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Network traffic of delay-sensitive services has become a dominant part in the network. Proactive caching with
the aid of predictive information has been proposed as a promising method to enhance the delay performance,
which is one of the principal concerns of such services. In this paper, we analytically investigate the problem of
how to efficiently utilize uncertain predictive information to design proactive caching strategies with provably
good access-delay characteristics. First, we derive an upper bound for the average amount of proactive service
per request that the system can support. Then we analyze the behavior of a family of threshold-based proactive
strategies with a Markov chain, which shows that the average amount of proactive service per request can
be maximized by properly selecting the threshold. Finally, we propose the UNIFORM strategy, which is
the threshold-based strategy with the optimal threshold, and show that it outperforms the commonly used
Earliest-Deadline-First (EDF) type proactive strategies in terms of delay. We perform extensive numerical
experiments to demonstrate the influence of thresholds on delay performance under the threshold-based
strategies, and specifically compare the EDF strategy and the UNIFORM strategy to verify our results.
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1 INTRODUCTION

The traffic load in the network has been growing dramatically in recent years. Among all types
of traffic in the network, delay-sensitive traffic, such as video, gaming, virtual reality (VR) and
augmented reality (AR), has been a dominant component. According to a report from Cisco [7],
video traffic takes up 73% of all the IP traffic in 2016 and is forecasted to be 82 % by 2021; Internet
gaming traffic will grow nearly tenfold from 2016 to 2021; and the VR and AR traffic will increase
20-fold from 2016 to 2021. The delay performance of delay-sensitive services has a great impact
on the revenue of companies like Amazon and Google[12]. Therefore, it is crucial to improve the
delay performance of delay-sensitive services in communication networks.
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Distributed caching techniques are seen as an effective method to achieve this goal, and there has
been extensive work in this area, such as [21],[10],[13]. Caching networks can reduce a considerable
amount of traffic by caching data objects locally, and thereby greatly reduce the time and network
resources to fetch the requested data object from the server.

Proactive caching techniques, which take advantage of predictive information of user requests
and network states, utilize the spare bandwidth resources and potentially place the data objects
in the caches before requests are generated. In [4], two experimental cases were carried out to
show the promise of proactive caching in 5G wireless networks. There has also been considerable
literature on prediction methods based on user behaviors (e.g., [16],[1]), which showed certain
predictability of user demands. However, these work did not reveal the fundamental insights on
how much improvement in system performance we can expect by utilizing prediction information.

There has been some recent analytical work on studying the fundamental benefits achieved from
predictive information and proactive scheduling in networks. In [19], the authors characterized
the diversity and multicasting gains of proactive caching using large-deviations theory under
the assumption of perfect predictions. In [15] and [18], the authors studied a cost optimization
problem in a multi-user single-server system with proactive scheduling. The authors proposed a
model with uncertainties in user demands and channel states, and designed a proactive scheduling
algorithm, which was proved to be asymptotically optimal in cost. In [2], the authors considered
a profit maximization problem for a carrier and a cost minimization problem for users with
predictive information of user demands. In [9], the authors studied the delay performance of a
backpressure algorithm in a downlink system with perfect predictions, where the requested objects
and corresponding request epochs are accurately predicted. The authors proved that the average
queueing delay asymptotically goes to 0 as the prediction window size goes to infinity. They also
analyzed the impact of prediction window size on the delay performance. Following this work,
the authors of [22] studied the fundamental queueing performance of a single queue proactive
system. They analyzed a variety of scenarios with different arrival and service processes, different
prediction window sizes, and different types of imperfect predictions. They showed that proactive
services exponentially reduce delay, especially in a lightly-loaded case. A related work [6] designed
and analyzed a predictive scheduling algorithm which maximizes the timely-throughput, which is
the total traffic received before the deadlines. All the work mentioned above shows that taking
advantage of predictive information greatly improves the system performance.

Our work aims to study the characteristics of proactive caching based on uncertain predictive
information from a fundamental queueing theory perspective. Different from the work of [22],
we not only look at the basic queueing dynamics of the proactive system but also further explore
how to strategically utilize uncertain predictions to enhance delay performance. In terms of delay
performance, we take the Earliest-Deadline-First (EDF) type strategy, which has been widely used
in network scheduling problems, as a competitive baseline in our analysis. There have been many
work (e.g., [3],[17] and [11]) which studied the delay performance of the EDF strategy. In the
proactive caching context, we consider the 'deadlines’ to be the predicted arrival epochs. The
authors of [9] has proved that the EDF strategy achieves optimal delay performance under perfect
predictions.

The main contributions and the structure of this paper are listed as follows:

e We propose a request model which characterizes the request uncertainty by introducing a
potential request process. We aim to maximize the average amount of proactive service for
each request. We introduce our system model and problem formulation in Section 2.

e Based on the request-model with uncertainty, we reveal the iterative nature of bandwidth
resource assignment between reactive service and proactive service, by comparing the EDF
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strategy with a First-Come-First-Serve reactive strategy as an example. As a result, we derive
an upper bound on how much proactive service per request that the system can support. We
discuss the comparisons and derive the bounds in Section 3.

e For the purpose of analysis, we define a family of threshold-based proactive strategies, where
the threshold determines the maximal amount of proactive service to be done for each future
potential request. We construct a Markov chain to analyze the asymptotic behaviors of
the proactive system under the threshold-based strategies. We prove that the UNIFORM
strategy, which is the threshold-based strategy with the optimal threshold, is the solution to
the optimization problem we proposed. We obtain an important insight on how to design
an optimal proactive strategy: the strategy should balance proactive service among the
predictions in nearer future and farther future based on prediction uncertainties. We present
the threshold-based strategies, the corresponding Markov chain, and the corresponding
analysis in Section 4.

e We analytically compare the delay performance of the EDF type strategy with the UNIFORM
strategy. Although one would intuitively expect the EDF strategy to achieve desirable delay
performance based on its performance in previous network scenarios, we prove that the
delay performance of the EDF strategy is always worse than the UNIFORM strategy in all
the non-trivial cases. We show the analysis in Section 5.

e We conduct extensive range of experiments to show the delay performance of the threshold-
based strategies with different thresholds. Specifically, we compare the delay performance
of the UNIFORM strategy with the EDF strategy in multiple network scenarios, with the
reactive scheme as a baseline. The results show that proactive caching not only greatly
improves delay performance in lightly-loaded cases as concluded in [22], but also works
exceedingly well in the heavily-loaded scenario with the UNIFORM strategy. We also carry
out experiments to show the impact of prediction window size on the delay performance for
practicality concerns. The UNIFORM strategy still shows excellent delay performance with
simple modifications. We show the numerical results in Section 6.

2 SYSTEM MODEL
2.1 Network Model

We consider a system with one server providing delay-sensitive services to the user, as shown in
Figure 1. The system operates in continuous time from time 0. The user receives service from the
server at a constant rate of y bits/sec.

Request Processes: Requests arrive at the server according to the processes shown in Figure 2.
The requests request same-sized data objects of s bits. The Potential Request Process is a Poisson
Process {P (t);t > 0} with an overall arrival rate of A, where the ith arrival, i.e. Potential Request
i, requests object r; € Z* at time t; € R*, where 0 < #; < t, < .... The Actual Request Process
{A(t);t > 0} is a thinned version of P (t) where each arrival on P (t) is an arrival on A (¢) with
probability p, independent of all other arrivals. Let {R;;i = 1,2, ...} be IID Bernoulli (p) indicator
random variables where R; = 1 if the ith arrival on P (t) is an arrival on A(t). Thus, A(t) is a
Poisson process with an average arrival rate Ap. For convenience, we denote an actual request with
its index in P (t) instead of A(t).

An important assumption we make is that every potential request requests a different object, i.e.
ri #1j, Vi # j, i.e, the catalog size is assumed to be infinite. This assumption is motivated by many
practical problems, e.g. 1) prefetching problems, where each prefetched object is usually considered
to be specific for one user request, 2) applications where data objects are highly dynamic, like live
streaming, online gaming, sensing data, cloud computing, etc., and 3) the small likelihood that a
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Fig. 2. Arrival Processes

user would request for the objects that are recently requested. For more general applications, our
aim is to (for simplicity) exclude the impact of popularity distributions and focus on the potential
gains of proactive caching in the presence of uncertain predictive information.

Predictions: At time 0, the server knows the sequence of objects (r1, 73,73, . .. .) to be requested
by the arrivals in {P (¢)}, and the probability p. It has no prior knowledge of the precise arrival
epochs {t;}, or the realizations of the indicator random variables {R;}. The server observes A(t)
but not P (t). At time ¢ > 0, the sequence of indices for future potential requests from the server’s
viewpoint, or the prediction window, is:

) =T@)+1,1(t)+2,1(t)+3,...) (1)
where I (t) is defined as:
I(t) £ max {ilt; < t,R; = 1} (2)

i.e. the index of the most recent actual request before time ¢. The server proactively works on
request i only if i € IT(¢) at time ¢.

The idea of this prediction model originates from perfect prediction models used in the work
of [18], [9]. With our prediction model, we are able to tractably model uncertainties in whether
potential requests are realized, as well as uncertainties in the request arrival epochs.

2.2 Service Model

In this section, we first describe the reactive scheme, where the server works only on requests made
by actual request arrivals. We then introduce the proactive schemes where the server works on
future potential requests when not serving requests made by actual requests.

Reactive Scheme: The server node serves only arrivals in the actual request process A (¢) based
on strategy Yx as described below. Upon observing an actual request i at time t;, the object r; is
placed into the tail of a FIFO Queue with V (¢;) of unfinished work, which is transmitted back to
the user at rate y, where V (t) is defined as the total number of bits waiting to be transmitted in the
queue at time ¢ in the reactive scheme. If V (t) = 0, the system is idle at .

Proactive Schemes: The server can proactively send a data object, partially or in entirety, to the
user, which can store the data object in a local cache. Since our focus is on the effects of uncertain
predictions, we assume for simplicity that the cache size is infinite.

Let U; (t) < s be the proactive work done for request i by time t, i.e. the number of bits of object
r; sent to the user and stored in the cache by time t. Notice that for a request i, there is no reason

!We assume the prediction window size to be infinite for simplicity of analysis. This assumption guarantees that the server
always has predicted requests on which to do proactive work.
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to continue to proactively serve it after tg;), where H (i) £ min { Jj>ilR; = 1} represents the first
potential request after i which is realized. Let

U; £ min {s, U; (tH(i))}

be the total proactive work done for request i. For an actual request i (R; = 1), U; = min {s, U; (¢;)}.
Define S; = s — U; = max {O,S -U; (tH(l-))} as the reactive part of object r; which remains
to be transmitted after the server stops proactively serving request i. For an actual request
i, S; = s — U; = max{0,s — Uj (t;)} bits need to be transmitted reactively at t;. Let U(t) =
(UI(t)+1 (), Urey2 (1) s Urgey+s (£) 5 - . ) be the set of U; (t)’s where i € II(t). At time ¢, based on
U (t), the prediction window IT () and the queue size V (t), a stationary proactive rate allocation
strategy Wp at the server is defined as:

P (V(t),IL(t), U (1)) = {pv (1), prceyrr (1) prceyez (), prieyes (1) 5 - . .}

where py (t) is the rate allocated to serve the queue of V (t), and py)4; (t),i > 1, is the rate
allocated to fetch object ry(;)4; at time t. We assume that the data in V (t) has higher priority than
proactive traffic. That is, if V () > 0, then };cz+ pr(s)+i (t) = 0. Thus, we consider the set I'» of
proactive strategies ¥p satisfying:

o (Reactive State) If V (t) > 0:

pv(8) =11, ) iy = 0 3)
i=1
e (Proactive State) If V (t) = 0:
pv (t) =0, Z PI(t)+i = M (4)
i=1
e The limiting average amount of proactive work received per potential request
T2 iy itV )
t—oo ] (t)

exists for ¥p.
An example of a strategy in I'p is the Earliest-Deadline-First (EDF) strategy. In the EDF strategy,
if V (t) = 0 at time t, then pj(;) = p, where J (t) = ITII_R’I) {i|U; (t) < s}. We use EDF strategy as an
iell(t

important baseline policy throughout the paper for the purpose of analysis and comparisons. Given
a sample path of arrival epochs and {R;} realizations, the evolutions of unfinished work in V ()
under the EDF strategy and under the reactive scheme ¥ are compared, as shown in Figure 3.

2.3 Problem Formulation

As shown in Figure 3, there is less traffic served reactively in the proactive EDF scheme as compared
with the reactive scheme. Reducing reactive traffic is doubly desirable since (1) the delay is reduced,
and (2) there is more time for the server to do proactive work. Motivated by this, we study an
optimization problem where the objective is to maximize the average amount of proactive work
done for each request. Given A, y, p and s, our optimization problem then can be formulated as:

maximize U (¥p) (6)
¥p
subjectto ¥p € Ip

where Ip is defined in (3)-(5). Let ¥* be an optimal solution to problem (6) and let U ,qx = U (¥*)
denote the U achieved by ¥*. The solution to (6) is discussed and presented in Sections 3 and 4.
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Fig. 3. The system runs from time 0 to t. Potential requests 1 to 8 arrive at 1 to t3 respectively during this
period of time, with all potential requests realized except for request 6. The evolution of unfinished work V' (t)
under the reactive scheme is plotted in blue and the evolution in the proactive scheme with the EDF strategy
is plotted in red, with the corresponding states marked on the time axis. We also show the rate allocation in
the proactive scheme.

Operating Regimes: In fact, there is a limited region of 1 we are interested in. In the region
0<A< %, U max = s, w.p.1 by Corollary 2 in [9] and Theorem 2 in [22]. With knowledge of IT (¢),
the server is able to proactively serve every request before its arrival epoch with probability 1, even
if every request is realized. In the region A > pis, the arrival rate of the actual request process is
beyond the stability region of the network. According to [8], full knowledge of the future does not
enlarge the stability region of the system. Thus, the queue V (¢) cannot be stabilized in this region.
This implies that the server almost always works reactively, sparing no bandwidth for proactive
service. In the region % <A< ;%’ an optimal solution ¥* to problem (6) is proposed and analyzed
in Section 4. Thus, we have the following fact:

_ s_,w.p.l if0$/1<%
Umax = U(‘Il*)’ lf% <A< Pﬁs (7)
0,wp.l if 3c<4

Delay Performance: The corresponding delay of ¥* is analyzed in Section 5. For a given
Yp € I'p, we define the delay of an actual request i as

V(i i ;
D; = Y L3 if S >0and R = 1
0, otherwise

where % is the waiting time of object r; in the queue at the server, and % is the transmission

time of the reactive part of object r;. Define the limiting average delay per actual request as:

Zi€Z+:ti<l’,Ri=1 Di
A(t)

— A
D = lim
t—o00
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Table of Notations

V() Unfinished reactive work at server node
s Object size
o Constant service rate of the system
P(t) Potential request process
A(t) Actual request process
A Average arrival rate of P (t)
P Probability that each potential request is realized
t Arrival epoch of potential request i
R; Indicator random variable for whether request i is realized
U; Total amount of proactive service for request i
Ui (t) Amount of proactive service for request i by time ¢
i Amount of reactive work for request i
I1(t) Prediction window
I(t) Index of the latest actual request before time #
J (@) Index of the request to practively serve at ¢
U Limiting time average proactive service per potential request
Ua Limiting time average proactive service per actual request
U Maximum limiting average proactive service per potential request
‘PZ,S Threshold-based strategy with threshold ¢
Xn Markov chain
Tn Epoch of the nth transition

Table 1. Table of Notation

Denote the average delay per actual request under ¥* by Dy-. We will derive the closed-form
expression of Dy, and analytically demonstrate its advantage relative to average delay of the EDF
proactive strategy.

3 RELATION BETWEEN REACTIVE SCHEME AND PROACTIVE SCHEMES

Proactive caching makes use of available link capacity when the system is idle (under the reactive
scheme). A natural question to ask is how much proactive work can be done for each request on
average. We can gain intuition from the example in Figure 3. First, the idle period in the reactive
scheme can be utilized for proactive service. Then, by proactively serving actual requests (i.e.,
1,2,3,4,5,7,8), reactive traffic is reduced so that available link capacity can be utilized more frequently
for proactive service. This is indicated in Figure 3 by the intervals marked by solid red, named
"Proactive Served". In the following, we study the characteristics of proactive service and derive an
upper bound on U.

Consider a set of sample paths corresponding to arrival epochs {t; : i = 1,2, ...} and realizations
{Ri=z;:i=1,2,...}(z; € {0,1}) under both the reactive scheme and a proactive scheme Psip.
We make the following definitions. The amount of time that ¥p € I'» works in the proactive state
(namely Proactive Proactive) from 0 to ¢ is:

Tpp (1) 2 [{r € (0,£] : V (z) = 0} (8)
The amount of time that ¥p € Ip works in reactive state (namely Proactive Reactive) from 0 to ¢ is:
Trr (t) = [{r € (0,¢] : V(r) > 0}| 9)

The limiting fraction of time that ¥p € I'p works in the reactive state and in the proactive state,
respectively, are:

(10)

Before we continue to study the relation between the reactive scheme and the proactive scheme,
we first define two important properties of proactive strategies.

. t A .. TIpp(t)
apr = lim ——=, app = lim ——=

t—o0 t t—o0 t
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DEFINITION 1 (PROPERTY 1 OF PROACTIVE STRATEGIES). A proactive strategy Yp € Tp satisfies
Property 1 if the following condition is satisfied:

ir(ye1 Ui ()

tlim =0,w.p.1 (11)
The term 3 I(ty+1 Ui (t) represents the total amount of proactive work done for potential requests

in the prediction window II(t) up to t. Although this part of proactive work may be requested
eventually in the future, it does not contribute to the reduction of reactive work by time ¢. If
p I()+1 Ui (t) scales with ¢, it is likely that the corresponding U can be further improved by a
strategy which invests more proactive service into requests in the near future. We will later formally
analyze the influence of this property on our objective in Theorem 1.

Before introducing the next property, we first define

2iez+i<i(t),Ri=1 Ui
A(t)

as the limiting average amount of proactive work done per actual request.

— .
Uy = lim
t—o0

ProrosiTION 1. For all ¥p € I'p, we have
U > U_A, w.p.1
ProoF. Please refer to Appendix A for the proof. O

We then have the following definition of the second property:

DEFINITION 2 (PROPERTY 2 OF PROACTIVE STRATEGIES). A proactive strategy satisfies Property 2 if
the following condition is satisfied:

Uy =U,wp.1 (12)

Proposition 1 implies that in our setting, the average amount of proactive work per actual request
is no more than the average amount of proactive work per potential request. On the other hand, it
is more desirable that more proactive services are done for actual requests. With Property 1 and 2,
we have the following theorem of proactive strategies.

THEOREM 1. Given i, A, s and p as system parameters, the limiting fractions of time that the server
works in the proactive state and the reactive state, respectively, under ¥p € I'p satisfy

U — Aps (As—p)p
—— wpl, app > ———"—
ui-p P e

Equality holds in both inequalities if and only if the proactive strategy satisfies both Property 1 and
Property 2.

app <

ProoF. Please refer to Appendix B for the proof. O

Theorem 1 implies that in order to maximize the fraction of time that the system works proactively,
or equivalently minimize the fraction of time that the system works reactively, the proactive strategy
Wp must satisfy both Property 1 and Property 2. On the other hand, recall that we are interested in

. . ll ll _ /,I _ . . .
the operating regime £ < A < s If A = £, we have apr = 0, w.p.1if and only if ¥p satisfies both
Property 1 and Property 2. If A = Pﬁs, we have apg > 1, w.p.1, which implies that the system almost
always works reactively with any proactive strategy ¥p € I'p. These results are consistent with

previous discussions before (7).
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Define

2iez+Ri=1,i<I(t) Si (13)
A(t)

as the limiting average amount of reactive work of each actual request. Then based on Theorem 1,

we have the following corollary on U and S.

— A
S = lim
t—o0

COROLLARY 1. Given yi, A, s and p satisfying £ < 1 < pﬁs,

work per potential request under strategy ¥p € Tp satisfies

the limiting average amount of proactive

TT H _p/ls A *
U< 2 20% wpi (14)
A(l=p)
The limiting average amount of reactive work per actual request under strategy ¥Yp € I'p satisfies
< As—p 4
S> " A5 wpl (15)
A(1-p)

where equality holds in both inequalities if and only if strategy Yp satisfies both Property 1 and
Property 2.

ProoF. Please refer to Appendix C for the proof. O

Corollary 1 shows that the limiting average amount of proactive work done per potential request
is maximized if and only if a proactive strategy ¥p satisfies both Property 1 and Property 2. By
Property 2, Uy is maximized under the same condition. Therefore, the optimal solution to the
objective in (6) should be proactive strategies which satisfy both Property 1 and Property 2. We
will construct such a proactive strategy, and also explain why the EDF strategy is not an optimal
solution in the next section.

4 THRESHOLD-BASED PROACTIVE STRATEGY AND MARKOYV CHAIN

In order to construct an optimal proactive strategy to solve (6), we first define a family of threshold-
based strategies in I'r. We then analyze the asymptotic behaviors of the threshold-based proactive
strategies by constructing and analyzing a corresponding Markov chain. Using this analysis, we
relate the threshold-based strategies to Property 1 and Property 2, and construct an optimal solution
to the problem (6) by choosing a specific threshold for the threshold-based strategies.

4.1 Threshold-Based Proactive Strategies

We describe the threshold-based strategies ‘I’g in Algorithm 1. Specifically, we define ¢ € (0, s]

as the threshold parameter. When working proactively, the threshold-based strategy ‘I’I‘f works
on request J (t) at time £, where J (¢) = mi(n) {i|U; (t) < ¢} is the first request in the prediction
iell(t

window IT (¢) which has not received ¢ bits of proactive service. By the definition of ‘I’g , the process
{J (t);t > 0} is non-decreasing. In order to study the impact of ¢ on the threshold-based proactive
strategies, we construct and analyze a corresponding Markov chain under given ¢.

4.2 Markov Chain of System under ‘I’g

We construct a Markov chain corresponding to the system under vo, using methods applied in the
analysis of M/G/1 queues and G/M/1 queues [20],

DEFINITION 3 (MARKOV CHAIN OF THE PROACTIVE SYSTEM UNDER ‘I’}qf). LetT? £ (T, T1> T25 v v s Ty v v s
be the sequence of transition epochs, where each t,,n = 0,1, . .. satisfies 1) V (r,;r) =0;2) Usz) (T;) =
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Algorithm 1 Threshold-based Strategies ‘-Ifg

1: Main Procedure SYSTEM_RUN(¢)

2 Choose the threshold as ¢;

3 Initialize V(t), I1(#)

4 while t > 0 do

5: if Request i arrives at ¢ then

6: Put reactive part S; of request i into the tail of the queue V'(¢).
7 Update prediction window IT(#)

8

end if
9: % Reactive work
10: if V(¢) > 0 then
11: Transmit data from the head of the queue V(#) with full rate p.
12: end if
13: % Proactive work
14: if V(¢) = 0 then
15: Set J(¢) = min {i|U; (¢) < ¢}
iell(t)

16: % J (t) is the earliest potential request in II(#) which has received less than ¢ bits of proactive service
17: if Uj(y) (t) < ¢ then
18: Transmit data of rj(,) at full rate p
19: end if
20: end if

21: end while
22: End Procedure

A v # Realized request

S v Unrealized request t
t] t3 +
t
¢ v v
v :
\ 4 t.5
| | | v | | |
- 1 | | 1 1 >t
0 g 72 73 7’ 21 75
J(To>j) Jap=2JG)=3  J@y=4 Ty =57@) =6 J(z5) =17
Ii(fo):o P@)=0P()=0 P@y=2 puH=sP@)=5 P(r5) = 6
(7p) = I@)=0 1) =0  I(r3) =1 Icy =3 1(g) =3 I(t5) =6
X0=1 X1=2 X2=3 X3=2 X4=] X5=1

. ) e . T
Fig. 4. Example: Transitions in the proactive system with ¥, with ¢ = 5

0, and 3) J (T;) > P (r,f) The discrete-time process {X, : n =0, 1, ...} with state space Z" is defined
as:

Xn=J(t)=P(ry).,n=0,1,2,... (16)

In Proposition 2, we will show that {X,,} is a Markov chain. We interpret the three conditions in
Definition 3 as follows. Condition 1) means that there is no reactive traffic to serve right after z,,,
so the server can proactively serve requests in II (z;7). Condition 2) means that at 7,, the server
starts to proactively work on request J (;), which has not received proactive service before 7,
The last condition means that the potential request to be proactively served at z,; should be a
potential request which has not arrived in {P (¢)} by 7,;. To summarize, the discrete-time process
{X, :n=0,1,...} is constructed by sampling the system at {r,, : n = 0,1, ...} when the server
starts to proactively work on a future potential request.

At each epoch 7,,, n € Z*, the nth transition in the Markov chain occurs. X,, = J (¢, ) =P (z;}) ,n =
0,1,2,..., represents how far the proactive service process {J (¢);t > 0} is ahead of the potential
arrival process {P (t);t > 0} at epoch 7. Figure 4 shows an example of how the transition epochs
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{t, :n=0,1,...} are chosen.
Example: In the example shown in Figure 4, we choose ¢ = 7 in the threshold-based strategy.
We make the following observations on the evolution of the process.

(1) No arrival occurs in (7o, 71). The server finishes proactively serving request 1 at 71, and starts
to proactively serve request 2. The process in (71, 72) evolves in the same way.

(2) In (7, 13), the server proactively serves request 3; requests 1 and 2 arrive, with 1 realized and
2 not realized. At 73, the server starts to proactively serve request 4.

(3) In (73, 74), request 3,4,5 arrive with only request 3 realized, before the server can finish
proactively serving ¢ bits of request 4. Because the server cannot observe the arrival of
request 4 or 5, it keeps proactively serving request 4 until 7’. At 7/, the server starts to
proactively serve request 5 € II(7’) = (4,5, .. .). Nevertheless, condition 3) in Definition 3
is not satisfied at " (J (r'*) — P(z’*) = 0 < 1). Thus, 7’ is not a transition epoch. At 74, the
server starts to proactively serve request 6. Since conditions (1)-(3) in Definition 3 are all
satisfied, 74 is a transition epoch.

(4) In (74, 75), request 6 arrives and is realized before it receives ¢ bits proactively. Thus, it is
served reactively until all bits are received. Since there is no arrival before it finishes, we
have I (75) = P (75) = 6, so that the server starts proactively serving request 7, and 75 is a
transition epoch.

We define A,, £ P (T;H) -P (T,J{) as the number of potential arrivals in (7,, Tp41], and Ty, 2 741 —
7, as the nth inter-transition time. Starting from X,, = x,,, x,, € Z*, the requests P (z,), ..., P (ty) +
xn — 1 have already received ¢ bits of proactive service by 7,, and the request P (z,) + x, just starts
to be proactively served from 7, . If A, > x,, we have X,,.1 = 1. If A, < x5, X,+1 depends on
Ap. In the following proposition, we formally describe the evolution of {X,,;n > 0} and show its

Markovian property.

PROPOSITION 2. The discrete-time process {X,;n > 0} defined in Definition 3 for the proactive

system under ‘I’ﬁ is Markovian, with the evolution
Xps1 =max{X, +1-A4,,1},n=0,1,... (17)
Proor. Please refer to Appendix D for the proof. O

We now consider the transition probabilities {Pr {Xy+1 = Xp+1|Xn = xn} : Vx, € Z¥,Vxp11 € 27},
First we consider the probability that A, = k given that X, = x,, > k, k = 0,1, 2,.... In this case,
k arrivals happen before the server proactively serves ¢ bits for request P (z;7) + x,. Each arrival
needs to be reactively served with exactly s — ¢ bits if realized. Due to the memoryless property of
{P(t);t > 0} and the independence of indicator random variables {R;}, the probability of A, = k
is independent of x,, given x,, > k. Then we have the following definition:

Pl 2 Pr{A, =k|Xy = Xn,xn > k} .k =0,1,2,... (18)
Then the transition probabilities can be written as:

anxnﬂ £ Pr {Xn+1 = xn+1|Xn = xn}

0, Xn4l = Xp + 2
= pl‘f, Xpt1=Xn+1-k,0<k<x,
S, Pl Xner =1
Vx, € ZY Nxp1 €Z7F (19)
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Or equivalently, we can write the transition probabilities in matrix form:

Z?lelg P(i ’
ZiesPr Py D1 Do

where the empty entries are 0. Notice that it is structurally similar to the transition probability
matrix of the Markov chain of G/M/1 queue in [20].
Although we have developed the structure of the transition probability matrix, the probabili-

¢
k

important result of the probabilities.

ties {p :k=0,1,2,.. } are still unknown. In the following theorem, we are going to prove an

ProrosiTION 3. The probabilities {pf :k=0,1,2,.. } satisfy the following relationships:

o > 0, lf (]5 < U*
ijfu—k) =0,if ¢=U" (21)
k=0 <0,if ¢>U*
where U* = g(_lp_/;s), as defined in (14).
Proor. Please refer to Appendix E for the proof. ]

Although we obtain some knowledge about transition probabilities of the Markov chain from
Proposition 3, a remaining problem of the Markov Chain is the distribution of T, and A,,. If T, = o0
with a positive probability, the next transition may never happen. Therefore, we have the following
proposition on the expectations of T,, and A,,.

PrOPOSITION 4. In the Markov Chain of the proactive system with ‘I’g as defined in Definition 3,
we have:
E[T,|Xn = x] < 00, E[Au]|Xn = xn] < 00, Vx, € Z*, V¢ € (0, 5] (22)
Proor. Please refer to Appendix F for the proof. O
Proposition 4 implies that Pr {T,, < co} = 1,Pr {A, < oo} = 1,Vn € Z*. Therefore transitions in
the corresponding Markov chain will almost surely happen in finite time.

To investigate the asymptotic behavior of the system, we need to characterize the recurrence of
the Markov chain of the system. Based on Proposition 3 and Proposition 4, we have the following

theorem on the recurrence of the Markov chain of the proactive system under ‘Ifg.

THEOREM 2. The Markov chain of the proactive system with ‘I’g is 1) transient if ¢ < U*, 2) positive
recurrent if ¢ > U*, and 3) null recurrent if ¢ = U*.

Proor. From Proposition 3, we can easily prove that:

- <1l,if ¢<U*
> piki=1if ¢=U" (23)
k=0 > 1,if ¢>U*

In Section 10.3.3 of [14], the relation between ;" p;fk and the recurrence of the corresponding
Markov chain is discussed. To be specific, the conclusion is that the Markov chain is 1) positive
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recurrent if 377 pfk > 1, 2) null recurrent if 377 pfk = 1, and 3) transient if 3} p,q:k < 1. Our
conclusion directly follows. ]

Theorem 2 characterizes the relationship between ¢ and the recurrence of the Markov chain
under \I’ﬁ. The recurrence of the corresponding Markov chain under different ¢ is the crucial key
to investigating the relationship between Property 1 and Property 2 with the threshold-based
strategies. In the following, we are going to discuss this relationship.

Property 1 of the Threshold-based Strategies: First, we focus on Property 1 and the threshold-
based strategies in the following lemma.

LEMMA 1. A threshold-based strategy satisfies Property 1 if and only if the corresponding Markov
chain satisfies:

X
lim — =0, w.p.1

n—oo n

Proor. Please refer to Appendix G for the proof. O

Lemma 1 transforms the conditions for Property 1 from the continuous sense in Definition 1 to a
discrete condition based on transitions in the Markov chain. The term lim,_,« % is closely related
to the recurrence of the Markov chain, which has been characterized in Theorem 2. Then we have
the following theorem on Property 1 of the threshold-based strategies.

THEOREM 3. A threshold-based strategy satisfies Property 1 if and only if ¢ > U*.
Proor. Please refer to Appendix H for the proof. O

Another way of stating Theorem 3 is that a threshold-based strategy satisfies Property 1, if and
only if the corresponding Markov chain is recurrent. Recall that the states X},’s represent the gaps
between the proactive service process {J (¢);t > 0} and the potential process {P (t);¢ > 0}. If the
corresponding Markov chain is recurrent, the state X,, = 1 will always happen. This implies that
the proactive service done effectively reduces the reactive traffic of the requests which have arrived,
which is also the insights of Property 1.

Property 2 of the Threshold-based Strategies: Next, we are going to discuss Property 2 of
the threshold-based strategies. As we discussed in Proposition 1, U > Uy is true due to our service
model. Predictions are likely to receive more proactive service if they are unrealized. Because of
our assumptions on the orderliness of predictions in II (t), the predictions which have arrived but
not realized are always the earliest predictions in IT(#). Intuitively, a threshold-based strategy with
a larger ¢, which prefers to serve the earliest predictions in I (t), is more likely to achieve U > Uj.
We rigorously characterize the relationship of the threshold-based strategies and Property 2 in the
following theorem.

THEOREM 4. The threshold-based strategy ‘{’g satisfies Property 2 if and only if § < U™.
Proor. Please refer to Appendix I for the proof. O

Theorem 4 verified our previous intuitions. Similar to Theorem 3, Theorem 4 has an equivalent
statement: the threshold-based strategy ‘I’I‘f satisfies Property 2, if and only if the corresponding
Markov chain is NOT positive recurrent. As we discussed, U > Uy is more likely to happen when
the strategy proactively works on the requests which have arrived but not realized. This only
happens when the system transits to state X, = 1. In a transient or null recurrent case, the system
state X, = 1 does not happen comparably often as n. As a result, Property 2 is satisfied in these
cases.
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Based on Property 1 and Property 2 of the threshold-based strategies as characterized in Theorem
3 and 4, we have the following corollary which solves the optimization problem (6).

COROLLARY 2. U in (6) is maximized with a threshold-based proactive strategy ‘Ifff if and only if
$=U"

Proor. By combining Theorem 3, Theorem 4 and Corollary 1, the corollary directly follows. O

Based on the corollary, ‘I’Ilf " is a solution to the optimization problem (6). Notice that this is the

only threshold-based strategy which maximizes U, and it is the only case where the corresponding
Markov chain is null recurrent.

We obtained the following valuable insights about the characteristics of an optimal proactive
strategy under prediction uncertainties. First, the strategy should not overemphasize predictions
which are near in the future, as how the EDF strategy works, in order to account for the fact that
the potential requests may not be realized. Second, it should not overemphasize predictions which
are far in the future, in order to provide sufficient proactive services for the requests which may
arrive in the near future. Balancing these two effects as a function of the prediction uncertainties is
the key to designing a desirable proactive strategy.

5 DELAY COMPARISON BETWEEN UNIFORM AND EDF STRATEGIES

In this section, we focus on two special proactive strategies, which are the EDF (Earliest-Deadline-
First) type strategy and the UNIFORM strategy. The EDF strategy can be seen as the threshold-based
strategy with ¢ = s, which means the server will always first proactively work on the first request
in IT(¢) which has not been completely proactively served. The EDF strategy has been widely used
in many scheduling problems in queueing systems. Intuitively, reducing traffic at the beginning of
a congested period might be the most efficient way to reduce delay. In our case where all objects
have a uniform size, the EDF strategy works the same as the shortest remaining time first (SRTF)
strategy, which achieves the optimal delay in a reactive queueing system. In a proactive system,
the authors of [9] have proved that the EDF strategy can achieve asymptotic optimality in terms
of delay when the size of the prediction window goes to infinity with full knowledge of future
requests and their arrival epochs. However, we will show that the UNIFORM strategy outperforms
the EDF strategy in terms of delay in the case with uncertain predictions.
First, we derive an important property of the UNIFORM strategy in the following corollary.

COROLLARY 3. Given u, A, s and p as system parameters which satisfy ‘S—' < A < L, the system
ps
operates under the UNIFORM strategy V5. Then the limiting empirical distribution of U; satisfies

I(t)

1
lim — > 1(U; =U") = 1, w.p.1 24
fm iy 2y 1 U= U = 1w (24)
Proor. Please refer to Appendix J for the proof. ]

The Corollary 3 shows that the requests under the UNIFORM strategy receive U™ bits of proactive
service with probability 1. Consequently, the reactive work of each actual request is S* with
probability 1. Since almost all actual requests receive the same amount of proactive service, we call
this strategy UNIFORM. In the following, we derive the closed-form expression for the average
delay per actual request under the UNIFORM strategy.
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COROLLARY 4. Given y, A, s and p as system parameters which satisfy £ < A < p%, the average
delay Dy(nirorm) per actual request under the UNIFORM strategy ‘Pg* can be expressed as:
— As—p)Cu—pup—A
5, = Ws—m@u—pp 178),W~p_]L (25)
2pA(1 = p) (u = Aps)

If we define ER(eactwe) as the average delay of each actual request under the reactive scheme, the ratio

D
of =% can be expressed as:
Dgr

Dy _ (As — ) (2p — pp — Aps)
D As(1=p)@2u~—sip)
Proor. Please refer to Appendix K for the proof. O

p.1 (26)

The ratio in (26) directly compares the delay of UNIFORM strategy against the reactive scheme,
and we will plot it in Section 6. Next, we compare the average delay of the UNIFORM strategy
against EDF strategy.

COROLLARY 5. Given y, A, s and p as system parameters which satisfy % <A< ;%’ the average

delay of UNIFORM strategy EU(NIFORM) is no greater than the EDF strategy l_)E(DF) with probability 1:

Dy < Dg,w.p.1 (27)
The equality holds if and only if p = 0.
Notice that 0 < p < % < 1, s0 p = 0 is the only value where the equality holds.
Proor. Please refer to Appendix L for the proof. O

The proof of Corollary 5 reveals the insights on why the UNIFORM strategy outperforms the
EDF strategy. First, the EDF strategy satisfies Property 1 but not Property 2. As a result, the average
reactive work per actual request S is larger under the EDF strategy by Corollary 2, which means
the server needs to deal with more reactive work on average. Second, the unbalanced allocation
of proactive rates in the EDF strategy impacts the delay performance. As shown in Figure 3, the
EDF strategy works well when requests are realized, like the first 5 requests. However, when the
first future potential request seen by the server is not realized, the EDF strategy usually achieves
awful delay performance. Also take Figure 3 as an example. Request 6 receives a lot of proactive
services but it is not realized, which causes request 7 to be served almost completely reactively.
Consequently, request 8 suffers from large queueing delay.

6 NUMERICAL EVALUATION

We perform extensive experiments to study the delay performance of threshold-based strategies.
Specifically, we compare the UNIFORM strategy with the EDF strategy, with the reactive scheme
as a baseline. In our simulations, we consider the same topology as in Figure 1. We set 1 = 10 and
s = 1 in all of our experiments.

In our simulations, we gradually change the threshold ¢ from 0 to s and compare the average
delay per actual request in each case. Specifically, when ¢ = s, the strategy becomes the EDF
strategy; when ¢ = U”, the strategy becomes the UNIFORM strategy; and when ¢ = 0, the system
is in reactive scheme. The product term Ap determines how heavily the network is loaded, and
we choose Ap = 6 as the lightly-loaded network scenario and Ap = 9.6 as the heavily-loaded
network scenario. With each fixed value of Ap, we gradually changed A from 10 to 20 and choose
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Average Delay per Request (=10, s=1, A\p=6) Average Delay per Request (=10, s=1, Ap=9.6)
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p correspondingly, to evaluate the effects of prediction uncertainties on the delay performance.
We set the simulation time to be 107 seconds, which is long enough to alleviate the influence of

randomness.

6.1 Infinite Prediction Window Scenarios

We first demonstrate the delay performance of threshold-based strategies under an infinite predic-
tion window.

Figures 5 and 6 show the delay performance of threshold-based strategies, with different thresh-
olds and different prediction uncertainties. The x-axis represents the threshold ¢, which gradually
changes from 0 to s. Each curve corresponds to a (A, p) combination with the same product Ap.
Each vertical dotted line represents the thresholds U™ of the UNIFORM strategy under each (4, p)
combination, which shares same color with the corresponding curve. Notice that the delay of the
EDF strategy is shown at x = s = 1, and the delay of the reactive scheme is shown at x = 0.

Here are some interesting observations on the plots:

e The vertical lines perfectly mark the minimum point on each curve. This implies that the
UNIFORM strategy always achieves the best delay performance among all the threshold-based
strategies.

o If we compare two curves with different (A, p) combinations, we can see that the delay
performance of the curve with larger p and smaller A outperforms the one with smaller p and
larger A, until they overlap. This is because larger p and smaller A imply higher predictability,
so that the proactive strategy has the potential to achieve a more desirable delay performance.
The overlapping part is due to the choice of a overly-small threshold ¢. As a result, almost
every request receives ¢ bits of proactive service, even in the case with higher predictability.
This implies the significance of Property 1.

o If we compare the two figures, we observe that the curves between ¢ =s =1and ¢ = U" is
flatter in the lightly-loaded scenario. This implies that delay performance is less sensitive to
threshold ¢ when the network is less congested. In the heavily-loaded case, the choice of
threshold ¢ is more crucial to achieve desirable delay performance.

In order to make more straightforward comparisons among the EDF strategy, the UNIFORM
strategy and the reactive scheme, we plotted the average delay achieved by these strategies in
Figures 7 and 8. We observe that the delay performance of the EDF strategy becomes much worse,
relative to the delay performance of reactive scheme, in the heavily-loaded scenario than that in
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the light-loaded scenario. However, the delay performance of the UNIFORM strategy is relatively
stable in both scenarios relative to the reactive scheme.

In Figures 9 and 10, we compare queue size evolutions under the EDF strategy, the UNIFORM
strategy and reactive scheme. From these figures, we can observe some insights of the EDF strategy
and the UNIFORM strategy. In Figure 9, we observe that many requests do not receive any proactive
service under the EDF strategy. The UNIFORM strategy can almost always keep the queue size at a
low level. This is because the EDF strategy assigns proactive service in a very imbalanced manner,
while the UNIFORM strategy assigns proactive resources almost uniformly among all requests. In
Figure 10, the differences are magnified. When the network experiences heavy congestion due to
randomness in the arrival process, the EDF strategy fails to effectively control the burstiness, but
the UNIFORM strategy is able to steadily keep the queue size at a very low level. This difference
directly causes the gap between the delay performance of the EDF strategy and the UNIFORM
strategy in the heavily-loaded scenario.

In Figure 11, we plot the theoretical ratio of average delay under the UNIFORM strategy to that
of reactive scheme, as calculated in Corollary 4. In this plot, A is chosen to be from 10 to 50, and
since Aps < p, p is chosen from 0 to 10/A correspondingly. With a fixed A, the system is more
congested with a larger p. The UNIFORM strategy can achieve a stable advantage over the reactive
scheme in delay performance with a fixed A, as observed. Even in a very congested case with bad
predictions (A = 50 and p approaches 0.2), the UNIFORM strategy still can achieve a roughly 20%
advantage over the reactive scheme.

6.2 Finite Prediction Window Scenarios

In practice, prediction algorithms can only predict user requests in a near future. We experimentally
study the impact of prediction window size on delay performance in this section. A finite prediction
window II(t) = (I(t)+ 1,1(t)+2,...,1(t)+ W) is considered, where only W predictions are
available for any t > 0. In this case, there is a possibility that all the potential requests in IT(¢) have
been proactively served with ¢ bits. When it happens, the system has to be idle until there are new
predictions available.

We carried out a series of experiments to find out the impact of prediction window size W on
the delay performance of EDF and UNIFORM strategies. We also consider A Modified-UNIFORM
(M-UNIFORM) strategy, as described in Algorithm 2. After every available prediction in IT(¢)
receives ¢ bits of proactive service, the M-UNIFORM strategy will start to proactively serve the
requests which have received the fewest bits from proactive service.
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Figures 12 and 13 show the delay performance of these strategies. The delay performance of
the EDF strategy converges faster with respect to W. It means that the EDF strategy does not
require a large prediction window to achieve its best delay performance. On the other hand, the
UNIFORM strategy converges much slower, especially in the heavily-loaded case. It also requires a
large prediction window size for the UNIFORM strategy to outperform the EDF strategy, especially
in the heavily-loaded case. However, the UNIFORM strategy is able to greatly improve the delay
performance with a few simple modifications. We can observe that the performance of the M-
UNIFORM strategy in the small-window region is greatly improved, comparing with the UNIFORM
strategy. In Figure 13, the UNIFORM strategy requires the window size W to be greater than 32 to
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Algorithm 2 Modified UNIFORM Strategy

1: Main Procedure SysTem_Run(U*)
2: Choose the threshold as U*;
3: Initialize V (¢), I (¢), I1(¢)
4: while t > 0 do
5: %Keep the system running
6: if Request i arrives at ¢ then
7: Put reactive part S; of request i into the tail of the queue V ().
8: Update prediction window IT(#)
9: end if
10: if V (¢) > 0 then
11: % Reactive work
12: Transmit data from the head of the queue V (¢) with full rate p.
13: end if
14: if V (¢) = 0 then
15: % Proactive work
16: Decide i = min {i|U; (t) < U*}
I(t)+w>i>1(t)
17: % i is the earliest potential request which has received less than ¢ bits of proactive service in IT(#)
18: if i == null then
19: %All potential requests in « have received U™ bits of proactive work
20: Decide j I(t)+rar)li;'l>1(t) {]|UJ (r) < s}
21: if Uj (t) < s then
22: Transmit data of r; with full rate p
23: end if
24: if j == null then
25: %Every request in II(#) has been fully proactively served
26: Stay idle
27: end if
28: else
29: if U; (¢) < U* then
30: Transmit data of r; with full rate p
31: end if
32: end if
33: end if

34: end while
35: End Procedure

outperform the EDF strategy in terms of delay. However, the M-UNIFORM strategy outperforms
the EDF strategy even when W = 1.

7 CONCLUSIONS

In this paper, we looked into the fundamental queueing dynamics of proactive caching strategies
under uncertain predictions and developed insights on how to design proactive strategy to achieve
desirable delay performance in a single queue system. We solved an optimization problem of
maximizing the limiting average amount of proactive service per request. By comparing queueing
dynamics in the proactive scheme and reactive scheme under the same sample path, we derived a
tight upper bound on the objective with uncertain predictive information of future requests. We
proposed a family of threshold-based strategies, and constructed the Markov chain of the system
to analyze the asymptotic behavior of the proactive system. Consequently, we found the optimal
strategy, i.e. the UNIFORM strategy, by properly choosing the threshold in the threshold-based
strategies, which corresponds to a null recurrent Markov chain. We obtained important insights
about the characteristics of an optimal proactive strategy: the strategy should balance the amount of
proactive work between the potential requests which are arriving sooner and the ones arriving later,
based on the uncertainties in predictions. We derived the closed-form expression of average delay
per actual request under the UNIFORM strategy, and analytically compared it with the commonly
used EDF type strategy. We showed that the UNIFORM strategy outperforms the EDF strategy in
all the non-trivial scenarios, which is verified by extensive numerical experiments under differently
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congested network scenarios. Experimental results also showed that delay can be dramatically
decreased by proactive caching techniques not only in the lightly-loaded region as claimed in [22],
but also in the heavily-loaded case if properly designed. Our work provides valuable insights on
how to optimally design a proactive strategy to improve the delay performance in the system.
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A  PROOF OF PROPOSITION 1

{(t) i\li ieZt:R;=1,i< Ui (¢ I-St) il\li) . .
First we consider the tezrms Zl‘ll((:)'(tl; ?n)d Ziez ‘R’;ll’( t‘)m) w 2"}(% U is the average of terms in
jeZ+:R;=1,i< i(ti) . . .
(Ui (t;) 11 < I(t)} byt ==K ;"(t‘)[(” is the average of the samplesin {U; (t;) : i < I(t),R; = 1}

selected from {U; (t;) : i < I(t)} if R; = 1. One important fact is that U; (¢;) is independent of R;,
because the server has no knowledge of R; before t;. Because R;’s are IID, we have:
) Zf(:tl) Ui(ti) | Ziezrr=1,i<i(r) Ui (t)
lim ———— = lim ,
t—00 I (t) t—0o0 A (t)
Recall that U; = U; (t;) if R; = 1, and U; > U; (t;) if R; = 0. So we have:

w.p.1 (28)

, Zf(_tl) Ui . Zf(_tl) Ui (t;)
lim —— > lim ——— (29)
t—o0 I (t) t—o0 I (t)
Liez+R=1,i<i(t) Ui Yiez+R;=1,i<I(t) Ui (ti)
lim i€Z:R;=1,i<I(t) - lim i€Z*:R;=1,i<I(t) ( (30)
t—00 A (t) t—o0 A (t)
By combining the equations above, we have:
I(t)
. Ui D ieZ Ri=1i Ui
lim —Zl_l > lim 2R Li<I@) 7 ,w.p.1 (31)
t—o0 I (t) t—o0 A (t)
Therefore by definitions of U and Uy, we have U > Uy, w.p.1.
B PROOF OF THEOREM 1
First we make the following definitions similar to (8), (9) and (10):
The amount of time that ¥g works in idle state (namely Reactive Idle) from 0 to ¢ is:
Trr () = [{r € (0,t] : V(1) = 0} | (32)
The amount of time that ¥g works in busy state (namely Reactive Busy) from 0 to ¢ is:
Trp (1) = [{z € (0,] : V (r) > 0} | (33)
The limiting fraction of time that ¥g works in idle state is:
Try (¢
aARJ] £ thm RIt( ) (34)
The limiting fraction of time that Wg works in busy state is:
Trp (t
ORB £ thm RBT() (35)

Comparing reactive scheme with proactive scheme under the same sample path, define the
system state at time ¢ as "Proactive Served", if ¥ works in busy state at time ¢, and ¥p works in
proactive state at time . The total time that ¥p works in "Proactive Served" state is:

Tps (t) = | {r € (0,£] : Vp () = 0, Vg (7) > 0} | (36)
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where Vp (t) is the unfinished work in proactive scheme at t and Vg (t) is the unfinished work in
reactive scheme at t. The corresponding time intervals are marked in Figure 3.

Observe the system at time ¢ when V (t) = 0 in both reactive scheme and proactive scheme. All
the potential requests i € {i : t; < t}, the corresponding realizations {R; : t; < t} and the resulting
{U; (t) : t; < t} of strategy ¥p have been determined, so the entire timeline from 0 to ¢ can be divided
in two states in both reactive scheme and proactive scheme, as shown in Figure 3. Consequently,
we have:

Trp (t) + Trr (¢) = Tpr (£) + Tpp (1) =t (37)
An important fact to be noticed here is that:
Tpp (t) = Tps (¢) + Trr () (38)

Then by (36):

pes ()= > Ui(®) (39)

i€Z*:R;=1,i<I(¢)

where the term };cz+.p,-1,i <1(z) Ui (£) is the total amount of proactive work received by all the
actual requests from time 0 to ¢.

Next, the total proactive work done by time ¢ equals uTpp (t) by the definition of Tpp (t), and it
satisfies the follow equation:

I(t) )
HTpp ()= Y Ui+ Y. Ui(®) (40)
i=1 i=I(t)+1
where the term Zf(:tl) U; (t) is the total proactive work done for requests i € {i € Z* : i < I(t)}, and
Z‘i’il(t)ﬂ U; (t) is the total proactive work done for requests i € {i € Z* : i > I (t)}. Therefore the

summation of these two terms equals the total amount of proactive work done by time t.
Then based Proposition 1, we have:

. Yiez+:R;=1,i<I(r) Vi) . A(t) Ziez+r;=1,i<i(r) Ui(t)
llmt_>oo . 7 _ 11mt—)oo 5 A(t)
lim, . 2t Ui lim, . 10 28 Ui
t—o00 t t—o0 Ty 1(2)

limt—wo @U_A

< /171?’ w.p.1 (41)
=p,wp.l (42)

with equality in (41) if and only if the strategy satisfies Property 2. Following (42), we have:

C Sierrenicin U U @)
lim =p lim ———
t—00 t t—o0

,w.p.1 (43)
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Then based on Equation (38) , (40), (41) and (43), we have:

1(2) 00
HTpp () @) (Zi:l Ui () + ZiZ 11 Ui(t))P
m ——p = lim

i
t—oo t t—o0 t
I(t) 00 :
@ U, (¢ 2% e Us (8
= lim —Zl_l i( )p+ lim L=l (44)
I—o0 t t—o00 t
(43),(41),(Def.1) lim;_,00 Z FR=1] U: (t)
S t i€Z fz 1,i<I(t) Vi ,w_p,l (45)
Tps (t
(3:9) tlim K P:( ),w.p.l (46)

with equality in (45) if and only if the strategy satisfies both Property 1 and Property 2. So if we
put Equation (38) over t and take t — oo, we have:

. Tpp(t) .. Tps(t) .. Tri(t)
lim = lim + lim
t—o00 t t—o0 t t—o0 t
T, T
< tlim Pl; (t)p + tlim RIt(t), w.p.1 (47)
Tpp (t Try (t
(1-p) lim ”;() < lim R’t( ),w.p.l (48)

where (47) is from (46).
By replacing corresponding terms in Equation (48) with Equation (34) and (10), we have:

QRI
app < ——,w.p.l 49
PP = 7 ~p p (49)

and we know from fundamental queueing theory that:

A
agr =1- s (50)
J7;
Then we have the result:
B — Aps
app £ ——,w.p.l (51)
= u-p) P
And it follows that:
apr =1—app > M,w.p.l (52)
p(1-p)

with equality in (51) and (52) if and only if the strategy satisfies both Property 1 and Property 2.

C PROOF OF COROLLARY 1

The average amount of proactive work done for each potential requesti € {i € Z* : i < I(t)} by
time ¢ can be calculated by dividing the total amount of proactive work done for these requests by
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the total number I (t), so
I(2)
U = lim Ziz Ui
o 1(D)
I
A0
R0
CI2UM L Zia Ui(0)
= lim —/——— - lim ——
AT I e 1)

. L Uit
limy._ypp it Ui

< w1 (54)

lim; 00 -

(53)

- —'UO;PP,W.p.l (55)

1 —Aps
< ——,wp.l 56
Ta=p P (56)

with equality in (54) and (56) and only if the strategy satisfies both Property 1 and Property 2. We
get (55) from (54) by the definition of app and by the Strong Law of Large Numbers. The second
term in (53) is 0 w.p.1 if and only if ¥p satisfies Property 1. Similarly, we have:

2iezrR=1,i<I(t) Si

S=1i
t1—>n;>10 A(t)
. Diezt:R;=1,i<I(1) Si
_ lim; o ————— )
limt_wo @
HOPR
= s w.p.1 58
P (58)
As —
> ——,w.p.l (59)
A(1-p)

with equality in (59) if and only if the strategy satisfies both Property 1 and Property 2. (58) is by
the Strong Law of Large Numbers.

D PROOF OF PROPOSITION 2

Evolution of the Markov Chain: Consider the system starting from state X,, = x,, x, € Z* at
7. By Definition 3, it means that 1) V (7;7) = 0, 2) Uy, (7;7) = 0, and 3) J (z;/) = P (7)) + xp.
From Condition 3), we know that the system starts proactively serving request J (z;7) = P (z;}) + xp
right after 7. If the request P () + x,, receives ¢ bits of proactive service before its arrival epoch
tp(z})+x,» OF an equivalent condition:

UP(T;)+X,1 (tP(T;)+Xn) = ¢ (60)

is satisfied, it can be easily verified by Definition 3 that a transition happens right after request
P (7;}) + xn, receives ¢ bits of proactive service. Therefore if (60) is satisfied, we have:

Tn+1 < IP(zf)4x, (61)
By the definition of threshold-based strategies, an important fact is that:
Ui(th)=¢, if i=P(t)+LP () +2,....,P (1)) +xp — 1 (62)
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given X,, = x,. Therefore another equivalent condition to (60) is:
P(r,’{)+x,,—1
D =R =V (tprgyex,) + b < 1 (Epeg e, — Tn) (63)
i=P(7;})+1

P(r})+x,—1
> l:(;’(’f);)}i . (s — ¢) R; represents the total amount of reactive work of all actual arrivals in (1 tp(r: Six,)-
V (tp(z;)+x,) Tepresents the amount of unfinished reactive work at the arrival epoch of request

P (7;f) + xn. Notice that P (z;7) + x,, is the request being proactively worked on starting from ,,.
So the term ZP(;( ):r;: (s—¢9)R; -V (tp(rz)”n) represents the total amount of reactive work
done in (7, tp(T;)ern). The RHS means the total amount of work that can be done in (z,, tp(T;)ern).
If Condition (63) is satisfied, it means that ¢ bits of proactive work can be done for request
J () = P (t;}) + xn before tp(;+)1x,, -

Case 1: If (63) is satisfied, (61) is true. In this case, we have A, < x, and the following the
transition happens:

Xnt1 = ](Tr:rﬂ) - P (T;H)
= (J(3) +1) = (P (z3) + An)

=xp,+1-A, (64)
Case 2: If (63) is not satisfied, we know that no transition happens in (7, tp(r)+X,, ) Because
there have been x,, arrivals by 7, Pl )yexy WE have A, > x,,. We are going to show that X,,4; = 1in

this case in the following.

Suppose we have X,+; > 2, then we have | (T;+1) =P ( n+1) +Xp41 > P ( n+1) + 1 by Definition
3. Then based on the definition of threshold-based strategies in Algorithm 1, there must an epoch
v’ € (tpriyex, ,Tn+1) such that 1) V(z'*) = 0, 2) Uy (¢'*) = 0, and 3)J (z'*) = P(z},,) + L.
Because we know 7’ < 7,.1, we have J(r'") = P( n+1) +1 > P(z’*) + 1. By Definition 3, a
transition should happen at 7” which is earlier than 7,,;. So a contradiction is achieved. Then if

Ap > xp:
Xn+1 =1 (65)
By summarizing Cases 1 and 2, we have
Xnp1 =max{X, +1-A,,1},Vn=0,1,... (66)

Proof of Markovian Property: Now we consider (63). Condition (63) is determined by X,
{R i>P(r)),i€ Z+}, {t,- 1i>P(r)),i€ Z+} and V (tp(.[ )+x,)- If the realization (i.e., R;’s),
arrival epoch (1 e., t;’s) and the amount of reactive work to be done of each actual arrival (i.e.,
s — ¢) are determined, the term V (tp(T;)ern) is also deterministic. {Rl- 1i>P(r)), i€ Z+} are IID
Binomial random variables which are memoryless. {ti 1i>P(r)),i€ Z+} are determined by the
Poisson process {P (t) ;¢ > 0}, which are also memoryless. Therefore X,,;; only depends on X,, and
what happens after 7,,, and the chain is Markovian by definition.

E PROOF OF PROPOSITION 3

Recall the definition ofpz) L Pr{A, = k|X, = xp,x, > k},k =0,1,2,.... We can follow the argu-
ments done in Appendix D and see that (61) is satisfied given X,, > k. Therefore, the event A,, = k is
only dependent on {t,- i=P(f)+LP () +2,....P(c]) + k} and {Ri (i=P(rf)+1L,P(r)) +2,

LGP (T + k} given X, > k, based on (62). So an important conclusion is that p;f is independent
of X, given X, > k.
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In order to calculate the transition probabilities {pf, k=0,1,2,.. .}, we consider the probabilities

p;f =Pr{A, =k|X, =0},k=0,1,2,.... p;f can then be interpreted as the probability that there

are k arrivals before the next transition happens given X, = co. Then 37 p;}: (1-k) can be
explained as the expected drift of the next transition in the Markov chain, starting from the state

Xy = oo. In the following, we are going to compute the probabilities of {p;f, k=o0,1,2.. } with

respect to different values of ¢.

Distributions of T,, and A,,: We first analyze the distribution of T,,|X,, = co and A,|X,, = 0.
Inspired by the methods used in the analysis of the distribution of busy periods in M/G/1 queues in
Section 8-4 of [20], we use a similar method.

Define function T (w1, w, 4, p) as the length of a time interval starting from the arrival epoch of
the first job in an empty system, to the epoch when the system becomes empty for the first time
again. The arrivals follow a Poisson process with an overall arrival rate of A, where each arrival is
realized with probability p, IID. The service time of the first job is w;, and the service time of the
next arrivals is w if realized.

Notice that queueing disciplines will not affect the length of this time interval, as long as the

system is work-conserving. Specifically, if we select w; = % andw = % we have T (%, %, A, p) =

I
in our proposed system, which is the time interval from the arrival of the first actual request when

V (t) = 0, to the epoch that V (t) = 0 again for the first time after the first actual arrival.

Denote the number of potential arrivals when V (t) = 0 during T (w1, ®, A, p) as Np ~ P (Awy),
where % (-) is the Poisson distribution. Notice that N}, is different from the number of arrivals in
T (w1, 0, A, p) because some arrivals happen when the server is working reactively, i.e.V (t) > 0.
Denote the number of actual arrivals among these N, arrivals as Ny ~ 8 (Np, p), where B (-, -) is
the Binomial distribution. When an actual request among Ny arrives, a busy period starts. The
length of each busy period follows the distribution T (w, w, 4, p), IID.

First we derive T (w, w, A, p). Following similar arguments in Section 8-4 of [20], we have:

(T,,|X,, = o0). If we select w; = % and © = %, T (%, ﬂ, /l,p) is the length of a busy period

E [T (a), a),ﬂt,p) |Np,NA] =w+ NusE [T (a), a),/l,p)] + (Np — NA) 0 (67)
because the busy periods are statistically similar. Then we have:

E[T (&, w, A, p) INp] = w + pNpE [T (0, 0, A, p)] (68)
E[T (0,0, p)] = @ + pAwE [T (0, w, A, p)] (69)

So we have:

w

EIT (@0.0.)) = 1=

(70)

Similarly, we can derive E [T (w1, 0, A, p)]. We know the first job is with size w;, and each busy
period follows T (w, w, A, p), we have:

E[T (w1, 0, A, p)] = 01 + Apr E [T (0, w, A, p)] (71)

= w1+ )Lpa)l (72)

1-plw
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By replacing corresponding terms, we have

E[Ty|X, =] =E |:T (?’ : ;qs’A’p)]

U
s—¢
__ ¢
p—pA(s—¢)
1
H—;}PS +P/1

2:27

(73)

(74)

(75)

Similarly, we can define A (w1, w, A, p) as the number of arrivals in the next transition given X,, = oo.

With similar arguments, we have:

Aw
E[A =
[A@.0.0p) = {75
Aw
E[A(w1,w,A,p)] = Apwn = Jap + Aw,
- A
E[Ap|X, = ] = E [A(?,S ¢,)L,p)] =
oo B2+ pa
An interesting fact is that if we choose ¢ according to U™, as defined in (14), we have
<lif ¢<U"
E[An|X, = 0] {=1,if ¢=U"
> 1,if ¢>U"

Notice that Pr {A, = k|X,, = o0} = pf,Vk =0,1,...,and

E[AnlX, = 0] = Y plk
k=0
So we have
0 <1lif ¢<U"
> piki=1if ¢=U"
k=0 > 1,if ¢>U*
And our conclusion follows directly:
o0 >0,if ¢<U*
dpta-ki=0.if $=U
k=0 <0,if ¢>U*

F PROOF OF PROPOSITION 4

In order to prove E [T,| X, = x,] < 00, Vx, € Z*, we first prove that:

E[TolXp = 1] = E[TalX,n = k], Vk > 1

(76)
(77)

(78)

(79)

(80)

(81)

(82)

(83)
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System 1
System 2 E=——3

Virtual System
Original System B2

™~
s |
b=s/21-
T 2 1
X}l =“’i Thn+1 Th+1 t X _T?—i Tne1 T t
W=
X2=2 X, =1
Fig. 14. Comparison of System 1 and System 2 in Fig. 15. Comparison of the Proactive System and
the Proof of Proposition 4 the Virtual System in the Proof of Proposition 4
then prove that:
E[Ty|Xn =1] < (84)
to finish the proof.
Proof of (83):
First we prove the following:
E[Ty|X, = 1] 2 E[Ty|X, = k], Vk > 1 (85)

Consider two systems under ‘If;f which start from r,, with P; (z,,) = P, (r,), but in different states
: X! = 1 in the first system and X2 = k,k > 1 in the second system. Based on (62), no proactive
service has been done for any future requests by time 7, in the first system, and the first k — 1
future requests have received ¢ bits of proactive service by time 7, in the second system. Recall
that J () denotes the request the server would proactively work on if the V () = 0 at t. Here we
use J; () for the first system and J (t) for the second system.

Because we assume P; (1,) = P (1), X} = 1 and X2 = k,k > 1, we have J, (T,;L) > Ji (z’,‘f) by
Definition 3. Then if we consider the same arrival processes after 7, in both systems under the
same strategy ‘I’¢, we have

L@)=Ji(t),Vt 21, (86)
Then we have 7}, > 72

w+1 = Tnyq Dy Definition 3, which means a transition always happens in the second
system no later than the first system. Therefore we have:

T Xn=1>T,|X, =k, k >2 (87)
It is true for every sample path, so we have:
E[T,|X, = 1] 2 E[T4|X, = k], Vk > 1 (88)

An example of the comparison can be found in Figure 14.
Proof of (84): Next, we prove that E [T, |X,, = 1] < co. Again, we use the method of comparisons
to prove it.
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We compare the proactive system with a virtual system. Both systems start from state X, = 1
(X, = 1in the virtual system) at 7,,. In the virtual system, the server stops proactively serving any
requests from 7,,. Our goal is to find the earliest epoch 7* > 7, which satisfies:

V() =0,P (") =1 (c*) > I () (89)
We consider 7* as the next transition time in the virtual system. Correspondingly, we define
T, = t* — 1,,. Notice that P (¢**) = I(¢**) > I (7;) is a stronger condition to Condition 3) in
Definition 3. Based on the definitions, we are going to prove

TalXn = 1) > (Tu|X, = 1) (90)
( )

in the two systems under the same sample path.

Now we consider the same sample path in both the proactive system under ‘I’g} and the virtual
system starting from X,, = 1 and X,, = 1 from 7,. An example of the comparison is shown in Figure
15. Since no proactive work will be done in the virtual system before 7*, all the actual arrivals need
to receive s bits reactively in the virtual system, which is no fewer than the proactive system for
each request. Therefore similar to the previous arguments we did for Equation (86), we always
have:

J@) < J(),¥t> 1, (91)

If we compare the conditions in (89) with the conditions in Defition 3, we can see that (89) is
a stronger condition because if P (r**) = I(r**), we must have J (r**) > I(**) + 1 > P(**).
Therefore the transition in the proactive system will happen no later than the virtual system.
Therefore the transition time (fn X, = 1) > (T,|X, = 1) along every sample path.

Construction of 7*: Here we aim to find the epoch 7* in the virtual system which satisfies
conditions in Equation (89). Based on the conditions: 1)V (r**) = 0, 2)P (r**) = I (r**) > I (7). we
construct a scenario when these two conditions are satisfied.

Our target is to find a busy period starts with one actual arrival and no other potential arrivals
happen before it ends. The epoch 7* can be found when such a busy period ends because: 1) the
server becomes idle so V (r**) = 0, 2) the latest arrival is an actual arrival so P (r**) = I (r**).
Because there should be at least one actual arrival after 7, we have I (*%) > I (T,;“ ) so the condition
is satisfied.

Recall that we assume Asp < p, so the virtual system is stable. The expected idle period length in
the virtual system is then

Elly] = ﬁ (92)

EBv]l  _  _
HBy B = P =

282 ‘\where By is the length of a busy period in the virtual system, we can also calculate the expected

where Iy is defined as the length of an idle period in the virtual system. Based on

length of a busy period in the virtual system E [By|. So we know that E [Iy] < oo, E[By] < oo.
The next step is to find such a busy period. Every time a busy period starts with an actual arrival,
the probability that there are no potential arrivals during the service time of the actual arrival i is

e_Aﬁ, IID. Therefore, the expected number of busy periods that such a busy period happens for

the first time is E [Ng] = is = ¢*¥, where N B is the number of busy periods when the first busy

period satisfying the cond1t1on is observed. So the expected time that such a busy period happens
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is then bounded as:
E|Tu|X, = 1] < E[Ns](E[Iy] + E[By]) < o (93)
Define the bound Eyy = E[Ng] (E [Iy] + E [By]), which is a determined finite number given system
parameters A, p, s, u. Therefore we have our bound on E [T,|X},]:
E[Tu|Xn] < E[Ty|Xn = 1] < E [TulXn = 1] = Ey < oo, VX, € Z" (94)
So we proved E [T,|X,, = k] < oo, Yk € Z* by combining (83) and (84).
Similarly we can prove E [A,|X, = k] < oo,Vk € Z*.

G PROOF OF LEMMA 1

First assume that by time ¢, there have been N (t) = max {n|r, < t} transitions in the Markov
chain under ‘I’ﬁ . Then we have the following inequalities of N (t):

N () < P(t) + %f (95)
lim NL(t) < Ey,wp.l (96)

where Ey £ E [N3] (E [Iy] + E [By]) is the bound in (93). Equation (95) is by the fact that a transition
happens either when the server finishes proactively serving a request with ¢ bits, or some potential
arrival happens before it receives ¢ bits of proactive service. The term lim;_, o ﬁ is the limiting
empirical average T,. Equation (96) is from Proposition 4. Take (95) over ¢ and take limit of t — oo,
we get:

N (¢t P(t
lim ﬁ < lim (ﬁ + E) =1+ E,w.p.l (97)
t—o0 t t—o0 t ¢ ¢
Combining it with (96), we have:
N(t 1
A s i YO L (98)
t—oo Ey

On the other hand, recall that if J () > P (t), we have (62). Based on Definition 3, X,,;; — X, <
1,YVn=0,1,.... Then we have:

J (1) = P(t) < max {Xn¢) XNy} < Xny + 1 (99)
J(t) = P(t) > min {Xn() Xn(y+1} = Xnys1 — 1 (100)
Vt € (T TN(1)+1)

Therefore we have Vt € (1, Tp11) :

‘ i Ui (t) < max{¢ (J(t) - P()),0} (101)
o < ¢ (X +1) (102)
. i Ui (t) 2 max{¢ (J(t) - P(¢) - 1),0} (103)
o > ¢ (XN —2) (104)

,Vt € (Tn’ Tn+1)
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(101) is achieved by considering the amount of proactive service done for request J (¢) as ¢. (102) is
from (99). (103) is achieved by considering the amount of proactive service done for request J (¢) as
0, and (104) is from (100). Therefore for all ¢, we have:

Zzp(t)+l Ui (t) < ¢ (XN(t) * 1)

105
t - t ( )
pIl Ui (t) X -2

P(t);'l > (]5( N(tt)+1 ) (106)
If we take the limit of t — oo we have
p Ui (t) Xy + 1
m =P(t)+1 < lim ¢7( N(t) )
t—00 t t—o00
9 (Xnwy +1) N(b)
= lim
t—oo N (1) t
Xn 7
< lim —@ |1+ = 107
< g o [a ) 1o
2ie Ui (1) X -2
o 2P+ > lim ¢ (Xn(ry+1 — 2)
t—oo t t—oo
¢ (XN —2) N (1)
= lim
t—o0 N (1) t
Xn
> lim 22 ® (108)
n—oo n EV

it p(eye Uilt)
;

So if we know lim,, )% = 0, w.p.1, we have lim; = 0, w.p.1 from (107). And if
23 p(eye1 Uilt)
t

threshold-based strategy \Pf,’ satisfies Property 1 if and only if the corresponding Markov chain

lim; e =0, w.p.1, we have lim,_, )% =0, w.p.1 from (108). So by Definition 1, the

satisfies lim,, e )% =0,w.p.1.

H PROOF OF THEOREM 3

Case 1: If ¢ < U*, we know that the chain is transient from Theorem 2. Therefore, AN > 0 such
that:

X,>1,Vn>N

with probability 1. From the Nth transition, we look at the drifts, i.e. A, L X1 —Xm,Ym € Z+.
Then for all n > N:

n—1

Xp =Xy + ) (Xis = X))
i=N

n-1
= XN + Z Ai
i=N

= Xy + Z Z A; (109)

k=0 i€Z":A;=1-k,N<i<n

% jeZ":Nj=1-k,N<i
:XN+Z(1_k)|{l€ i<n}|
k=0

8

(n—N) (110)

n—N
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(109) is achieved by grouping transitions based on the size of drifts. Notice that H<Z"A1 Z:S’NSKH}'

is the fraction of drifts with value 1—k, where there are k arrivals before the next transition. Because
the chain never revisits state 1 after N, the probability that there are k arrivals is p;f. Soasn — oo,
we have:

. {iez":Aj=1-k,N<i<n}|
lim
n—o0 n—N
based on Strong Law of Large Numbers. If we take both sides over n and take the limit of n — oo,
we have:

=l wp.1 (111)

X, X = ieZt N =1-k,N<i -N
lim—:lim(—N+Z(l—k)|{l€ i<n}ln ))
n
k=0

n—o n n—oo n—N n
:i(l—k)lim [{ieZ*:Nj=1-k,N<i<n}|(n-N)
— n—oo n—N n
=)=k
k=0
>0 (112)

based on Proposition 3. So when ¢ < U*, the threshold-based strategy does not satisfy Property 1
based on Lemma 1.

Case 2: If ¢ > U™, we consider a virtual strategy. In this strategy, the server can do proactive
work at the rate of

A A
BZAPS ) LAps ) 1
e 2 ¢ p> Y p'u: u>pec(0,1) (113)
1—¢€ 1—e I-e¢

In this case, define J, (¢) as the request that the system would proactively work on at time ¢ under
the virtual strategy. Because the system is always working at a strictly higher rate y. > p with the
virtual strategy, we have J (t) > J(t), Vt if the two system are under the same sample path. Then
by Definition 3, we have:

Xs > X,,VneZ" (114)

where X is defined as the states under the virtual strategy.
Following the same steps of Proposition 3, we can derive the new set of transition probabilities

{ pzd) }, and prove that the Markov chain under the virtual strategy is transient. Specifically:

. Xrel - €P
’1151307_210,( (1-k)=¢,Vee(0,1) (115)
k=0
So Ve € (0,1), we have
X Xe
lim =2 < lim —2 =¢ (116)
n—oo n n—oo n
And if we take € — 0:
o Xn o X5
lim — < lim lim — =0 (117)
n—oo pn e—>0n—oo n

Therefore based on Lemma 1, the threshold-based strategy satisfies Property 1 when ¢ > U™.

Then by summarizing Cases 1 and 2, the threshold-based strategy ‘P;f satisfies Property 1 if and
only if ¢ > U*.
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I PROOF OF THEOREM 4

In order to prove Theorem 4, we first consider the following Lemma 2. The idea of Lemma 2 is

to look at the proactive work done within one transition. Under strategy ¥? | denote the total
amount of proactive work done in (z,, 7,4+1) for all potential requests as {},, and denote the amount
of proactive work done in (z,, 7,41) for actual requests as {7'. We investigate the expectation of ,
and (| ,‘;‘ conditioned on X,, and X,,;; in Lemma 2.

LEMMA 2.
E [ Xn = k. Xpe1 = 1] = E[LalXn = k. X1 =1 p, if [ > 1 (118)
E[{1Xn =k Xns1 = 1] < E[LalXn =k, Xne1 = p, if [ =1 (119)
E [21Xn = k. Xpe1 = 1] < E[6ulXn = k Xpe1 = lp, if k=1,1=1 (120)

Proor. Proof of (118): Given the starting state X, = k at 7,,, we focus on the request P (z,,) + k
which is the request that starts to receive proactive service from 7.

If X,,+1 > 1, it means that the server is able to proactively serve request P (z,,) + k before it arrives,
i.e. tp(r,)+k > Tn+1. SO we have the following:

((nlXn =k, Xpe1 =1) =¢ (121)

(§A|X” =k, Xn1 = l) = ¢, if Rpzy)+i = 1
n 0, lf RP(Tn)+i =0

Wk >1,V1>1 (122)
Because we know that Pr {R P(r,)+k = 1} = p independently, so we have:
E[GMNXn =k, Xps1 = 1] = E[GulXn =k, Xpe1 = p = ¢p, Vk > 1,V > 1 (123)

So (118) is proved.
Proof of (119): If X,,;; = 1, which means that the request P (z,,) + k arrives before it receives ¢
bits of proactive service, i.e. tp(;,)+k < Tn+1, We know that

(1) All the proactive work done in (7, tp(r, )1k ) is for request P (z,) + k;
(2) All the proactive work done in (p(r,, )1k, Ta+1) are for requests that are not going to be realized.

Both of these facts are by the definition of threshold-based strategy. Because the server will keep
proactively serving request P (7, ) + k until it receives ¢ bits proactively or until it arrives, statement
(1) is true. For statement (2), if any request that has not arrived starts to be proactively served,
a transition should happen at the moment it starts receiving proactive service by Definition 3.
Therefore before the transition happens, i.e. 7,41, there should be no proactive work for future
potential arrivals. Take what happens in Figure 4 in (73, 74) as an example. The server starts
proactively serving request 4 at 73. In (73, t4), all the proactive work are done for request 4. All
the proactive work in (ty, 74) are done for the requests which have arrived before starts to be
"proactively" served.

Based on the discussions above, we have the following analysis. Consider the system starting
from 7, with state X, = k € Z*. Define a tuple of random vectors ©,, = (fn,k, v,,,k), where
Enk £ (tp(rn)ﬂ, EP(rp)+25 -+ s tp(rn)+k) denotes a random vector of the next k arrival epochs t;’s
after 7,,, and v, & £ (Rp(fn)ﬂ Rp(z)e2s s Rp(Tn)+k_1) denotes a random vector of the next k — 1
R;’s after 7,,. A realization ©,, = 0, x determines a set of sample paths after 7,,, where the first
k arrival epochs and the realization of the first k — 1 arrivals are determined. Given X,, = k and
On.k = Ok, what happens in the system during (Tn, tp(Tn)+k) is deterministic. We also know
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whether 7,41 > tp(,)+k or not, which determines if X;,4; = 1 or X;,1; > 1, as discussed in the proof
of Proposition 2.
Define Q,, k.1 as:

On. k.1 £ {en,k t Xne1 = 1L, Xy = k} (124)

which represents the set of sample paths under which the system transits from state k to 1 starting
from 7,,.
Then V0, € Qn.k.1,Vk € Z*,n =0,1,... we have:

(£n]O®nk = Onks Xn = k) = (Up(r,)4k (tp(r)4k) 1Ok = On e Xn = k) (125)
U, t O, =0, =k if R =1

(évrjlﬂ@n k= Gn ks Xn = k) = ( Plen)+k ( P(Tn)+k) | nk = Un, k ) lf Pen)+k (126)
0, if Rp(zy+k =0

Therefore V0, x € Qnk1,Yk € Z,n=0,1,...:
ER[ZMOnk = Onks Xn = k] = (Up(ey sk (tp(ey)+k) [@nk = On s Xn = k) p
< ER[$nl®nk = Onks Xn = klp (127)
where Eg[-] means expectation with respect to Rp(;,)+k. And by definition of Q, k.1, we have:
E[GXn = Kk Xner = 1]
= E[{}1Xn = k,Opk € On k1]

:/ Pr{gnk— nk|®nk€anl} ER§n|®nk—9nka —k]denk
On k,1
S/ Pr{@)nk— nk|® kEanl} ERgnlgnk—enks —k]pdenk
On k,1
=E[{u|Xn =k, Xps1 = 1]p (128)
where (128) is by replacing corresponding terms according to (127). So we have:
E|GHNXn =k, Xpa1 = 1] < E[alXn = k. Xps1 = 1]p,Vk € Z* (129)

so (119) is proved.

Proof of (120): The system starts from state X,, = 1. It means at time 7, no proactive work is
done for any of the potential requests which have not arrived yet. Similar to the method we used to
prove (119), we focus on the set Qy, 1.1 in this case. Recall that 6,1 € Q,.1,1 if and only if X;,1; =1
given X,, = 1 and ©,,1 = 0, 1. Notice that 0, 1 = (¢ (n,1), v (n, 1)) where £ (n,1) = (tp(,)+1) and
v (n, 1) is an empty vector, which means the arrival epoch of request P (z,,) + 1 determines whether
Xnt1 = 1 or not. To be specific, X,,;1 = 1if and only if tp(7, )41 < % + 7,,. So:

On11 = {en,l  Xn+1 = 1,X, = 1}

= {911,1 . tP(Tn)+1 < % + Tn} (130)
We consider another set of sample paths Q, ;1 which is defined as:
On,1,1 = On,1 : tp(r)+1 < Tn + £9 tp(z)+2 — tP(zn)+1 2 £ (131)
9 Ly £l n 2” n n 2/1

By comparing (131) and (130), it is true that Q. 1,1 € On.1.1-
We discuss the value of {,, under condition ©, 1 = 0,1 € Qn1,1. If Rp(;,)+1 = 1, the system
will proactively work on request P (7,) + 1 until tp(;, )+;. Consequently, request P (7,) + 1 receives
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fewer than % bits of proactive service due to the definition of Q, 1. If Rp(;,)+1 = 0, the system

will proactively work on request P (7,,) + 1, until it receives ¢ bits from proactive service or until
tp(r,)+2- Therefore we have Y0, 1 € Qp,1,1,Yn=0,1,.. .

(gnlgn,l = gn,laXn = 1)

(UP(T,,)H (tP(rn)H) |®n,1 = Gn,laxn = 1) s if Rp(fn)ﬂ =1
> o (132)
(Up(e,)+1 (tP(rp)41) 1On1 = On1,Xn = 1) + 5, if Rpzye1 =0
(é‘(rqul(")n,l = en,l,Xn = 1)
_ (UP(T,,)+1 (tP(rn)+l) |®n,1 = gn,laXn = 1) s if RP(rn)+1 =1
- . (133)
0, lf RP(rn)+1 =0
And Ven,l S Qn,l,l,‘v’n =0,1,...:
_ _ _ _ ¢(1-p)
ER[éVn|®n,1 = en,laXn = 1] 2 (UP(rn)+1 (tP(Tn)+1) |@n,1 = Hn,l,Xn = 1) + T (134)
ER[G1On1 = 0n,1, X = 1] = (Up(r,)1 (tp(ra)+1) 1€n1 = 0n1, X5 = 1) p (135)
So
(1-p)
ERl2On1 = 1, Xn = 1] < Er[al®p1 = 0n 1, Xp = 1]p - WTP
,VO0n1 € On1,1,Yn=0,1,... (136)

Then we have:

E [évr?l@n,l € Qn,l,l,Xn = 1]

= / Pr {G)n,l = 9n,1|®n,1 € Qn,l,l} : ER[éVr?|®n,1 = en,l € Qn,l,l’Xn = k]den,l
Qn,l,l

A
ST

- - 1—
Pr {@n,l =0,1|On1 € Qn,l,l} : (ER[§n|@n,1 =041 €0n1,1.Xn =klp— M) do,

n,1,1

(137)
= / Pr {G)n,l = 9n,1|®n,1 € Qn,l,l} : (ER[éan@n,l = Qn,l € Qn,l,laXn = k]P) den,l
Qn,l,l
- 1—
—/ Pr {@n,l = On,11On,1 € Qn,l,l} : (M) d0n,1
- 1-—
=E [gnlgn,l € Qn,l,l’Xn = 1]17 - M (138)
So for the set O, 1,1:
- - 1—
E [gr?l@n,l € Qn,l,l,Xn = 1] =E [§n|®n,1 € Qn,l,l,Xn =1 P M (139)
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By the Law of Total Expectation, consider the set Q, 1.1 and we know that:

E [gnl@n,l € On1,1,Xn = 1]

= Pr {@)n,l € On1,1On,1 € Qn,l,l}E [§n|®n,1 € On1.1,Xn = 1]

+ Pr {Gn,l € (Qn,l,l \Qn,l,l) |On,1 € Qn,l,l} E [§n|®n,1 € (Qn,l’l \ Qn’l,l) X, = 1] (140)
E[£100ns € Qurn o = 1]

= Pr {@m € Onr1lOn1 € Qn,m} E [g,;“len,l € Ot Xn = 1]

+ Pr {®n,1 € (Qn,l,l \m) |®n,1 € Qn,l,l} E [{,ﬂ@n,l € (Qn,l,l \m) s Xn = 1] (141)

where Q.11 \ On,1,1 is the set difference of Q, 1,1 and Q,,1,1. The conditional probability
Pr {@n,l € On1,110n,1 € On, 1,1} can be calculated as follow:

Pr {Gn,l € Qn,l,llgn,l € Qn,l,l}

Pr {@n,l € On1,1,0n,1 € Qn,l,l}

(142)
Pr{®n1 € On 11}
Pr {®n,l € Qn,l,l}
— (143)
Pr {®n,1 € Qn,l,l}
where the probabilities Pr {@m € Qn, 1,1} and Pr {®n,1 € Qn,l,l} can be derived as follow:
Pr {@n,l € Qn,l,l}
= Pr {tp(/l-n)+1 -1, < %} (144)
[
=1-¢ew (145)
Pr {@n,l € Qn,l,l}
= Pr{tp(r,)+1 — Tn < 9 & tp(r,)e2 = tP(zy)+1 > 9 (146)
= Pr{tp(r,)+1 — Tn < 9 “Pritp(z,)e2 = tp(rp)+1 > 9 (147)
n 2,1 n n 2”
[ ¢ [ ¢
= (1 - e_Aﬁ) (e_/lﬁ) e — et (148)

So one can see that Pr {@n,l € On 11|01 € Qn,l,l} > 0,and Pr {@n,l € (Qn,l,l \Qn,l,l) |On,1 € Qn,l,l}

> 0. Equation (127) can be applied to V0, ; € (Qn,l,l \ Qn,l,l) C QOn.1.1, so we should have
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VOn,1 € (Qn,l,l \m)i

ER[évr?le)n,l = Qn,laXn = 1] = (UP(rn)+1 (tP(z'n)+l) |®n,1 = Qn,l,Xn = 1)
< ER[gn|®n,1 = Qn,l,Xn = 1]17 (149)

VO, € (Qn,1,1 \m) ,Yn=0,1,...

and consequently:

E [gﬁ@"’l © (Q"’Ll \%) »Xn = 1] <E [§n|®n,1 € (Qn,l,l \%) ,Xn = 1]1) (150)
By combining this equation with (139), we are able to compare Equation (140) and (141). We have:
E[{71On1 € Qn11, Xn = 1]
= Pr {®n1 € On1,11On1 € Qn,l,l}E [{,’;‘l@n,l €0n11,Xn = 1]
+Pr{ n1 € (Qn 1,1\ On,1, 1) |®n,1 € On,1, 1} [§f|@n,1 € (Qn,l,l \m) Xn = 1] (151)

< Pr{0n1 € On1110n1 € Onit | E|6alOn1 € Qi X = 1] p

{ ¢p(1-p)

2
(152)

+ Pri0O,,; € (inl\inl) 1©n,1 Ginl} (E[§n|@n,1 € (Qn,l,l\m),Xn=1]p—

Pr{ n1 € On 110 1€Qn11} [§n|@n,1€%’xn:1]f’
{

+Pr{@n1 € (Qn1i \Ont) On1 € Quia} E[6alOns € (Qnii \ Cront ) - X = 1] p
~Pr10u1 € (Quir \ Qo) 1001 € Q) 2P

< Pr{ n1 € On11]On1 € inl} [§n|@n,1 € 0n1,1,Xn = 1]1)

+ Pr {@n,l € (Qn,l,l \Qn,l,l) |On,1 € Qn,l,l}E [§n|®n,1 € (Qn,l,l \ Qn,l,l) s Xn = 1]P (153)
=E [é(nl@n,l = Qn,l € Qn,l,l’Xn = 1] p (154)
Equation(151) is from (141). Equation (152) is from (139). Equation (153) is by removing term
—Pr {Gn,l € (Qn,l,l \ Qn,l,l) |©n,1 € Qn,l,l} qu( =) \which is strictly negative. Then (154) is from
(140). So we finally have:

E[3310n1 € Qni1sXn = 1] <E [{ul®n1 € Qni1.Xn = 1] p (155)
where (120) directly follows.
We have proved (118), (119) and (120) by now, so Lemma 2 is proved. O

Lemma 2 can be interpreted as follow. In (7, 7,41), if {;, bits of proactive service can all be
potentially realized, we should have E [§ ,’14] = E[{,] p based on our assumptions on the request
processes. This is the case when a transition X,4; > 1 happens, when every bit of {;, is done
before the corresponding request arrives. However if a transition X,+; = 1 happens, the amount
of proactive work done in (z,, 7,+1) that can potentially be realized is no more than ¢,, leading to
the inequality E [§ ,’f] < E[{,] p in this scenario. An example is shown in (73, 74) of Figure 4. The
amount of proactive work done in (7', 74) is for request 5 which has arrived but not realized. This
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part of proactive work will never be realized, so it is not included in 7' which causes the inequality.
Specifically if transitions X,, = 1, X;;+1 = 1 happen, we proved that strict inequality is achieved.
Intuitively if the transition to the state 1 happens comparably often as all transitions, it will be
most likely that U > Uy, based on Lemma 2. Then we proceed to prove Theorem 4.
Proof of Theorem 4: First we rewrite U in the form of transitions. Recall that
N (t) £ max {nl J(rf) <1 (t)} is the index of the transition where the latest actual request received
proactive service. From Proposition 4, we know that the expected time before next transition is
finite. So as t — oo, we know N () — oo as well. And lim;_ ﬁ = E|[T,],w.p.1 where E [T,] is
a finite constant given system parameters. Recall that we define {;, as the amount of proactive work
done in (7, 7,41), and { ;:‘ as the amount of proactive work done for actual requests in (7, 7,41).

Consider the term Zf(:tl) U;. If we rewrite this term from the point of view of transitions, we have:

1(z) N(#)

QU= la=o(®) (156)
i=1 n=0

where the term o (¢) represents the amount of proactive work done in (TN(t), TN(t)H) for requests

which arrive later than I (t). We know o (t) < {nys) by definition. We know that % <E[T,] <
o0, w.p.1, so we have:

tli_)rglo @ =0,w.p.1 (157)
Then we have:
_ YWy
U= th_)n‘}o 0 (158)
N(t)
T évn —-o(t)
(N X = 1) G SN 1 X > )G\ N (@)
= tli)ngo( NG + NG 0 (160)
e [ LK = 1 X = DG B T > L X = D
=% I0) - I0)
SN Xps1 > D8 | N (1)
N© ) 10 ey

SN 1 (X41=1)
N(t)

represents the limiting fraction of state 1, and the other terms in similar form can be interpreted
correspondingly.

where (160) and (161) are by grouping the terms based on transitions. The term lim;_,
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Similarly we have:

2iez+R=1,i<I(¢) Ui

Ua = Jim, AD)
o (2K =05 S0 1 > DG N @)
arest N (t) N (t) A(t)
e [(Za 1 = 1 X = DG B 100 > 1 X = D]
= N () i N ()
SO Xnar > D\ N (1)
N (1) A(t)

Case 1: If ¢y < U*, we know the Markov chain is transient. So we have

TN (X, = 1)

th_}rglo = NG =0,w.p.1
y SN 1 (X, > 1) o
Pl N @) »W-p-

Therefore based on Lemma 2 and Strong Law of Large Numbers, we have:

NI =G IO T K = D X 1 (X = 1)
lim = nm
t—0 N (t) tmo SN (X, = 1) N @)
=0,w.p.1
g 1K = DG Ep LK = DG I 1 (X = 1)
lim = lim
e N (@) = SN (Xpar = 1) N
=0,w.p.1
21 X > D Ty LK1 > D Ty 1 (Xnir > 1)
lim = lim
oo N (1) o g VO L (Xar > 1) N (t)
= ¢, w.p.1
N K > DG I 1 (G > D I 1 (XK > )
lim = lim
t—oo N(t) t—o00 ZN(t) 1 (Xn+1 > 1) N(t)
=E[{ X1 > 1] - 1
= ¢p, w.p.1

2:39

(162)

(163)

(164)

(165)

(166)
(167)
(168)

(169)

(170)
(171)

(172)
(173)

And lim;_, W should be the average number of actual arrivals between two consecutive tran-
sitions, which converges to ApE [T}, ] by the Law of Large Numbers. So from (160) and (162) we
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have:

. (ZN“’ L (X1 = Dl Splg L X > %) N ()

t00 N (1) " N (1) 1(t)
= /IE?T ],w.p.l (174)
_— N(t) 1 Xn+1 - n N(t) 1 Xn+1 n
Ua = }E’E,‘o( (N(t) D, 2 (N(t) il ]X((:)) (175)
_ I
=] AR ! 7o)

Therefore we have U = Uy, w.p.1 when ¢ < U*.
Case 2: If ¢ = U*, the Markov chain is null recurrent. So we have

SN Xy = 1)

th_)ngo NG =0,w.p.1 (177)
N(t)

. 1 (Xn+1 > 1)

tli)ngo NG =1,wp.l (178)

Then the deductions are similar to previous case, so we directly show the conclusions:

=__ ¢

U= AETT w.p.1 (179)
=__9
Uy = AE[L] w.p.1 (180)

Therefore we have U = Uy, w.p.1 when ¢ = U*.

Case 3: If ¢ > U”, the Markov chain is positive recurrent. So the Markov chain has a limiting
distribution, or steady state probability {z,k = 1,2, ...}, where £ pr {lim, 0 X, = k},Vk €
Z*. Then we have:

. SN (X = 1, Xe1 = 1) &

= N
(1 = 1 X = DG Bty LK = 1, X1 = 1) 20 T (Xa = 1)
= lim NG NG (181)
oo | N (X, = 1, X = 1) Z()H(X—l) N (1)
= E[(nlXn = 1, Xn41 = 1 Pr{Xps1 = 1|X,, = 1} 11, wop.1 (182)
=1 ) PYE[LalXn = 1, Xns1 = 1], w.p.1 (183)
k=1
N(t)
In (181), N(j(xn_l X =Dln o the average of {,, between two consecutive transitions where

]l(Xn—l Xn+1 1)
SN (X =1, Xpi1=1) |
Znto L(Xn=1)
of next transition where X;.; = 1 given X;, = 1, which converges to transition probability

N t
Pr {Xos1 = 1/X, = 1). 2o ;}l(f)( 2
recurrent case. Therefore we have (182) based on the Strong Law of Large Numbers. Following

Xn = 1,X,41 = 1, which converges to E[{,,| X, = 1, Xp41 = 1]. is the fraction

is the fraction of state 1, which converges to x; in positive
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similar arguments, we have the following results:

lim Tt 1 (X ;]Z)X”“ =V _ = m (Zpl ) [(nl X =k, Xps1 = 1], wp.1,Vk > 1 (184)
lim Sty 1 35;'(1;)1 >Vin _ =(1-m) ¢ wp.l (185)
lim Tty L X J;zt)x”“ =0& = m ZP?E [C41X0 = 1, Xpi1 = 1], wp.1 (186)
lim S (X ;’Zt)xnﬂ =D& - (Zpl) [C21Xn = K Xna1 = 1], w.p.1,Vk > 1 (187)
lim 2 “jf’g) > DG ) g (189)

based on Lemma 2 and the Strong Law of Large Numbers. So we have:

= (ZN(” L =1, Xnm = Dl | SN (X = 1, Xne1 = 1) &

t—o00

N (t) N (1)

SNO T Xper > DG\ N (1)
" N () (189)
. T ZZOZIPZ)E [g(n'Xn =1,Xp41 = 1] + Z?:Z Tk (Z;X;kpl)E[gann =k, X4 = 1]
- AE [T,] AE [T, ]
(1-m)¢
TR
(Sl L = 1 X = DG B 1 = 1 X = DI
AT N NG
SN (X > 1) N (1)
N (@) A (190)
o N PRE [ X = 1, X = 1] , k=2 T (X2 pi) E [GM1Xn = k. Xns1 = 1] (191)
- PAE[T,] DAE [T,
N (1—m)dp
PAE[Ty]
< V51 Zlep]fE [§n|Xn = 1’AX71+1 = 1] + Zzozz Tk (Z‘lx;kpz)E[éanXn = k,Xn+1 = 1]
AE([T,] AE [T,,]
+ —(1/1;[7;1)]¢ (192)
=U (193)

the strict inequality in (192) is from (120) of Lemma 2. Therefore we have Uy < U, w.p.1if ¢ > U*.

By summarizing Cases 1, 2 and 3, the threshold-based strategy \I’;f satisfies Property 2 if and
only if ¢ < U™.
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J PROOF OF COROLLARY 3

The UNIFORM strategy satisfies both Property 1 and Property 2 by Theorem 2, therefore Corollary
1 can be applied. So we have :

U=U"wp.l (194)

Then we select such sample paths where U = U* is satisfied. For every sample path of this set, we
assume that Ye > 0, 35 > 0 such that:

I(t)
lim — Z LU <U*—¢) = (195)

Definesets H, (t) = {i: U; <U" —¢,i<I(t),i€ Z*'}andH} (1) ={i: U; > U* —¢€,i <I(t),i € Z*"},
then we have:

U = lim Z{(:tl) Ui

IRESING!

= lim Z - Z IUi (196)
BT oM etz 1)

~ lim Z |Ho ()| Ui + lim Z |HI ()] U (197)

T 5% — —00 +
P L I(t) [He@®| ¢ T I1(t) [HE@)|
. |He ()| U"—€e |HI ()| U*

= lim Z < — + lim Z < — (198)
toe I(t) |He )] i ST I(t) |HE@)|

—S(U —€e)+(1-8)U" (199)

- de€
<U" (200)

The reason of Equation (196) is by grouping all U; into two sets according to if U; < U* — € or not.
By replacing all U; by U* — € in the group of H} (t) where U; < U* — € and replacing all U; by U*
in the group of H} (t) where U; < U™, we get (198) from (197). We get (199) from (198) based on
our assumption in (195).

However, (200) contradicts the way we selected the sample path. Therefore, for this set of sample
paths, we have Ve > 0:

1(t)
1 |
lim — "1 (Ui <U" - €) =0 (201)

Therefore we have our conclusions for all the possible sample paths:
1(t)

lim (t)Z]l(U U*) =1, w.p.1 (202)

t—oo |

K PROOF OF COROLLARY 4

We use the Pollaczek-Khinchine formula in the analysis of M/G/1 queue in [5] to conduct this
analysis. The average unfinished work in number of bits in the system by time ¢, which is defined
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as v (t), can be formulated as:

Si
2ieZ Ri=1,i<I(t) (SiW" + 35 (7))

v(t) = (203)

The corresponding terms are as shown in Figure 3. S; is the reactive work of actual request i, and
W; is the waiting time of the reactive part of request i before it starts to be transmitted. Define
v = lim;_, v (t) and take the limit of ¢t — oo of (203):

ZieZ*:R,—zl,iSI(t) (Simfi + %Si (%))

=l 204
v= i : (204)
S iezrmt i< SiWi S ezt Rt i<l S2
- 1lim i€Z™:R;=1,i<I(t) i "Vi + lim i€Z™:R;=1,i<I(t)°j (205)
t—o0 t t—o0 Ztu

Consider the term };c7+.p,=1,; <1(r) SiWi in Equation (205), we have:

Z SiW;

i€Z*:R;=1,i<I(t)

= > SiW; + D SiW; (206)
i€Z*:R;=1,5;>S*,i<I(t) i€Z*:R;=1,5;=S*,i<I(t)

Definesets Hg+ (t) = {i € Z" : R; = 1,S; = S*,i < I(t)}and HL. (1) = {i € Z" : R; = 1,S; > §",i < I ()},
then divide both sides with I (¢) :

DiczrRi=i<I(t) SiWi

I(t)
_ ety (0 SiVi , Zicts (0 SiWi (207)
I(t) I(t)
HE. (1) | Zienz o SiWi |Hg (1) | Zicng.r) SiWi
_ g .\ (208)
1) HL ()] 16 |Hs (0]

Take limit of t — co on both sides and we can get:

DiczrRi=1,i<i(t) SiWi

y
P 1(0)
HE, (1) Zienz, 1) SiWi Ho ()| Sicte ) SiWi
= Jim s O e + lim s W] Zichs o1 (209)
t—eo (1) |Hg. (1) | t—eo (1) |Hs- (£) |
I(t) S o SiW I(t) , W
1 ieHL, () OitVi 1 icH (1) SiWi
=lim— Y 1(5;>8)——=——— +1lim — » 1(S;=8)"—=-_ (210
1500 I (1) Z‘ ' |HE (1) ] 1500 I (1) ; ! |Hg- (1) |
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Because the network scenario we are considering is Aps < p, so all the W; are bounded w.p.1. By
Corollary 3 we have:

Diez+R;=1,i<I(t) SiWi

y
o 1(t)
Lieny, (n SiWi SicHo (1) SiWi
= limo- > lim 1. 2O (211)
t—o0 |HS* (t) | t—o0 |Hs* (t) |
DicHg (1) Wi
= (8" lim ——=———, w.p.1 212
R -
YicHg (1) Wi
=(8") lim ——2—~ — wp.1 213
(57) lim aq WP (213)

Because of Corollary 3, we have (211), and we have lim;_, @ =lim; |H5—t(t)| w.p.1 for (213).
The reason for (212) is by the definition of Hs- (t) so we can replace all S; with $*. Define w =

ZieZ+:Ri=l,i§I(t) Wi

0] and we have:

limt_m

n . DieztRi=ti<i(ty Wi
w = lim
t—co0 A(t)
> i eHon (1) Wi
= Jim 2O T o (214)
t—oo A(t)

So (205) can be transformed as follow:

2iez+Ri=1,i<I(t) SiWi A(t) Yiezr Rzt i<i(t) St A(t)

v= th_)n;) A0 . + tli)ngo A0 2t w.p.1 (215)
S*)?A
= () wap+ Z)u P i (216)

Because of the important property of a Poisson process, namely the Poisson-Arrivals-See-Time-
Averages (PASTA)[5], we have % = w, w.p.1 as the expected waiting time, and we have:

N o
2p (= (S*) Ap)”

w.p.1 (217)

And for mean delay we have:

— (S’ 2p s*
D= + —,w.p.l 218
=i T 219
As—p

The following calculations can be done by replacing S* with Ap)-

L PROOF OF COROLLARY 5
Following Equation (218) and Corollary 3, the delay for UNIFORM strategy is:

D S"p e p.1 (219)
= —+ —, w.p.
T p(u-5p)  p

With the EDF strategy V3, we need to consider Equation (205). According to the design of the
EDF strategy, the actual requests in the same busy period have the following relation. If an actual
request i is proactively served, no matter partially or fully, the corresponding waiting time satisfies

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 2. Publication date: March 2019.



Proactive Caching for Low Access-Delay Services under Uncertain Predictions 2:45

W; = 0 because all the previous potential requests have either been realized or have been fully
proactively served. So we have the following results:

Si=s=>W; 20,8, <s=>W,;=0,VieZ* (220)
So by reorganizing Equation (205):

2
2iez+Ri=1,i<I(t) SiWi . 2z R=1,i<I(t) S
m

v = lim i
t—o0 t t—o0 Ztu
. DieztiRi=1,8;=s,i<I(t) SiWi
= lim
t—o0 t

. ZieztRi=1,5;<s,i<i(t) SiWi
m

+ tl ;
1
+ lim o Si? (221)
DR e R i<t
1
= lim — Z S;W; (222)
® i€Z*:R;=1,S;=s,i<I(t)
1
+ lim — Z S;W; (223)
- i€Z*:R;=1,S;<s,i<I(t)
1
+ lim — ¥ 224
tl—>n;lo Zyt Z L ( )

i€Z+ZRi=1,iSI(t)

Equation (221) is by splitting the S;W; terms into two groups according to whether S; < s or not.
Then in (222), we use s to replace all the S; wherei € {i : R; = 1,S5; =s,i =1,...,I(t)} because of
(220). Also because of (220) we have W; = 0,Vi € {i: R; =1,5; <s,i=1,...,I1(t)}. So it would
not affect the results if we replace all S; with s in this group in (223). Combine the terms in (222)
and (223) and we have:

1
v = lim > > Wil+lm— 3¢ (225)

t—oo | t—oo 21t
ieZ+Ri=1,i<I(t) HY ez Rimni<i)

A1) (Ziez+:R,-:1,isI(t)Wi) iA(t) Zi€Z+:Ri=1,iSI(t) Sl?

=1 li 226
vl A Ry A (226)
)L P
= Apswg + —pS%, w.p.1 (227)
2p

. YieztRy=1isin) Wi . . .
where wg = lim; o, =2 R;‘(t;g(’) - is the limiting average of waiting time for each actual request

under the EDF strategy, and Sg is the reactive work of requests under the EDF strategy.
Also due to PASTA, we have:

)Lpg

=——F _wpl 228
BT 2p (= ps) P (228)
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Notice here, s is the original object size without any proactive work. We have Sz > $* due to

— 2
Theorem 4 and Corollary 1, then S2 > (SE) > §*2_ so we have:

_ ApS2 Ss

Dg = —2p £ + S—E,
2(p? — pAps)  p

APS*Z S*

Y I T
2(p? — pApS*)  p

- Dy (229)

w.p.1

w.p.1

where equality holds if and only if p = 0.
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