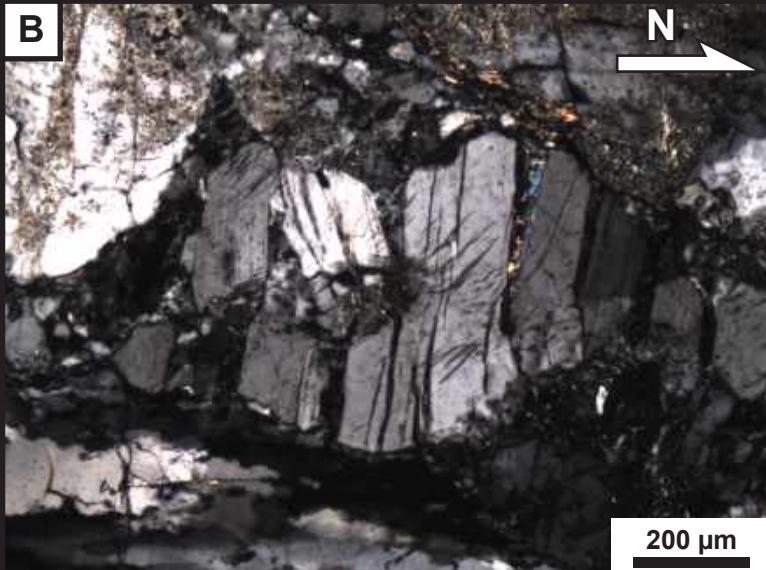
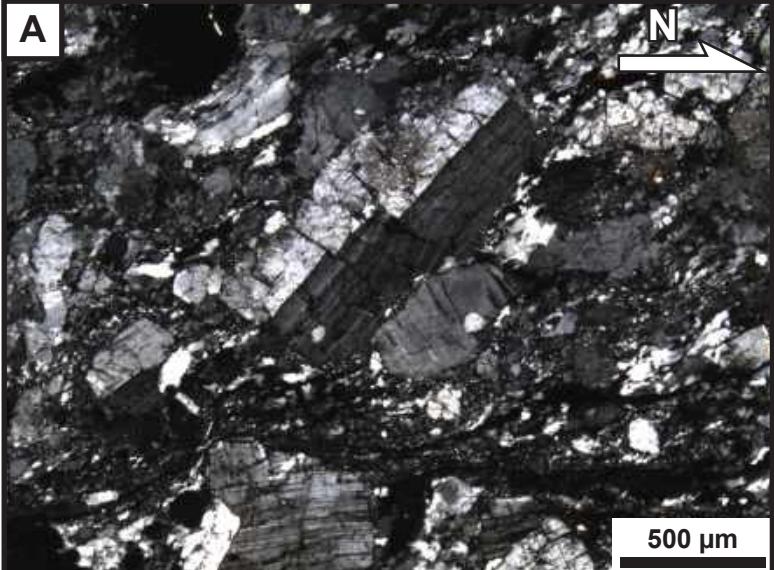
1311 **Figure 15:** (A) Tectonic setting of the Baboquivari Mountains during the Laramide orogeny (~ 60 Ma),
1312 which provided (1) increased potential energy by uplift and thickening, (2) mechanical weakening by
1313 thrusting leading to the development of weak zones and assimilation of metasediments, and (3) thermal
1314 weakening associated with intrusive activity (adapted from Haxel et al., 1984). Combined with change in
1315 boundary conditions, these processes likely triggered orogenic collapse by Oligocene time (B) and lead to
1316 the development of the Coyote Mountains detachment shear zone and exhumation of the Baboquivari
1317 Mountains.

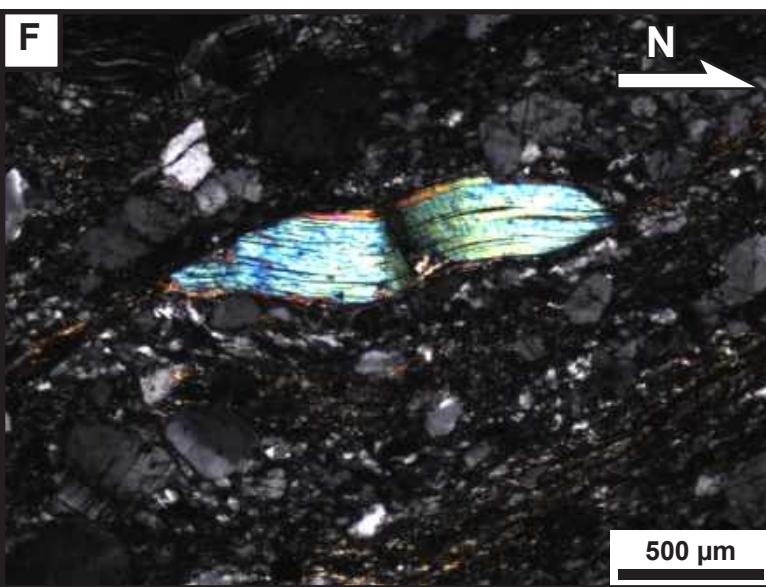
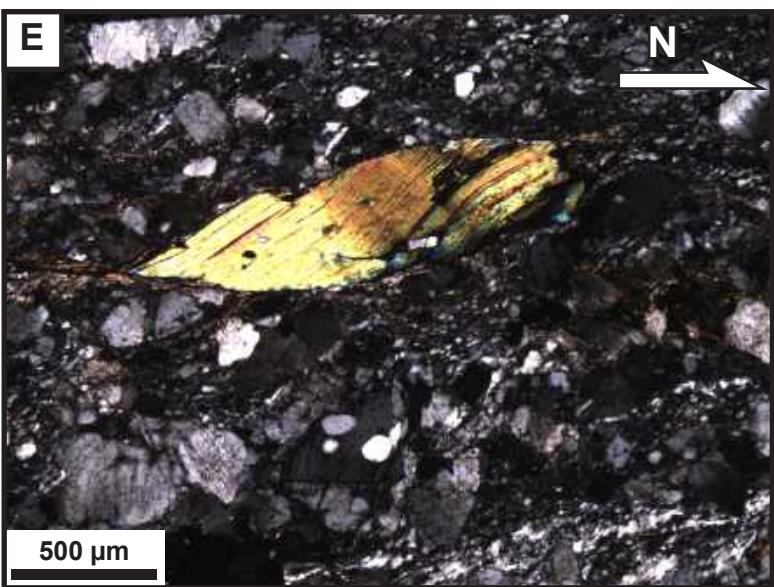
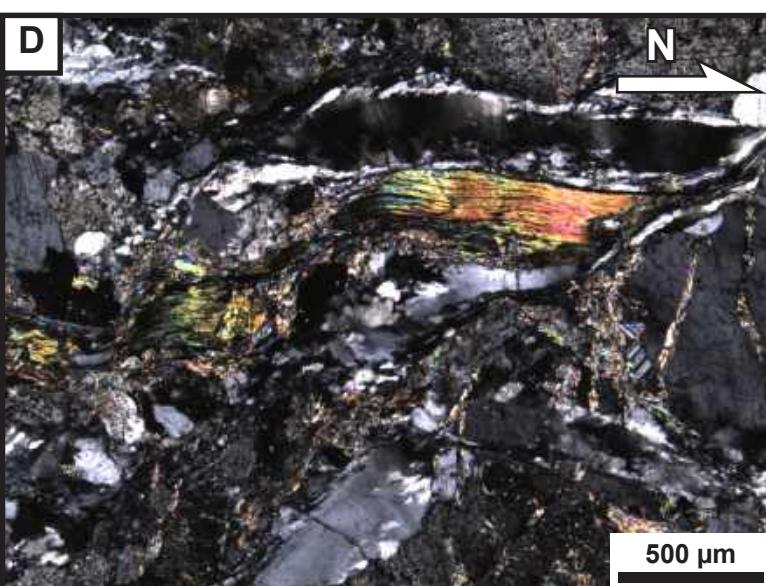
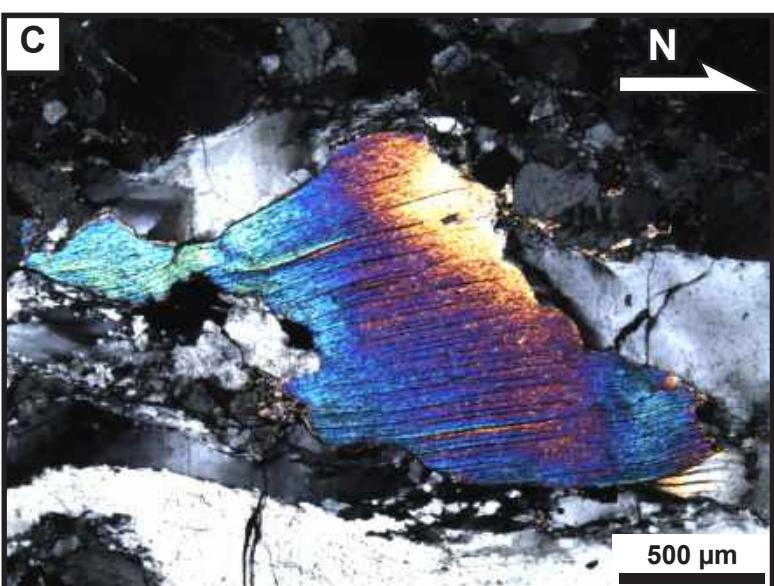
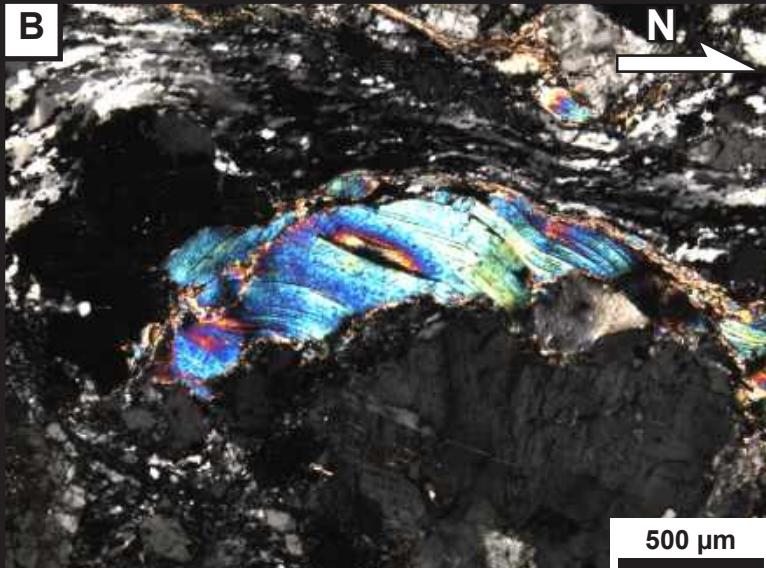
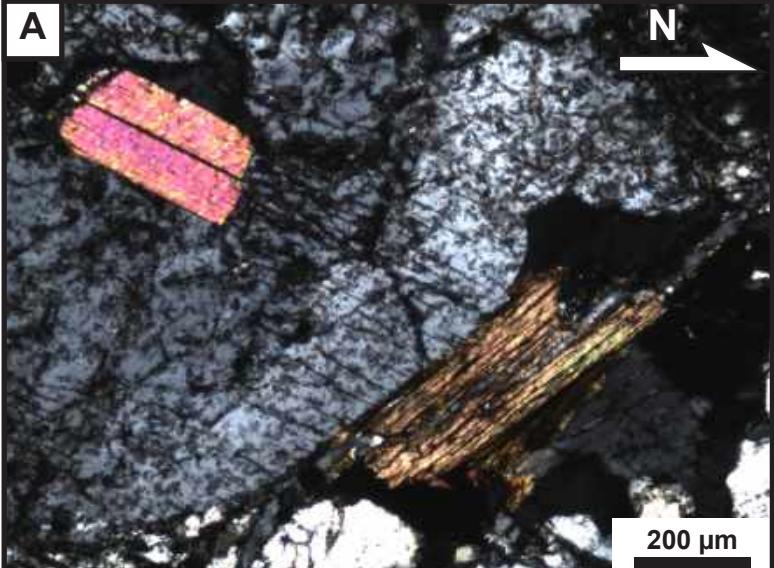

Figure 1.





Figure 2.


Figure 3.







Figure 4.







Figure 5.

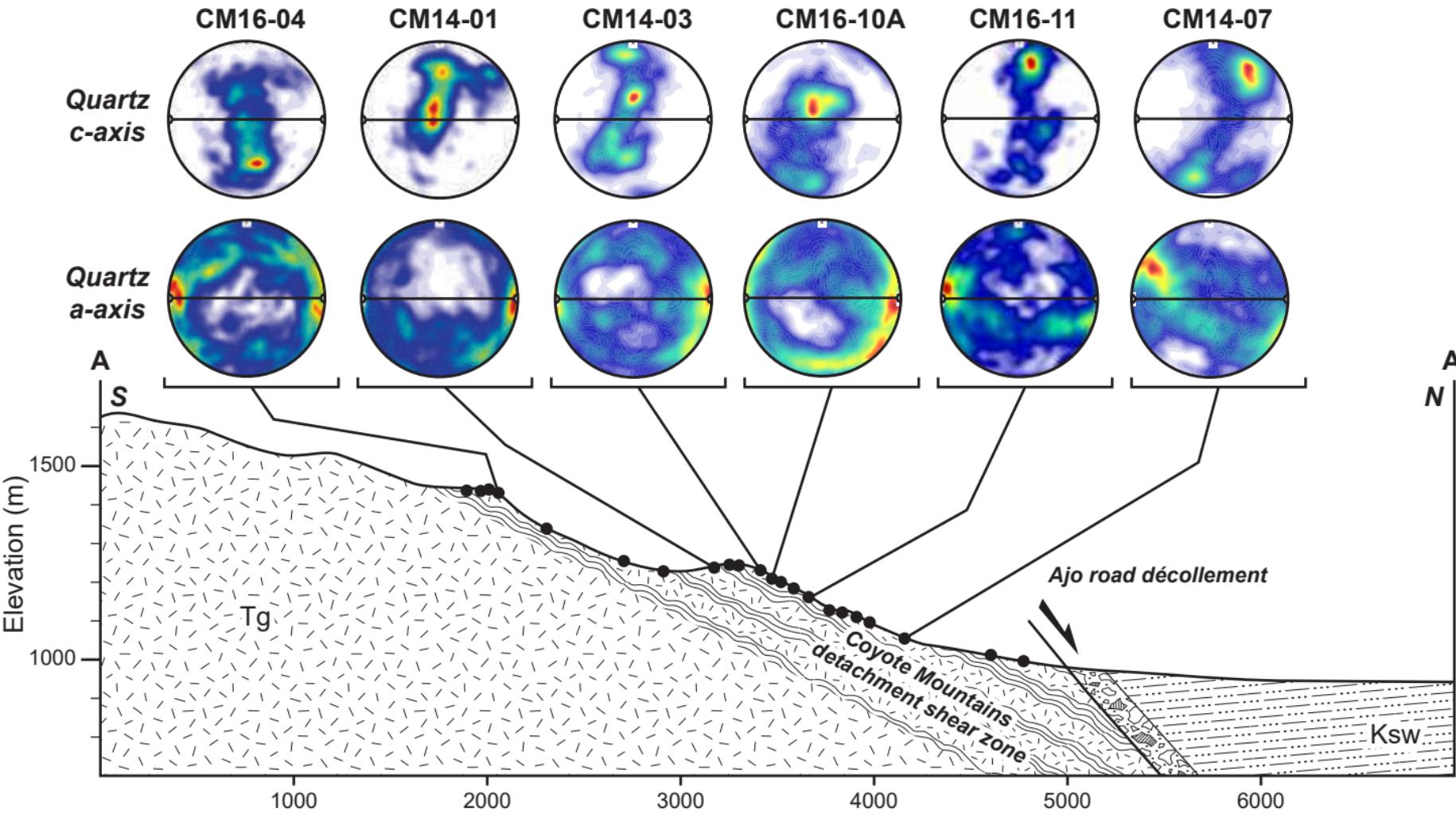

Figure 6.

Figure 7.

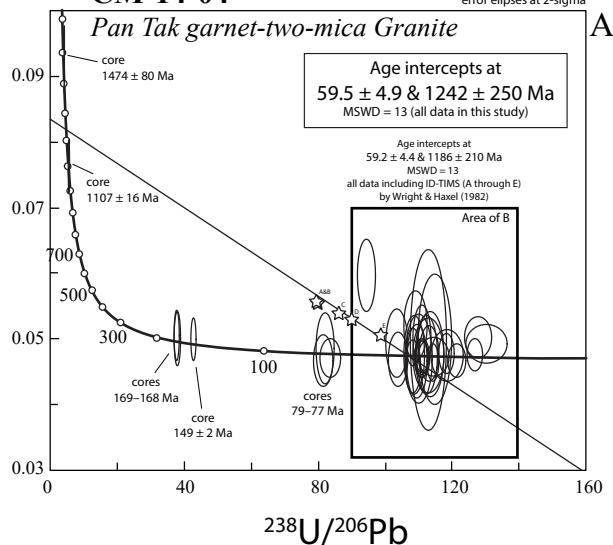
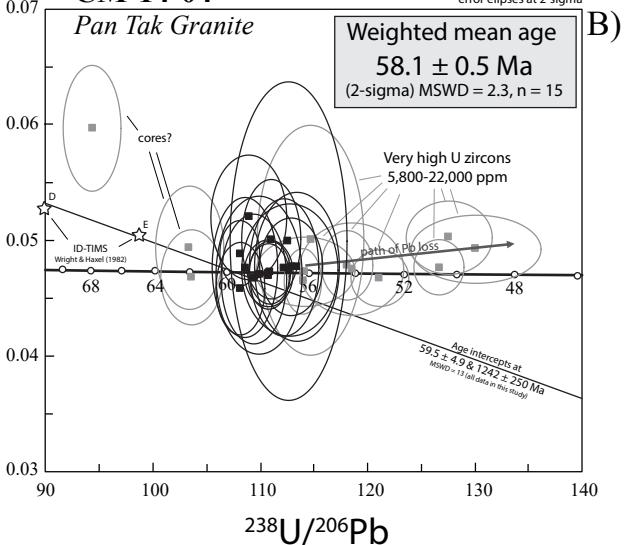
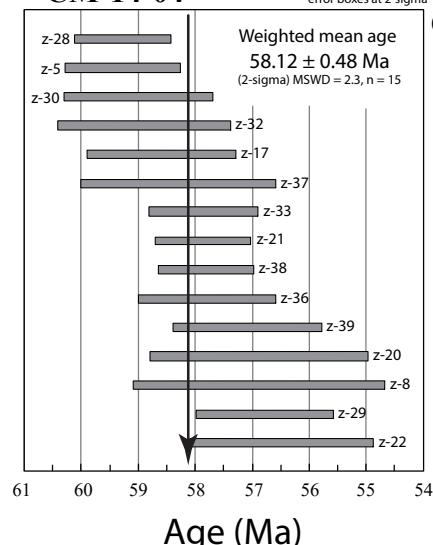


Figure 8.

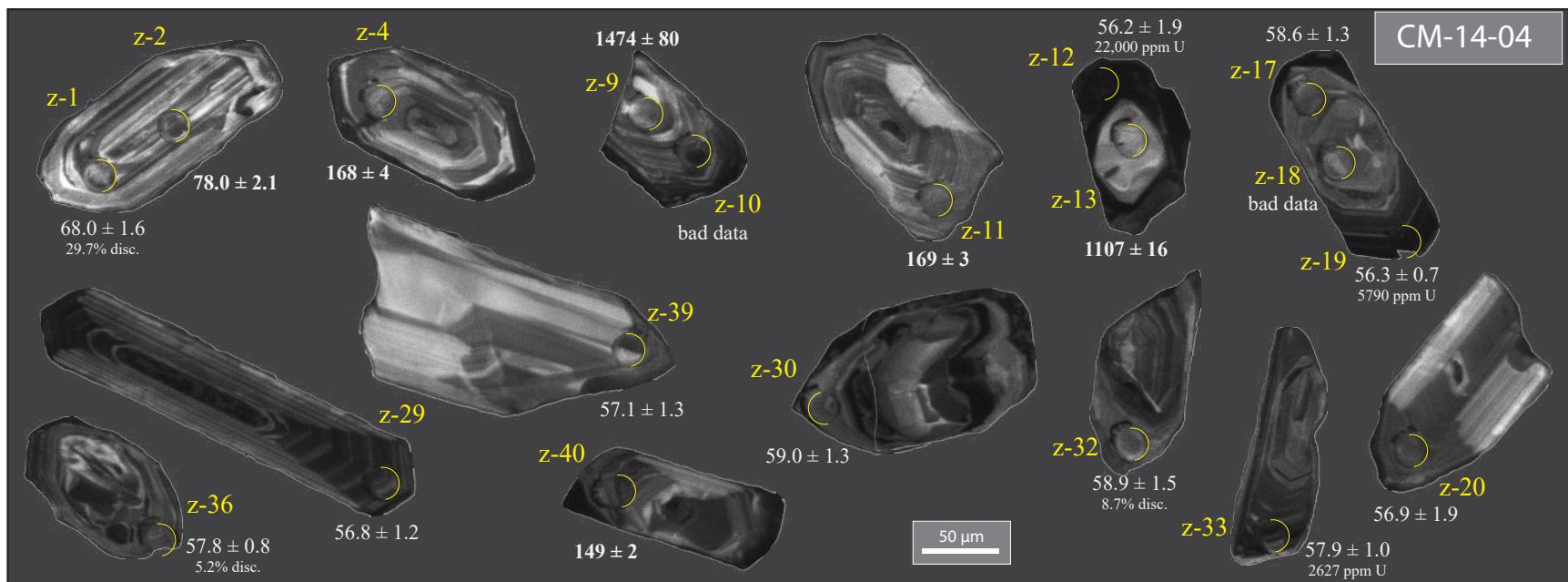

Figure 9.

CM-14-04

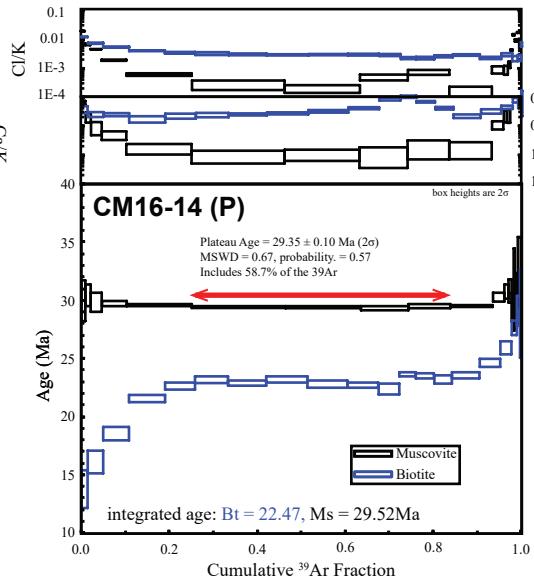
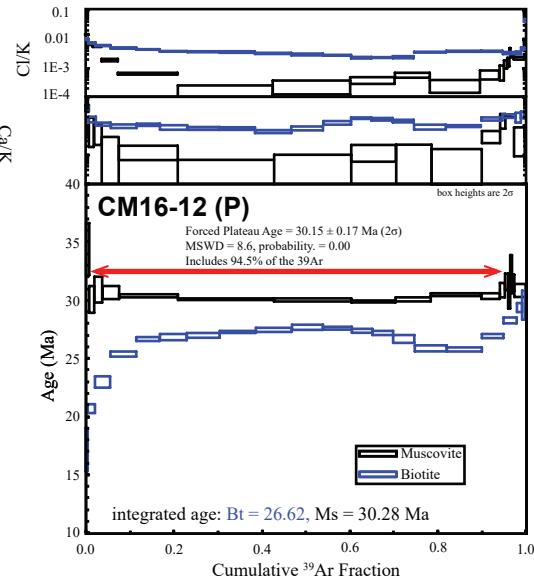
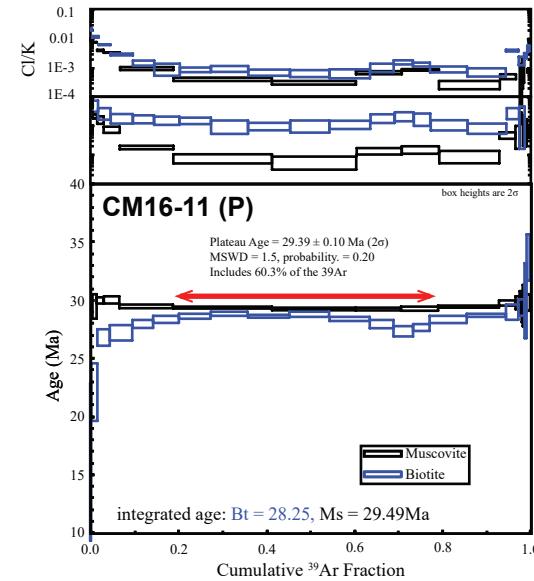
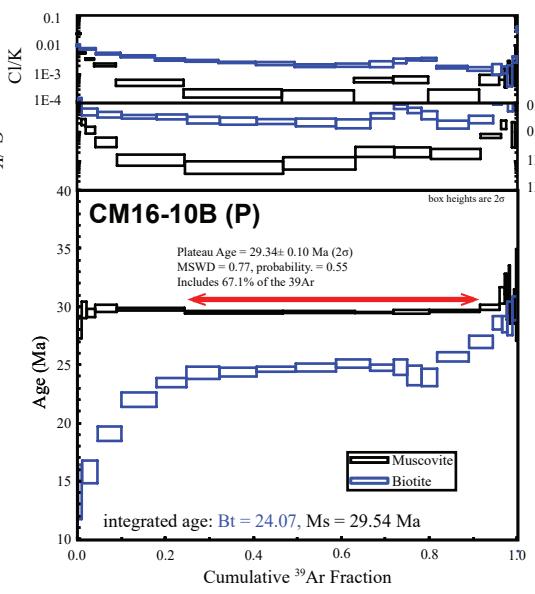
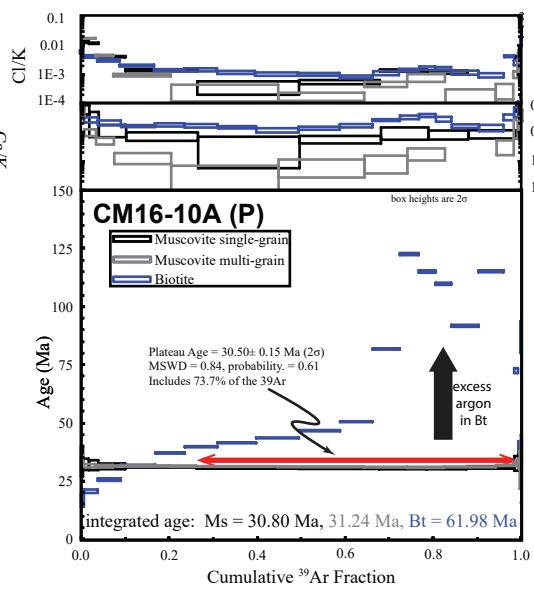
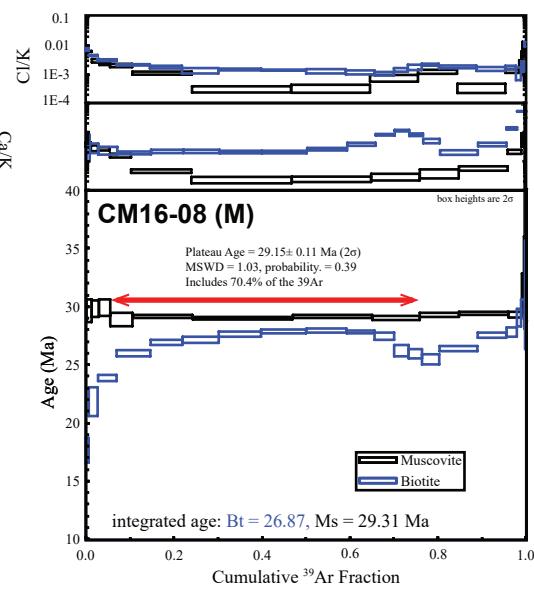
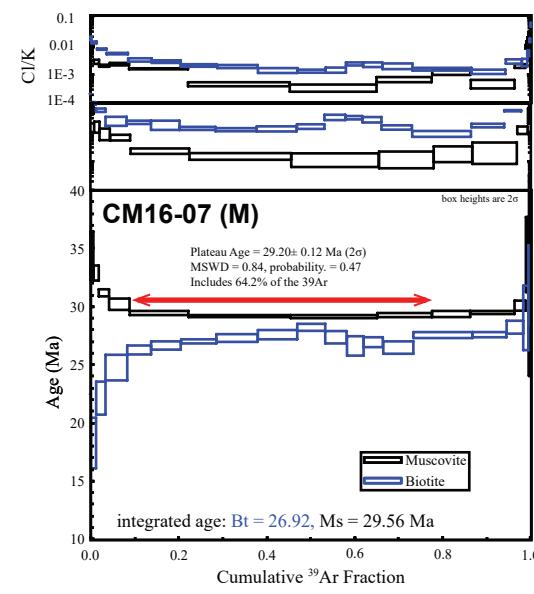
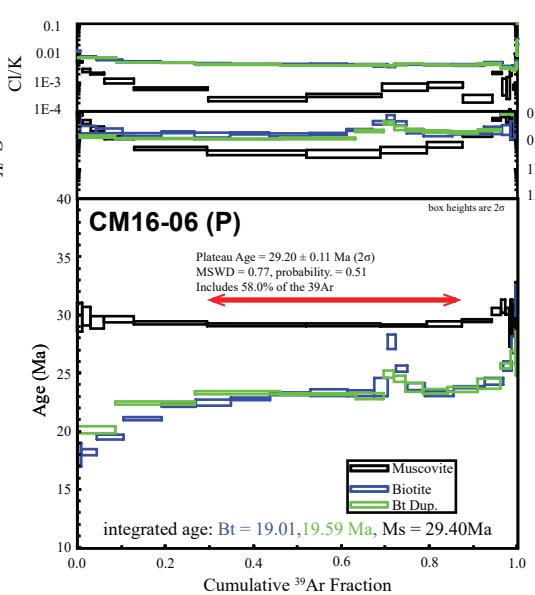
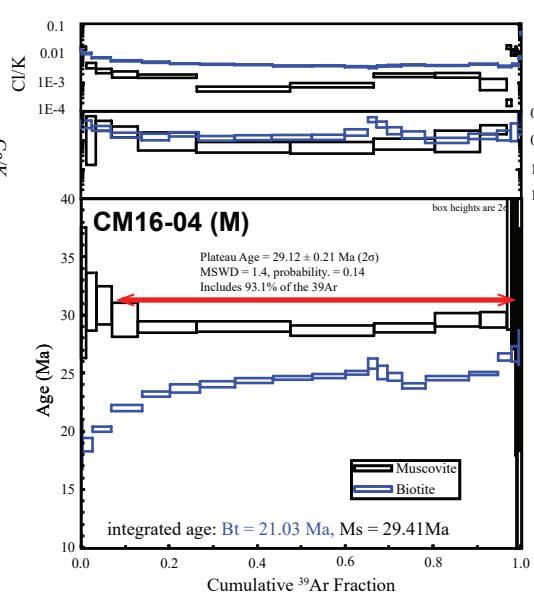
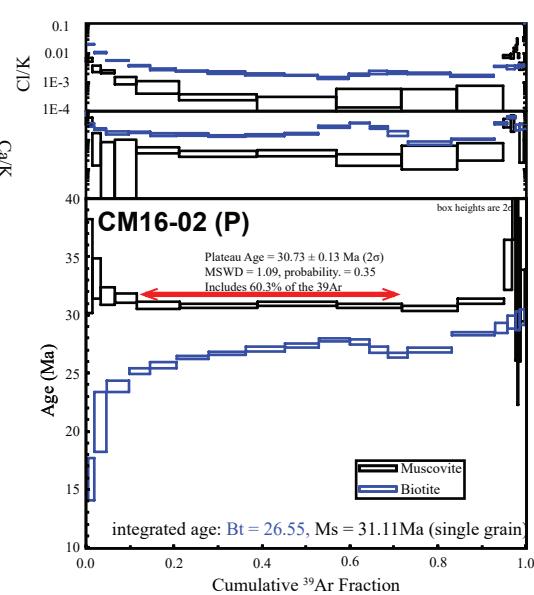
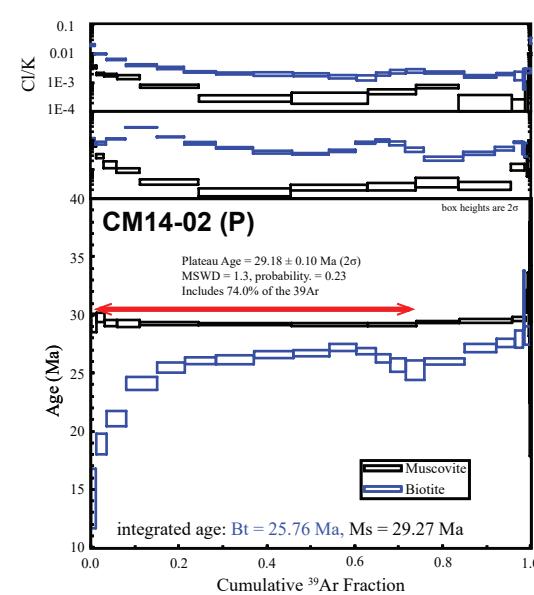

 $^{207}\text{Pb}/^{206}\text{Pb}$

A)

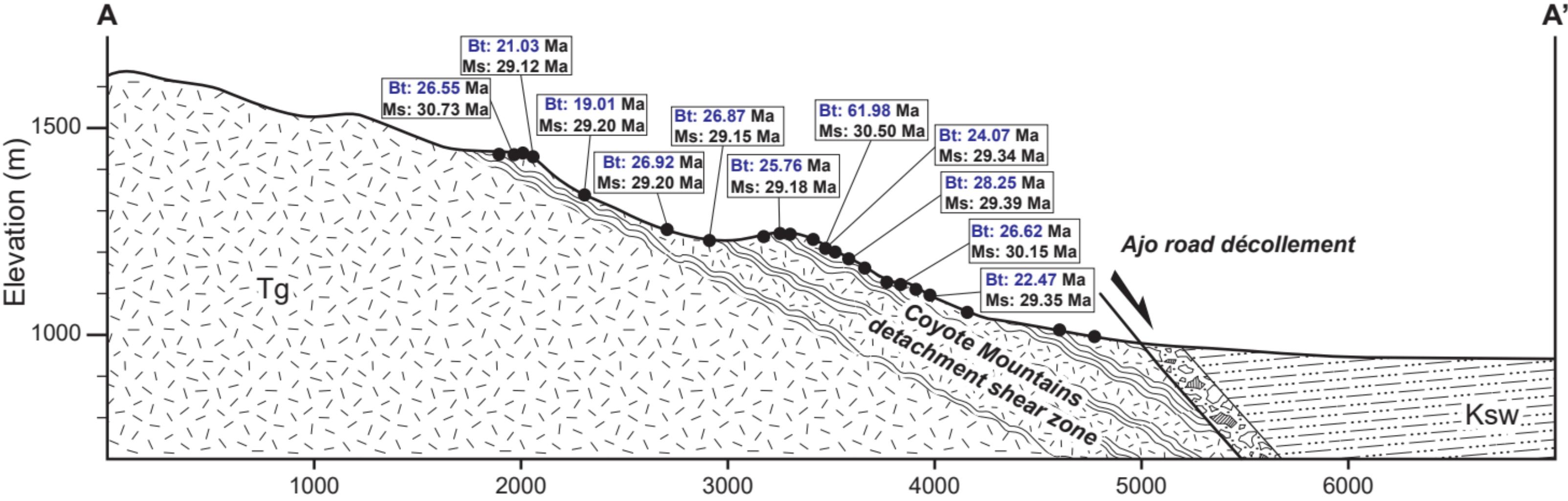
CM-14-04



CM-14-04

Age (Ma)


D)

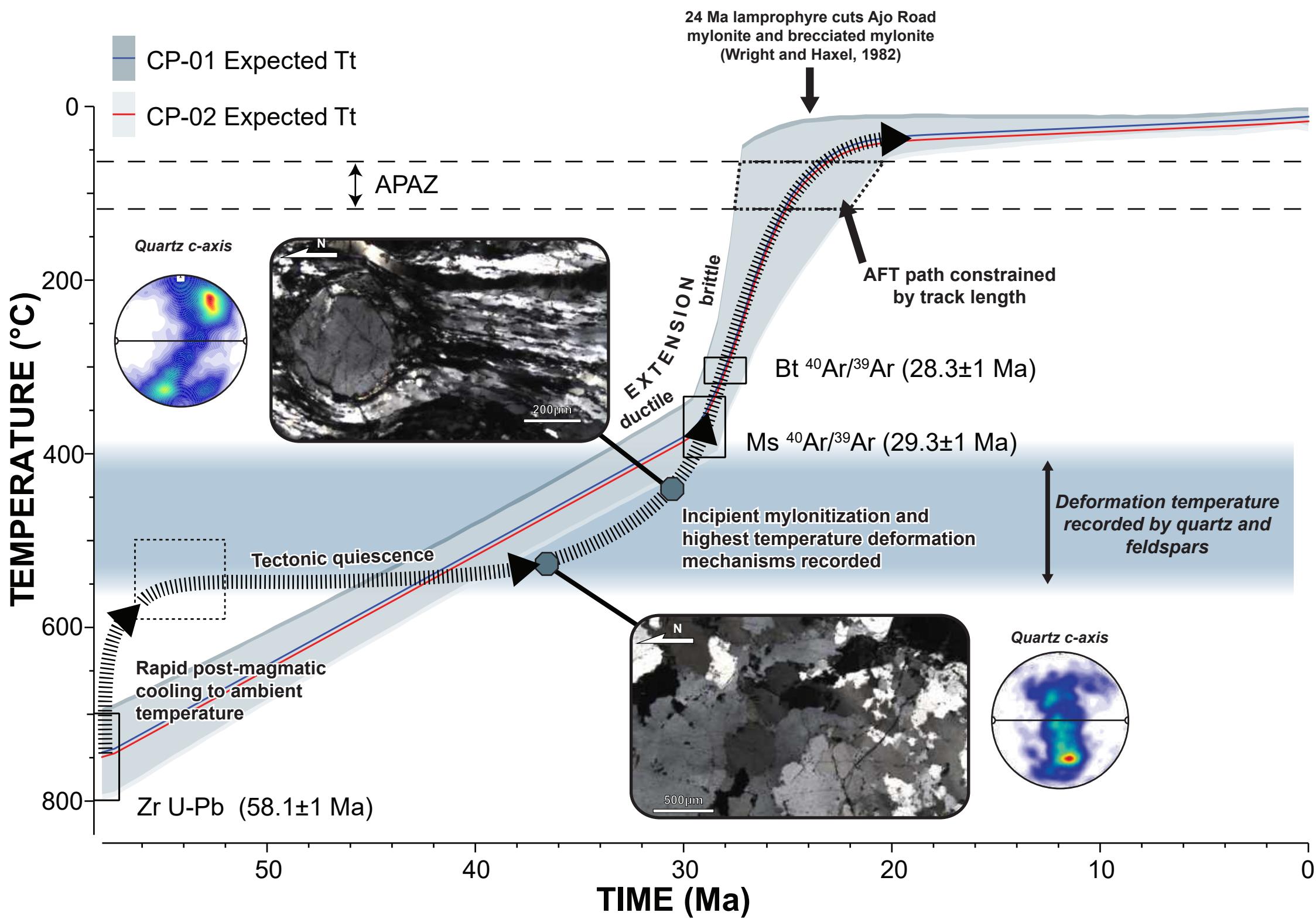

Figure 10.

Figure 11.

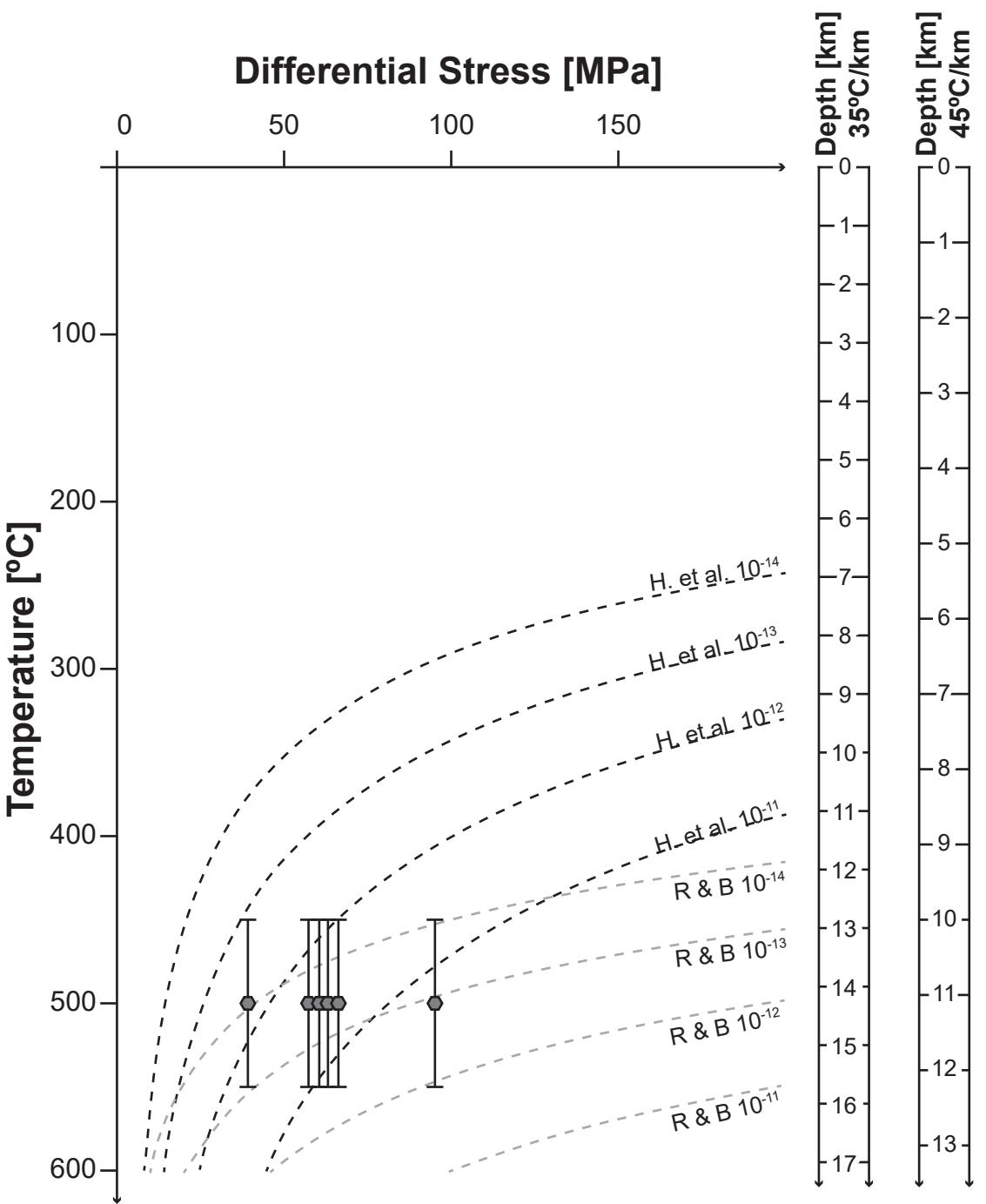


Figure 12.

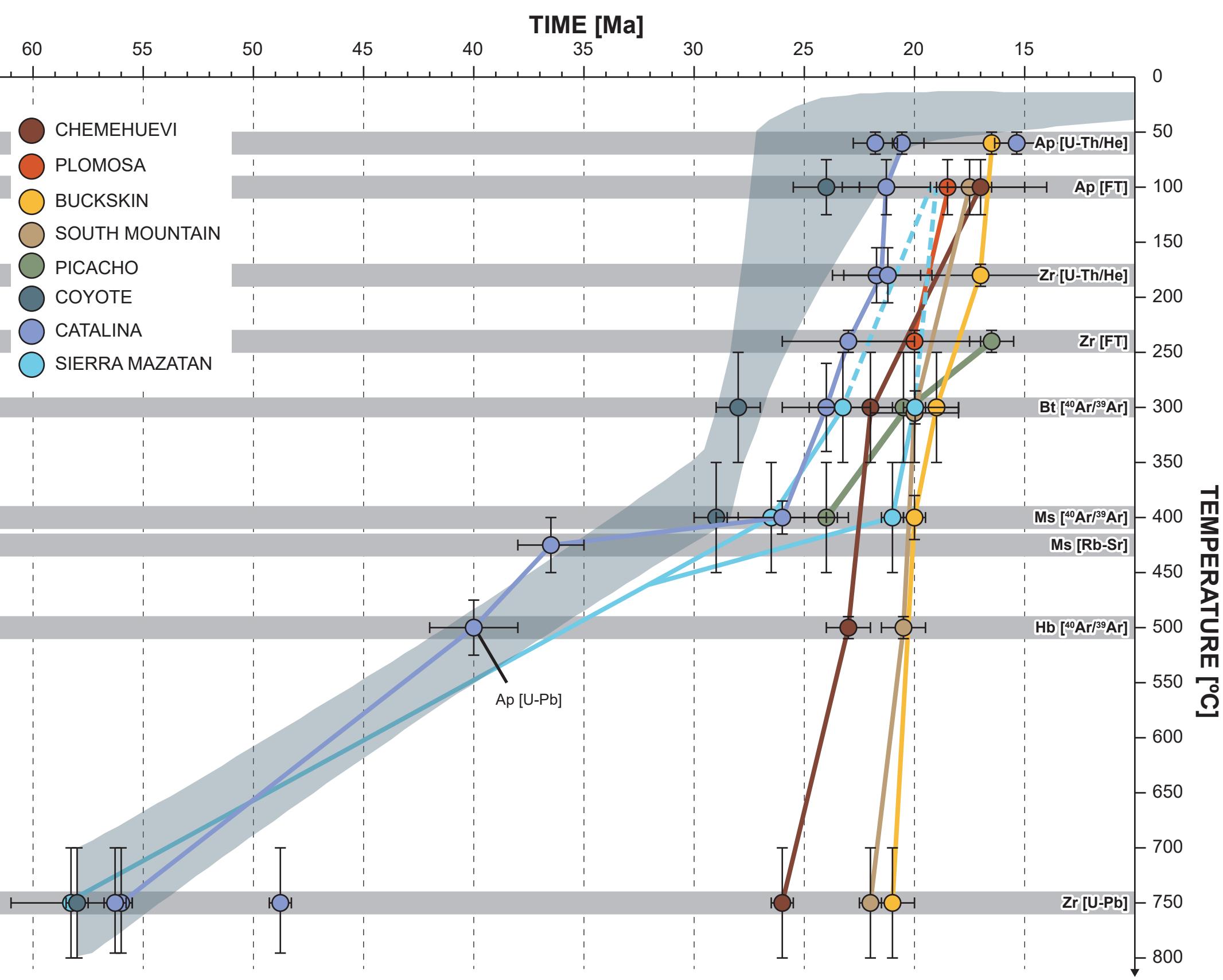


Figure 13.

Differential Stress [MPa]

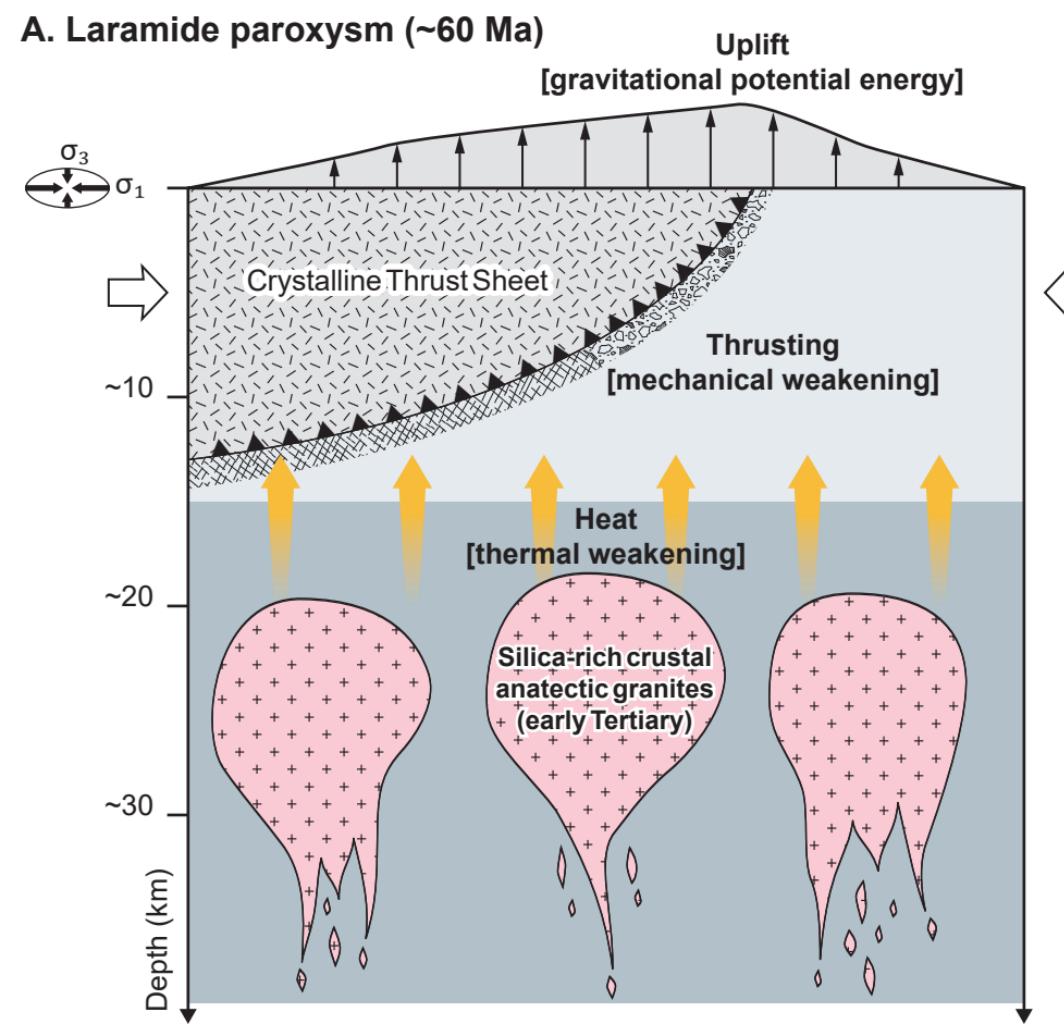


Figure 14.

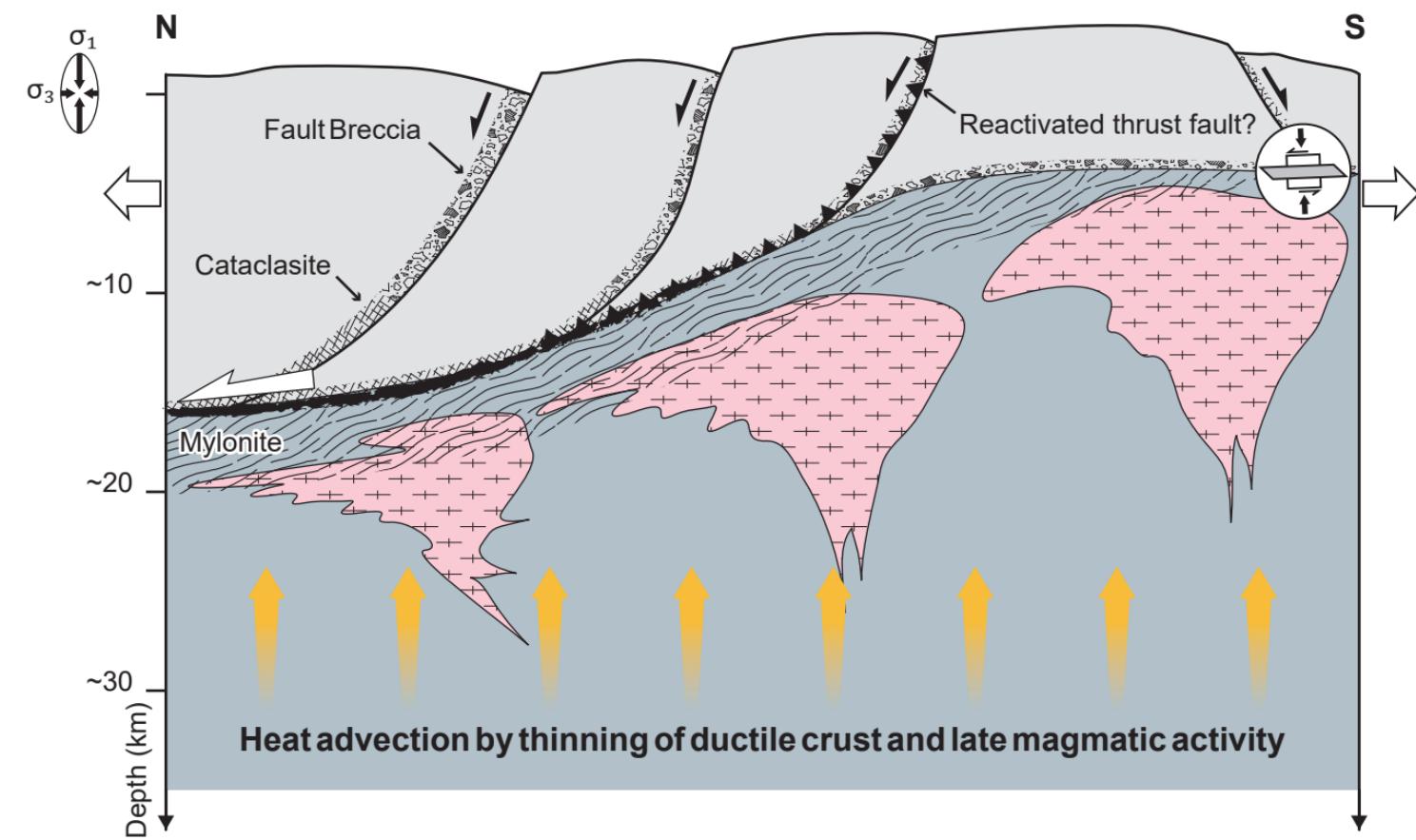
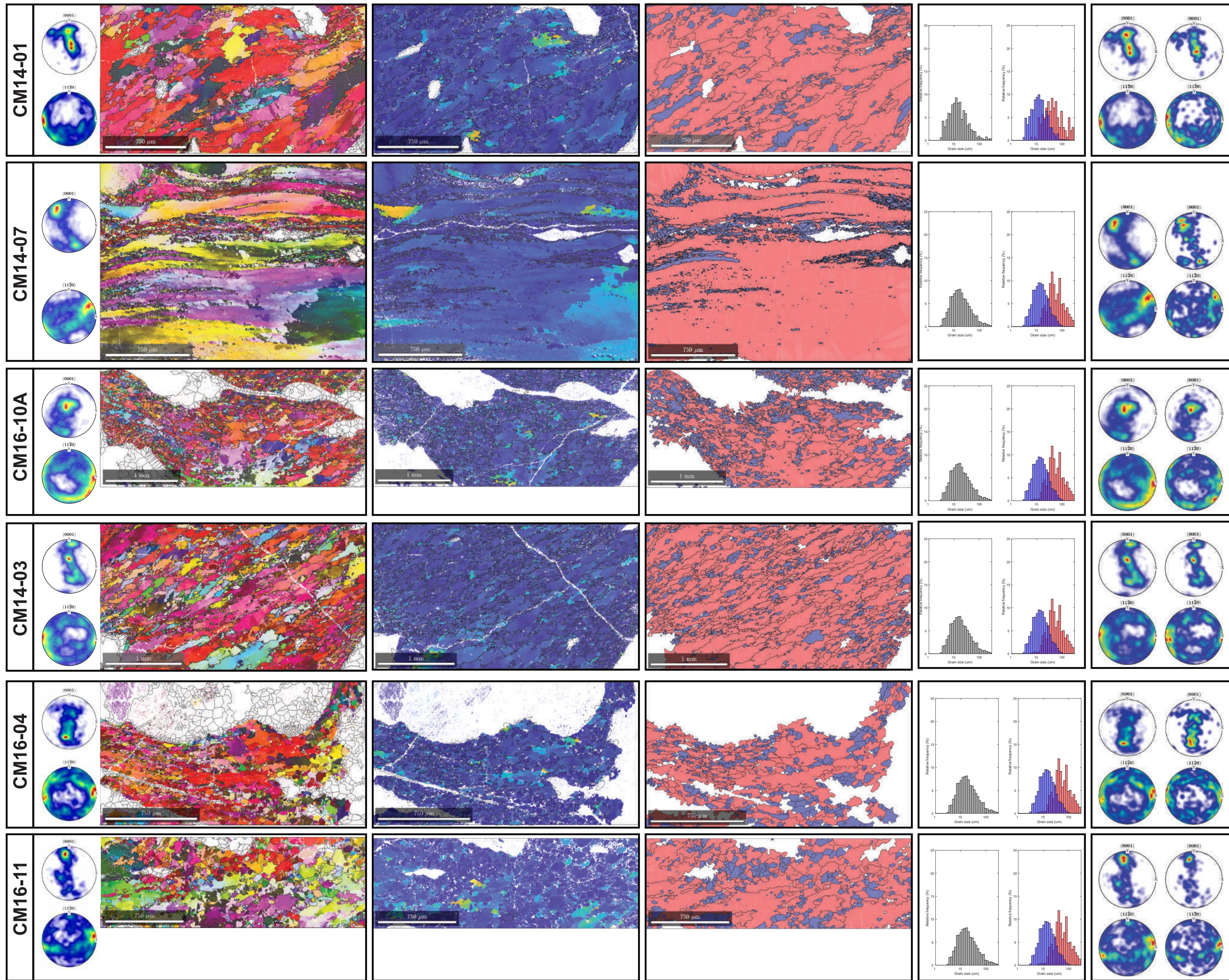


Figure 15.

A. Laramide paroxysm (~60 Ma)

B. Oligocene (-29 Ma)


Figure S1.

GRAIN BOUNDARY MAP

MISORIENTATION MAP (10°)

RELIC (RED) VS. RECRYSTALLIZED GRAINS (BLUE)

GRAIN SIZE HISTOGRAM

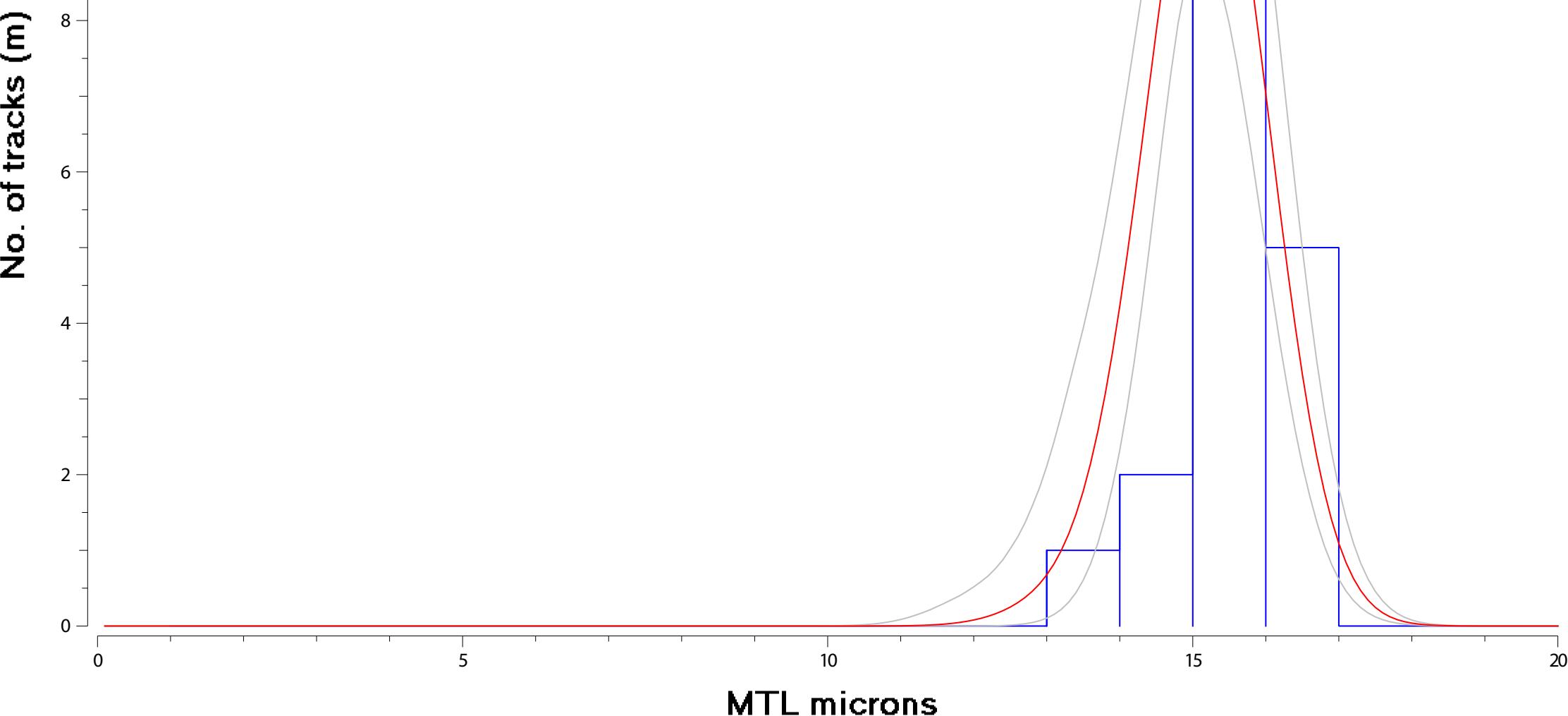
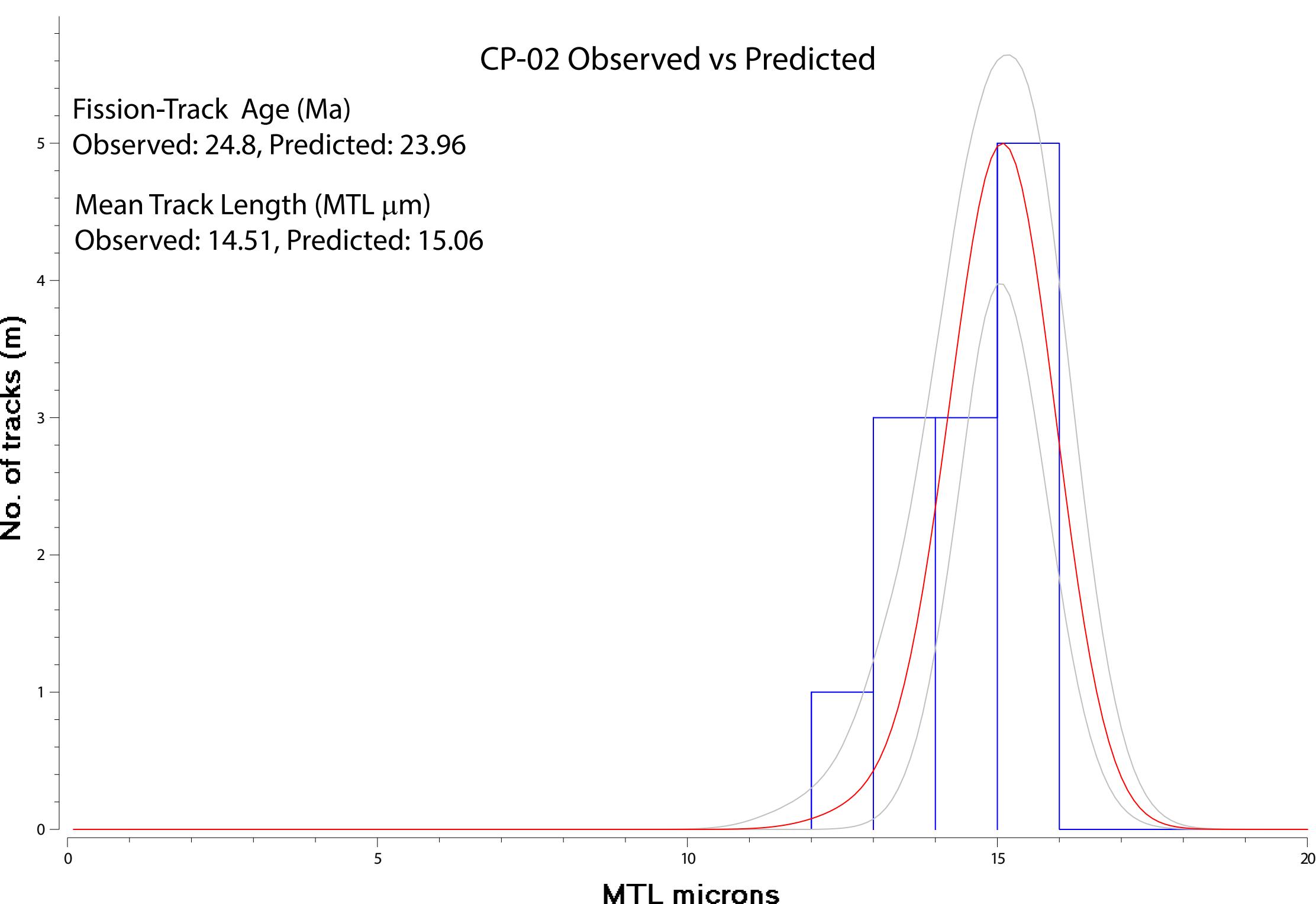


Figure S2.

CP-01 Observed vs Predicted

Fission-Track Age (Ma)
Observed: 24.1, Predicted: 23.3


Mean Track Length (MTL μm)
Observed: 15.58, Predicted: 15.19

CP-02 Observed vs Predicted

Fission-Track Age (Ma)
Observed: 24.8, Predicted: 23.96

Mean Track Length (MTL μm)
Observed: 14.51, Predicted: 15.06

Table 1: Microstructural analysis summary, including quartz recrystallized grain size measured by EBSD, Flow stress calculation using the Cross et al. (2017) paleo-piezometer, and strain rate estimation based on the Hirth et al. (2001) quartzite flow law at a temperature of 500°C.

Sample	Diameter (μm)		Flow Stress (MPa)	Strain Rate (s^{-1})
CM14-01	23.6	\pm	16.6	3.7×10^{-12}
CM14-03	23.9	\pm	15.1	3.6×10^{-12}
CM14-07	13.1	\pm	7.6	2.0×10^{-11}
CM16-04	24.9	\pm	14.6	3.2×10^{-12}
CM16-10A	26.8	\pm	15.7	2.6×10^{-12}
CM16-11	46.1	\pm	43.8	5.6×10^{-13}
CM16-12	21.9	\pm	15.2	4.6×10^{-12}

Table 2: Summary table of $^{40}\text{Ar}/^{39}\text{Ar}$ ages of biotite (Bt) and muscovite (Ms). Aliquots were 10–50 grains unless otherwise indicated. *indicates uncertainty expanded due to high MSWD. TG = Total Gas.

Sample	Mineral	Mass (mg)	Age		Notes
			TG age	Plateau age	
CM14-02	Bt	2.731	25.76		
	Ms	5.370	29.27	29.18 ± 0.10	
CM-16-02	Bt	6.086	26.55		
	Ms	1.013	31.11	31.73 ± 0.11	Single grain
CM16-04	Bt	5.366	21.03		
	Ms	0.727	29.41	29.12 ± 0.21	
CM16-06	Bt	4.696	19.01		
	Bt	6.847	19.59		
	Ms	4.011	29.40	29.20 ± 0.10	
CM16-07	Bt	1.588	26.92		
	Ms	3.220	29.56	29.20 ± 0.12	Kinked grain
CM16-08	Bt	4.052	26.87		
	Ms	2.969	29.31	29.15 ± 0.11	
CM16-10A	Bt	3.536	61.98		Excess argon?
	Ms	0.979	30.80	30.5 ± 0.12	Single grain
	Ms	6.37	31.24		4 grains
CM16-10B	Bt	2.387	28.25		
	Ms	6.051	29.49	29.39 ± 0.10	Oldest Bt
CM16-12	Bt	1.008	26.62		> 50 grains
	Ms	4.500	30.28	$30.15 \pm 0.17^*$	Forced plateau
CM16-14	Bt	4.693	22.47		
	Ms	4.440	29.52	29.35 ± 0.10	6 grains

Table 3: Apatite fission track ages.

Sample number	No. of crystals	Track density ($\times 10^5$ tracks.cm $^{-2}$) (Number of tracks)			Mean Dpar μm	Age Dispersion ($P\chi^2$)	Central Age $\pm 1\sigma$ (Ma)	MTL (μm)	SD	N _L
		$\rho_s(N_s)$	$\rho_i(N_i)$	$\rho_d(N_d)$						
CP-01	20	1.545 (122)	1.296 (1023)	11.86 (5533)	1.9	<0.01% (99.84%)	24.1 \pm 2.4	13.7	0.9	19
CP-02	20	2.276 (123)	18.84 (1018)	11.86 (5533)	2.3	31.58% (7.36%)	24.0 \pm 3.1	13.6	0.9	12

Analyses by external detector method using 0.5 for the $4\pi/2\pi$ geometry correction factor. Ages calculated using dosimeter glass: CN5 with $\zeta_{\text{CN5}} = 341.6 \pm 8.5$ (apatite). $P\chi^2$ is the probability of obtaining a χ^2 value for v degrees of freedom where $v = \text{no. of crystals} - 1\sigma$ - standard error of the mean.

Table 4. U-Th-Pb analytical data for LA-ICPMS spot analyses on zircon grains for the Pan Tak garnet-two-mica granite, Coyote Mountains, southern Arizona, USA

Analysys/Zircon	U [#] (ppm)	Th [#] (ppm)	Th/U	CORRECTED ISOTOPIC RATIOS								CORRECTED					
				²⁰⁷ Pb/ ²⁰⁶ Pb [†]	err % [*]	²⁰⁷ Pb/ ²³⁵ U [†]	err % [*]	²⁰⁶ Pb/ ²³⁸ U [†]	err % [*]	¹⁰⁸ Pb/ ²³² Th [†]	err % [*]	Rho ^{**}	% disc. ^{***}	²⁰⁶ Pb/ ²³⁸ U ^{±2s} [*]	²⁰⁷ Pb/ ²³⁵ U		
Sample CM-14-04	Pan Tak garnet-two-mica granite (Coyote Mountains, southern Arizona)												Mount IC GEO-262 (November 2019)				
CM14-25	R	5930	1540	0.26	0.04890	4.9	0.05210	6.1	0.00768	3.8	0.00255	4.7	0.615	4	49.3	1.9	51.6
CM14-23	R	15100	3770	0.25	0.05050	5.1	0.05420	5.7	0.00783	2.6	0.00257	5.8	0.447	6	50.3	1.3	53.6
CM14-14	R	18900	6260	0.33	0.04820	3.9	0.05178	4.4	0.00789	1.5	0.00248	3.0	0.342	1	50.7	0.8	51.3
CM14-31	inner R	7600	1110	0.15	0.04670	4.3	0.05310	4.7	0.00825	1.8	0.00228	5.7	0.386	-1	53.0	1.0	52.5
CM14-12	R	22000	5410	0.25	0.04782	4.8	0.05520	7.6	0.00843	3.3	0.00218	6.0	0.437	1	54.1	1.8	54.5
CM14-35	R	7050	640	0.09	0.04920	4.5	0.05570	5.4	0.00846	1.7	0.00258	7.4	0.307	1	54.3	0.9	55.0
CM14-34	C	158	152	0.96	0.05040	17.9	0.06000	16.7	0.00871	3.6	0.00259	8.1	0.214	5	55.9	2.0	59.0
CM14-3	R	5080	871	0.17	0.04680	4.3	0.05700	6.1	0.00875	3.3	0.00264	5.3	0.540	0	56.2	1.9	56.3
CM14-19	outer C	5790	3407	0.59	0.04660	4.7	0.05610	5.2	0.00876	1.3	0.00265	2.6	0.243	-2	56.3	0.7	55.4
CM14-22	R	517	85	0.16	0.04790	12.5	0.05790	11.4	0.00881	2.8	0.00298	13.4	0.249	1	56.5	1.6	57.0
CM14-29	R	794	599	0.75	0.04830	7.7	0.05820	7.6	0.00885	2.1	0.00291	4.5	0.284	1	56.8	1.2	57.3
CM14-8	R	134	98	0.73	0.05500	21.8	0.06100	23.0	0.00887	3.9	0.00268	14.6	0.172	4	56.9	2.2	59.0
CM14-20	R	348	710	2.04	0.04870	10.9	0.05790	10.4	0.00886	3.3	0.00270	4.4	0.316	0	56.9	1.9	57.0
CM14-39	R	434	397	0.91	0.04820	11.2	0.05840	10.4	0.00890	2.4	0.00279	5.7	0.226	2	57.1	1.3	58.3
CM14-36	R	762	57	0.08	0.05030	8.7	0.06210	8.7	0.00900	2.0	0.00363	14.0	0.230	5	57.8	1.2	61.0
CM14-38	R	4820	3750	0.78	0.04720	4.7	0.05860	4.9	0.00901	1.4	0.00276	2.4	0.292	0	57.8	0.8	57.8
CM14-21	R	3129	1291	0.41	0.04720	5.1	0.05830	5.1	0.00902	1.4	0.00270	3.3	0.280	-1	57.9	0.8	57.5
CM14-33	R	2627	793	0.30	0.04750	4.8	0.05860	5.3	0.00902	1.7	0.00288	4.9	0.314	0	57.9	1.0	57.8
CM14-37	R	361	385	1.07	0.04650	13.3	0.05890	12.2	0.00909	3.0	0.00293	6.5	0.243	-1	58.3	1.7	57.9
CM14-17	inner R	613	70	0.11	0.04730	10.4	0.05870	10.1	0.00913	2.3	0.00315	14.0	0.229	-1	58.6	1.3	57.8
CM14-32	R	463	67	0.14	0.05290	9.3	0.06570	8.8	0.00917	2.6	0.00327	14.7	0.296	9	58.9	1.5	64.5
CM14-30	R	710	74	0.10	0.04770	10.1	0.06040	10.6	0.00920	2.3	0.00332	12.0	0.215	1	59.0	1.3	59.4
CM14-5	R	897	96	0.11	0.04610	7.4	0.05830	7.4	0.00924	1.7	0.00296	12.5	0.235	-3	59.3	1.0	57.5
CM14-28	R	3027	1078	0.36	0.04940	4.9	0.06220	5.0	0.00924	1.4	0.00299	3.3	0.282	4	59.3	0.8	61.9
CM14-15	inner R	1807	786	0.43	0.04740	6.5	0.06230	7.5	0.00965	2.3	0.00315	6.0	0.302	-1	61.9	1.4	61.4
CM14-6	R?	687	141	0.21	0.04800	10.4	0.06580	9.1	0.00967	2.5	0.00348	19.8	0.272	4	62.0	1.5	64.6
CM14-1	R?	638	1230	1.93	0.06110	7.5	0.08720	7.8	0.01060	2.4	0.00323	6.2	0.302	20	68.0	1.6	84.7
CM14-24	C	642	159	0.25	0.04810	5.8	0.07770	6.0	0.01197	3.2	0.00496	8.3	0.525	-1	76.7	2.4	75.9
CM14-2	C	338	349	1.03	0.04880	9.0	0.08160	9.4	0.01218	2.6	0.00380	6.1	0.278	2	78.0	2.1	79.4
CM14-26	C or X	1109	214	0.19	0.04690	6.0	0.07910	7.6	0.01229	2.9	0.00739	5.4	0.386	-2	78.7	2.3	77.3
CM14-40	inner R	1002	792	0.79	0.05030	5.2	0.16160	5.4	0.02347	1.6	0.00811	3.0	0.289	2	149.5	2.3	151.9
CM14-4	C	496	238	0.48	0.05010	6.8	0.18200	7.1	0.02641	2.2	0.00842	3.9	0.302	1	168.1	3.6	169.6
CM14-11	C or X	352	313	0.89	0.05030	7.2	0.18520	6.5	0.02658	1.9	0.00752	4.5	0.290	2	169.1	3.1	172.1
CM14-13	C	155	31	0.20	0.07670	4.2	1.97000	4.6	0.18740	1.6	0.05550	5.2	0.347	0	1107.0	16.0	1106.0
CM14-9	C	277	146	0.53	0.09260	4.0	3.16700	5.4	0.24820	2.8	0.07760	4.8	0.525	1	1429.0	37.0	1448.0

n = 35

R-rim, C-core, X-xenocryst

[#]U and Th concentrations (ppm) are calculated relative to analyses of trace-element glass standard NIST 610

[†]Isotopic ratios are corrected relative to 91500 standard zircon for mass bias and down-hole fractionation (91500 with an age ~1065 Ma; Wiedenbeck *et al.*, 1995). Isotopic ²⁰⁷Pb/²⁰⁶Pb ratios, ages and

^{*}All errors in isotopic ratios are in percentage whereas ages are reported in absolute and given at the 2-sigma level. The weighted mean ²⁰⁶Pb/²³⁸U age is also reported in absolute values at the 2-sigma level of the methodology discussed by Paton *et al.* (2010).

^{**}Rho is the error correlation value for the isotopic ratios ²⁰⁶Pb/²³⁸U and ²⁰⁷Pb/²³⁵U calculated by dividing these two percentage errors. The Rho value is required for plotting concordia diagrams

^{***}Percentage discordance values are obtained using the following equation (100*[(edad²⁰⁷Pb/²³⁵U) - (edad²⁰⁶Pb/²³⁸U)]/edad²⁰⁷Pb/²³⁵U). Positive and negative values indicate normal and inverse discordance. Individual zircon ages in bold were used to calculate the weighted mean ²⁰⁶Pb/²³⁸U age and MSWD (Mean Square of Weighted Deviates) using the computational program Isoplot (Ludwig, 2003)

AGES (Ma)			
$\pm 2s$	$^{207}\text{Pb}/^{206}\text{Pb}$	$\pm 2s^*$	Best Age (Ma)
3.1	135	110	49.3 \pm 1.9
3.0	206	110	50.3 \pm 1.3
2.2	107	90	50.7 \pm 0.8
2.4	49	92	53.0 \pm 1.0
4.0	88	110	54.1 \pm 1.8
2.8	152	100	54.3 \pm 0.9
9.9	90	340	55.9 \pm 2.0
3.3	42	95	56.2 \pm 1.9
2.7	30	100	56.3 \pm 0.7
6.1	130	220	56.5 \pm 1.6
4.2	110	160	56.8 \pm 1.2
13.0	140	360	56.9 \pm 2.2
5.7	90	220	56.9 \pm 1.9
6.0	120	210	57.1 \pm 1.3
5.3	190	180	57.8 \pm 1.2
2.7	59	98	57.8 \pm 0.8
2.9	56	110	57.9 \pm 0.8
3.0	88	110	57.9 \pm 1.0
6.9	10	240	58.3 \pm 1.7
5.7	80	210	58.6 \pm 1.3
5.5	290	200	58.9 \pm 1.5
6.1	40	200	59.0 \pm 1.3
4.1	50	150	59.3 \pm 1.0
3.0	150	110	59.3 \pm 0.8
4.5	90	130	61.9 \pm 1.4
5.7	130	190	62.0 \pm 1.5
6.3	650	160	68.0 \pm 1.6
4.4	100	120	76.7 \pm 2.4
7.2	160	170	78.0 \pm 2.1
5.6	40	120	78.7 \pm 2.3
7.7	207	110	149.5 \pm 2.3
11.0	170	140	168.1 \pm 3.6
11.0	170	150	169.1 \pm 3.1
31.0	1107	83	1107.0 \pm 16.0
45.0	1474	80	1474.0 \pm 80.0
Mean $^{206}\text{Pb}/^{238}\text{U}$ Age =			58.12 \pm 0.48
(2 sigma, MSWD = 2.3; n = 15)			

nd errors are calculated following Paton *et al.* (2010
na level. The uncertainties have been propagated foll

iscordance, respectively

Table 5. Age and trace element data for LA-ICPMS spot analyses on zircon grains for the Pan Tak garnet-two-mica granite, Coyote Mountains, southern Arizona, USA.

Age (Ma) \pm 2s	P	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	
Sample CM14-04 Pan Tak garnet-two-mica granite (Coyote Mountains, southern Arizona)														Mount IC GEO-262 (November 2019)		
CM14-25	49.3 \pm 1.9	-750	312	12.5	5200	126.00	0.146	46.5	0.420	4.20	9.40	2.05	69.0	31.40	431	177.0
CM14-23	50.3 \pm 1.3	-2160	406	203.0	11900	290.00	11.100	32.6	5.900	48.00	67.00	6.10	255.0	88.00	1040	380.0
CM14-14	50.7 \pm 0.8	7500	301	15.9	10200	386.00	1.190	57.0	1.900	16.60	27.00	3.36	143.0	65.00	820	338.0
CM14-31	53.0 \pm 1.0	-200	358	8.5	4560	105.00	15.600	14.0	4.600	25.80	25.50	3.80	82.0	30.80	354	125.0
CM14-12	54.1 \pm 1.8	4500	310	13.8	11100	347.00	32.000	44.0	6.700	37.00	31.10	3.34	134.0	59.00	830	347.0
CM14-35	54.3 \pm 0.9	-350	378	11.7	3160	79.00	0.660	10.2	0.680	6.80	9.80	1.03	38.5	16.30	212	88.0
CM14-34	55.9 \pm 2.0	-90	262	11.7	2900	6.10	0.004	43.5	0.073	2.40	5.70	2.34	44.7	18.00	241	99.0
CM14-3	56.2 \pm 1.9	80	141	5.8	4400	47.00	0.260	16.9	0.470	5.40	9.20	1.16	48.0	20.00	290	131.0
CM14-19	56.3 \pm 0.7	-1600	370	9.3	7000	107.00	3.600	105.0	1.870	12.10	20.70	5.20	117.0	46.00	580	231.0
CM14-22	56.5 \pm 1.6	-80	124	4.8	850	3.90	1.230	14.8	1.160	4.50	5.30	1.29	15.4	6.70	60	24.0
CM14-29	56.8 \pm 1.2	-180	205	6.2	2140	20.10	0.000	48.0	0.068	1.15	4.20	1.37	33.8	13.40	175	72.0
CM14-8	56.9 \pm 2.2	-240	163	2.2	1140	2.38	0.000	20.6	0.047	0.88	2.13	0.85	16.3	6.70	82	35.9
CM14-20	56.9 \pm 1.9	-1600	201	6.8	1920	11.00	0.230	76.0	0.178	2.43	5.75	2.18	39.0	14.40	173	67.0
CM14-39	57.1 \pm 1.3	-230	260	8.8	2530	12.60	0.000	72.0	0.118	1.92	6.80	2.33	41.8	15.90	214	88.0
CM14-36	57.8 \pm 1.2	90	114	4.3	510	6.30	0.200	7.6	0.250	1.84	1.40	0.40	5.8	2.19	32	15.2
CM14-38	57.8 \pm 0.8	-130	254	5.8	4570	58.00	0.009	102.0	0.106	2.85	11.50	4.19	89.0	33.40	417	163.0
CM14-21	57.9 \pm 0.8	-360	258	4.4	3120	51.20	0.000	45.2	0.058	0.95	4.10	1.14	36.2	17.50	238	104.0
CM14-33	57.9 \pm 1.0	-40	194	4.4	3250	61.40	0.000	55.5	0.078	1.19	6.50	1.99	51.5	21.50	287	114.0
CM14-37	58.3 \pm 1.7	-90	330	6.9	2640	18.20	0.003	76.0	0.065	1.83	5.60	1.97	41.5	17.40	221	91.0
CM14-17	58.6 \pm 1.3	3800	93	1.8	488	4.65	0.000	9.4	0.030	0.00	0.67	0.15	3.8	2.09	31	14.7
CM14-32	58.9 \pm 1.5	70	111	1.7	256	2.21	0.000	4.6	0.013	0.02	0.13	0.02	1.6	0.84	12	6.2
CM14-30	59.0 \pm 1.3	-190	150	1.9	340	2.80	0.013	4.8	0.022	0.03	0.13	0.14	3.1	1.41	24	10.9
CM14-5	59.3 \pm 1.0	50	82	1.3	330	1.71	0.004	4.1	0.014	0.04	0.15	0.12	2.5	1.21	20	9.7
CM14-28	59.3 \pm 0.8	-250	107	2.5	1710	20.30	0.000	23.9	0.011	0.27	2.63	0.93	22.5	9.30	121	53.3
Average	41	176	4.3	1720	18.45	0.113	37.6	0.148	1.33	3.80	1.27	26.9	10.93	140	57.9	
CM14-15	61.9 \pm 1.4	9700	192	2.5	3100	28.00	0.000	73.0	0.042	0.53	3.20	1.31	34.5	16.30	236	103.0
CM14-6	62.0 \pm 1.5	80	58	1.2	270	2.50	0.000	9.7	0.027	0.04	0.29	0.19	2.4	1.02	16	7.4
CM14-24	76.7 \pm 2.4	-170	145	5.6	800	8.00	0.000	41.0	0.051	0.91	2.11	0.48	16.5	6.20	75	27.5
CM14-2	78.0 \pm 2.1	240	89	0.4	1250	1.03	0.041	46.0	0.390	5.90	11.60	5.30	41.0	11.90	130	53.0
CM14-26	78.7 \pm 2.3	-70	215	1.7	1590	11.00	0.000	32.9	0.036	0.63	2.71	0.54	16.3	7.30	110	50.0
CM14-40	150 \pm 2	-110	90	3.5	1590	9.70	0.003	63.6	0.082	2.04	3.29	0.83	25.7	10.10	127	54.5
CM14-4	168 \pm 4	90	86	1.0	780	2.70	0.002	14.1	0.023	0.85	1.55	0.40	11.9	4.50	60	26.0
CM14-11	169 \pm 3	1800	93	6.6	1030	3.66	0.179	42.5	0.122	1.46	3.22	1.08	18.8	7.20	88	29.3
CM14-13	1107 \pm 16	-900	70	4.4	413	6.90	0.000	7.9	0.025	0.03	0.43	0.01	4.9	2.18	32	13.5
CM14-9	1474 \pm 80	-400	189	5.0	2140	2.78	0.004	30.0	0.390	7.00	12.10	3.70	59.0	17.40	198	76.0

n = 34

Element concentrations (ppm) are calculated relative to analyses of trace-element glass standard NIST 610.

Er	Vb	Lu	Hf	Pb	Th	U
840	1780	353	16500	52.30	1540	5930
1780	3890	760	22000	152.50	3770	15100
1600	3420	680	13700	147.50	6260	18900
620	1760	382	23000	62.00	1110	7600
1730	4000	840	15300	155.00	5410	22000
469	1730	403	25600	64.80	640	7050
457	890	177	9300	1.90	152	158
690	1270	390	6800	45.00	871	5080
1080	2200	425	11300	54.50	3407	5790
134	470	124	16100	5.70	85	517
335	710	144	9200	7.90	599	794
178	410	86	8400	1.20	98	134
301	553	112	7900	2.90	710	348
416	880	179	10300	4.90	397	434
87	268	66	14000	8.60	57	762
701	1260	231	11800	42.30	3750	4820
533	1240	260	10400	25.50	1291	3129
519	960	179	10200	23.00	793	2627
438	880	183	11600	4.20	385	361
83	244	57	12200	5.80	70	613
43	159	46	12500	4.30	67	463
58	179	48	13600	6.60	74	710
56	181	48	5600	3.90	96	897
270	710	154	9800	24.00	1078	3027
277	607	128	10907	11.39	637	1309
510	1110	217	8700	13.80	786	1807
41	135	32	4400	2.40	141	687
126	279	60	12400	8.50	159	642
180	400	78	3900	2.70	349	338
283	830	185	14600	18.00	214	1109
260	590	120	10300	26.50	792	1002
126	280	58	7600	12.00	238	496
155	356	74	9800	9.80	313	352
70	137	28	12700	35.50	31	155
340	640	126	11300	80.00	146	277