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Abstract

Successful robot path planning is challenging in the
presence of visual occlusions and moving targets. Classical
methods to solve this problem have used visioning and
perception algorithms in addition to partially observable
markov decision processes to aid in path planning for pursuit-
evasion and robot tracking.

We present a predictive path planning process that mea-
sures and utilizes the uncertainty present during robot motion
planning. We develop a variant of subjective logic in combi-
nation with the Markov decision process (MDP) and provide
a measure for belief, disbelief, and uncertainty in relation
to feasible trajectories being generated. We then model the
MDP to identify the best path planning method from a list
of possible choices. Our results show a high percentage
accuracy based on the closest acquired proximity between a
target and a tracking robot and a simplified pursuer trajectory
in comparison with related work.

I. INTRODUCTION

Planning paths for robots in narrow and uncertain spaces
e.g, boulders falling causing blocked areas is still a difficult
task. In all types of environments that a robot may encounter
(if they’re scalable), they are confronted with various kinds of
decisions involving multiple choices and relative uncertainty.
A clear understanding of these uncertainties becomes a
prerequisite for effective decision making.

Recently an innovative logic variant method was devel-
oped [5], called Collective Subjective Logic (CSL), and the
authors created models for minimizing uncertainty in a deci-
sion making process by using Probabilistic Soft Logic (PSL).
They combined multiple opinions concurrently and provided
high scalability and prediction accuracy while dealing with
uncertain opinions. This work will take insight from the
aforementioned work, make innovative advancements and
apply them to path planning problems.

Interestingly, some important work in robotics that looks
into belief states and partially observable processes have
been developed in [4], [10], [17]. The models, however,
see an exponential growth in their running time due to
the increasing number of states needed as more unknown
locations are explored. Improved variants of these models
have been developed but, the measurement of uncertainty
present and how it can mitigate longer planning times has
not been investigated.

This research is supported in part by NSF awards CRII-IIS-1850319

1Sourav Dutta and Chinwe Ekenna - Department of Computer Sci-
ence, University at Albany, SUNY, NY 12206, USA {sduttaZ
cekenna}@albany.edu.

2Banafshen  Rekabdar -  Department  of
ence Southern Illinois University, IL
banafsheh.rekabdar@siu.edu.

Computer  Sci-
62901, US.A.

and Chinwe Ekennal

=

1

1
11
[ |
[ .|
1
1

Interception

ol

1 !

1
1
I
Pursuet Iearningl{arget’s ;trategy ’
1 Selection algorithm 1

! vlsual occlusion

1
1
1 -
| T
1
1 1
1 1
. m | o@%
' 1
Target estimated positions based

on each strategy (observed
positions are highlighted)

\ Target behind

1
I
1
1
1
I
I
I
1
1

Target running an
adaptive learning
algorithm to move from
start to goal

Fig. 1: Process Overview

In this paper, we introduce a novel combination of the
CSL and MDP which we call Uncertainty- MDP (U-MDP).
Our method has two main modules as illustrated in Figure 1
: the learning phase; where the algorithm uses a combination
of PSL and Subjective Logic (SL) to learn the uncertainty
representations of the available motion planning algorithms
and the prediction phase; where the MDP uses the evidence
gathered in the learning phase to predict the planning algo-
rithm in use.

Compared to other MDP variants, the states in our stochas-
tic process don’t increase exponentially instead we utilise
available planning strategies to induce on the states of the
MDP. We make measurements of the calculated uncertainty
in addition to belief and disbelief, to pick the best choice of
planning strategy in a given environment. Using our approach
thus limits the search space and reduces computational
complexity.

The contributions of this paper include:

« an improved target tracking algorithm that takes obser-
vational and estimation uncertainties into account and
uses them in the decision making process and

o a faster algorithm with reduced execution time with a
reduction of an exponentially increasing belief space to
a fixed number dependent on the number of planning
strategies available.

II. RELATED WORK

In this section, we discuss work related to logic systems,
Markov decision process, and application to robotics.



A. Collective Subjective Logic

Subjective Logic (SL) is a variant of probabilistic logic
with a primary focus on the existence of uncertainty or
incomplete knowledge. SL offers a variety of operators
like belief, disbelief, and uncertainty to update opinions.
However, SL operators don’t collectively deal with multiple
opinions concurrently, rather, they sequentially combine two
opinions. As a result, SL. operators lack scalability to derive
opinions from a large-scale network data. In an SL, an
opinion is represented as in equation 1, where b is the belief
factor (e.g. true), d is the disbelief factor (e.g false), a is
a pre-known base rate inferred from domain knowledge,
and u is the amount of uncertainty. Decisions are made by
equations 2 and 3, where Fj is the expected value for belief
probability, F/; is the expected value for disbelief probability.

w = (b,d,u,a) (D
Ey,=b+axu 2)
Ei=d+(1—-a)*u 3)

Probabilistic Soft Logic (PSL) [11], on the other hand,
is a machine learning framework that develops probabilistic
models using a concise logical syntax, and, solving them via
fast convex optimization. PSL provides a formulation tool to
determine unknown probabilities and requires probabilities
to be point-valued. PSL provides collective reasoning with
high scalability based on relationships between opinions but
does not deal with uncertainty. PSL assigns a rule weight
for each rule to indicate the level of confidence. PSL uses
truth probabilities in a range of [0, 1], instead of a binary
decision. A given probability p,, is called an atom, where
x; is a random variable representing a certain relationship,
details of which will be discussed in Section III-A.

Pxy N\ Pay = maz{()?pﬂfl + Dy — 1} “)
Dy V Pzy = min{le + Pz, 1} @)
TPz = 1- Dz, (6)

By taking the merits of both SL and PSL, a hybrid
probabilistic logic algorithm, called Collective Subjective
Logic (CSL) was developed in [5], which provides high
scalability and high prediction accuracy while dealing with
uncertain opinions over a large-scale network dataset. The
basic entities in CSL are subjective opinions as in SL while
the structural relations between the variables are modeled
using PSL rules. This helps in supporting the collective
inference of unknown variables in large scale network data.
Our new CSL variant allows the application of SL-like
simplistic rules on probabilistic data without the use of an
expensive bi-conditional between SL and PSL.

We introduce a variant to CSL that uses the basic rule for
constructing principles of PSL with uncertainty properties
included via the logic system of SL. On applying this on a
set of states, we derive Ej, and E; as vectors instead of scalar

values obtained from equations (2) and (3). These vectors are
generated for each discreet timestamp, and each element of
the vector represents the expected value of a state (strategy
is our case) for that timestamp. This is quite similar to the
CSL but derives its notations from SL.

B. Markov Decision Process

A Markov chain is a stochastic model of events, where a
sequence of independent identically distributed (7¢d) random
variables {X,,}52  is ordered by time. MDP is a stochastic
decision making process that satisfies the Markov property
which states that the probability of moving to the next state
depends only on the present state and is independent of the
previous states [2].

In this paper we introduce a new MDP variant that doesn’t
take exponential time for self-learning using a reward-based
approach. In our MDP variant, no static initial state or tran-
sition probabilities are used, instead, we derive them from
the knowledge gathered from our CSL variant previously
highlighted in this paper.

C. Motion Planning under uncertainties using Markov De-
cision Processes

Uncertainty in a robot’s belief space is a general prob-
lem in both motion planning and target tracking. In recent
research, the MDP model has been extended and updated
to account for uncertainty in dynamic environments [6],
[19], [22]. A tool belt of sensors gathers data on external
variables such as obstacles, weather patterns and in certain
environments; autonomous and independent entities [13],
[15], [16], [26]. This provides the robot with a detailed
description of the world. Sensor inaccuracies and noisy data,
however, provide the robot with a fragmented world. To
operate and navigate an environment under these conditions
is uncertain. In recent years, several new variants of the MDP
model have surfaced. SAFE-MDP [12], Mixed Observability-
MDP [6], and CC-MDP [12]. However, POMDP tends to
be at the root of these expansionist models. For example,
the POMDP model in [21] exhibits the ability to model and
reduce uncertainty for a common problem in aerospace, the
presence of strong winds. Strong winds account for uncertain
scenarios during motion planning and localization in the
UAV’s belief space and it’s the ability to track a target.

In [10], the authors developed a target tracking algorithm
that follows some basic principles of partially observable
Markov decision process (POMDP) but reduces the compu-
tational complexity of POMDP. This method called SARSOP
(Successive Approximations of the Reachable Space under
Optimal Policies) uses a combination of target following and
target searching by modeling target tracking as a POMDP.

In [20], the authors developed another UAV-based target
tracking algorithm by modeling the problem as a POMDP
and using a modular framework that runs on the Robotic
Operating System (ROS). It computes a policy for executing
actions instead of waypoints to navigate and avoid obstacles.

D. Motion Planning Primitives and SBMP

In this section, we discuss the different sampling strategies
that a UGV may access and exploit. Sampling based planning
is a class of motion planning algorithms that can be broken



down into two phases. The learning phase; where the algo-
rithm applies a local planner to construct a graph of collision
free nodes (sampling) within any given environment. In the
query phase; the collision free nodes are connected within
the graph (neighbor connection) to create a path from start to
goal using an adaptively selected strategy [7]. Many different
algorithms exist for sampling and neighbor connecting, a
combination of which we refer to as a “’strategy” throughout
this paper.

Probabilistic Roadmap Algorithm (PRM) [14] is a sam-
pling based motion planning technique that sample robot
configurations (nodes) and connect them to form a graph
(roadmap) containing feasible trajectories. It has been used to
solve a number of planning strategy problems, where choos-
ing an appropriate strategy (sampler, neighbor connector, etc)
is dependent on the given problem environment. In its initial
variants, the strategy was determined a priori without any
knowledge of the environment. However, planning in hetero-
geneous environments necessitates dividing the problem into
regions where these choices have to be made for each one.
Simple hand-selection of the best strategy for each region
becomes infeasible. Heterogeneous Planning Spaces (HPS)
[18] a method developed recently that takes as input a list
of sampling methods and runs them iteratively to determine
a sampler for each of the regions in the environment. The
regions are partitioned using a visibility-based cost function,
and the sampler which suits a particular region is also de-
termined by the visibility factor. Hybrid PRM [9] is another
learning variant of sampling based techniques and, strategies
are selected from a list of candidates (samplers and neighbor
connectors) using an adaptive learning framework. Keeping
the neighbor connector fixed, In this work we used these
following sampling based strategies as candidate strategies
in the HybridPRM:

o Obstacle-Based PRM (OBPRM) [1]: In OBPRM, the
nodes are sampled on or near obstacle surfaces, which in
turn, improves the quality of the graph for environments
that are cluttered.

e Medial Axis PRM (MAPRM) [24]: In MAPRM, some
randomly generated configurations are retracted onto
the medial axis of the free space which increases the
number of nodes found in small volume corridors.

e Gaussian PRM [3]: The Gaussian PRM is based on
the concept of blurring, used in image processing.
It generates sampled nodes in difficult regions using
simple intersection tests in the workspace. It is suitable
for many different motion planning problems.

III. METHODOLOGY

Uncertainty CSL (U-CSL) and MDP (U-MDP)

We present 2 algorithms U-CSL and U-MDP that intro-
duces the ability to measure the uncertainty present in the
environment and exploit it to produce feasible trajectories.
These algorithms can be generalized to work both during
the sampling, connection and querying stage of sampling
based planning methods. We make innovations during the
sampling stage and produce results and comparisons with
existing work.

Algorithm 1 U-CSL

Input. Strategies is a list of all Sampling Strategies or
Neighbor Connectors used in learning phase of the
Adaptive Method.

1: Initialize: threshold < 0.8

2: Initialize: observedNode < startNode

3: Initialize: NS < size(Strategies)

4: while all values in E, or Ej is less than threshold do

5: fori=1to NS do

6: samples[i] < generate nodes using Strategies]i],
with start node as observedNode and goal node as
goalNode.

7: r[i] +— number of valid samples in samples after
collision check.

8: s[i] < number of invalid samples in samples after

collision check.

9:  observedNode + followUGV ()

10:  if target can not be observed due to low visibility then

11: observedNode + center of convex hull created by
all samples from NS Strategies.

122 fori=1to NS do

13: wli] <« average of distances between all valid
samples generated by Strategies|i] and stored in
r[i], and the observedN ode.

14: Normalize r[i], s[i] and w[i] to get b[i], d[] and w[i]

15: Calculate Fy[i] and Ey4[i] from Equations (7) and
(8), respectively.

16:  if any value in Ej, is greater than threshold then

17: idx < index of max(Ep)

18:  else

19: idr + index of maxz(E,)

20:  Add Strategies[idz] to StrategySequence

21:  StrategyOccurrance[idx] —

StrategyOccurrancelidz] + 1
22: return [StrategySequence,StrategyOccurrance]

A. U-CSL

In our U-CSL model we consider strategies as entities, at
each timestamp, each strategy is assigned positive evidence r,
negative evidence s, and an amount of uncertainty w. These
parameters are all vectors as they represent multiple strate-
gies. They are then normalized into b, d and u respectively
from r, s and w.

At each timestamp, an attempt to visually track the target
robot is made and a new observation is recorded. The
estimated location of this robot is stored in obsevedNode
(Algorithm (1), step 9). » and s are calculated for each
strategy by the number of valid and invalid samples,
respectively, generated by that strategy after collision check
for that timestamp. In case of a missing observation,
where the target robot can not be visually observed due to
obstacles in the environment, the location is calculated from
the center of the convex hull created by valid samples for all
the strategies. w is calculated for each strategy by using the
average of euclidean distances between the valid samples
for that strategy and the location. For each timestamp, the
strategy with the highest expected value in E, or Ej is
stored in StrategySequence, and the StrategyOccurance



for that strategy is incremented by 1. This process is
repeated until we find E;, or F; for one strategy that
gives us value over a threshold. At that point, the CSL
algorithm is stopped, and the StrategySequence and the
StrategyOccurance are forwarded to the prediction model
MDP. The list of strategies used in this paper was discussed
in section II-D of our related work. Equations (7) and (8)
are calculation for Ej, and E; in U-CSL, where a gives
the base rate. Initially, we assign equal base rates to all
the strategies, assuming uniform distribution, to give a fair
chance to all probable strategies during the learning phase.

Ey[i] = b[i] + ali] + uli] @)

Eqli] < d[i] + (1 — ald]) * u[i] ®)

B. U-MDP

The U-MDP model, Algorithm (2), predicts the estimated
location of the target. Generally, MDP’s are characterized
by a base state Sp and a transition probability matrix P.
These two parameters are derived from domain knowledge
or by previous observations. In U-MDP, we use the learn-
ing phase to determine the base state Sy and a transition
probability matrix P dynamically, as opposed to static state
transitions used by [7], [25] works. After receiving the
StrategySequence and the StrategyOccurance from the
CSL, the MDP constructs the transition probability matrix
by using the constructProbability algorithm implemented
in our current work [7]. Once the transition matrix has
been created, Algorithm (2) starts calculating the expected
probabilities of the strategies, and records which strategy
tends to 1 first in a number of recorded timestamps. We
do this via implementing equation 9.

S;=SoxPic{l,2,..,n} 9)

Once a strategy has been predicted, and the number of
timestamps required has been determined, U-MDP uses this
predictive strategy to predict the location of the target in
conjunction with a local planner and builds a predicted path
for the target robot.

One of the contributions of our algorithm is to reduce
the computational cost of using any MDP. Generally in all
MDPs, the belief space grows exponentially as the algorithm
starts exploring unknown spaces. In POMDP or regular MDP,
the number of iterations required to reach probability 1 is
uncertain [4]. Given that, our goal is to minimize the number
of iterations U-CSL takes to learn and U-MDP takes to
predict. This can only be done if one of the Ej or F; attains
probability 1 with least possible number of iterations.

Since b, d and w are normalized factors, we can write
equation (10).

bli] + d[i] + uli] = 1 (10)

From equations (8) and (10), we derive equation (11).
Epli] =1 — (d[i] + uld]) + ali] * uld] (11)

d[i] and u[i] range between [0,1], and since ali] is ini-
tialized to be 1/N.S, where NS is the number of strategies

and remains constant, we can safely assume that Fj tends
to 1 as the uncertainty u decreases. The value of uncertainty
w depends on the average of some euclidean distances and
as we explore more regions of the environment, eventually,
it will tend to zero as the samples generated get merged to
the goal location. Therefore, the ability to make a decision
under belief or disbelief tends to 1 for a particular strategy
and the U-CSL is guaranteed to converge.

Algorithm 2 U-MDP

Input. Strategies is a list of all Strategies used in learning
phase of the Adaptive Method.
Input. observedPath is the observed path file from the
Adaptive Method.
1: [StrategySequence, StrategyOccurrance)] —
GetStrategySequence()

2: [So, P] < constructProbability()
3: while countlter < maxObservations do
4 Sne:rt — S() * Pcount[ter
5: fork=1to NS do
6: if Spext(k) = threshold then
7: flag < True
8: strategyIndex < k
9: break
countlter < countlter + 1

_..—
= @

if flag = True then

12: break

13: if flag = T'rue then

14: for [ =1 to countlter do

15: seeds
Local Planner(Strategies(strategyIndex)
,observedN ode)

Output.  seeds

IV. EXPERIMENTS AND RESULTS
A. Experimental Setup

The U-MDP algorithm was trained using HPS. During
the training phase of our algorithm (U-CSL), we used one
strategy at a time along with the HPS framework.

Different experiments was performed using both HPS and
HybridPRM [8]. The HybridPRM algorithm works in a
similar way as the HPS, except that, its cost function
is evaluated for the entire environment, and once a node
generator has been determined as a suitable one for the
environment, it is used throughout the environment. This
creates a level of uncertainty as to which strategy is suited
for any given environment. Another uncertainty factor comes
from the fact that the two paths created by a HybridPRM or
HPS strategy with different lists of local planners, samplers
and node connectors, will never be the same. There will
always be some difference between the euclidean distances
between the observed coordinates connecting each path at
each timestamp. We utilize these uncertainties to train our
U-CSL Algorithm.

Both the training and testing algorithms were executed on
a Dell Optiplex 7040 desktop machine running OpenSUSE
operating system. We have performed tests on the following
environments - Serial Walls (Fig. 2a), 3D House (Fig. 2b),
Cluttered (Fig. 2c), and KukaYouBot (Fig. 3a).



(b) 3D House (6 DOF robot)

(a) Serial Walls (6 DOF robot)
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Fig. 2: Heterogeneous Environments Studied

TABLE I: U-CSL and U-MDP Run On Different Environments

Env PS IS OP PP DIP PA Dist_Avg | IT PT
Kuka-You-Bot HPS HPS (-17.07,21.68,0.67) (-18.2,20.37,0.5) 1.74 99.23| 4.68 49 9
Kuka-You-Bot HPS HybridPRM (-20.6,20.13,0.59) (-18.2,20.37,0.5) 241 98.94| 3.75 49 9
Serial Walls HPS HPS (0.65,3.08,2.67) (0.7,3.13,2.39) 0.29 98.54] 1.86 26 7
Serial Walls HPS H-PRM (3.12,0.64,9.54) (2.96,0.65,9.36) 0.24 98.78] 1.01 28 26
House HPS HPS (6.18,1.58,4.66) (5.73,2.03,4.39) 0.69 96.96| 2.65 14 12
House HPS H-PRM (6.35,1.62,4.66) (6.35,1.5,4.52) 0.19 99.19] 14 8 5
Cluttered Cube HPS HPS (3.61,2.27,4.36) (4.18,2.34,4.43) 0.58 96.66| 4.11 13 4
Cluttered Cube HPS H-PRM (2.1,2.54,3.75) (2.75,2.01,4.36) 1.03 94.01] 4.42 17 1
Cluttered 7DOF HPS HPS (1.55, 1.73, 6.55) (1.33, 1.47, 6.02) 0.63 96.36] 2.28 12 3
Cluttered 7DOF HPS H-PRM (6.35, 1.62, 4.66) (6.35, 1.49 , 4.52) 0.19 989 | 1.40 8 5
Cluttered 9DOF HPS HPS (5.89,7.93,8.75) (8.13,4.49,7.83) 4.21 75.71| 5.77 6 1
Cluttered 9DOF HPS H-PRM (6.05,7.91,7.63) (3.77,6.25,1.9) 2.83 83.64] 5.51 7 I
[Env] Environment used. [PS] Sampling Strategy used by the pursuer. [IS] Sampling Strategy used by the invader.

[OP] Observed position of the invader at the
point of interception.
[PA] Percentage Accuracy of the U-MDP.

[PT] Number of timestamps taken by Pursuer to

[PP] Predicted position of the invader at the
point of interception.

[Dist_Avg] Average distance between the paths
of the invader and the pursuer.

[HPS] Heterogeneous Planning Spaces strategy.

[DIP] Distance between invader and pursuer at
point of interception.

[IT] Number of timestamps taken by Invader to
reach from start to goal.

intercept the invader.

B. Results

Table (I) shows the results of running the U-MDP al-
gorithm on different heterogeneous environments. We com-
pared the paths of the target and the pursuer to determine
an average distance between the two (column Dist_Avg). We
also determined a point of interception (columns OP and PP)
which shows the closest position of the target and the pursuer
in their individual paths. Based on the positions of the target
and the pursuer, we calculate a percentage accuracy (column
PA) that demonstrates the distance between the target and the
pursuer with respect to the size of the environment. Column
IT gives the number of timestamps taken by the target to
reach its goal, while the column PT gives the number of
timestamps taken by the pursuer to intercept the target.
The percentage accuracy was calculated in Equation (12),
where diagonal is the diagonal of the bounding box of the
environment, PI is the position of the invader, and PP is the
position of the pursuer.

%Accuracy = (1 — (6(PI — PP)/diagonal)) * 100 (12)

Based on the parameters explained above, we have the
following observations for each of the environments:

e Serial Walls: We ran 2 differennt experiments with
HPS and HybridPRM got a percentage accuracy of
more than 98% in both cases. The average distance
recorded between the path of the invader and the
pursuer is small(1.86 and 1.01) compared to the size
of the environment (of dimensions 4 x 4 x 19) and

[H-PRM] HybridPRM strategy.

TABLE II: U-CSL and U-MDP Run On KukaY-
ouBot Environment with different seeds

Invader Time to | Success(S)/Failure(F
trajectory intercept

time from | (milliseconds)

start to goal

(milliseconds)

1322.430 723.677 S
91.644 746.532 F
4162.000 737.314 S
8213.810 674.919 S
34937.600 664.714 S
1863.090 751.444 S
629.816 726.422 F
9533.800 703.242 S
98517.799 554.380 S
146814.000 531.326 S

its complexity. The number of timestamps the pursuer
takes while the invader uses the HybridPRM (26) is
significantly higher than when it uses the HPS (7). This
is because of the difference in the cost functions used
in both the algorithms. But in both cases, the pursuer
is able to intercept the invader before it reaches the goal.

e 3D House: We ran HPS and HybridPRM in two
different experiments for this environment and got
a percentage accuracy of more than 96% and 99%,
respectively. The average distance between the path of
the invader and the pursuer is also pretty low (2.65
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and 1.4) as compared to the size of the environment
(of dimensions 20 x 4 x 10) and its complexity. The
number of timestamps the pursuer takes while the
invader is using the HPS (12) is higher than when it
uses the HybridPRM (5), for this environment.

e Cluttered: We ran HPS and HybridPRM in six
different experiments for this environment with
different degrees of freedom of the robot. From the
results table, we can see that with higher DOFs, the
percentage accuracy gets low (96.36%-75.71%), but
the time to intercept decreases (5-1 timestamps). The
average distance between the path of the invader and
the pursuer is also low (4.11, 4.42, 2.28, 1.40, 5.77
and 5.51) as compared to the size of the environment
(of dimensions 10 x 10 x 10) and its complexity.

+ KukaYouBot: We ran HPS and HybridPRM in two
different experiments for this environment and got a
percentage accuracy of 98% and 99%, respectively. The
average distance between the path of the invader and the
pursuer is small (4.68 and 3.75) as compared to the size
of the environment (of dimensions 160 x 160 x 17.6) and
its complexity. The number of timestamps the pursuer
takes while the invader is using the HybridPRM is the
same as when it uses the HPS (9). In both cases, the
pursuer is able to intercept the invader before it reaches
the goal. On a different set of experiments, we ran U-
CSL and U-MDP on the KukaYouBot environment with
10 different randomized seeds and recorded the time
taken by the invader from start to goal (without being in-

tercepted) and the time taken by the pursuer to intercept
the invader. The results from the experiments have been
recorded in Table IT and the trajectory comparison from
one single seed is shown in Figure 3a. The experiment
was considered to be a success if the pursuer intercepts
the invader in a lesser amount of time than that taken
by the invader to reach from start to goal. We record a
success rate of 80%.

C. Comparison with Related Work

We also compared our algorithm with other competitive
algorithms from existing literature [20]. The path comparison
between the invader (target/UGV) and the pursuer (UAV)
using U-CSL and U-MDP is shown in Figure 3c. When
compared to the trajectory comparison of a similar algo-
rithm using POMDP (Figure 3b), we observe that the UAV
trajectory generated using U-CSL and U-MDP follows the
trajectory of the target more closely than the POMDP variant.
When we compared it with a visual tracking-based algorithm
[23] (Figure 4a), we observe that the UAV trajectory using
our method gives a more simpler trajectory Figure 4b).

V. FUTURE WORK

In future work, we plan on investigating replacement for
the strategies during the learning phase including considering
the degree of freedom information of the robot during the
learning phase. We also plan on performing real world
applications to test our algorithm in robot retrieval and
monitoring scenarios. As an immediate plan, we intend to
apply this new learning method to adaptively select a strategy
for an environment and build a path planning algorithm.
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