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Abstract— In this work, we present a memory efficient
representation of the roadmap that approximates and measures
these approximations of the underlying topology of the Cfree

space. First, we perform sampling in the configuration space
while meeting preconditions in the workspace and connect
samples such that the resulting graph becomes a skeleton graph
that can be used to construct a Vietoris-Rips (VR) complex.
Second, we show that a series of topological collapses can be
performed to remove vertices from a graph so that the resulting
graph reconstructs homotopy equivalent shape to the η-offset
of the Cfree space. In our experiments, we use a range of
sample points in three different test environments, construct
VR-complex from densely connected graphs, perform topology
collapses and plan path trajectories from preserved samples
after the collapse for different robot scenarios. Our result shows
that on satisfying certain preconditions, the VR-complex gives
homotopy equivalent shape to the η-offset of the Cfree space.

I. INTRODUCTION

Understanding and describing the structure of the config-
uration space (Cspace) is one of the fundamental challenges
in robotic motion planning. If we can fully describe the
geometry and the topology of the configuration space, the
motion planning will become trivial as the robot can be
viewed as a point in the configuration space. However, as
the configuration space can be arbitrarily complex compared
to the workspace, it is difficult to answer even the seemingly
simple questions about the connectivity of the space.

In recent decades, one of the most often applied methods
in motion planning is the sampling-based methods which
attempt to explore the connectivity of some portion of the
space through sampling. These methods are very effec-
tive in problems relative open configuration spaces. Even
though over the years, many asymptotically optimal motion-
planning algorithms including PRM* and RRT* [26] have
been proposed, the generated samples still only covers an
immeasurable subset of the configuration, unless the number
of samples reaches infinity.

In this work, we attempt to answer the question about the
connectivity of the configuration space through the construc-
tion of a set of Vietoris-Rips (VR) complex. The set of VR-
complexes constructed using the described properties will be
able to approximate the homotopy of the underlying space
from which the samples are generated. The details of the
topological equivalence will be introduced in Section III-D.
In addition, we will show that the constructed VR complexes
can perform topological collapses by removing non-common
vertices among complexes, which will result in a relatively
sparse representation.

Extracting topological properties of the configuration
space is not a new idea and many good results have been
presented. One of the most often extracted information is

”persistent homology”, which describes holes present i.e.,
obstacles, in the configuration space. This extracted infor-
mation can isolate and describe obstacles, therefore can be
useful to guide the motion planning. The aim of our work
however, is not identifying objects and obstacles present
in the configuration space, but provide a tool to efficiently
describe properties of the Cfree space, so that the resulting
description can be directly used for finding paths in the
configuration space.

Our approach can be briefly described as follows, 1),
we first generate samples and connect them locally, so that
they satisfy a set of properties describing the convexity
of the subspace occupied by the samples. These satisfied
properties guarantee that the constructed VR-complexes ho-
motopically equivalent to the underlying space. 2), once the
equivalence is established, we will remove samples from the
representation that does not affect the topological properties
of the complexes, by performing topological collapses. In
addition, as all the remaining samples belong to one or more
VR-complexes, i.e. local cliques, we can also remove the
edges from the representation, recording only which VR-
complex a sample belongs to. 3), the resulting set of samples
can be used to build a roadmap for the Cfree space. If
a path connecting a pair of start and goal configurations
exists within the space described by the VR-complexes, the
proposed methods can find such a solution. Figure 1 shows
the process flow of our approach.

Fig. 1: Our approach

We admit that this is still a preliminary work on using
topological tools for motion planning. There are many po-
tential extensions that can be built upon the current results.
For example, even though our approach is not currently
incremental, the capability of preserving topological infor-
mation of the sampling space while being memory efficient
can be beneficial for planning in complex spaces. Also, the
presented approach currently only finds a path but makes
no guarantee about the optimality of the path, which is part
of the future work we are currently working on. Interest-
ingly, we can change/refine the sampling parameters used
to generate samples for VR-complex construction if a path
that we know exists is not returned by the current roadmap.
We, therefore, will expand the spaces approximated by the
VR-complexes to include the path. We perform experiments
in three different environments and compare results with an



optimal path planning algorithm and show improvement in
time needed to generate path trajectories for different robot
scenarios.

II. RELATED WORK

Topological features are defined as the basic representation
of mathematical or geometrical space and refer to a feature
that supports continuity, connectivity, and convergence that is
established and maintained based on geometric coincidence.
These topological features can be extracted using various
mathematical concepts such as sheaf theory, persistent ho-
mology, Vietoris-Rips (VR) complexes, and landmarking
approach. Past results have shown the beneficial use of
the topological feature for improved behaviors or actions
of machines in areas like signal processing, cohomology,
topological motion planning, etc.

To understand the application of homotopy classes for 2D
and 3D space objects, Bhattacharya et al. in [6], [8], [9],
proposed the use of homology classes for 2D objects, as
the application of homotopy classes cannot be practically
applied to robots path planning problems. They proposed an
application of complex analysis and electromagnetism for the
path planning through the 3D objects with K genus (holes
in the obstacles) by using the concept of homotopy classes.
Later in his work, a more practical application approach was
researched, Bhattacharya et al. in [7], used the concept of
persistent homology to find the homology class of trajectories
that is most persistent for a given probability map. The work
proposed the use of persistent homology concept to solve
the fundamental problem of goal-directed path planning in
an uncertain environment represented by probability map.

Research by Pokorny et. al. in [30], studied homotopy
classes of trajectories in general configuration space using
Delaunay-Cech Complexes filtration method and abstract the
global information of trajectories using persistent homology.
Pokorny et. al. further showed in [31], the application of
a sampling-based approach to topological motion planning
that is fully data-driven in nature The work also used the
Delaunay-Cech filtration method to filter the data from the
point-cloud dataset and improvises Dijkstras algorithm to
generate distance vector trajectories for a source vertex.

The above-cited research has shown improvements more
inclined towards extracting topological information of the
space and then performing approximate sampling with per-
formance guarantees. These methods, however, do not pro-
vide a measure of the approximation that has been per-
formed.

A. Sampling Based Motion Planning

Sampling-based methods [14] are a state-of-the-art ap-
proach to solving motion planning problems. These methods
are known to be probabilistic complete because the proba-
bility of finding a solution if it exists tends towards 1 as the
number of samples generated also increases. Sampling-based
methods are broadly classified into two main classes: graph-
based methods such as the Probabilistic Roadmap Method
(PRM) [27] and tree-based methods such as Expansive-Space

tree planner (ESTs) [24] and Rapidly-exploring Random Tree
(RRT) [28]. PRM variants consider different topology which
include uniformly generating samples in the environment
[27], sampling near obstacles [2], [4], [12], [23], [35],
sampling with constraints placed on the robots [29] and
planning with uncertainty in the environment [25]. Other
methods exist that investigate the heterogeneous nature of
the planning environment using reinforcement learning [15]–
[18], [33].

III. PRELIMINARIES

A. VR-complex and Čech-complex

There has been various research done to better understand
the VR and Čech complexes and how they provide topolog-
ically correct approximations. More formally, the VR and
Čech complex can be defined as follows:

Given a set X of points in Euclidean space E, the VR
complex R(X) is the abstract simplicial complex whose k-
simplices are determined by subsets of k + 1 points in X with
a diameter that is at most ε, whereas the Čech-complex C(X)
is the abstract simplicial complex where a subset of k + 1
points in X determines a k-simplex if and only if they lie in
a ball of radius ε/2.

In work by Attali et. al., [5] they presented mathematical
proofs to show VR complexes can provide topologically
correct approximations of shapes with the notion of distances
between points in the metric space. This previous research
provides conditions under which the VR complex of the point
set at some scale reflects the homotopy type of the shape for
a finite point set that samples a shape.

To perform better topological analysis, Chambers et. al.
in [13] presented a concept called shadow complexes – a
projection map from the VR complex to Euclidean n-space
that has as its image an n-dimensional approximation to the
homotopy type of sampled space. However, the projection
map did not preserve higher-order topological data for planar
sets, nor did it preserve fundamental group data for point sets
in dimension larger than three.

Previous work has shown that VR Complex have been
used to extract the topological feature of space using vari-
ous methods. In [36], Zomorodian proposes three different
algorithms to faster compute VR Complex from a gener-
ated neighborhood graph of topological space. He further
discussed the application of topology data analysis methods
in recovering the topology of the sampled space in [37].

In this work, we use the concept of VR Complex to
get topological approximations of the configuration space
to enhance path planning by providing a measure of the
approximation to better guide sampling in difficult regions.

B. Simplicial collapses

A simplicial complex K, i.e., a collection of sets closed
under the subset operation, it is a generalization of a graph
and is useful in representing higher-than-pairwise connectiv-
ity relationships. The elements of any set are called vertices
and the set itself is called a simplex. Topological thin-
ning (simplicial collapse) [10] is an important preprocessing



operation that aims to shrink simplicial complexes to a
smaller, simpler simplex which retains a lot of the significant
information of the space. For example, A thinned simplicial
complex is a subcomplex of K with the condition that all
the faces of the maximal simplices are shared. Thus, it can
no longer be possible to collapse them.

To establish the conceptual understanding of topology col-
lapse, the work in [21] gave a theoretical proof of simplicial
collapse of simplicial complexes with the implementation
shown on folded manifolds. Presenting the application of
simplicial collapses, research in [22], proposed a method
for computing the cohomology ring of three-dimensional
(3D) digital binary-valued pictures via a simplicial complex
and algebraic thinning using topological representations.
Research in [34], presented a novel algorithm for simplifying
homology and hole location computations on a complex by
reducing it to it’s core using a strong collapse (a concept of
simplicial collapse).

In this work, the concept of simplicial collapse will be
investigated. In particular, the simplicial collapse will be
used to reduce the complexity of maximal simplices through
vertex deletion down to a core simplex on maintaining the
topological structure of the configuration space.

C. Hausdorff Distance

The Hausdorff distance measures how far two subsets of
a metric space are from each other [1]. In this work, we
measure Hausdorff distance (ε) between set P (point cloud)
and set X (boundary points representing and covering the
entire Cfree). The algorithm uses a convex hull to find the
boundary points of point cloud set P. The value of ε is
calculated as the difference of boundary points of two sets P
and X as shown in Figure 2. As the sample points get denser
in the Cspace, the value of ε decreases and becomes constant
after the certain number of sample points in the Cspace. Since
the points sampled in the Cspace are not point object but takes
the constraint of the robot into consideration, the value of ε
reaches constant value within a finite range of points.

Fig. 2: Hausdorff distance for set P and X

D. From VR complex to sampled-space topology

Generally, a VR-complex does not preserve the topology
of the underlying sampled space. However, in [5], the authors

showed that a VR complex can be retracted to a Čech com-
plex to approximate the topology of the underlying sampled
space. Let us define the flag complex of a graph G, denoted
Flag G as the maximal simplicial complex whose 1-skeleton
is G. More precisely, this is the largest simplicial complex
sharing with the Čech complex the same 1-skeleton. In
addition, let us denote the VR-complex R(P, t) the abstract
simplicial complex whose k-simplices correspond to subsets
of k+ 1 points in P with a diameter that is at most 2t. The
Čech complex C(P, t) as the abstract simplicial complex
whose k-simplices correspond to subsets of k+1 points that
can be enclosed in a ball of radius t. Define α as an inert
value of P if Rad(δ) 6= α for all non-empty subsets δ ⊂ P .

Then, given any point set P ∈ Rn and any real numbers
α, β ≥ 0 with α ≤ β, define the flag complex of any graph
G satisfying R(P, α) ⊂ Flag G ⊂ R(P, β) an (α, β)-almost
Rips complex of P . Also, let vn =

√
2n
n+1 . We can then have

the following theorem, which is Theorem 7 from [5].

Theorem 1. Let P ⊂ Rn be a finite set of points. For any
real numbers β ≥ α ≥ 0 such that α is an inert value of
P and cP (vnβ) < 2α − vnβ, there exists a sequence of
collapses from any (α, β)-almost Rips complex of P to the
Cech complex C(P, α).

Further, the graph can be shown to be homotopy equivalent
to η-offset of the sampling space X , from Theorem 10 in [5].

Theorem 2. Let ε, α and β be three non-negative real
numbers such that α ≤ β and η = 2α − vnβ − 2ε > 0.
Let P be a finite set of points whose Hausdorff distance to
a compact subset X is ε or less. Then, any (α, β)-almost
Rips complex of P is homotopy equivalent to the η-offset of
X whenever α is an inert value of P and hX(vnβ + ε) <
2α− vnβ − 2ε.

where Hull(X) denotes the convex hull of X , and

hX(t) = dH(Hull(X, t)|X) (1)

Hull(X, t) =
⋃

∅6=δ⊂X
Rad(δ)<t

Hull(δ) (2)

From the theorem, we can derive that in order to use a
graph-like structure to approximate the underlying homotopy
of the sampling space, we need to first have sufficiently dense
samples, so that P is no more than ε away from the set X
based on Hausdorff distance. Here, X is the set we would
like to approximate using samples in P . Recall, Hausdorff
distance dH(X,Y ) is

dH(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

d(y,X) = inf
x∈X

d(y, x)

dH(Y |X) = sup
y∈Y

d(y,X)

Therefore, if the samples P satisfy the above properties,
we can construct a graph based on P and use the relations
to approximate the underlying homotopy of X , even when



the number of samples is small. Compared to the sampling-
based motion planning approaches, where the connectivity is
guaranteed when the number of samples reaches infinity, the
proposed method yields a bound on the number of samples.
On the other hand, given a set of samples P , we can also
compute the relevant parameters to derive how much of the
sample space X has the samples covered, where X can be
Cfree in the case of motion planning.

IV. METHODOLOGY

A. Sampling the configuration space

We generate samples in the Cfree that satisfies sampling
conditions as indicated in Theorem 1 and 2 previously de-
scribed in Section III-D. These samples are used to compute
Hausdorff distances (ε) with the boundary points of the
workspace, set X . The Hausdorff distance between two
compact sets X and P is analyzed on generating different
range of sample points at a time in the workspace. The
convex hull points of set P is calculated to compute the
two-sided Hausdorff distance with set X , i.e. the supremum
distance between sets X and P . In [5], the authors state
that if the Hausdorff distance is smaller than some notion
of topological feature size of the shape, then the output is
topologically correct. Taking this into consideration from
theorem 2 we validate the expression 2ε < 2α − vnβ,
where β = α in our experiments. On verifying the sampling
condition in the workspace, the output is a densely sampled
Cspace graph G.

B. Collapsing a VR-complex

The convex hull of any nonempty subset of the n + 1
points that define an n-simplex is called a face of the
simplex (complex). A maximal face (facet) is any simplex
in a complex that is not a face of any larger simplex. Given
τ, δ ∈ K, if τ ⊂ δ, in particular dim τ < dim δ, and δ is a
maximal face of K and no other maximal face of K contains
τ , then τ is called a free face. A simplicial collapse of K is
the removal of all simplices γ such that τ ⊆ γ ⊂ δ.

Given a simplicial complex K of dimension n ≥ d, a d-
skeleton of K is the subcomplex of K consisting of all the
faces of K that have dimension at most d. Then, a graph
can be used to represent the 1-skeleton of K, and let us
refer to the graph as the underlying graph and denote the
graph as GK . For simplicity, in this work we will refer to
the 0-skeleton of K as vertices of GK , and faces of K that
have dimension 1 as edges of GK . Then, we can derive the
following results.

Lemma 1. Given a complex K and its underlying graph
GK , let δ be a maximal face of K, if a vertex v of GK is a
subset of δ (v ⊂ δ) and no other maximal face of K contains
v, then there exist a sequence of simplicial collapses on K
that can remove vertex v.

Proof: Let there exist a sequence of free faces
s0, s1, s2, . . . , sm, so that s0 ⊂ s1 ⊂ s2 ⊂ . . . ⊂ sm ⊂ δ and
s0 = v. Let s1 be one of the edges on GK with v being one
endpoint of the edge, let s2 be the tetrahedron containing s1,

etc. Because each si is a free face, a simplicial collapse can
remove it. Then, let the sequence of collapse start from sm,
and move towards s0. Each collapse of si will not change
the fact that si still is a free face of δ. Therefore, v can be
removed.

Then, we can extend the results to get the following
theorem.

Theorem 3. Given a complex K and its underlying graph
GK , let δ be a maximal face of K, and let Vs be the set of all
the vertices v where v is a subset of δ and no other maximal
face of K contains v. Then, after removing all vertices in
Vs, there are no free faces on δ.

Proof: Let us assume that after removing all vertices
in Vs, there still exists at least one free face τ ⊂ δ. If τ is of
dimension 0, then it is a vertex that only belongs to δ, so it
must have been part of Vs, so τ can only be of dimension 1
or above. If τ is of dimension 1, i.e. an edge on GK , then at
least one vertex of the edge will belong only to δ otherwise
the edge cannot be a free face. Therefore, removing all
vertices of Vs will remove this edge. Inductively, we can
extend this to higher dimensions. Therefore, there cannot be
any free face left after removing all vertices in Vs.

C. From roadmaps to collapsed VR-complex
Algorithm 1 constructs vietoris-rips complex using Quick-

cliques library from [20] on a sampled graph. The maximal
clique technique uses a hybrid algorithm to compute quick
cliques. These cliques are binary represented to perform ⊕
operation on it to simplicially collapse by pruning vertices
from the graph.

The algorithm returns a sampled graph with vertices of
non-colliding regions of Cspace after completing topological
collapse on the graph. This densely sampled graph gives an
approximate topological shape representation of the objects
and available free region in the Cspace.

Algorithm 1 Graph-Collapse(G)

Input: Let G be the sampled graph, M be maximal clique,
B be set of binary representation for each clique and T
be set of vertices on topological collapse.

1: for all nodes in graph G do
2: compute maximal clique M.
3: while M is not empty do
4: for each clique in M do
5: if node in clique then
6: Set binary value ’1’ for node in B
7: else
8: Set binary value ’0’ for node in B
9: if B is not empty then

10: T = B ⊕ B
11: for each node in T do
12: project node in graph Gnew.
13: return Gnew

Each node in the graph was represented in binary form
based on the clique in which it belongs. For the graph with



n nodes, the binary representation of a clique (or a sub-
graph) is the binary string of length n in which the ith

character is ”1” if the clique (sub-graph) contains the ith

node and ”0” if the clique (sub-graph) does not contain the
ith node. During ⊕ operation, the algorithm checks for ith

node with ’0’ to perform the pruning process. The algorithm
collapses all the edges between the two nodes and removes
nodes that are not part of the cliques from the graph. The
resulting topological reconstruction of the environment gives
a sampled facet graph Gnew.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

All experiments were executed on a Dell Optiplex 7040
desktop machine running OpenSUSE operating system and
were implemented in C++.

We perform experiments in three different environments
as shown in Figure 3 and generate samples ranging from
100 to 10,000. The environments are taken from the Parasol
Lab benchmarks at Texas A & M University [3].
• ZigZag environment: This is a 2D environment with

structured obstacles placed randomly as shown in Figure
3a and 3b. We test with 2 robots ranging of 2DOF and
4DOF respectively.

• Heterogeneous 3D: This is a 3D maze environment
with walls and narrow passages between the walls. The
robot with a toroidal shape has to pass through maze-
like tunnels to reach the end as shown in Figure 3c.

• Helico: This is a city representation environment with
tall buildings and cable wires between buildings as
shown in Figure 3d. The robot is a rigid body repre-
sentation designed as a helicopter and has the ability to
change it vertical position based on the goal position.

B. VR Complex Libraries

We perform preliminary experiments with two libraries
that apply VR-complexes to produce simplices. We compare
results and determine what library is most suited for our
approach.

GUDHI library [11] computes persistent homology (PH)
of a sequence of simplicial complexes using a fast and
memory efficient approach. These simplicial complexes can
be constructed using different methods available within the
library. We used the VR-complex package available in this
library to construct simplicial complexes. The time complex-
ity of the algorithm is O(v2d+m2d), here d is the dimension
of the complex, v is the number of vertices, m is the number
of maximal simplices in the graph.

Quick-cliques library [19], [20] generates faster maximal
cliques on modifying Bron-Kerbosch algorithm by Tomita et.
al. [32]. We used a hybrid algorithm that applies VR-complex
approach to construct simplices. The time complexity of the
algorithm is O(3d/3nd) with n vertices and degeneracy d.
Since VR-complexes are also known as clique complexes,
the algorithm tries to generate maximal cliques as a result.

Table I and II provides comparison results for GUDHI
and Quick-cliques library in 2 DOF ZigZag environment

with and without obstacles present. Investigating the results,
we can see that Quick-cliques library computes maximal
cliques faster than the GUDHI library as the number of nodes
increases hence our choice for using the Quick-clique library.

Library Number of Nodes Cliques Time taken (sec)
GUDHI 100 210 0.01

Quick-Cliques 100 51 0.042274
GUDHI 10000 33552695 289.31

Quick-Cliques 10000 892190 0.014901

TABLE I: Constructing Rips complex in a 2 DOF ZigZag
environment without obstacles

Library Number of Nodes Cliques Time taken (sec)
GUDHI 100 268 0.02

Quick-Cliques 100 1378 0.042939
GUDHI 10000 81463172 675.6

Quick-Cliques 10000 1443062 50.072735

TABLE II: Constructing Rips complex in 2 DOF ZigZag
environment with obstacles

C. Sampling Improvement Results

We perform two sets of experiments on our three testbeds,
as described in Section V-A, both with obstacles and no
obstacles in the environment. We first perform experiments
for the sampling conditions of P based on the 2ε < 2α−vnβ,
where β = α preconditions as previously discussed in Sec-
tion IV-A and another condition as defined in [5], states that
as the sampled space becomes denser, the Hausdorff distance
(ε) reduces or approaches a constant value. Secondly, we
utilize the dense sampled space graph G to a construct VR-
complex and perform the topology collapse. Our results show
that after a topology collapse, the coverage of Cspace is not
compromised.

1) Sampling conditions: In Figure 3 and 4, the Hausdorff
distance (ε) decreases in an empty environment as well as in
environment with obstacles. The trend as shown in Figure 5b
clearly satisfy the conditions stated in [5] which states ”the
value of ε will become constant above radius of the circle
covering the Cspace”. The purple and blue bars (2ε)(E) and
the green and yellow bars (2α− vnβ) (A) in the histogram
represented in Figure 4a to 5b show that in all cases the
condition is satisfied.

A particular case in the Helico environment as seen in
Figure 5b, here the ε value reads a low value at the initial
stage and subsequently increases as the graph gets denser
before leveling off and then becoming constant. The position
of a robot in this environment is at the corner of the
Cspace, so when samples are generated earlier on, they are
generated only near the boundary of the Cspace and hence
ε value is low as the number of samples increases in the
environment to produce better coverage. The values of ε
converges to constant as it reaches 10000 sampled nodes
in all the environments as shown in Figure 6.



(a) 2 DOF ZigZag (snake-like) (b) 4 DOF ZigZag (snake-like)

(c) Heterogeneous 3D (toroidal plus)

(d) Helico (helicopter)

Fig. 3: Environments Studied
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(a) 2 DOF ZigZag
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(b) 4 DOF ZigZag

Fig. 4: ε and α trends in obstacle and free environments
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(a) Heterogeneous 3D
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(b) Helico

Fig. 5: ε and α trends in obstacle and free environments



(a) Cfree environment (b) Cobst environment

Fig. 6: Convergence of Hausdorff distance in obstacle and free environments

2) Topology Collapse: Table III contains results for topol-
ogy collapse experiments that utilize theorems and algo-
rithms presented in Section IV-B and IV-C. Results sub-
stantiate the ability to delete vertices thus substantiating
Lemma 1. We show a 40 to 90% reduction across all the
environments which is promising towards deleting vertices
while still maintaining the topological information of the
space with the produced maps.

Figure 7 gives a pictorial representation for two environ-
ments produced after the graph topology collapse.

In addition, because the samples we generated are used to
construct VR-complex, which are locally complete subgraphs
(cliques), we skip the storage of all the edges and store
only the information of which cliques a vertex belongs to.
Therefore, the storage needed to store the entire resulting
roadmap is a linear scale of the number of samples left after
the collapse, which is comparable to k-nearest neighbor PRM
but provides much richer topological information.

D. Planning with homology equivalent samples

Table IV and V shows the comparison results of path
generated by PRM* [26] and the path generated by our
approach after the collapse in different environments in terms
of total path cost and time needed to build a path. We report
time to connect and query the environment alone to allow
for fairness in our comparisons. The results show an order
of magnitude improvement in all environments studied.

VI. DISCUSSION AND FUTURE WORK

The work presented has shown that the Vietoris-Rips
Complex and the Čech Complex have homotopy equivalence
beneficial to improving approximate sampling algorithms
and gives a much-needed measure of this approximation. The
reconstructed Cspace has proven to be more helpful in path
planning while reducing the computation time and memory.

The approach can have application in a dynamic real-
world environment where the path planning of robot can
be performed with minimum computation time on each
smaller portion of the environment a robot can view at the
time of traversal and combine all together to get a better
understanding of the actual environment.

In future work, we will further enhance the approach to
identify critical points in Cspace, i.e. sample points closest

to the Cspace curvature, and using the properties of Vietoris-
Rips, perform path planning on smaller sized graphs.

REFERENCES

[1] Hausdorff distance. https://en.wikipedia.org/wiki/
Hausdorff_distance, accessed: 2018-01-30

[2] Amato, N.M., Wu, Y.: A randomized roadmap method for path and
manipulation planning. In: Proc. IEEE Int. Conf. Robot. Autom.
(ICRA). pp. 113–120 (1996)

[3] Amato, N.M.: Motion planning benchmarks,
http://parasol.tamu.edu/groups/amatogroup/benchmarks/

[4] Amato, N.M., Bayazit, O.B., Dale, L.K., Jones, C., Vallejo, D.:
OBPRM: an obstacle-based PRM for 3d workspaces. In: Proceedings
of the third Workshop on the Algorithmic Foundations of Robotics.
pp. 155–168. A. K. Peters, Ltd., Natick, MA, USA (1998), (WAFR
‘98)

[5] Attali, D., Lieutier, A., Salinas, D.: Vietoris–rips complexes also
provide topologically correct reconstructions of sampled shapes. Com-
putational Geometry 46(4), 448–465 (2013)

[6] Bhattacharya, S.: Identification and representation of homotopy classes
of trajectories for search-based path planning in 3d (2011)

[7] Bhattacharya, S., Ghrist, R., Kumar, V.: Persistent homology for path
planning in uncertain environments. IEEE Transactions on Robotics
31(3), 578–590 (2015)

[8] Bhattacharya, S., Likhachev, M., Kumar, V.: Topological constraints in
search-based robot path planning. Autonomous Robots 33(3), 273–290
(2012)

[9] Bhattacharya, S., Lipsky, D., Ghrist, R., Kumar, V.: Invariants for
homology classes with application to optimal search and planning
problem in robotics. Annals of Mathematics and Artificial Intelligence
67(3-4), 251–281 (2013)

[10] Björner, A.: Topological methods. Handbook of combinatorics 2,
1819–1872 (1995)

[11] Boissonnat, J.D., Pritam, S., Pareek, D.: Strong collapse for persis-
tence. arXiv preprint arXiv:1809.10945 (2018)

[12] Boor, V., Overmars, M.H., van der Stappen, A.F.: The Gaussian
sampling strategy for probabilistic roadmap planners. In: Proc. IEEE
Int. Conf. Robot. Autom. (ICRA). vol. 2, pp. 1018–1023 (May 1999)

[13] Chambers, E.W., De Silva, V., Erickson, J., Ghrist, R.: Vietoris–rips
complexes of planar point sets. Discrete & Computational Geometry
44(1), 75–90 (2010)

[14] Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard,
W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Cambridge, MA (June
2005)

[15] Ekenna, C.: Improved Sampling Based Motion Planning Through
Local Learning. Ph.D. thesis, Texas A&M University, College Station,
Texas (2016)

[16] Ekenna, C., Thomas, S., Jacobs, S.A., Amato, N.M.: Adaptive neigh-
bor connection for PRMs, a natural fit for heterogeneous environments
and parallelism. Tech. Rep. TR13-006, Texas A&M (May 2013)

[17] Ekenna, C., Uwacu, D., Thomas, S., Amato, N.M.: Improved roadmap
connection via local learning for sampling based planners. In: Proc.
IEEE Int. Conf. Intel. Rob. Syst. (IROS). pp. 3227–3234. Hamburg,
Germany (October 2015)



Environment Nodes Before Nodes After- Free % Reduction Nodes After- Obstacle % Reduction
2DOF Zig Zag 10,000 5081 49.2 4826 51.7
4DOf Zig Zag 10,000 637 93.6 896 91.1

Heterogeneous 3D 10,000 4968 50.3 5061 49.3
Helico 10,000 5041 49.6 5023 49.8

TABLE III: Results after the Topology Collapse in the Free and Obstacle Environment

(a) 4 DOF ZigZag (b) Heterogeneous 3D

Fig. 7: Environments after the Topological collapse

Cfree Environment Our Approach PRM∗ Cobst Environment Our Approach PRM∗

2DOF ZigZag 62.1342 229.922 2DOF ZigZag 53.0861 129.904
4DOf ZigZag 64.7357 11146.4 4DOf ZigZag 2.52541 24089.9

Heterogeneous 3D 62.6602 DNF Heterogeneous 3D DNF DNF
Helico 55.8919 DNF Helico 58.4688 82967

TABLE IV: Path planning time (in seconds) in the Free and Obstacle Environments

Cfree Environment Our Approach PRM∗ Cobst Environment Our Approach PRM∗

2DOF ZigZag 1003 1438 2DOF ZigZag 827 1553
4DOf ZigZag 916 1324 4DOf ZigZag 893 1258

Heterogeneous 3D 3714 DNF Heterogeneous 3D DNF DNF
Helico 1806 DNF Helico 1338 2698

TABLE V: Path planning cost in the Free and Obstacle Environments

[18] Ekenna, C., Uwacu, D., Thomas, S., Amato, N.M.: Studying learning
techniques in different phases of prm construction. In: Machine
Learning in Planning and Control of Robot Motion Workshop (IROS-
MLPC). Hamburg, Germany (October 2015)
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[27] Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Trans. Robot. Automat. 12(4), 566–580 (August 1996)

[28] LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. In:
Proc. IEEE Int. Conf. Robot. Autom. (ICRA). pp. 473–479 (1999)

[29] McMahon, T., Thomas, S., Amato, N.M.: Motion planning with
reachable volumes. Tech. Rep. 13-001, Parasol Lab, Department of
Computer Science, Texas A&M University (Jan 2013)

[30] Pokorny, F.T., Hawasly, M., Ramamoorthy, S.: Multiscale topological
trajectory classification with persistent homology. In: Robotics: science
and systems (2014)

[31] Pokorny, F.T., Kragic, D.: Data-driven topological motion planning
with persistent cohomology. In: Robotics: Science and Systems (2015)

[32] Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity
for generating all maximal cliques and computational experiments.
Theoretical Computer Science 363(1), 28–42 (2006)

[33] Upadhyay, A., Ekenna, C.: Investigating heterogeneous planning
spaces. In: Simulation, Modeling, and Programming for Autonomous
Robots (SIMPAR), 2018 IEEE International Conference on. pp. 108–
115. IEEE (2018)

[34] Wilkerson, A.C., Moore, T.J., Swami, A., Krim, H.: Simplifying the
homology of networks via strong collapses. In: Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on.
pp. 5258–5262. IEEE (2013)

[35] Yeh, H.Y.C., Denny, J., Lindsey, A., Thomas, S., Amato, N.M.:
UMAPRM: Uniformly sampling the medial axis. In: Proc. IEEE Int.
Conf. Robot. Autom. (ICRA). pp. 5798–5803. Hong Kong, P. R. China
(June 2014)

[36] Zomorodian, A.: Fast construction of the vietoris-rips complex. Com-
puters & Graphics 34(3), 263–271 (2010)

[37] Zomorodian, A.: Topological data analysis. Advances in applied and
computational topology 70, 1–39 (2012)


