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Abstract. The game of plates and olives was originally formulated by Nicolaescu and
encodes the evolution of the topology of the sublevel sets of Morse functions. We consider
a random variant of this game. The process starts with an empty table. There are four
different types of moves: (1) add a new plate to the table, (2) combine two plates and
their olives onto one plate, removing the second plate from the table, (3) add an olive to
a plate, and (4) remove an olive from a plate. We show that with high probability the
number of olives is linear as the total number of moves goes to infinity. Furthermore, we
prove that the number of olives is concentrated around its expectation.

1. Introduction

The game of plates and olives is a purely combinatorial process that has an interesting
application to topology and Morse theory. Morse theory involves the study of topological
manifolds by considering the smooth functions on the manifolds. An excellent Morse
function on the 2-sphere is a smooth function from S2 → R such that all the critical points
are non-degenerate (i.e. the matrix of second partial derivatives is non-singular) and take
distinct values.

If f is an excellent Morse function on the sphere, S2, with critical points x1, . . . , xm

with f(x1) < · · · < f(xm), a slicing of f is an increasing sequence a0, . . . , am such that
a0 < f(x1) < a1 < f(x2) < · · · < am−1 < f(xm) < am. Then two excellent Morse
functions f and g, with the same number of critical points, are said to be topologically
equivalent if for any slicing a0, . . . , am of f and b0, . . . , bm of g, there is an orientation-
preserving diffeomorphism (i.e. an isomorphism of smooth manifolds) between the sublevel
sets {x ∈ S2 | f(x) ≤ ai} and {x ∈ S2 | g(x) ≤ bi} for each 0 ≤ i ≤ m.

Loosely speaking, two excellent Morse functions are topologically equivalent if when
their critical values are ordered as mentioned above, both functions have the same types
of critical points (in terms of being local minima, maxima, or saddle points), appearing in
the same order, and in a rough sense the same location relative to other critical values,
which is necessary for the sublevel sets described above to diffeomorphic.

Morse functions on the sphere have exactly 2n+ 2 critical points, n of which are saddle
points. It was shown in [7] that the sublevel sets {f(x) ≤ a} are topologically equivalent
to either all of S2, or a finite (possibly empty) disjoint union of disks, each with at most a
finite number of punctures (i.e. isolated “missing” points). As the value a crosses a critical
point, one of the following four things will take place:

(1) a new disk may appear,
(2) two such disks may merge (preserving the punctures in both disks),
(3) a new puncture may appear, or
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(4) a puncture may disappear.

Given a slicing a0, . . . , am of the excellent Morse function f , we have that the first sublevel
set, {f(x) ≤ a0} = ∅, and the second, {f(x) ≤ a1} is a disk. The second to last sublevel
set, {f(x) ≤ am−1} is also a disk, and the last sublevel set, {f(x) ≤ am}, is the entire
sphere, and this is the only sublevel set that is topologically equivalent to the sphere.

The game of plates and olives was originally formulated by Nicolaescu in [7] and encodes
the evolution of the topology of the sublevel sets in a purely combinatorial process in which
plates play the role of disks and olives represent punctures in the disks. The moves in the
game of plates and olives are designed to resemble exactly the possible transformations
that happen when a crosses a critical point:

(1) add a plate,
(2) combine two plates while keeping all the olives,
(3) add an olive to a plate, or
(4) remove an olive from a plate.

The game of plates and olives begins at an empty table and ends the first time we return
to an empty table, signifying that the level sets of a Morse function start with the empty
set and end with the entire sphere.

Let T 2
n denote the number of excellent Morse functions on the 2-sphere with n saddle

points, up to topological equivalence. A lower bound for T 2
n was given by Nicolaescu in [7]

by studying walks on Young’s lattice. An upper bound on T 2
n was given by Carroll and

Galvin in [1] from studying the game of plates and olives directly. The bounds of these
two papers give

(2/e)n+o(n)nn ≤ T 2
n ≤ (4/e)n+o(n)nn.

Here we will study a random variant of the game of plates and olives.

The Model

The process starts with an empty table. There are four different types of moves that
can happen in the process. The four moves are as follows:

(P+) Add a plate; from every configuration we can add one empty plate to the table.
(P−) Combine two plates; assuming there are at least two plates, we can choose two of

them (order does not matter), combine their olives onto one plate, and remove the
other plate from the table.

(O+) Add an olive to a plate; we can choose any plate and add one olive to it.
(O−) Remove an olive from a plate; we can choose any non-empty plate and remove one

olive from it.

We will describe the P+ and P− moves as plate moves, while the O+ and O− moves will
be known as olive moves.

In our model, the plates are distinguishable, but the olives are not. At each time step
in the process, one of the available moves will be chosen to be performed uniformly at
random. It is worth noting that for the purposes of a P− move, the order in which we
choose the two plates does not matter, and does not give us two different P− moves. To
make this rigorous, we will assume that whenever a P− move is made, the plate with less
olives on it is removed, and if the two plates have the same number, the plate that was
added to the table in an earlier time step is kept.
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In addition to the random aspect, our model differs from the game of plates and olives
only in that in our model, the plates are distinguishable, and we do not allow for the
process to return to an empty table.

Our main result shows that the number of olives grows linearly with the number of steps
in the process, and that the number of olives is concentrated. When we refer to an event
occurring with high probability (w.h.p. for short), we mean that the probability of that
event goes to 1 as the total number of moves, t, goes to infinity.

Theorem 1.1. Let Ot be the total number of olives on the table in the preceding model at
time t.

(a) There exist absolute constants C > 0 and 1
13680

≤ c1 ≤ c2 ≤ 2
3
such that

Pr(c1t ≤ Ot ≤ c2t) ≥ 1− e−Ct. (1)

(b) Furthermore, there exists an absolute constant A > 0 such that for every δ ≥ 0 we have

Pr(|Ot − E(Ot)| ≥ δt) ≤ e−Aδ2t (2)

(c) Also, w.h.p. no plate, except for the first plate, has more than B log t olives at any
time, for some absolute constant B > 0.

We prove in Section 2 that
t

13680
≤ E(Ot) ≤

2t

3
. (3)

Next in Section 3 we derive the concentration result (2), which altogether will imply (1).
In Section 4 we consider an auxiliary Markov chain process. It follows from our proofs that
constants 1/13680 and 2/3 are not optimal. As a matter of fact a computer simulation
suggests that the number of olives Ot is concentrated around ct, where c ≈ 0.096.

2. Bounds on the expected number of olives

2.1. Lower bound. We would like to show that the number of olives at a given time
grows linearly with time t. Towards this, we will establish two facts:

• we expect to return to a single plate a linear number of times, and
• each time we return to a single plate, we expect to gain a positive number of olives.

This will give us a linear expectation.
When keeping track of the plates at any given time, our main concern is the number of

olives on each plate. Due to this, in each state, we will consider the plates ordered based on
how many olives the plate has on it. The first plate, or plate 1, will be the plate with the
most olives, the second plate will be the plate with the next highest number of olives, and
so forth. Ties between the sizes of plates can be broken arbitrarily without affecting our
arguments. The most important plate to keep track of is plate 1, and while technically the
plate that is labeled plate 1 can change, we will see that in practice this will not happen
once enough time has passed in the process.

Now let us show that we expect to return to a single plate a linear number of times. If
we have ℓ ≥ 1 plates, then the probability we do a plate move is at least(

ℓ
2

)
+ 1

2ℓ+
(
ℓ
2

)
+ 1

≥ 1/3.
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Let tplate be the random variable that counts the number of plate moves we have after t
moves overall. Then

E(tplate) ≥
t∑

i=1

1/3 = t/3. (4)

Let X be the random variable which counts the number of times we transition from a state
with two plates to one plate. We will consider only plate moves to get a lower bound on
the random variable X.

We consider a related Markov chain. In this process, we will consider a random walk on
the positive integers. We will start this walk at 1 (plate). If we are currently at 1, then
we will move to 2 with probability 1. If we are currently at 2, we will move to 1 with
probability 1/2 and to 3 with probability 1/2. If we are at k ≥ 3, we will move to k − 1
with probability 3/4 and to k+1 with probability 1/4. This Markov chain will be indexed
by time tplate as it only models plate moves.
Observe that in our model, for ℓ ≥ 3,

Pr(P−|there are ℓ plates currently and we perform a plate move) =

(
ℓ
2

)(
ℓ
2

)
+ 1

≥ 3/4, (5)

and

Pr(P+|there are ℓ plates currently and we perform a plate move) =
1(

ℓ
2

)
+ 1

≤ 1/4.

Thus the Markov chain gives an underestimate for how often we transition from two plates
to one plate. We present the following result about this Markov chain that will be proved
in Section 4.

Theorem 2.1. Consider a random walk on the positive integers: If we are currently at 1,
then we will move to 2 with probability 1. If we are currently at 2, we will move to 1 with
probability 1/2 and to 3 with probability 1/2. If we are at k ≥ 3, we will move to k − 1
with probability 3/4 and to k + 1 with probability 1/4.

Let N1,1(t) be the random variable that counts the number of times we return to state 1
when we start the walk at state 1. Then w.h.p. we have that N1,1(t) ≥ t/19.

While it will not be used until the next section, it is convenient to define here the random
variable F1,1(t), which is the number of times the Markov chain described in Theorem 2.1
returns to 1 in the first t movies, given that the Markov chain started at 1. In section 4
(see equation (14)), we will show that

F1,1(t) =

⌊ t
2
⌋∑

j=1

4

(
3

16

)j−1(
2j − 3

j − 1

)
.

We will apply Theorem 2.1 with t replaced by tplate since the related Markov chain
only tracks plate moves. This gives us that E(N1,1(tplate)) ≥ E(tplate)/19. Note that
E(N1,1(tplate)) ≤ E(X), so

E(X) ≥ E(tplate)/19 ≥ t/57.

Now we explore what happens each time we have exactly two plates left on the table. We
will show that we expect to increase the number of olives on the first plate by combining
the first two plates via a plate move within the next three moves.
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Consider a state in the process that currently has two plates. If both plates currently
have olives on them, then there is a 1/6 probability of immediately combining the plates,
increasing the number of olives on the first plate. If the first plate has olives but the second
is empty, then there is a 1/5 probability of adding an olive to the second plate, and then
a 1/6 probability of combining the two plates on the next move, giving a 1/30 probability
of adding an olive to the first plate within two moves. Finally, if both plates happen to be
empty, then there is a 2/4 probability of adding an olive to one of the two plates on the
next move, then a 1/5 probability of adding an olive to the second plate on the next move,
and then a 1/6 probability of then combining the two plates, adding one olive to the first
plate, giving a probability of at least 1/60 to add an olive to the first plate via a plate
move in the next three moves. Thus, if we are currently in a state with exactly two plates,
we always have at least a 1/60 chance of adding an olive to the first plate via a plate move
within the next three moves.

Let Y be a random variable that counts the number of times we add at least one olive
to the first plate from a plate move when there are only two plates on the table. To
underestimate the expectation of Y , we will consider X/4 random experiments, every third
time we are in a state with exactly two plates we will ask if within the next three moves
we add an olive to the first plate through a plate move. This happens with probability at
least 1/60, so

E(Y ) ≥ E(X/4)/60 = E(X)/240.

Now we put everything together. We will only consider olives on the first plate. Let

O
(1)
t denote the maximum number of olives on any plate at time t. Let O

(1)+
t and O

(1)−
t

denote the total number of olives that were added to (respectively subtracted from) the

largest plate from O+ (respectively O−) moves. Note that E(O
(1)+
t −O

(1)−
t ) ≥ 0 since the

probability of performing an O+ move is always at least the probability of performing an
O− move. Finally, let Oplate

t denote the total number of olives added to the first plate from
plate moves. Then Oplate

t ≥ Y . This gives us that

E(Ot) ≥ E(O
(1)
t ) = E(O

(1)+
t −O

(1)−
t +Oplate

t ) ≥ E(Y ) ≥ E(X)/240 ≥ t/13680. (6)

2.2. Upper bound. Now we bound the expected value of Ot from above. Let O+
t and

O−
t be the random variables that count the number of O+ moves and the number of O−

moves after t total moves, respectively. Clearly,

Ot = O+
t −O−

t = t− tplate − 2O−
t ≤ t− tplate.

Thus, by (4) we conclude that

E(Ot) ≤ t− E(tplate) ≤ 2t/3.

And this proves (3).

3. Concentration

Suppose that we transition from a state with two plates to a state with a unique plate
at times t1, t2, . . . , tm and recall that Ot denotes the number of olives at time t. Define
t0 := 1. Let Xi = Oti+1

− Oti . Then the Xi are independent random variables and based
on the previous section we have E(Xi) ≥ 1/13680. Then Sm := Otm =

∑m
i=0Xi. We can

argue for concentration of Sm as follows.
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Note that from (4) E(tplate) ≥ t/3, and by the Chernoff bound (see, e.g., equation 21.24
in [2]) we have for any 0 ≤ δ ≤ 1,

Pr(tplate < (1− δ)t/3) ≤ e
−δ2t

6 .

As we are not trying to optimize the constant A, we can be imprecise here and choose
δ = 1/4, giving

Pr(tplate < t/4) ≤ e−
t
96 . (7)

If tplate ≥ t/4, then the probability that we start at a state with a single plate, add plates,
and then return to a state with a single plate before t moves is at least F1,1(t/4), which is
the probability that our related Markov chain, defined in Section 2 and studied in Section 4,
returns to 1 at least once in the first t/4 moves, assuming it started at 1. Clearly,

Pr(Xi ≥ k) ≤ Pr(ti+1 − ti ≥ k)

and also

Pr(ti+1−ti < k) ≥ F1,1(k/4)−Pr(less than k/4 plate moves happen in the first k moves).

Thus, if k′ = k/4, then by (14) we get that

Pr(Xi ≥ k) ≤ 1− F1,1(k
′) + e−

k
96 =

∞∑
j=⌊ k′

2
⌋

4

(
3

16

)j−1(
2j − 3

j − 1

)
+ e−

k
96

≤ 4
∞∑

j=⌊ k′
2
⌋

(
3

4

)j−1

+ e−
k
96 ≤ C ′ζk

′
+ e−

k
96 ≤ Cρk, (8)

where ζ = 31/2/2 < 1, ρ = max{ζ1/4, e−1/96} and C,C ′ > 0 are constants. Let µi = E(Xi)
and µ = µ1 + · · ·+ µm. Note that we have

µi ≤
∞∑
k=1

kCρk =
Cρ

(ρ− 1)2
< ∞. (9)

Now we can easily prove a concentration result for this situation. We modify an argument
from [3]. We prove

Pr(|Sm − µ| ≥ δm) ≤ e−Aδ2m (10)

for some constant A > 0. That means we have replaced (6) by a concentration inequality.
We write, for λ > 0 such that eλ < 1/ρ,

E(X2
i e

λXi) =
∞∑
k=0

k2eλkPr(Xi = k) ≤ C

∞∑
k=0

k2(ρeλ)k ≤ 3C

(1− ρeλ)3
.

Now ex ≤ 1 + x+ x2ex for x ≥ 0, and so, using the above, we have

E(eλXi) ≤ 1 + λµi + λ2

(
3C

(1− ρeλ)3

)
< 1 + λµi + λ2

(
1 +

3C

(1− ρeλ)3

)
.
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Since Pr(Sm ≥ µim+ δm) = Pr(eλSm ≥ eλ(µim+δm)) and Xis are independent, the Markov
bound implies that

Pr(Sm ≥ µim+ δm) ≤ e−λ(µim+δm)

m∏
i=1

E(eλXi)

≤ exp {−λ(µim+ δm)} ·
(
1 + λµi + λ2

(
1 +

3C

(1− ρeλ)3

))m

≤ exp {−λ(µim+ δm)} · exp
{(

λµi + λ2

(
1 +

3C

(1− ρeλ)3

))
m

}
= exp

{
−λδm+ λ2

(
1 +

3C

(1− ρeλ)3

)
m

}
≤ exp

{
−λδm+ λ2(1 + 3Cε−3)m

}
,

where ε = ε(δ) > 0 is a constant such that

eλ ≤ (1− ε)/ρ. (11)

Now choose λ = δ/(2(1 + 3Cε−3)) and ε such that (11) holds. Such a choice of ε is always
possible since as ε → 0, exp {δ/(2(1 + 3Cε−3))} → 1 and (1− ε)/ρ → 1/ρ > 1. Then

Pr (Sm ≥ µ+ δm) ≤ max
1≤i≤m

Pr (Sm ≥ µim+ δm)) ≤ exp

{
− δ2m

4(1 + 3ε−3)

}
.

To bound Pr(Sm ≤ µ− δm), we proceed similarly. We have e−x ≤ 1− x+ x2ex, so

E(e−λXi) ≤ 1− λµi + λ2

(
3C

(1− ρeλ)3

)
< 1− λµi + λ2

(
1 +

3C

(1− ρeλ)3

)
and

Pr(Sm ≤ µim− δm) ≤ eλ(µim−δm)

m∏
i=1

E(e−λXi)

≤ exp {λ(µim− δm)} ·
(
1− λµi + λ2

(
1 +

3C

(1− ρeλ)3

))m

≤ exp {λ(µim− δm)} · exp
{(

−λµi + λ2

(
1 +

3C

(1− ρeλ)3

))
m

}
≤ exp

{
−λδm+ λ2(1 + 3Cε−3)m

}
,

and we can proceed as before. This completes the proof of (10).
For (10) to be useful, we need to show that w.h.p. m is linear in t. We condition on

performing a plate move. Let the random variables τi for 1 ≤ i < ∞ count how many
times we have exactly i plates after t steps, where we only count when the number of
plates change. So, if we are at e.g. two plates and we make three olive moves before the
next plate move, we only count this as having two plates once. Then tplate =

∑∞
i=1 τi and

τ1 = m. Note that we can express τ1 as a sum of τ2 indicator random variables that denotes
if on the jth time we are at two plates, we then transition to one plate. Note that the
probability of such a transition is 1/2 (when we have exactly two plates, there is one way
to remove a plate and one way to add a plate, giving equal probability of moving to 1 plate
vs. 3 plates) and so E(τ1) = τ2/2.
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We will consider two cases based on the value of τ2. If τ2 ≥ 3tplate/19, we have from
equation (7) and the Chernoff bound,

Pr(τ1 ≤ t/76 = (1/3)(1/4)(3/19)t) ≤ Pr(τ1 < τ2/3) +Pr(tplate < t/4)

≤ e−τ2/18 + e−t/96 ≤ e−tplate/114 + e−t/96 ≤ e−t/456 + e−t/96.

Now, if τ2 < 3tplate/19 and τ1 < tplate/19, then τ≥3 :=
∑∞

i=3 τi ≥ 15tplate/19. Now, let
L≥3 be the random variable that counts how many times we have at least three plates
and we remove a plate. Due to (5) we have at least a 3/4 probability of removing a plate
whenever we make a plate move, so by the Chernoff bound, we have

Pr(L≥3 ≤ 3τ≥3/5) ≤ e−3τ≥3/200 ≤ e−9tplate/950 ≤ e−9t/3800 + e−t/96.

Thus w.h.p. when we have at least three plates, we remove plates at least 3/5 of the time
and add them at most 2/5 of the time. This implies that we must transition from two
plates to three plates at least τ≥3/5 times to make up for the discrepancy. This implies
trivially that τ2 ≥ τ≥3/5 ≥ 3tplate/19 > τ2, a contradiction. Thus, there exists an absolute
constant D > 0 such that

m = τ1 ≥
t

76
with probability at least 1− e−Dt. (12)

Now observe that (8) also implies that for k = logρ(1/Ct2) = B log t (for some constant
B > 0) we have

Pr(ti+1 − ti ≥ k) ≤ Cρk = 1/t2

and so

Pr

( ⋃
1≤i≤m

(ti+1 − ti ≥ k)

)
≤ t · 1

t2
= o(1). (13)

Note that between time ti and ti+1 the number of olives at any plate different from the
first one is at most ti+1 − ti and so (13) implies that w.h.p. no plate, except for the first
plate has more than B log t olives at any time. Part (c) of Theorem 1.1 follows directly
from (13).

Now let T = Ot − Otm = Ot − Sm. Then, by (8) we have Pr(T ≥ k) ≤ Cρk and the
triangle inequality implies

|Ot − E(Ot)| = |T + Sm − E(Ot)| ≤ |Sm − µ|+ |T + µ− E(Ot)| = |Sm − µ|+ |T − E(T )|.

Thus,

Pr(|Ot − E(Ot)| ≥ δt) ≤ Pr(|Sm − µ| ≥ δt/2) +Pr(|T − E(T )| ≥ δt/2).

Furthermore, since T ≥ 0 and E(T ) = O(1) (cf. (9)) we get that Pr(|T −E(T )| ≥ δt/2) ≤
Pr(T ≥ δt/2). Hence,

Pr(|Ot − E(Ot)| ≥ δt) ≤ Pr(|Sm − µ| ≥ δt/2) +Pr(T ≥ δt/2)

≤ Pr(|Sm − µ| ≥ δm/2) +Pr(T ≥ δm/2)

≤ e−Aδ2m/4 + Cρδm/2.

This together with (12) proves Theorem 1.1(b) and this completes the proof of Theorem 1.1.
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4. Proof of Theorem 2.1

For ease of reading, we restate Theorem 2.1 here.

Theorem 2.1. Consider a random walk on the positive integers: If we are currently at 1,
then we will move to 2 with probability 1. If we are currently at 2, we will move to 1 with
probability 1/2 and to 3 with probability 1/2. If we are at k ≥ 3, we will move to k − 1
with probability 3/4 and to k + 1 with probability 1/4.

Let N1,1(t) be the random variable that counts the number of times we return to state 1
when we start the walk at state 1. Then w.h.p. we have that N1,1(t) ≥ t/19.

Proof. Notice that we cannot return to 1 in an odd number of steps. Let f1,1(2t) be the
probability that the first time we return to state 1 after 2t steps, given that we start at
state 1 i.e. the probability that the first return time is 2t. Let Xj be the location at time j.
So X0 = X2t = 1, X1 = X2t−1 = 2 and Xj ̸= 1 for each 2 < j < 2t − 2. Furthermore, we
need to control the number of steps at which Xj = 2. Assume that at exactly (i+1) steps
we have that Xj = 2, where 1 ≤ i ≤ t− 1. That means

X1 = X1+2a1 = X1+2a1+2a2 = · · · = X1+2a1+···+2ai = 2,

where 1 + 2a1 + · · ·+ 2ai = 2t− 1 and aj ≥ 1. Hence,

f1,1(2t) = Pr(X2t = 1, X1 ̸= 1, . . . , X2t−1 ̸= 1 | X0 = 1)

=
t−1∑
i=1

∑
a1+···+ai=t−1

i∏
j=1

Caj−1

(
1

2

)i+1(
1

4

)t−i−2(
3

4

)t−1

,

where Ck = 1
k+1

(
2k
k

)
is the Catalan number. Now the Catalan i-fold convolution formula

(see, e.g., [9]) gives that ∑
a1+···+ai=t−1

i∏
j=1

Caj−1 =
i

2t− i− 2

(
2t− i− 2

t− 1

)
.

Thus,

f1,1(2t) =
t−1∑
i=1

i

2t− i− 2

(
2t− i− 2

t− 1

)(
1

2

)i+1(
1

4

)t−i−2(
3

4

)t−1

and equivalently by replacing i by k = t− i− 1 we get

f1,1(2t) = 4

(
3

16

)t−1

·
t−2∑
k=0

(
(t− 1) + k

k

)
(t− 1)− k

(t− 1) + k
2(t−2)−k.

Now we apply the following identity (see, e.g., (1.12) in [6])

n∑
k=0

(
x+ k

k

)
x− k

x+ k
2n−k =

(
x+ n

n

)
with n = t− 2 and x = t− 1 to conclude that

f1,1(2t) = 4

(
3

16

)t−1(
2t− 3

t− 1

)
.
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Consequently, the probability F1,1(t), given X0 = 1, that we return to 1 at some point
in the first t steps is given by

F1,1(t) =

⌊ t
2
⌋∑

j=1

f1,1(2j) =

⌊ t
2
⌋∑

j=1

4

(
3

16

)j−1(
2j − 3

j − 1

)
. (14)

By (5.7) in [4], we can calculate the mean time T 1,1, to return to state 1 after starting at
state 1 by

T 1,1 =
∞∑
t=0

Pr(T1,1 ≥ t) = 1 +
∞∑
t=1

(1− F1,1(t)) = 1 +
∞∑
t=1

∞∑
j=⌊ t

2
⌋+1

4

(
3

16

)j−1(
2j − 3

j − 1

)
.

Now we will evaluate the latter double sum. First observe that
∞∑
t=1

∞∑
j=⌊ t

2
⌋+1

aj = 2
∞∑
j=1

jaj −
∞∑
j=1

aj = 2
∞∑
j=1

(j − 1)aj +
∞∑
j=1

aj

assuming that all ajs are nonnegative. Thus,

T 1,1 = 1 + 8
∞∑
j=1

(j − 1)

(
3

16

)j−1(
2j − 3

j − 1

)
+ 4

∞∑
j=1

(
3

16

)j−1(
2j − 3

j − 1

)

= 1 + 8
∞∑
k=1

k

(
3

16

)k (
2k − 1

k

)
+ 4

∞∑
k=0

(
3

16

)k (
2k − 1

k

)
.

Now we will use the following identities that can be obtained by an application of Newton’s
binomial theorem (see, e.g., (1.30) and (1.3) in [5]):

∞∑
k=1

k

(
2k

k

)(x
4

)k
=

x

2(1− x)3/2
(15)

and
∞∑
k=0

(
2k

k

)(x
4

)k
=

1√
1− x

(16)

for |x| < 1. Applying (15) with x = 3
4
and using

(
2k−1
k

)
= 1

2

(
2k
k

)
for k ≥ 1 yields

8
∞∑
k=1

k

(
3

16

)k (
2k − 1

k

)
= 4

∞∑
k=1

k

(
3

16

)k (
2k

k

)
= 4 · 3/4

2(1− 3/4)3/2
= 12.

Similarly, we apply (16) to get

4
∞∑
k=0

(
3

16

)k (
2k − 1

k

)
= 4 + 2

∞∑
k=1

(
3

16

)k (
2k

k

)
= 4 + 2

(
1√

1− 3/4
− 1

)
= 6.

Consequently,
T 1,1 = 1 + 12 + 6 = 19.

Let N1,1(t) be the number of times that, given starting at state 1, we return to state 1
in the first t moves. By (5.8) in [4], we have that w.h.p.

lim
t→∞

N1,1(t)/t = 1/T 1,1 = 1/19.
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□

5. Differences between our model and the original game of plates and
olives

Aside from the fact that moves are chosen randomly in our model, the two ways in which
our model differs from the original game of plates and olives discussed in [7] and [1] involve
the distinguishability of plates and the possibility of returning to an empty table. This
section briefly explores these adaptations.

First, we choose to distinguish plates in our model in order to reduce the parameters that
need to be tracked to understand the process. If plates are not distinguishable, then the
number of plate moves at any given time does not depend on how many plates are on the
table, but instead depends on how many different numbers there are such that there exists
a plate with that many olives on it, and also how many of those numbers have at least two
plates with that many olives on it. Furthermore, when the plates are indistinguishable,
performing a plate move may not actually change the total number of plate moves possible,
so a much more careful analysis is required.

In addition to the distinguishability of plates, our model also does not allow for the
return to an empty table. In this case, we do not lose much since as we can see, the
number of olives grows off to infinity, so we do not expect to get to a state where we could
return to an empty table even if it was allowed. A question originally posed by Nicolaescu
in [8] asks about if when the game of plates and olives is played randomly it would return
to an empty table in finite time. Considering that in our model the number of olives tends
towards infinity, it is the belief of the authors that if our work was adapted to allow for
indistinguishable plates, it would answer the question of Nicolaescu in the negative. To see
this more easily though, one needs only notice that the total number of olives on the table
at a given time can be modeled by a random walk on the non-negative integers similarly
to how we model the plate moves in this paper. The expected time for this random walk
to return to 0 is bounded below by the expected time for a symmetric random walk on the
integers to return to 0 since in any state there are always at least as many ways to add an
olive as there are to remove one. Symmetric random walks on the integers are well-known
to take infinite time to return to 0 in expectation, and so one does not expect the game of
plates and olives to end in finite time when played randomly.

Acknowledgment We are grateful to all referees for their detailed comments on an
earlier version of this paper.
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