
A note on log-concave random graphs

Alan Frieze∗and Tomasz Tkocz
Department of Mathematical Sciences,

Carnegie Mellon University,
Pittsburgh PA15213,

U.S.A.

Submitted: June 21, 2018; Accepted: April 23, 2019; Published: TBD

c⃝The author. Released under the CC BY-ND license (International 4.0).

Abstract

We establish sharp threshold for the connectivity of certain random graphs whose
(dependent) edges are determined by uniform distributions on generalized Orlicz
balls, crucially using their negative correlation properties. We also show existence
of a unique giant component for such random graphs.

Mathematics Subject Classifications: 05C80

1 Introduction

Probabilistic combinatorics is today a thriving field bridging the classical area of probabil-
ity with modern developments in combinatorics. The theory of random graphs, pioneered
by Erdős-Rényi [2], [3] has given us numerous insights, surprises and techniques and has
been used to count, to establish structural properties and to analyze algorithms. There
are by now several texts [1], [6], [4] that deal exclusively with the subject. The most
heavily studied models being Gn,m and Gn,p. Both have vertex set [n] and in the first we
choose m random edges and in the second we include each possible edge independently
with probability p.

Let X be a random vector in [0,∞)(
n
2) with a log-concave down-monotone density f , that

is (i) log f is concave and (ii) f(x) ⩾ f(y) if x ⩽ y (coordinate-wise). For 0 < p < 1,
let GX,p be a random graph with vertices 1, . . . , n and edges determined by X: for 1 ⩽
i < j ⩽ n, {i, j} is an edge if and only if X{i,j} ⩽ p. Such log-concave random graphs
were introduced by Frieze, Vempala and Vera in [5]. For instance, when X is uniform on

[0, 1](
n
2), GX,p is the random graph Gn,p.
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The paper [5], among other things, studied the connectivity of GX,p and found a loga-
rithmic gap for the threshold. There is no gap when GX,p is defined by uniform sampling
from a “well-behaved” regular simplex1 and we extend this case to Generalized Orlicz
Balls GOBs: that is sets of the form {x ∈ Rd :

∑d
i=1 fi(|xi|) ⩽ 1} for some nondecreasing

lower semicontinuous convex functions f1, . . . , fd : [0,∞) → [0,∞] with fi(0) = 0, which
are not identically 0 or +∞ on (0,∞) (such functions are sometimes called Orlicz func-
tions). Note that we allow fi to take the value +∞; for instance, the cube [0, 1]d is a
GOB with

f1(t) = . . . = fd(t) =

{
0, t ∈ [0, 1].

+∞, t ∈ (1,∞).

The key property of Orlicz balls is negative correlation. We say that a random vector X
in Rd has negatively correlated coordinates if for any disjoint subsets I, J of {1, . . . , d}
and nonnegative numbers si, tj, we have

P(∀i ∈ I |Xi| > si,∀j ∈ J |Xj| > tj) ⩽ P(∀i ∈ I |Xi| > si)P(∀j ∈ J |Xj| > tj).

It was shown in [8] that this property holds for random vectors uniformly distributed on
GOBs (see also [9] for a first such result treating two coordinates and [10] for a simpler
proof of the general result).
Notation: Throughout the paper we will let σmin and σmax be defined by

σ2
min = min

1⩽i<j⩽n
EX2

i,j and σ2
max = max

1⩽i<j⩽n
EX2

i,j.

Our result concerning connectivity is the following theorem.

Theorem 1. Let X = (Xi,j)1⩽i<j⩽n be a log-concave random vector in [0,∞)(
n
2) with a

down-monotone density and negatively correlated coordinates.

(a) For every δ ∈ (0, 1), there are constants c1 and c2 dependent only on δ such that for
p < c1σmin

logn
n

, we have

P(GX,p has isolated vertices) > 1 − c2n
−δ.

(b) For every δ ∈ (0, 1), there are constants C1 and C2 dependent only on δ such that for
p > C1σmax

logn
n

, we have

P(GX,p is connected ) > 1 − C2n
−δ.

We will also discuss the existence of a giant component for smaller values of p.
Notation: Let

M = max
T

sup
y∈[0,∞)|T |

max
(i,j)/∈T

E(X2
i,j|XT = y), (1)

where the first maximum is over all nonempty subsets T of the index set {(i, j), 1 ⩽ i <
j ⩽ n} and we denote XT = (Xi,j)(i,j)∈T .

1A regular simplex
{
x ∈ Rd : a · x ⩽ 1

}
for some a ⩾ 0 if ai/aj ⩽ K for some not too large K.
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Theorem 2. Let X = (Xi,j)1⩽i<j⩽n be a log-concave random vector in [0,∞)(
n
2) with a

down-monotone density. Assume that M = O(1). There are constants c1 and c2 such
that for every β > 1, we have

(i) If p < c1σmin

n
, then

P(GX,p has a component of order ⩾ β log n) <
12

nβ−1
.

(ii) If p >
c2M log

(
M

σmin

)
n

, then

P(GX,p has a component of order ∈ [β log n, n/2]) <
1

nβ−1

and

P(GX,p has a unique giant component of order > n/2) > 1 − 5β + (β − 1)−1

log n
.

Note that we have dropped the assumption of negative correlation.

Remark 3. For our theorem on the existence of a giant component we need to have M =

O(1). For instance, for a GOB
{
x ∈ R(n

2) :
∑

1⩽i<j⩽n fi,j(|xi,j|) ⩽ 1
}

, this assumption is

satisfied in a fairly general situation. Let

ai,j = sup {t > 0 : fi,j(t) ⩽ 1} .

Since the fi,j are Orlicz functions, the ai,j’s are finite. Furthermore, M ⩽ maxi,j a
2
i,j and

so maxi,j ai,j = O(1) implies that M = O(1).

2 Preliminaries

We shall use several results from [5], which we now include for convenience. Let X be a

random vector in [0,∞)(
n
2) with a log-concave down-monotone density f . Let G = (V,E)

be a GX,p random graph. Lemma 3.1 and 3.2 from [5] say that there are universal constants
a1, a2, b1, b2 such that for S ⊂ V × V with |S| = s, we have

e−a1ps/σmin ⩽ P(S ∩ E = ∅) ⩽ e−a2ps/σmax , (2)

and (
b1p

σmax

)s

⩽ P(S ∩ E = ∅) ⩽

(
b2p

σmin

)s

, (3)

where both lower bounds require p ⩽ σmin

4
.

Moreover, Lemma 3.5 from [5] asserts that for a nonnegative random variable X with a
nonincreasing log-concave density, for any 0 ⩽ p ⩽

√
EX2,

P(X ⩽ p) ⩽
p√
EX2

. (4)
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Recalling the proof of a part of Theorem 2.1 from [5], for a set S with |S| = k, the
probability that it forms a component of GX,p is by (2) at most e−a2pk(n−k)/σmax and thus

P(GX,p is not connected) ⩽
⌊n/2⌋∑
k=1

(
n

k

)
e−a2pk(n−k)/σmax . (5)

3 Connectivity: Proof of Theorem 1

Proof. Part (b) follows directly from (5). For (a), we adapt the standard second moment
argument used for the Erdös-Rényi model. For 1 ⩽ i ⩽ n, let Yi be equal to 1 if the vertex
i is isolated and 0 otherwise. Let Y = Y1 + . . . + Yn be the number of isolated vertices.
We have,

P(GX,p has isolated vertices) = P(Y > 0) ⩾
(EY )2

EY 2
.

Thus, if we show that EY 2 ⩽ (1 + ε)(EY )2, then P(Y > 0) ⩾ 1 − ε. Clearly,

EY 2 =
∑
k

EY 2
k +

∑
k ̸=l

EYkYl =
∑
k

EYk +
∑
k ̸=l

P(Yk = 1 = Yl) = EY +
∑
k ̸=l

P(Yk = 1 = Yl)

and our goal is to show that

EY ⩽
ε

2
(EY )2 and

∑
k ̸=l

P(Yk = 1 = Yl) ⩽
(

1 +
ε

2

)
(EY )2.

From the negative correlation of coordinates of X as well as an elementary inequality
P(A) ⩽ P(A ∩B) + 1 −P(B), we get

P(Yk = 1 = Yl) = P(∀i ̸= k Xik > p,Xil > p,Xkl > p)

⩽ P(∀i ̸= k Xik > p)P(∀i ̸= k, l Xil > p)

⩽ P(∀i ̸= k Xik > p)
[
P(∀i ̸= l Xil > p) + 1 −P(Xkl > p)

]
= P(Yk = 1)

[
P(Yl = 1) + P(Xkl ⩽ p)

]
.

By (4), P(Xkl ⩽ p) ⩽ p
σmin

(recall that by the Prékopa-Leindler inequality, marginals
of log-concave vectors are log-concave; clearly, marginals of down-monotone densities are
down-monotone). Therefore,∑

k ̸=l

P(Yk = 1 = Yl) ⩽
∑
k ̸=l

P(Yk = 1)P(Yl = 1) +
∑
k ̸=l

P(Yk = 1)
p

σmin

⩽

(∑
k

P(Yk = 1)

)2

+
np

σmin

∑
k

P(Yk = 1)

⩽

(
1 +

np

σminEY

)
(EY )2 <

(
1 +

c1 log n

EY

)
(EY )2,
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so it suffices to take ε such that

ε ⩾
2

EY
and ε ⩾

2c1 log n

EY
.

By (2), P(Yk = 1) ⩾ e−apn/σmin , for some universal constant a (the assumption p < 1
4
σmin

of that lemma is clearly satisfied if p < c1σmin
logn
n

), so

EY =
∑
k

P(Yk = 1) ⩾ ne−apn/σmin > n1−ac1 .

Thus, ε = c2n
ac1−1 log n will suffice.

4 Giant Component: Proof of Theorem 2

Lemma 4. Let X = (Xi,j)1⩽i<j⩽n be a log-concave random vector in [0,∞)(
n
2) with a

down-monotone density. There are universal constants a and b such that for S, T ⊂
{(i, j), 1 ⩽ i < j ⩽ n} and p > 0, we have

P(∀s ∈ S Xs > p,∀t ∈ T Xt ⩽ p) ⩽ e−ap|S|/M
(

bp

σmin

)|T |

.

Proof. Fix disjoint sets S, T ⊂ {(i, j), 1 ⩽ i < j ⩽ n} (if they are not disjoint, the
probability in question is 0) and y ∈ [0,∞)|T |. Let f be the density of (XS, XT ). The
conditional density of the vector XS given XT = y,

fXS |XT
(x|y) =

f(x, y)∫
f(x′, y)dx′

is down-monotone and log-concave. Therefore, by (2),

P(∀s ∈ S Xs > p|XT = y) ⩽ e−ap|S|/M .

We denote the density of XT by fXT
and get

P(∀s ∈ S Xs > p,∀t ∈ T Xt ⩽ p) =

∫
[0,p]|T |

P(∀s ∈ S Xs > p|XT = y)fXT
(y)dy

⩽
∫
[0,p]|T |

e−ap|S|/MfXT
(y)dy

= e−ap|S|/MP(∀t ∈ T Xt ⩽ p)

⩽ e−ap|S|/M
(

bp

σmin

)|T |

,

where the final inequality follows directly from (3).
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With this lemma in hand, we can prove Theorem 2.

Proof. Let Zk be the number of components of order k (that is, on k vertices) in GX,p. As
for the Erdös-Rényi model, looking at a spanning tree for each component and bounding
the corresponding in-out edge probabilities using Lemma 4 yields

EZk ⩽

(
n

k

)
kk−2e−apk(n−k)/M

(
bp

σmin

)k−1

⩽
(en
k

)k
kk−2e−apk(n−k)/M

(
bp

σmin

)k−1

=
σmin

bp

1

k2

[
eb

σmin

pne−
ap
M

(n−k)

]k
.

If p = M
a

c
n
, with c being a constant (chosen soon), this becomes

EZk ⩽
e

A

1

c

n

k2

[
Ace−ceck/n

]k
,

where we put A = eb
a

M
σmin

.

Case 1. If c is a small constant, say c ⩽ 1
eA

(equivalently, p ⩽ σmin

e2b
1
n
), then we bound

e−ceck/n crudely by 1 and get that

EZk ⩽
e

A

1

c

n

k2
(Ac)k ⩽ en(Ac)k−1 ⩽ e2ne−k.

Thus,

E

( ∑
k⩾β logn

Zk

)
⩽ e2n ·

∑
k⩾β logn

e−k ⩽ e2ne−β logn 1

1 − e−1
=

e3

e− 1

1

nβ−1
<

12

nβ−1
.

By the first moment method, this gives (i).

Case 2. Let c be a large constant, say such that Ace−c/2 ⩽ 1
e

and Ac ⩾ e2, which holds
when, say c ⩾ 4 logA, provided that A is large enough, which leads to the assumption on
p in (ii). Then for k ⩽ n/2, we have

EZk ⩽
en

Ac
(Ace−c/2)k ⩽ ne−k−1.

Thus,

E

⎛⎝ ∑
β logn⩽k⩽n/2

Zk

⎞⎠ ⩽ ne−1
∑

k⩾β logn

e−k ⩽
1

e− 1

1

nβ−1
<

1

nβ−1
.

By the first moment method, this gives the first part of (ii).
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To go about the second part and show that there is a giant component, we shall simply
count the number of vertices on the small components and show that with high probability,
there are strictly less n such vertices. The uniqueness of a giant component plainly follows
from the fact that it has more than n/2 vertices, so there cannot be more than one such
components. Fix 1 ⩽ k ⩽ β log n and set t = ne−k−1. For any positive integer l ⩽ et + 1,
we have

P(Zk ⩾ et) ⩽ P(Zk(Zk − 1) . . . (Zk − l + 1) ⩾ et(et− 1) . . . (et− l + 1))

⩽
EZk(Zk − 1) . . . (Zk − l + 1)

et(et− 1) . . . (et− l + 1)

⩽
EZk(Zk − 1) . . . (Zk − l + 1)

(et− l + 1)l
.

As for the upper bound for EZk, looking at spanning trees for each l-tuple of distinct
components of order k and bounding the corresponding in-out edge probabilities using
Lemma 4 yields

EZk(Zk − 1) . . . (Zk − l + 1)

⩽

(
n

k

)(
n− k

k

)
. . .

(
n− (m− 1)k

k

)
(kk−2)le−

ap
M

kl(n−kl)

(
bp

σmin

)(k−1)l

⩽
(en
k

)kl
(kk−2)le−

ap
M

kl(n−kl)

(
bp

σmin

)(k−1)l

=

(
e

A

1

c

n

k2

[
Ace−ceckl/n

]k)l

.

Provided that kl ⩽ n/2, under our assumption c ⩾ 4 logA, this is further upper bounded
by (t/k2)l, which gives

P(Zk ⩾ ne−k) = P(Zk ⩾ et) ⩽
1

k2l

(
t

et− l + 1

)l

.

For k ⩾ 1
2

log n, we choose l = 1 and get

P(Zk ⩾ ne−k) ⩽
1

e

1

(1
2

log n)2
, k ⩾

1

2
log n.

For k < 1
2

log n, we have t = ne−k−1 > e−1
√
n, so choosing, say l − 1 = ⌊e−1

√
n⌋ yields

P(Zk ⩾ ne−k) ⩽

(
t

et− ⌊e−1
√
n⌋

)l

=

(
1

e− ⌊e−1
√
n⌋

t

)l

⩽

(
1

e− 1

)l

⩽

(
1

e− 1

)e−1√n

, k <
1

2
log n.
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Combining the last two estimates, the union bound gives that the probability of the event
E = {∃k ⩽ β log n, Zk ⩾ ne−k} is at most

4

e

(β − 1/2) log n + 1

(log n)2
+

1
2

log n

(e− 1)e−1
√
n
<

5β

log n

(we check that
1
2
logn

(e−1)e−1√n
< 2

logn
and simply bound 4

e
(β−1/2) logn+1

(logn)2
⩽

4
e
β+ 2

e

logn
). To finish, it

remains to check that on Ec, there are few vertices on the small components. On Ec, we
have ∑

k⩽β logn

kZk ⩽ n
∑

k⩽β logn

ke−k < n

∞∑
k=1

ke−k = n
e

(e− 1)2
< 0.93n.

Remark 5. It was shown in [10] that the negative correlation property holds in fact for
random vectors with densities of the form h(

∑
fi(xi)), where h : [0,∞) → [0,∞) is

a nonincreasing log-concave function (h = 1[0,1] giving uniform densities on GOBs). For
such densities, M is finite and can be bounded as for GOBs in terms of certain parameters
depending on the functions fi and h.

5 Conclusion and Open Questions

We have successfully generalised the results on the regular simplex in [5] to GOBs. The
following questions seem most apposite.

Q1 What we prove in Theorem 2 does not rule out the possibility that in some range of
p there is more than one giant component. Can the proof be tightened to rule this
out?

Q2 What is the connectivity or giant component threshold for the intersection of two
well-behaved regular simplices?

Q3 What is the connectivity or giant component threshold for the intersection of a few
regular simplices with independent randomly chosen coefficients?

Another, more geometric, direction to pursue is to determine which log-concave random
vectors have negatively correlated coordinates. Wojtaszczyk conjectured that this holds
for uniform distributions on 1-symmetric convex bodies (that is, bodies symmetric with
respect to each hyperplane xi = 0 as well as permuting the coordinates, which form a
natural class generalising GOBs). In [7] it was confirmed in the infinitesimal case; see
therein for a further discussion of Wojtaszczyk’s conjecture.
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