
Rethinking Data Management Systems
for Disaggregated Data Centers

Qizhen Zhang, Yifan Cai⋆, Sebastian Angel, Ang Chen†, Vincent Liu and Boon Thau Loo
University of Pennsylvania, ⋆Shanghai Jiao Tong University, †Rice University

ABSTRACT

One recent trend of cloud data center design is resource disaggre-

gation. Instead of having server units with “converged” compute,

memory, and storage resources, a disaggregated data center (DDC)

has pools of resources of each type connected via a network. While

the systems community has been investigating the research chal-

lenges of DDC by designing new OS and network stacks, the im-

plications of DDC for next-generation database systems remain un-

clear. In this paper, we take a first step towards understanding how

DDCs might affect the design of relational databases, discuss the

potential advantages and drawbacks in the context of data process-

ing, and outline research challenges in addressing them.

1. INTRODUCTION
Over the past few decades, we have witnessed a number of hard-

ware inflection points that required rethinking the design of databases.

An early example was the transition of relational database systems

(RDBMSs) from mainframes to networks of workstations [11, 17].

Since then, we have seen the rise of multicore machines, GPUs and

FPGAs that augment existing compute resources, and recent inter-

est in non-volatile memory.

In each of the these cases, the hardware enabled RDBMSs to im-

prove their performance, scalability, and/or reliability. We believe

that we are approaching a new inflection point. One that is funda-

mentally different from past ones because the change in hardware is

likely to harm—rather than improve—performance for RDBMSs.

This is the case with the disaggregation of cloud data center re-

sources [27, 13, 25, 29, 30, 26, 38].

Traditionally, data center resources are arranged in the form of

monolithic “converged” servers, each of which contains a small

amount of compute, memory, and storage that can be used to pro-

cess independent jobs or slices of jobs. In contrast, each resource

node in a disaggregated data center (DDC) is physically distinct:

some nodes are dedicated to processing, others to memory or stor-

age. All of these nodes, regardless of type, might include a small

amount of processing and memory to run simple control software,

but these resources are ancillary. Instead, processing nodes will

continually “page” memory from remote nodes into and out of its

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2020.
10th Biennial Conference on Innovative Data Systems Research (CIDR ‘20)

January 12-15, 2020 , Amsterdam, Netherlands.

small on-board working set, write chunks to remote disks, or farm

out tasks to remote GPUs. To each program running in this envi-

ronment, the system provides the illusion of a near-infinite pool of

any resource.

The operational benefits of disaggregation to data center opera-

tors are vast. First, DDCs allow operators to upgrade and expand

each resource independently. For instance, if a new processor tech-

nology becomes available or if the workload changes to require ad-

ditional CPUs, the operator can deploy additional compute nodes

without needing to upgrade memory nodes or worrying about com-

patibility between different components. Second, DDCs promote

efficient resource utilization and prevents fragmentation. For ex-

ample, if a customer requests an unusual hardware configuration—

such as 7 cores, 100 GB RAM, 3 GPUs—the operator can allo-

cate those resources without committing an overprovisioned ma-

chine; to fulfill this request today, the closest option in AWS is a

p3.8xlarge instance with 32 cores, 244 GB of RAM, and 4 GPUs.

Despite the above advantages, disaggregation is not without its

challenges. What used to be a local memory access is now net-

work communication. How do we handle the high latencies and

the need to move large volumes of data between compute and mem-

ory nodes? How do we deal with a likely trend toward relatively

smaller and smaller working set memory? How do we address the

fact that memory can fail independently of the CPU or that different

parts of memory can fail independently of each other?

While disaggregated storage [10, 33, 9] and remote memory [18,

28, 14, 37] are well-studied fields, the complete disaggregation of

resources presents a novel set of questions and concerns. One dis-

tinction is that, unlike traditional remote memory systems where

the remote memory is treated as extra cache, disaggregation is typi-

cally accompanied by a corresponding decrease in local memory—

remote access becomes a necessity rather than an optimization.

Second and related, in DDCs, these accesses are mediated by the

operating system and network infrastructure rather than controlled

by the application. This means that the interactions between each

layer of the stack are critical to the system’s overall performance.

In this paper, we lay out a series of challenges to database design

that are unique to DDC architectures, and present some preliminary

benchmark results that urge the redesign of RDBMSs in DDCs:

naïve query execution on DDCs results in order-of-magnitude worse

performance compared to running the same query on one of today’s

monolithic servers!

Many within the systems community have already started re-

designing OSes [38], data structures [8], and network stacks [39].

We argue that more is required: we need the help of databases

and data processing frameworks to fill in many of the performance

gaps. To that end, we outline ways in which disaggregation affects

database systems and take a first step toward rethinking RDBMS

1



ToR Switch

R
ac

k
 M

M
U

storage

memory

compute

other racks

Figure 1: A proposed DDC architecture. Racks consist of blades

with compute, memory, and storage elements connected through

a Rack MMU. Compute elements have some local memory and

caches, while memory and storage elements are fronted by a CPU

that mediates accesses. Network communication between compute

elements within or across racks uses the Top-of-Rack switch.

design. We focus on the use of traditional RDBMSs before ex-

panding the discussion to other big data applications.

Specifically, we make the following key contributions:

• RDBMSs in DDCs. We provide an introduction to disaggre-

gated architectures, and explore how existing RDBMSs might

be deployed in a DDC. We consider single and parallel RDBMSs.

• Needs and challenges. RDBMSs have high data transfer band-

width requirements from storage to memory, and from memory

to compute. Using a case study of a single and a parallel join

operator, we demonstrate how a naive implementation can re-

sult in multiple redundant round-trips of memory to memory

copies. We validate the actual performance degradation by run-

ning query execution on LegoOS [38], which is an OS designed

for disaggregated environments.

• Performance optimizations. Based on our preliminary find-

ings, we propose new hardware and OS primitives that RDBMSs

can use to perform memory copies more efficiently. These prim-

itives are inspired by decades of work in near data process-

ing [35, 34, 41, 23] where the memory has some small com-

putational ability that can be leveraged for significant gains. For

example, we propose new mechanisms that bypass the compute

nodes entirely when partitioning data in preparation for a hash

join. We show that these primitives (in conjunction with mod-

ifications to the database execution engine) apply to different

parallel relational operators and can reduce the overheads intro-

duced by DDCs.

• Fault tolerance. We explore how RDBMSs can benefit from

the resource decoupling of DDCs to improve fault tolerance.

2. THE FUTURE IS DISAGGREGATED
Disaggregated data centers (DDCs) [27, 13, 25, 29, 30, 26, 38]

propose splitting up compute (CPUs, GPUs, FPGAs), memory,

storage, and other resources into resource pools that are stitched

together by a fast interconnect. This is in contrast to existing archi-

tectures in which all of these resources are housed within a single

monolithic system (a “server”). A key driver for DDCs is that they

afford the provider significantly more flexibility by (1) allowing

the provider to evolve each resource pool independently and (2)

achieving better utilization and lower fragmentation.

While there are several competing proposals for how to archi-

tect a DDC, most have trended towards rack-level disaggregation,

i.e., the placement of associated compute and memory in the same

physical rack for lower latency and easier management. Storage

and other resources can be placed either in the same rack or other

racks for fault tolerance in the case of a rack-level failure. We in-

herit these general assumptions in this work, although our concerns

(and many of our solutions) apply to other architectures as well.

Figure 1 depicts one example of a typical proposed DDC archi-

tecture. Again, slight variants exist. There are several core com-

ponents to this architecture: individual blades with compute ele-

ments, memory elements, and storage elements connected over a

low-latency resource interconnect. For ease of reference we call

this interconnect the ‘Rack MMU’. Each rack also has a Top-of-

Rack (ToR) switch that allows compute elements in the same rack

to communicate with each other and elements in other racks. We

describe each of these components in more detail below.

Compute, memory, and storage elements. Compute elements

consist of commodity processors with their associated memory hi-

erarchy (including private and shared caches) and a small amount

of local memory. This local memory is used primarily for the OS

and as another cache to improve performance [20, 38].

Memory elements are composed of a dense array of DRAM or

NVRAM chips, which are typically accompanied by a small com-

puting element (processor, RNIC, FPGA, ASIC, etc.) that proxies

communication with the Rack MMU and converts network requests

into memory reads and writes. This processor interacts with mem-

ory through a standard MMU, and is responsible for addressing and

access control. Storage elements are structured similarly.

OSes and processes. Traditionally, the OS is responsible for re-

source partitioning, isolation, and sharing as it is the component

with global visibility across all resources. In a disaggregated envi-

ronment, it no longer has that visibility; instead, the responsibility

for this functionality is split between the Rack MMU and the lo-

cal OSes. The OS at compute elements continues to be responsible

for managing the underlying hardware, providing local scheduling

and isolation, and presenting a standard programming interface to

applications. The OS is also responsible for transparently fetching

and writing back data from remote memory elements and managing

the contents and coherence of the local memory [24, 38].

We assume the same resource sharing policy as LegoOS [38]:

processes may share the same memory element, but not the same

memory (so there is no shared memory). Furthermore, a compute

element can host multiple processes, but a process can only run in

a single compute element. This makes caching easier; otherwise,

shared memory would require coherence across the local memories

of different compute elements.

Resource interconnect. In Figure 1, the Rack MMU is abstracted

as a single box. In reality, it is a complex system that may consist

of a network of switches. There are a few proposals for its design:

(1) Packet switching: Compute elements interact with memory

and storage by sending packets over a network of switches. The

primary benefit of this approach is that all of its components—the

Ethernet switches, RNICS, and Ethernet links—are readily avail-

able and commoditized. Compared to the other proposals, packet

switches also typically have lower latency for small individual mem-

ory requests, and higher utilization efficiency. Further, recent ad-

vances in programmable switches are an easy platform on top of

which to implement the Rack MMU logic.

(2) Circuit switching: In circuit switching, compute elements

communicate with memory and storage via dedicated circuits [26,

39]. Researchers have argued that for the large port counts and

throughput requirements of rack disaggregation, packet switches

will eventually become too demanding for typical rack-level power

budgets. These physical requirements have led to the exploration of

simpler circuit switches, which transmit optical or electrical signals

at the physical layer rather than parsing, processing, and buffering

2



x

1. Scan A

x

y1. Scan-Hash A

2. Store A’s partitions based on hash

3. Grant partition

(a) Unmodified DMBS (b) Using Grant and Scan-Hash

2. Hash A

y

3. Send tuples

Figure 2: Figure (a) depicts a hash partitioning when the DBMS

is running on LegoOS. Compute node x scans table A from remote

storage by first attempting to fetch A from remote memory. When

that fetch fails, the memory forwards that request to the remote stor-

age. A is then scanned into the remote memory, and then into x’s

local memory. At this point, x can compute a hash on the join key,

and determine the partitions. x then sends some of the partitions

over the network (via ToR) to y, who is then responsible for those

partitions. This forces y to copy those tuples from its local mem-

ory to its remote memory. Figure (b) shows the same operation but

with additional primitives (§4).

packets. Scheduling, setting up, and tearing down circuits impose

a performance cost to circuit switching, but systems like Shoal [39]

propose potential solutions to compensate.

(3) Direct connect: Finally, compute elements can be connected

directly to memory and storage nodes (e.g., using a 3D Torus net-

work [16]), eliminating switches entirely. Direct connect topolo-

gies are cheap, and in some cases, also efficient and low-latency.

Unfortunately, these properties depend on the provided workload

as some messages may need to traverse multiple other nodes before

reaching their destination. In this proposal, the Rack MMU may be

a logically centralized—yet physically distributed—component.

Regardless of how the Rack MMU is instantiated, we assume that

any compute element can access any memory element, and that

accesses can be reconfigured at runtime at fine granularity.

3. ARE WE UP TO THE CHALLENGE?
To demonstrate the challenges brought by disaggregation, we de-

scribe the result of running an unmodified RDBMS on top of Le-

goOS [38], which is a state-of-the-art OS for DDCs.

The query execution engines would run on the powerful proces-

sors of the compute nodes. The code of the query optimizer and

execution engine, as well as the execution plan and buffer pools,

would preferably be placed on the compute nodes as well. Unfor-

tunately, since the local memory of the compute nodes are limited,

much of this would need to spill out into the remote memory nodes,

with a preference for keeping the execution engine and execution

plan local. Storage nodes keep any persistent data, and fetching

data from them is recursive: compute nodes will attempt to read

from memory, and memory nodes will fetch from storage on a miss.

We note that, conceptually, this architecture resembles that of a

shared-nothing parallel DBMS. The primary difference is that the

memory—and particularly the buffer pools—while logically inde-

pendent, are physically hosted on the same memory nodes.

3.1 Single Join Operation
Now consider a simple single-pass, single-machine join on the

above architecture. Assume two tables, A and B, are joined using

a traditional hash join. Also assume that A is the bigger of the two

tables and that we have an existing hash index of B built using the

join key. In a traditional RDBMS, we would scan table A, compute

a hash on the join attribute for each tuple in A, and probe the hash

index of B for matches, returning the matching tuples.

In a DDC, this operation would proceed as follows.

• Initial scan of A. To perform the initial scan, a query engine

on a compute node will have to first request table A’s blocks

from storage. As mentioned, this process is recursive, involving

multiple rounds of communication until the requested blocks are

transferred over to the local memory of the compute node. If

local memory is scarce, the compute node may need to fetch

a single block at a time; this is inefficient, but correct, as the

algorithm requires only a single block of A as its working set.

• Probing B’s hash index. When a block of A is in the com-

pute node, the query processor iterates through every A-tuple to

probe B’s hash index. Again, a portion of B’s hash index needs

to be fetched from disk to remote memory, and then brought

into the local memory of the query processor. Recent work [8]

shows that fetching entries from a hash table stored in “far mem-

ory” is particularly expensive because of hash collisions that re-

quire multiple round trips between the compute node and remote

memory/storage to traverse the hash table’s buckets. While such

collisions also exist in today’s systems, the overhead in is typi-

cally dominated by disk I/O.

The join operation leads to more inefficiencies if the tables of A

or B are too large to even fit in remote memory, requiring multiple

passes over the data with either sort-merge or grace hash join.

3.2 Exchange and Symmetric Hash Join
We next consider the case of a parallel join operation. Since the

local join operation is similar to the single-machine hash join de-

scribed above, we focus on the exchange operator [4, 22] followed

by a parallel pipelined symmetric hash join. Recall that the hash ex-

change operator repartitions the data by hashing the join attributes.

Consider a join of tables A and B executed in parallel on a number

of compute nodes, each running a query processor with its own lo-

cal memory. Assume that each compute node is responsible for a

subset of the blocks in each table.

• Initial scan. In the initial scan, each compute node does a scan

of its assigned A and B blocks. As above, data needs to be

transferred from storage to remote memory, then from remote to

local, potentially over multiple iterations if cache is limited.

• Parallel hash partitioning. Each compute node iterates through

A and B tuples in its local memory and applies a hash func-

tion on the join attribute value to determine the destination node

performing the join. The repartitioned tuples (by join key) are

then pushed to the destination node, who stores them in local

memory. If needed (e.g., due to insufficient local memory), the

destination node may need to copy these tuples out to remote

memory before it can receive more tuples. This process is band-

width intensive, as shown in Figure 2(a).

• Pipelined symmetric hash join. Finally, each destination com-

pute node performs a pipelined symmetric hash join in which a

local-memory hash table is built for each of the partitions, and

incoming A and B tuples are probed against the hash tables. If

the local memory is insufficient, the in-memory hash tables may

also need to be continually fetched from and evicted to remote

memory. In this case, there is another round trip to construct the

hash tables in local memory (from the rehashed tuples that arrive

in the previous step) and then transfer them to remote memory.

In each of the above steps, data is repeatedly transferred between

storage, remote, and local memory—all to end up storing the data

back in remote memory anyway! In Section 4 we show that with

3



 0

 2

 4

 6

 8

 10

 12

Region (0.2KB)
Linux 2.8s

Nation (1.3KB)
Linux 2.9s

Supplier (2.9MB)
Linux 2.9s

Customer (84MB)
Linux 3.1s

Part (112MB)
Linux 3.1s

Partsupp (320MB)
Linux 5s

Order (960MB)
Linux 4.7s

Lineitem (4.3GB)
Linux 13.8s

S
lo

w
d
o
w

n
 t

o
 L

in
u
x LegoOS (LM=1GB)

LegoOS (LM=256MB)
LegoOS (LM=64MB)

1 44 4K 57K 62K 175K

4.2M

30M

1 44 4K 57K 62K

5.5M
8.5M

37M

1 44 4K

2.5M 2.5M

5.7M

10M
40M

Figure 3: Query performance of hash tables that are built to index TPC-H 10GB tables by their primary keys. We run 100 million random

accesses to each hash table and compare the running times of LegoOS with different sizes of local memory (LM=1GB, 256MB and 64MB)

and Linux. The x-axis shows each TPC-H table along with its hash index size and the performance in Linux. The y-axis shows the slowdown

in LegoOS compared to that in Linux. Each bar is labeled (above) with the number of remote memory accesses in LegoOS. When data is

larger than local memory, the performance of accessing hash tables in LegoOS is an order of magnitude worse than in Linux.

Scan(Nation) Scan(Region)

Nested Loop Join

Hash Join 1

Scan(Customer)

Hash Join 2

Scan(Order)

Hash Join 3

Scan(Lineitem)

Hash Join 4

Scan(Supplier)

Hash Aggregation

Sort

Figure 4: An optimized physical plan for TPC-H Query 5. Shaded

are the operators that use hash tables.

small modifications to the OS and the RDBMS, many of these data

transfers can be avoided. We note that the above issues (and our

proposed solutions) apply to other parallel join algorithms as well.

3.3 Performance Challenges
To demonstrate the impact of running RDBMSs over DDCs, we

evaluate the performance of hash operators in Linux and LegoOS

using the TPC-H benchmark. Our testbed consists of three RDMA-

enabled CloudLab r320 machines [19] that emulate one compute

node, one memory node, and one storage node running LegoOS.

All of these nodes are connected via a 56 Gbps Infiniband network

using Mellanox MX354A NICs and a Mellanox SX6036G switch.

Compute nodes have access to a Xeon E5-2450 (8-cores, 2.1 Ghz)

and memory nodes have 16 GB of RAM. As the amount of local

memory on compute nodes is currently undetermined, we test a

range of possible values: 64 MB, 256 MB, and 1 GB. We expect

the eventual value, as a ratio to remote memory and dataset sizes,

will trend lower in the spirit of disaggregation.

LegoOS currently supports a subset of the Linux system calls, so

we extended the codebase as needed to implement a query execu-

tion engine for RDBMS operations. For comparison, we also make

our query engine compatible with Linux 3.11 and run it on a single

machine with the same compute, memory, and storage resources as

the disaggregated testbed. The engine currently supports hash join,

hash aggregation, nested loop, filter, project, and sort operations,

all of which are needed for the TPC-H queries.

Hash table performance. Hash table performance is crucial to

the execution of many RDBMS operators. Our first experiment

 0

 5

 10

 15

 20

Hash Join 1
Linux 0.091s

Hash Join 2
Linux 0.73s

Hash Join 3
Linux 5.02s

Hash Join 4
Linux 0.69s

Overall
Linux 6.54s

S
lo

w
d
o
w

n
 t

o
 L

in
u
x

LegoOS (LM=1GB)
LegoOS (LM=256MB)

LegoOS (LM=64MB)

4K 21K

1.1M
49K

1.2M
4K 22K

3.5M

60K

3.6M

4K

364K

9.3M

169K

9.8M

Figure 5: Execution performance of hash joins and end-to-end

TPC-H Query 5. X-axis shows the execution of four hash join op-

erators in Figure 4, the end-to-end query execution, and their per-

formance in Linux. Y-axis shows the slowdown of the performance

in LegoOS compared to that in Linux. Each bar is labeled with the

number of remote memory accesses in LegoOS.

evaluates the performance of querying hash tables in DDCs. Fig-

ure 3 describes the details of the experiment and shows the results.

We observed that, when the size of the hash table is within the lo-

cal memory capacity, the whole table can be cached locally and

the performance slowdown of LegoOS (relative to Linux) is within

2×. However, when the table is larger than local memory, the cor-

responding slowdown ranges from 5× to 11×, showing severe per-

formance degradation.

Query execution performance. We next evaluate the effect of

the above slowdowns on an end-to-end TPC-H query—Query 5—

the optimized plan of which (shown in Figure 41) involves mul-

tiple hash joins. While we present results based on this specific

query and plan, we believe that the insights are general to any other

RDBMS query execution and leave this validation as future work.

Figure 5 compares the query execution performance in LegoOS

with different sizes of local memory and Linux. The results show

that when the working set of an operator can fit in local memory, the

performance slowdown can be controlled around 2×. As expected,

the worst degradation is observed at Hash Join 3 where the two

largest tables are joined: the slowdown relative to Linux is 3×, 7×

and 18× for LegoOS with 1 GB, 256 MB and 64 MB local memory,

respectively. This degradation results in the slowdown of 2.7×, 6×,

and 14.8×, respectively, in overall query execution. We expect

greater slowdowns in larger-scale executions.

Remote memory access. To confirm our hypothesis that the ma-

jority of the overhead in LegoOS (over Linux) comes from remote

1Adopted from the optimized plan in Microsoft SQL Server [5].

4



memory requests, we measure the number of remote memory ac-

cesses in LegoOS. As both Figure 3 and Figure 5 depict (in the label

above each bar), LegoOS needs to constantly page remote memory

in and out for queries that require large working sets.

While limited in scope, the above experiments show that a naïve

RDBMS implementation on a DDC would suffer severe perfor-

mance degradation. We leave a more extensive exploration of the

performance challenges to future work. For now, however, our re-

sults highlight the need to develop new techniques to make the per-

formance of RDBMSs palatable in this brave new world.

3.4 Reliability Challenges
The implications of DDCs to RDBMSs extend beyond perfor-

mance. Of particular note are the novel failure modes introduced

by a DDC architecture [15]. For instance, while a process is run-

ning, some or all the associated memory nodes can fail, leaving the

process in a state that most applications do not consider. It is even

the case that nodes holding the instruction cache of the program

are prone to failure, making application-level recovery techniques

significantly more complex. Likewise, a process can fail indepen-

dently of memory, leaving the memory stranded indefinitely—a

data-center-level memory leak. Just as in traditional memory leaks,

this can degrade the data center’s resources over time.

We note that a key challenge is detecting and locating failures,

and differentiating failures from message drops and slow machines.

Simple timeouts on processes and messages are insufficient for this

purpose as they would significantly increase the tail latency of ap-

plications. Even if timeouts were possible, failures may be due to

other components, such as the network, which may result in non-

uniform failure detection. Fast failure detection and localization at

data center scale are known to be challenging [42, 40].

4. PAVING A WAY FORWARD
DDCs prompt us to rethink many aspects of RDBMS design,

from concurrency control to caching and buffer pool architectures.

In this paper, we focus on a small subset of these issues that affect

performance/reliability.

4.1 Improving Performance
We start with the example in Figure 2(a). Recall the two main

issues: (1) process x’s scan of table A leads to two Rack MMU

round-trips: one between x and its memory, and one between the

memory and storage. (2) process x then sends the corresponding

partition tuples to process y via the ToR switch, who must then

store them into its own memory. This is particularly problematic

because communication over the ToR switch might not be as fast

as through the Rack MMU, and because all the data ends up in the

same memory blade anyway! We make the following observation:

if x could somehow push the partitioning task to the storage node,

so that the storage node could directly place the partitions in the

appropriate memory elements, we could cut most data movement.

To achieve this, we draw inspiration from decades of work on

near data processing (NDP) [35, 34, 41, 23]. At a high-level, NDP

enhances memory (and in our particular case also storage) with the

ability to perform simple operations on the data. In our disaggre-

gated rack architecture (Figure 1) this is possible thanks to the small

processing unit (CPU, FPGA, ASIC, or even programmable NIC)

attached to storage and memory blades that mediates all accesses.

Given this functionality, we propose a new operation that runs at

the storage node called Scan-Hash.

Scan-Hash. Scan-Hash streams through a particular table while

computing a hash function on the records’ join-key. Note that this

is simple enough that it can be performed by the CPU or ASIC on

the memory and storage blades at high speed. Given this operator,

process x would issue a Scan-Hash request to its remote memory,

which then does two things: (1) forwards the request to the stor-

age node; (2) places the results provided by the storage node in a

memory location based on the returned hash.

At the end of the Scan-Hash operation (Figure 2(b), Step 2), the

corresponding partitions are stored in memory, all under the owner-

ship of process x (who initiated the Scan-Hash). Note that x is not

given the data: when x sends a Scan-Hash to the memory node, the

memory node simply stores the result in the appropriate memory

locations, and notifies x when this task is done.

At this point, x can use the memory grant operation proposed in

prior work [12]. A memory grant is essentially a way for process x

to “gift” some of its remote memory pages to some other process.

It consists of x telling the Rack MMU to change the permissions

at the memory node to allow some other process (in this case y)

to access those pages. The Rack MMU then notifies y’s OS that

new pages have been added to its address space, and the OS propa-

gates this information to y via a signal. The result is that the data is

moved exactly once during a partitioning (instead of 4 times): from

the storage node into the memory node. This technique generalizes

to multiple storage nodes, multiple memory nodes, and other parti-

tion strategies. If range partition is preferred over hash partitioning,

we can generalize Scan-Hash into a Scan-Partition operation where

the application can pass in a partition function.

Collision-avoidance. At the end of the above partitioning protocol,

the remote memory contains partitions of records that can be used

to build corresponding hash indexes. These indexes can then be

probed with records from another table to compute the join. How-

ever, as we mention in Section 3, accessing hash indexes in remote

memory is expensive due to the possibility of collisions. In partic-

ular, every time there is a collision, the query processor (x in the

above example) must traverse the corresponding bucket by issuing

a series of requests over the Rack MMU. To avoid these costly col-

lisions, we adopt two techniques recently introduced by Aguilera

et al. [8]: indirect addressing and HT-Trees.

Indirect addressing allows the remote memory element to au-

tomatically dereference a pointer to determine the corresponding

address to load or store, saving one Rack MMU round trip in our

context. Without indirect addressing, a query processor would first

have to fetch the memory address stored at the pointer’s address,

and then fetch the data (leading to two RTTs). In an HT-Tree, leaf

nodes store base pointers to hash tables (but not the hash tables

themselves). A query processor can cache the (small) HT-Tree lo-

cally, and leave the (large) hash indexes in remote memory. The

query processor can then: (1) retrieve a key by traversing the local

HT-Tree to obtain the base pointer of the target hash index; (2) ap-

ply the hash function to calculate the bucket number; (3) fetch the

appropriate value from the target hash and bucket using indirect

addressing to follow the pointer in the bucket.

Remote-memory aggregation. Like joins, aggregation can be po-

tentially expensive due to global reshuffling. In a DDC architec-

ture, there are opportunities for in-memory aggregation given that

data is consolidated within memory blades. For example, the Scan-

Hash mechanism above can be enhanced to hash tuples into buck-

ets based on group-by keys, and a reduction phase applied to each

bucket to generate aggregation results. This avoids expensive round-

trip times to compute nodes, and in fact, allows us to avoid exten-

sive data shuffling within a rack. If data resides across memory

blades on different racks, one can compute intermediate aggregates

at the rack level before combining across racks.

5



Compute

Rack MMU

Memory 1

Memory 2

Write

Write

Figure 6: The Rack MMU can multicast write operations to a set of

memory replicas to reduce the probability of data loss in the event

of memory failures. Note that we are discussing volatile memory

here; data loss means that the application cannot make progress

without recreating the current state from persistent storage.

4.2 Improving Reliability
The primary difference between DDCs and traditional data cen-

ters is that resource elements may fail independently. Following a

recent proposal [15], we assume that resources within a single node

(e.g., DRAM chips) can fail independently, and that different nodes

may also fail independently. A node failure is equivalent to a fail-

ure of its resource components. We present a few initial proposals

for tolerating compute and memory failures below.

Compute node failures. Unlike today’s systems, when compute

nodes fail, the decoupling of processing and memory allows us to

recover without recomputing the job or invoking long-term stor-

age. We propose an approach with a centralized job manager not

unlike those used in most modern Big Data processing frameworks.

The manager can detect processing node failures through heartbeat

messages. If it detects a failure, it can determine the progress made

by the previous node before it crashed. For this, we can assign

each individual operation or set of operations a designated space

in memory, each annotated using a “done” bit. A simple binary

search through the memory locations will allow the manager or the

new processing node to determine the last completed operation.

Read/write replication. Borrowing from RAID-style disk replica-

tion [36] and the work of Carbonari and Beschastnikh [15] in the

context of DDCs, we propose replicating all memory writes, and

some memory reads as well. With replication, the choice to store

data in memory or disk will be based primarily on anticipated ac-

cess frequency (“hot” vs “cold”), rather than persistence. The Rack

MMU provides an attractive point for implementing the replication

protocol since it serves as a serialization point for all memory re-

quests. Although the Rack MMU is a single point of failure, like

the ToR switch or server NICs, fate sharing ensures that the Rack

MMU fails if and only if dependent services have failed as well.

Using this approach, when a processing node wishes to write a

block of memory, it will, with the help of the Rack MMU, mul-

ticast a set of writes to a predetermined set of replicas (as shown

in Figure 6). Read requests can also be multicast if they are “high-

priority,” in which case, multiple replicas are queried and only the

first result is taken. Duplicates can be detected using a sequence

number, and potentially eliminated early in the Rack MMU to avoid

unnecessary network overhead (as shown in Figure 7).

Memory failure modes. Given the above replication protocol, the

following failure modes can be tolerated:

Failure before a read. For a high-priority read, one of the re-

quests will return a response as long as at least one replica remains

active. For a regular read, the processing node’s memory paging

kernel procedure will set a short timeout and retry if the response is

Compute

Rack MMU

Memory 1

Memory 2

Read

Read

X

Figure 7: To reduce the effect of stragglers and memory failures,

read operations can also be replicated. Only the first response is

returned. Duplicates are removed at the Rack MMU.

late. In both cases, data loss can be detected if all requests timeout.

Failure before a write. The mechanism is similar to that of a

high-priority read request. The writes will be multicasted to the

designated set of replicas through the Rack MMU. Writes can be

done asynchronously, although if the process wishes to ensure that

the write was successful it must wait for an acknowledgment.

Failure after a write. These failures are silent from the perspec-

tive of the writer. Instead, we can view them as failures before a

read. Replication should ensure that the data is tolerant to multiple

failures; if all the replicas fail, the data loss will be detected by the

next reader, who should perform application-level recovery.

5. RELATED WORK
Resource disaggregation offers great benefits for cloud data cen-

ters, but requires the redesign of applications for good performance.

This paper is the first work to discuss the changes, challenges, and

opportunities that disaggregation brings to data management sys-

tems. Here we survey systems that relate to resource disaggregation

as well as data management systems in related contexts.

Disaggregated Data Centers. Both industry and academia are be-

ginning to explore OSes, architectures, and networks for DDCs.

LegoOS [38] introduces an OS that decouples hardware resources

and connects them with a fast network, while still providing a vir-

tual machine abstraction for applications. Other proposals include

new architectures [31, 32], network systems [21, 39, 15], and data

structures [8] for DDCs. Our work is the first to explore how

RDBMS performance is impacted by disaggregation.

Distributed Remote Memory. Prior work has revisited the idea

of remote memory in fast data center networks [6], proposing a

standard API for remote memory access with exported files [7];

implementing generic data structures like vector, map, and queue

on top of remote memory by customizing hardware primitives [8];

and designing a new paging system to avoid application modifi-

cation [24]. While remote memory and disaggregation overlap in

spirit, the two ideas differ in that remote memory assumes that sig-

nificant resources remain coupled with the compute components—

the remote memory is an optimization, not a necessity. This fun-

damental difference presents significantly different implications to

upper-layer applications, as we show in Section 3.

Database systems on RDMA. Finally, researchers have explored

the use of RDMA as an efficient channel for data movement be-

tween database instances in traditional data centers. Examples in-

clude industrial databases that use RDMA to speed up data transfer

between storage and memory [1, 2, 3], and database systems that

use RDMA for larger-scale in-memory processing [28, 14, 37]. As

mentioned above, these remote memory proposals are fundamen-

tally different from disaggregation.

6



6. CONCLUSIONS AND FUTURE WORK
This paper advocates rethinking how we should design data man-

agement systems under the paradigm shift of resource disaggrega-

tion. Researchers have identified unique challenges in DDCs for

the OS, network, and architecture design. We believe that it is also

crucial to understand the implications of DDCs for data manage-

ment. We have described why a naïve adaptation of RDBMSs

would lead to performance inefficiencies, and outlined potential

ways to address these challenges in DDCs. We have also performed

an initial set of experiments for validation.

Looking forward, we plan to perform studies on a more com-

prehensive set of relational operators and investigate the challenges

required in a DDC setting. Transaction processing and concurrency

control are also interesting directions, in light of the fault tolerance

discussion in this paper. We also plan to generalize our investi-

gation to big data processing systems beyond RDBMSs, e.g., to

MapReduce, machine learning, or graph processing systems. We

hope that our paper provides an initial step to these investigations

and promotes more discussions in the database community.

Acknowledgments

We would like to thank the anonymous reviewers for their feed-

back. This work was supported in part by VMWare, Facebook,

the National Science Foundation (CNS-1845749, CNS-1801884,

CNS-1513679, CNS-1703936, and CCF-1763514), DARPA (con-

tracts No. HR0011-17-C-0047 and No. HR0011-16-C-0056), and

ONR (N00014-18-1-2618).

7. REFERENCES

[1] IBM DB2 pure scale.

http://www.ibm.com/developerworks/data/library/dmmag/

DBMag_2010_Issue1/DBMag_Issue109_pureScale/.

[2] Microsoft analytics platform system.

http://www.microsoft.com/en-us/server-cloud/products/

analytics-platform-system/.

[3] Oracle RAC over InfiniBand.

http://www.cisco.com/c/en/us/products/collateral/

cloud-systems-management/vframe-ib-software/prod_

white_paper0900aecd8056d64c.html.

[4] The parallelism operator (aka exchange).

https://blogs.msdn.microsoft.com/craigfr/2006/10/25/

the-parallelism-operator-aka-exchange/.

[5] TPC-H SF100 non-parallel plans, SQL Server 2008.

http://www.qdpma.com/tpch/TPCH100_Query_plans.html.

[6] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi,

P. Subrahmanyam, L. Suresh, K. Tati,

R. Venkatasubramanian, and M. Wei. Remote memory in the

age of fast networks. In Proceedings of the ACM Symposium

on Cloud Computing (SOCC), 2017.

[7] M. K. Aguilera and et al. Remote regions: a simple

abstraction for remote memory. In Proceedings of the

USENIX Annual Technical Conference (ATC), 2018.

[8] M. K. Aguilera, K. Keeton, S. Novakovic, and S. Singhal.

Designing far memory data structures: Think outside the

box. In Proceedings of the Workshop on Hot Topics in

Operating Systems (HotOS), 2019.

[9] Alibaba. ApsaraDB for POLARDB: A next-generation

relational database - Alibaba cloud. https:

//www.alibabacloud.com/products/apsaradb-for-polardb,

2019.

[10] Amazon-Aurora. Amazon aurora - Relational database built

for the cloud - AWS. https://aws.amazon.com/rds/aurora/,

2019.

[11] T. E. Anderson, D. E. Culler, and D. Patterson. A case for

NOW (Networks of Workstations). IEEE Micro,

15(1):54–64, Feb 1995.

[12] S. Angel, M. Nanavati, and S. Sen. Disaggregation and the

application. arXiv:1910/13056, Oct. 2019.

http://arxiv.org/abs/1910.13056.

[13] K. Asanović. FireBox: A Hardware Building Block for 2020

Warehouse-Scale Computers. In Proceedings of the USENIX

Conference on File and Storage Technologies (FAST), 2014.

[14] C. Barthels, S. Loesing, G. Alonso, and D. Kossmann.

Rack-scale in-memory join processing using RDMA. In

Proceedings of the ACM SIGMOD Conference, 2015.

[15] A. Carbonari and I. Beschastnikh. Tolerating Faults in

Disaggregated Datacenters. In Proceedings of the ACM

Workshop on Hot Topics in Networks (HotNets), 2017.

[16] P. Costa, H. Ballani, and D. Narayanan. Rethinking the

network stack for rack-scale computers. In Proceedings of

the USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud), 2014.

[17] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider,

A. Bricker, H. I. Hsiao, and R. Rasmussen. The gamma

database machine project. IEEE Trans. on Knowl. and Data

Eng., 2(1):44–62, Mar. 1990.

[18] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro.

FaRM: Fast Remote Memory. In Proceedings of the USENIX

Symposium on Networked Systems Design and

Implementation (NSDI), 2014.

[19] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig,

E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb,

A. Akella, K. Wang, G. Ricart, L. Landweber, C. Elliott,

M. Zink, E. Cecchet, S. Kar, and P. Mishra. The design and

operation of CloudLab. In Proceedings of the USENIX

Annual Technical Conference (ATC), 2019.

[20] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,

R. Agarwal, S. Ratnasamy, and S. Shenker. Network

Requirements for Resource Disaggregation. In Proceedings

of the USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2016.

[21] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,

R. Agarwal, S. Ratnasamy, and S. Shenker. Network

requirements for resource disaggregation. In Proceedings of

the USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2016.

[22] G. Graefe and et al. Extensible query optimization and

parallel execution in volcano. In Query Processing for

Advanced Database Systems, June 1991.

[23] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J.-U. K.

Jonghyun Yoon, M. Kwon, C. Yoon, S. Cho, J. Jeong, and

D. Chang. Biscuit: A framework for near-data processing of

big data workloads. In Proceedings of the International

Symposium on Computer Architecture (ISCA), 2016.

[24] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.

Efficient memory disaggregation with infiniswap. In

Proceedings of the USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2017.

[25] K. Katrinis and et al. Rack-scale Disaggregated Cloud Data

Centers: The dReDBox Project Vision. In Proceedings of the

Design, Automation Test in Europe Conference Exhibition

(DATE), 2016.

7



[26] K. Keeton. The Machine: An Architecture for

Memory-centric Computing. In Proceedings of the Workshop

on Runtime and Operating Systems for Supercomputers

(ROSS), 2015.

[27] J. Kyathsandra and E. Dahlen. Intel Rack Scale Architecture

Overview. http://presentations.interop.com/events/las-vegas/

2013/free-sessions---keynote-presentations/download/463,

2013.

[28] F. Li, S. Das, M. Syamala, and V. R. Narasayya. Accelerating

relational databases by leveraging remote memory and

RDMA. In Proceedings of the ACM SIGMOD Conference,

2016.

[29] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.

Reinhardt, and T. F. Wenisch. Disaggregated Memory for

Expansion and Sharing in Blade Servers. In Proceedings of

the International Symposium on Computer Architecture

(ISCA), 2009.

[30] K. Lim, Y. Turnet, J. Chang, J. Renato Santos, and

P. Ranganathan. Disaggregated Memory Benefits for Server

Consolidation. Technical Report HPL-2011-31, HP

Laboratories, 2011.

[31] K. T. Lim, J. Chang, T. N. Mudge, P. Ranganathan, S. K.

Reinhardt, and T. F. Wenisch. Disaggregated memory for

expansion and sharing in blade servers. In Proceedings of the

International Symposium on Computer Architecture (ISCA),

2009.

[32] K. T. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang,

P. Ranganathan, and T. F. Wenisch. System-level

implications of disaggregated memory. In Proceedings of the

IEEE International Symposium on High-Performance

Computer Architecture (HPCA), 2012.

[33] Microsoft-SQL-Database. Sql database – cloud database as a

service | Microsoft Azure.

https://azure.microsoft.com/en-us/services/sql-database/,

2019.

[34] M. Oskin, F. T. Chong, and T. Sherwood. Active pages: A

computation model for intelligent memory. In Proceedings of

the International Symposium on Computer Architecture

(ISCA), 1998.

[35] D. Patterson, T. Anderson, N. Cardwell, R. Fromm,

K. Keeton, C. Kozyrakis, R. Thomas, and K. Yelick. A case

for intelligent RAM: IRAM. In Proceedings of the

IEEE/ACM International Symposium on Microarchitecture

(MICRO), 1997.

[36] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for

Redundant Arrays of Inexpensive Disks (RAID). In

Proceedings of the ACM SIGMOD Conference, 1988.

[37] W. Rödiger, T. Mühlbauer, A. Kemper, and T. Neumann.

High-speed query processing over high-speed networks. In

Proceedings of the International Conference on Very Large

Data Bases (VLDB), 2015.

[38] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS: A

Disseminated, Distributed OS for Hardware Resource

Disaggregation. In Proceedings of the USENIX Symposium

on Operating Systems Design and Implementation (OSDI),

2018.

[39] V. Shrivastav, A. Valadarsky, H. Ballani, P. Costa, K. S. Lee,

H. Wang, R. Agarwal, and H. Weatherspoon. Shoal: A

Network Architecture for Disaggregated Racks. In

Proceedings of the USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2019.

[40] C. Tan, Z. Jin, C. Guo, T. Zhang, H. Wu, K. Deng, D. Bi, and

D. Xiang. Netbouncer: Active device and link failure

localization in data center networks. In Proceedings of the

USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2019.

[41] S. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos.

Beyond the wall: Near-data processing for databases. In

Proceedings of the International Workshop on Data

Management on New Hardware, 2015.

[42] Q. Zhang, G. Yu, C. Guo, Y. Dang, N. Swanson, X. Yang,

R. Yao, M. Chintalapati, A. Krishnamurthy, and T. E.

Anderson. Deepview: Virtual disk failure diagnosis and

pattern detection for azure. In Proceedings of the USENIX

Symposium on Networked Systems Design and

Implementation (NSDI), 2018.

8


	1 Introduction
	2 The Future Is Disaggregated
	3 Are we up to the challenge?
	3.1 Single Join Operation
	3.2 Exchange and Symmetric Hash Join
	3.3 Performance Challenges
	3.4 Reliability Challenges

	4 Paving a way forward
	4.1 Improving Performance
	4.2 Improving Reliability

	5 Related Work
	6 Conclusions and Future Work
	7 References

