
tpprof: A Network Traffic Pattern Profiler

Nofel Yaseen
University of Pennsylvania

nyaseen@seas.upenn.edu

John Sonchack
University of Pennsylvania

jsonch@seas.upenn.edu

Vincent Liu
University of Pennsylvania

liuv@seas.upenn.edu

Abstract

When designing, understanding, or optimizing a computer

network, it is often useful to identify and rank common pat-

terns in its usage over time. Often referred to as a network

traffic pattern, identifying the patterns in which the network

spends most of its time can help ease network operators’ tasks

considerably. Despite this, extracting traffic patterns from a

network is, unfortunately, a difficult and highly manual pro-

cess.

In this paper, we introduce tpprof, a profiler for network

traffic patterns. tpprof is built around two novel abstrac-

tions: (1) network states, which capture an approximate snap-

shot of network link utilization and (2) traffic pattern sub-

sequences,which represent a finite-state automaton over a

sequence of network states. Around these abstractions, we

introduce novel techniques to extract these abstractions, a ro-

bust tool to analyze them, and a system for alerting operators

of their presence in a running network.

1 Introduction

When designing, understanding, or optimizing a computer

network, it is often useful to identify common patterns in

its usage over time. Often referred to as a network traffic

pattern, identifying the patterns in which the network spends

most of its time can result in useful insights:

• All-to-all traffic, which might manifest as uniform utiliza-

tion of all paths between a set of application nodes, might

suggest the importance of bisection bandwidth and guide

future provisioning decisions.

• Chronic stragglers, where we expect all-to-all traffic but a

significant amount of time is spent with only a few flows

active, might suggest the need for better sharding and

mitigation techniques.

• Elephant flow dominance, in which utilization is domi-

nated by isolated path-level hotspots, might guide future

provisioning decisions.

• Finally, synchronized requests/responses, indicated by re-

peated bursts of cross-network communication all orig-

inating at a single node, might motivate changes in the

application or network architecture.

While there are a number of existing tools that capture

flow- and switch-level trends (e.g., heavy hitter analysis [68],

To Hosts

s
1

s
2

l
1

l
2

(a) Network topology

Frequency

C
o
v
e
ra
g
e

…

S
ta
te
s

S
u
b
s
e
q
u
e
n
c
e
s

O(10)

(b) Common Patterns

Alert Threshold

Time

all-to-all

stragglers

imbalance

! !

(c) Traffic Pattern Scores

Figure 1: tpprof’s visualizations for b common traffic pat-

terns and c the TPS score over time for a simple leaf-spine

topology, a. We describe these in more detail later, but in b,

states are heatmaps of common utilization patterns over the

network in a; darker is hotter. Subsequences are common tran-

sition patterns between the aforementioned states. These are

ranked by their frequency of occurrence and their cumulative

coverage of the profiled run, respectively. The subsequence

shows an all-to-all pattern: the network starts unutilized (left

state), becomes fully utilized (right state) for 10s of samples,

then returns. In c, tpprof is tracking three different known

traffic patterns. When the score of any of them crosses the

alerting threshold (twice in the figure), tpprof deduces that

the pattern has occurred in the network.

network tomography [28], or the vast array of network ana-

lytics suites on the market [1–6, 30]), identifying prevalent

network-level patterns typically requires a significant amount

of manual effort and specialized analyses. To determine the

presence of synchronized requests/responses, for instance, an

operator might need to instrument the start and stop times of

all flows in the system, correct for the time drift of different

machines, compute the cluster tendencies of the data (e.g.,

with a Hopkins statistic or heuristic), and distinguish it from

all-to-all traffic by examining the sources and destinations of

synchronized flows. To determine whether this pattern is a

particularly common one would require additional analyses.

1

Our goal in this work is a tool for the automatic identifica-

tion of the most prevalent traffic patterns in a network. To that

end, we present the design and implementation of tpprof, a

network traffic pattern profiler.

Similar to traditional application profilers like gprof [27]

or Oprofile [22] that have helped programmers understand

and improve their software for decades, tpprof automati-

cally measures, extracts, and ranks common traffic patterns of

individual applications within running networks. It also facili-

tates the monitoring of known patterns so that, when specific

patterns appear in the network, the operator is informed. It

does both of these things without modifying applications and

without affecting existing network traffic—the only changes

we require are to switch monitoring configurations. Examples

of both of the above tools in action are shown in Figure 1.

Traffic patterns are, unfortunately, significantly more chal-

lenging to profile than applications. Traditional profilers ben-

efit from well-defined building blocks (functions or lines of

code) connected by well-defined call graphs. In contrast, net-

works offer little such structure: switch and link utilizations

are noisy and measured in real values (Bps); their evolution

over time is even less constrained. In the end, two different

instances of something as simple as all-to-all traffic will never

look exactly the same.

Thus, tpprof is built around two novel abstractions: (1)

network states, which capture an approximate snapshot of

a network’s device-level utilization and (2) traffic pattern

subsequences, which represent a finite-state automaton over a

sequence of network states. As hinted above, subsequences

serve as both output and input to our system: output in the case

of profiling an existing network, input in the case of specifying

a traffic pattern alert. In both cases, classification of network

states and sub-sequences is approximate and implemented

through specialized clustering techniques.

We implement and deploy tpprof to a small hardware

testbed in order to monitor and profile the traffic patterns of

real distributed applications like memcache, Hadoop, Spark,

Giraph, and TensorFlow. We demonstrate that, using tpprof,

we can find meaningful patterns and issues in their behav-

ior. Further, we demonstrate tpprof’s utility on larger and

more complex networks by profiling a trace taken from one

of Facebook’s frontend clusters. While our evaluation focuses

on data center networks (where interesting and impactful dis-

tributed applications are plentiful), tpprof and its techniques

generalize to arbitrary networks.

Specifically, this paper makes the following contributions:

• Novel abstractions for describing common traffic pat-

terns: We introduce two abstractions, network states and

traffic pattern subsequences, that together enable network

operators to easily describe and reason about common

traffic patterns. Network states capture similar configura-

tions of approximate utilization of a specific application

or set of applications running in a network. Subsequences

are then strings of states with bounded repetition that

summarize traffic pattern changes over time.

• Domain-specific algorithms for clustering and rank-

ing both network states and subsequences: Through

empirical analysis of a variety of application traffic pat-

terns, we identify and design algorithms that transform

a network trace into the building blocks of traffic pat-

terns. Specifically, we demonstrate through PCA and way-

point analysis of real application traffic that GMMs are

well-suited to capturing first-order similarities between

different network utilization patterns. In the case of subse-

quences, we create a domain-specific clustering algorithm

that extracts sequences that are both common and that

provide broad coverage of the measured network traces.

• A language and mechanism for expressing and fuzzily

matching known traffic patterns in observed traces:

Finally, to complement the above, we develop a simple

grammar for describing traffic patterns and introduce an

algorithm that automatically identifies approximate oc-

currences of known traffic patterns within network traces.

Our scoring engine outputs a confidence score that can be

used to generate alerts when known traffic patterns appear

in observed traces.

Taken together, tpprof is, to the best of our knowledge,

the first profiling tool for network-wide traffic patterns. Our

implementation is in Python and the code is open source.1

2 The Anatomy of a Traffic Pattern

We begin by introducing the definitions and abstractions on

which tpprof is built. First and foremost, we define the over-

all traffic pattern of a network as follows:

NETWORK TRAFFIC PATTERN — A function f (x, t) that rep-

resents, for an entire network N across a time span [t0, t1],
the utilization of device x ∈ N at time t0 ≤ t ≤ t1.

We also define, for each application in the network:

APPLICATION-SPECIFIC TRAFFIC PATTERN — fA(x, t),
equivalent to the network traffic pattern, but only account-

ing for a single application or set of applications, A.

For the purposes of our clustering and ranking algorithms, the

distinction is unimportant; unless otherwise specified, we use

‘traffic pattern’ to refer to both. Instead, the choice of whether

to filter by application is entirely the user’s (with the mech-

anisms in Section 4); Regardless, for a given network and

overall workload, we note that the traffic pattern of both the

network and its constituent applications will typically exhibit

predictable and repeated characteristics given a sufficiently

long measurement period. These patterns can occur over short

time spans of individual packets and flows, or over longer time

spans in the form of diurnal or weekday/weekend effects.

A contribution of this paper is the decomposition of traffic

patterns into a more convenient low-level primitive:

1https://github.com/eniac/tpprof.

2

NETWORK SAMPLE — |N| real values that capture an ap-

proximate snapshot of f (x, t) for all devices x ∈ N, at a

particular time t, and averaged over the last t∆ seconds.

NETWORK SAMPLE SEQUENCE — A chain of network sam-

ples that sample f (x, t) over increments of t∆, where t∆ is

bounded by the measurement granularity of the system.

Any traffic pattern can be described in these terms. For the

network in Figure 1a, the all-to-all pattern in Figure 1b is

one example. Another is chronic stragglers, which we can

describe as a transition between two configurations, assuming

a load balanced network: (1) all switches at high utilization

and (2) only l1, l2 and s1 at high utilization; or the same but

replacing s1 with s2.

We can perform a similar exercise for all of the many (pos-

sibly application-specific) traffic patterns in the literature,

e.g., rack-level hotspots in data centers [24, 29, 44, 58], syn-

chronized behavior of distributed applications [9, 20, 67], and

stragglers in data-intensive applications [21, 41, 43]. We do

the same for the link- and switch-level traffic patterns that are

the focus of most existing automated profiling tools [1–6, 30].

While not necessarily the way these patterns were described

originally, sequences of network samples provide a general

primitive with which we can represent arbitrary patterns.

3 tpprof Design Overview

Our goal in this paper is the design and implementation of a

profiler for network and application-specific traffic patterns.

Our system, tpprof, is intended to identify traffic patterns,

rank them in prevalence, and assist network operators in mon-

itoring for their recurrence. Like other profiling tools, tpprof

is not intended to improve networks directly; rather, its fo-

cus is on assisting users with designing, understanding, and

optimizing them.

On that note, we take inspiration from traditional sampling

profilers like gprof [27], Oprofile [22], and Valgrind [48].

These profilers take an unmodified application and they peri-

odically sample system state (e.g., stack traces) to produce a

statistical profile of the target application. Early instantiations

solely sampled program counters; over time, they expanded to

capture trends in function utilization and call graph traversal.

tpprof uses a similar approach to construct profiles of

traffic patterns. To that end, network samples and sequences

of samples present an attractive substrate. In principle, a se-

quence of network samples creates a statistical profile of an

application’s network utilization. Unfortunately, these sam-

ples are unlikely to ever repeat: small differences in applica-

tion processing time, workload, and background traffic can

cause substantive differences in traffic, as can slight noise

in the sampling frequency of the measurement framework.

Extracting patterns from raw samples is challenging.

Core abstractions. To address this challenge, we introduce

two additional abstractions:

Switch

Polling & Batching

Switch

Polling & Batching

Switch

Polling & Batching

Aggregator

Scoring

Engine

Profile

Generator

Alerts Traffic Patterns

Figure 2: The overall architecture of tpprof. tpprof polls,

batches, and aggregates switch counters from the network.

These are fed into (1) a scoring engine that alerts on detection

of known patterns and (2) a profile generator that extracts

common traffic patterns from the gathered trace.

NETWORK STATE — A class of network samples defined by

a single, n-device network sample, S, and n variance val-

ues, v̄ such that S is a centroid of the multivariate normal

distribution with shape defined by v̄.

NETWORK STATE SUBSEQUENCES — A class of sequences

of network states that allows for bounded repetition of

states. A state subsequence can be represented as a regular

expression or finite state automata of network states.

Multiple network samples can be mapped to a single net-

work state and multiple sample sequences can be mapped to

a single state subsequence. These abstractions are tolerant to

noise by design: variations of link utilization from sample to

sample are smoothed by our method of extracting network

states; variations in the evolution of those samples over time

are smoothed by our method of extracting subsequences. The

precise construction of both of the above elements is described

in Sections 5.1 and 5.2.

Components. tpprof consists of three primary components:

1. A configurable sampling framework that periodically

samples the device-level utilization of a specified applica-

tion, set of applications, or the full network (Section 4).

2. A profiling tool for the automatic extraction and visualiza-

tion of the most common states and state subsequences

in the captured data (Section 5).

3. An alerting system that scores incoming traces against a

set of user-defined patterns using a fuzzy string search in

order to facilitate network automation (Section 6).

Of the above, only (1) affects the network itself; (2) and

(3) occur out-of-band. As such, the overhead of tpprof is

minimal: in the case of an non-application-specific traffic

pattern, little is required beyond an SNMP poller; application-

specific patterns only require simple iptables and switch

configuration changes on top of that.

Our current implementation leverages programmable

switches and a recently proposed network-wide monitoring

framework [63]. This provides slightly more control and ac-

curacy than an implementation based on top of traditional

3

switches, but it is not a strict requirement; we detail both

approaches in Section 4.

Workflow. tpprof profiles production networks. A typical

workflow thus proceeds as follows. First, users specify three

configuration parameters: the start time a, the end time b,

and the sampling interval i. The network can optionally be

configured to track certain applications separately. Regardless,

a centralized service periodically polls the byte counters of

the entire network between time a and b, with interval i.

The centralized service will stream the data through a set

of scoring algorithms that quantify the prevalence of a set

of target patterns in the measured trace. If the score of the

trace exceeds a threshold for a given pattern, an alert will be

generated. By default, the measurement data is not stored.

This changes when users request a profile, i.e., a visualiza-

tion, of common traffic patterns in the network. In this case,

raw network samples are stored for a specified profiling dura-

tion for clustering and analysis. The resulting profile can be

used to construct additional pattern alerts or analyzed sepa-

rately. The remainder of this paper describes each of the three

components of tpprof in more detail.

4 Sampling Framework

tpprof’s sampling framework continually polls a custom set

of switch counters to capture traffic patterns. Most produc-

tion networks already implement some form of this—tpprof

can piggyback on these existing polling suites. tpprof is,

however, parameterized by at least two configuration options.

• Application filters: To profile application-specific traffic

patterns, users must provide a proper filter for the traffic

in question. In tpprof, this takes the form of iptables

rules. Any filter that can be expressed as an iptables

rule is allowed. Thus, multiple applications can be cap-

tured by a single filter and different flows from the same

application can be split into different filters by port, packet

type, etc. All traffic matching installed filters are marked

with a special set of bits, e.g., in the DSCP field of the

packet header. We term the value of these bits a filterid.

• Sampling interval: Users must also specify an interval,

t∆, at which tpprof’s sampling framework will poll all

devices in the network. This interval is common to the

entire system, so the network and all application-specific

traffic patterns will be read at this rate. Though this is a

user-defined value, we anticipate that it should be set to

the minimum value feasible for the target network without

incurring sample loss. We note that, because the raw data

is discarded after alert pattern matching, measurement

data storage capacity is not a bottleneck in tpprof.

4.1 Counter Implementation and Sampling

Network devices in a tpprof-enabled network track a set of

device-level application-specific byte counters corresponding

to the space of possible filterids. For every packet traversing

the switch, the counter associated with the specified filterid is

incremented by the size of the packet; all categories summed

will give the cumulative byte counter of the device. In this

design, the network is never reconfigured; instead, users asso-

ciate applications to filterids directly through the iptables

rules at every end host.

tpprof samples these counters at an interval of t∆ via a

recently proposed measurement primitive, Speedlight. For

brevity, we omit the details of its operation and refer inter-

ested readers to its non-channel-state variant [62, 63]. At a

high level, the primitive is that of a synchronized, causally con-

sistent snapshot of network-wide switch counters. Compared

to SNMP and other naïve polling tools, Speedlight provides

increased accuracy and low minimum sampling interval, both

of which are useful when profiling network traffic patterns.

Alternative implementations. We note that, at its core, the

only requirement of tpprof is for configurable counters and

a method to periodically poll all such counters in the network.

There are other implementations that satisfy this requirement.

For instance, most modern switches typically include sup-

port for configurable ACL entries with per-entry counters.

This approach has the advantage that it can be implemented

without end host cooperation. Class of Service (CoS) coun-

ters are similarly promising. Note that, if application-specific

tracking is not required, periodic SNMP polling is sufficient.

4.2 Batching and Aggregation

While it is possible to directly transmit polled counter results

to a centralized profiling service, the scale of measurement

data collected by tpprof necessitates careful handling. In

particular, there are two issues we must address: decreasing

overhead and handling sample loss.

For the first, to decrease the number of messages and the

overhead per sample, tpprof agents running on each network

device assemble results locally before shipping batches of

size B in the following format:

sampleBatch: {

switch: <SWITCH_ID>,

indexes: [i : <SAMPLE_ID> for i from 0 to B],

app1_bytes: [i : <BYTE_COUNT> for i from 0 to B],

...

appM_bytes: [i : <BYTE_COUNT> for i from 0 to B]}

indexes[k] and *_bytes[k] should correspond to a sin-

gle network sample. Gaps in the samples, e.g., from failures

or measurement packet drops, will manifest as gaps in the

indexes array. In these cases, tpprof attempts to interpolate

values by taking the difference between byte counters before

and after any gap and averaging the difference over the length

of the gap. If the device has rebooted or if it stays down for too

long, we will treat the device as ‘failed’ during the missing

measurement intervals. ‘Failed’ devices are excluded from

4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

V
a

ri
a

n
c
e

 E
x
p

la
in

e
d

Number of PCA Dimensions

Figure 3: Covariance explained by different numbers of PCA

dimensions. Dataset is a trace of utilization over 48 ToR

switches in a Facebook frontend cluster.

profiling and treated as wildcards during alerting. Note that

reboots are also excluded from interpolation as we do not

know how much traffic was sent before the counter was reset.

Storing data for profiling. While tpprof does not store raw

counter values in the common case, raw values are necessary

for generating profiles. Profiles are, therefore, executed on-

demand using the API:

start_profile(start, end, filter_id)

The duration of collection should be long enough to capture a

representative slice of behavior. In general, longer is better,

but this may be subject to limitations of sample storage space

and the user’s timeline. filter_id=−1 indicates the sum

of all application-specific counters.

5 The tpprof Profiling Tool

We first discuss how tpprof extracts and ranks traffic pat-

terns before delving into the scoring and alerting system in

Section 6. To that end, the output of the previous subsec-

tion (4.2) is a network sample sequence, i.e., a sequence of

n-device samples of network utilization. Using that, the out-

put of the tpprof profiler is a ranked list of network states

and a ranked list of state subsequences, as sketched by Fig-

ure 1b and demonstrated in Section 7. tpprof achieves this

using a pair of domain-specific clustering techniques that are

designed to capture first-order patterns in network traffic.

5.1 Network States

The first challenge in identifying meaningful traffic patterns

is the inherent noise present in a trace of network samples.

Small variations in workload, TCP effects, background traffic,

or any number of other factors mean that, most likely, no two

network samples will look exactly alike.

To de-noise the data, tpprof summarizes network samples

into a small number of distinct network states. We can natu-

rally frame this as a clustering problem, where the points to

be clustered are the n-element vectors representing network

samples. Clustering has been used to great effect in a number

of fields, from image segmentation to recommendation sys-

tems and anomaly detection; each of these has its own set of

challenges and associated clustering algorithms.

Network state extraction is no different in that regard. In

this work, we leverage empirical analysis of a variety of appli-

cations and traces to identify and design algorithms suited to

the domain. Applications observed include Hadoop, Giraph,

TensorFlow, Spark, Memcache, and a trace from a production

Facebook frontend cluster (see Section 7 for their details).

Dimensionality reduction. Before delving into tpprof’s

clustering algorithm, we note that, in general, networks

present a particular challenge to clustering because of their

high device counts. Profiling the ToRs of a 48-rack data center

cluster, for instance, might result in a 48-feature input vector,

which prior work has indicated might be too many dimensions

for typical distance metrics [17].

The general solution to this well known ‘curse of di-

mensionality’ [15] is transforming the data into a lower-

dimensional space before clustering. The simplest approach

is to cluster on only a subset of features. While this works

in other domains, it is not well suited for our problem be-

cause the load on every device may be important. Instead,

tpprof preprocesses data with Principle Component Analy-

sis (PCA) [25], which derives a small set of features that are

an orthogonal linear transformation of the original features.

Said differently, PCA removes redundancies in the original

data by creating a new set of independent features that explain

most of the variability in the original data.

PCA is most effective when features are strongly corre-

lated, and there is good reason to believe that this is true in

our domain. Recent work [21] shows that network usage is

highly correlated, driven by the data-parallelism in distributed

systems [31, 65]. Analysis of the Facebook traffic trace ver-

ifies this: each ToR had strong and statistically significant

correlations (r > .7, p < .001) with an average of 3.25 other

ToRs. The applications we profiled showed similar results.

Figure 3 measures the effect of PCA on that data, gauged

by plotting the number of PCA dimensions (i.e., features) ver-

sus explained variance. All other traces we obtained showed

similar results. A value of 1 means that a PCA transformation

to K dimensions preserved all the information contained in

the original data with 48 dimensions. Even for this large and

complex trace, one dimension already explains over 80% of

the variance and two dimensions explain ∼85%. Striking a

balance between clustering efficacy and explained variance,

tpprof projects all data into 2D by default. This can be ad-

justed depending on the data.

Gaussian Mixture Models (GMMs) for sample classifi-

cation. tpprof clusters around typical network variations

through its use of GMMs. To demonstrate this effect, we con-

sider the 2D PCA projections described above and visualized,

for our set of profiled applications and traces, in Figure 4. To

help interpret points in the PCA space, we also plot network

load at 4 extreme waypoints along the convex hull of each

trace. We observe two general cluster shapes in the projected

5

〈signature〉 ::= { (〈target state set〉) ; 〈target sequence〉 }

〈target state set〉 ::= 〈target state〉 , 〈target state set〉

〈target state〉 ::= ~utilization

〈target sequence (P)〉 ::= 〈target state〉 | ~〈P〉
| 〈P〉∧〈P〉 | 〈P〉∨〈P〉
| 〈P〉∗ | 〈P〉{ min repetitions , max repetitions}

Figure 8: Definition of a traffic pattern signature.

figuration [69] into the network. Specifically, we configured

one of the ToR switches to only use the left spine; otherwise,

the workload is identical to Figure 7a. Figure 7b shows the

output of our tpprof’s Python-based visualizer. An operator

comparing this profile to that of the baseline would be able to

see the new and stark differences between the two spines in

all states with load and conclude that ECMP was not doing

its job. While imbalance can also be due to elephant flows

and hash collisions, the fact that this happens consistently and

always with the same spine points to a structural issue.

5.3.2 Case Study #2: Debugging a Noisy Neighbor

As another case study, we use tpprof to debug an apparent

straggler in the system. In this experiment, we add a heavy

background flow between two hosts connected to the lower-

left leaf, l1. Figure 7c shows the profile in question. From this

profile, an operator can observe that, in 5–10% of samples,

there is a slight bias toward l1 while the other leaf is largely

un-utilized. These samples are summarized in the right two

network states. If the operator is expecting an even all-to-all

pattern like the one in Figure 7a, these states would lead her

to suspect that a task in the system is straggling.

tpprof’s ability to profile concurrent applications indepen-

dently can also help to diagnose this issue. In particular, she

can view the profile of non-memcache traffic present during

the same profiling period. In this case, tpprof would provide

her with Figure 7d, which clearly shows a competing flow or

set of flows within l1.

6 Traffic Pattern Scoring

The tpprof components described in prior sections allow

users to profile their networks and find prominent traffic pat-

terns. In many cases, after finding certain patterns, users are

likely to want to know if (or when) they occur in the future.

The tpprof traffic pattern scoring engine solves this problem.

The key challenge is designing both a language that makes

it simple for users to specify pattern signatures and also an

algorithm efficient enough to detect those patterns in realtime.

Traffic pattern signatures. A traffic pattern signature de-

scribes the approximate spatial and temporal characteristics

of a traffic pattern. It is defined by the grammar in Figure 8

and has two components.

• A set of target network states describe the approximate

samples that are likely to be observed during the traffic

Target state set S1 S2 S3

Target pattern (P) (S1)* (S3) (S1)

S1 S3 S1 accept

state

start

state

Figure 9: An example traffic pattern signature that detects a

synchronized all-to-all burst.

pattern. These can be generated from prior profiling runs

or manually specified.

• A target subsequence, written as a regular expression, that

estimates how the network transitions between the target

states during the pattern.

As an example, Figure 9 illustrates a signature to detect a

synchronized all-to-all burst of traffic in our example topology.

The target states in the signature are: S1, 0% utilization on all

links; S2, 50% utilization on all links; and S3, 100% utilization

on all links. The signature’s target subsequence is, thus, one

in which the network is in S1 before transitioning to S3 (i.e.,

high, all-to-all utilization) and immediately going back to S1,

signaling a quick end to the all-to-all utilization.

Scoring signatures. tpprof’s Traffic Pattern Score (TPS)

algorithm quantifies a signature’s prominence in a network

sample sequence by finding and scoring subsequences that are

similar to it. This amounts to a streaming fuzzy string search.

Figure 10 illustrates the scoring algorithm for the all-to-all

signature in Figure 9, while Figure 11 provides psuedocode

of our streaming implementation. There are three steps.

1. State matching: The TPS algorithm first maps each in-

coming sample to the most similar target state, transform-

ing the stream of samples into an intermediate stream.

2. Pattern matching: It then scans the intermediate stream

for the target subsequence using a finite automata [34].

A match occurs when the automaton reaches an accept

state, at which point it is executed in reverse to identify

the start point of the longest matching subsequence.

3. Match scoring: A match indicates that the exact target

subsequence has been found in the intermediate stream;

however, how this relates to the underlying sample stream

is unclear. Thus, the final step is to score match strength

by calculating the average similarity between the two

streams during the subsequence.

Writing signatures. There are two sources for signatures.

First, they can be automatically generated by the profiler, from

the network state subsequences it identifies. This allows the

TPS algorithm to automatically identify future reoccurrences

of events identified with the tpprof profiler.

Second, users can manually write signatures that charac-

terize the most important attributes of a traffic pattern. Since

TPSes use a fuzzy algorithm, patterns do not need to be ex-

act. Instead, they can be defined programmatically. With the

9

Snapshot

trace

State

matching

Pattern

matching

Scoring

S1
75%

S3
50%

S1
100%

S2
50%

S1
90%

S3
75%

S1
75%

P1
.75 + .75 + 1.00 = 2.5

P2
.5 + .75 = 1.25

Total score:
(Similarity[P1] + Similarity[P2])

|Trace|
=

(2.5 + 1.25)

|7|
= 0.54

1 2 3 4 5 6 7

State:

Similarity:

Pattern:

Similarity:

Figure 10: Matching and scoring a sample trace against the

all-all signature in Figure 9.

1 signature← (targetStates,regexp)
2 Function TPSGrep(signature, sampleStream):

3 Initialize matchStream

4 compile_patterns(matchStream)

5 scoreBuf←[]

6 offset← 0

7 for each (sample, timestamp) in trafficPattern do

8 /* Identify most similar target state.*/

9 stateSymbol← nearestNeighbor(sample,targetStates)

10 similarity← |netState− sample|
11 /* Track scores for up to BUF_LIM of the last samples. */

12 scoreBuf.append(score)

13 if len(scoreBuf)>BUF_LIM then

14 scoreBuf.pop()

15 offset← offset+1

16 /*Invoke HyperScan to update stream. */

17 (begin,end) = scan(matchStream, stateSymbol)

18 /*If a match occurred, calculate and emit a score. */

19 if end 6= NULL then

20 emit sum(scoreBuf[begin-offset:end-offset]

Figure 11: The streaming TPS algorithm.

three primitives described below, users can express simple

but powerful signatures.

• State definition, e.g., (x:v, y:u), which defines a state

with switch x having utilization v and switch y having

utilization u.

• Set assignment, e.g., X:v. This sets every switch x ∈ X to

utilization value v.

• Iteration (over sets or switches) e.g., {(x:v) for x ∈
X}, which defines a set of states: one state for each switch

in X, defining that switch to utilization value v.

Table 1 lists five example signatures written with these

primitives. We evaluate them later in Section 7.3.

7 Implementation and Evaluation

tpprof is implemented in Python/C++ as a standalone ser-

vice that aggregates samples, profiles them, and scores them

for the presence of known traffic patterns, as described in

the previous sections. Each of the profiles shown in this sec-

tion is a real output of tpprof, generated programmatically

Pattern Signature State Definitions

Short all-all S∗1S2{1,10}S1 {S1}=N:0.0,{Ss}=N:0.5

Long all-all S∗1S2{10,100}S1 {S1}=N:0.0,{Ss}=N:0.5

Hotspots (S1|S2|S3|S4){10,100} {S1, ..., S4}={(x:1.0, -x:0.0)

for x ∈ N}

Imbalance S∗1|S
∗
2 {S1,S2}={(x:1.0, -x:0.0)

for x ∈ (s1, s2)}

Stragglers (S1|S2|S3)
∗S3 {S1,S2,S3}={(l1:v, -l1:0.0)

for v ∈ (0.1,0.01,0.0)}

Table 1: Traffic pattern signatures for a leaf-spine network N

with spines (s1, s2) and leaves (l1, l2).

using Python and Matplotlib 3.1.1. The requisite counters

and polling/batching components that run on each device are

implemented in P4 and Python, respectively. Traffic Pattern

Scoring is implemented in C++ using hyperscan [34].

Hardware testbed. To verify the utility of tpprof and its

outputs, we used it to profile and score the traffic patterns of

real applications running on a small hardware testbed consist-

ing of a Barefoot Wedge100BF-32X programmable switch

connected to six servers with Intel(R) Xeon(R) Silver 4110

CPUs via 25 GbE links. The testbed is configured to emu-

late a small leaf-spine cluster like the one in Figure 1a. To

implement this network, we split the Wedge100BF switch

into 4 fully isolated logical switches. Each logical switch runs

ECMP to balance load across paths.

Application workloads. On our hardware tested, we profile

four popular networked applications, in addition to the mem-

cache evaluation in Section 5.3:

1. Hadoop running a TeraSort [11] benchmark workload

with 5B rows of data. Our Hadoop instance ran version

2.9.0 with YARN [12] on 10 mappers and 8 reducers

spread across the 5 servers (and 1 master).

2. Spark’s GraphX [13] running a connected components

benchmark workload with 1.24M vertices. We ran Spark

2.2.1 with Yarn on 5 servers (and 1 master).

3. Giraph [10] running a PageRank synthetic benchmark

workload with 120,000 vertices and 3,000 edges on each

vertex. We used 23 workers in total across our 6 servers.

4. TensorFlow running the AlexNet [38] image processing

model with 1 server managing parameters and 5 workers.

We used ILSVRC 2012 data for training.

Unless otherwise specified, these applications were run in

the presence of background TCP traffic derived from a well-

known trace of a large cluster running data mining jobs [8].

Profiles are of the target application only.

Large-scale trace. To augment our small testbed, we also

profile packet traces of 48 Top-of-Rack switches from three of

Facebook’s production clusters: a frontend cluster, a database

cluster, and a Hadoop cluster. As the datasets are sampled

by a factor of 30,000, we divide the timestamps by 30,000

10

[6] https://aws.amazon.com/blogs/security/tag/

network-monitoring-tools/.

[7] http://docs.libmemcached.org/bin/memaslap.html.

[8] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jiten-

dra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta,

and Murari Sridharan. Data center tcp (dctcp). In Proceedings

of the ACM SIGCOMM 2010 Conference, SIGCOMM ’10,

pages 63–74, New York, NY, USA, 2010. ACM.

[9] Dormando Anatoly Vorobey, Brad Fitzpatrick. Memcached,

2009.

[10] Apache Software Foundation. Giraph, 2012.

[11] Apache Software Foundation. Hadoop, terasort, 2012.

[12] Apache Software Foundation. Hadoop, yarn, 2012.

[13] Apache Software Foundation. Spark, 2016.

[14] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker.

Control plane compression. In Proceedings of the 2018 Con-

ference of the ACM Special Interest Group on Data Communi-

cation, SIGCOMM ’18, pages 476–489, New York, NY, USA,

2018. ACM.

[15] Richard E Bellman. Adaptive control processes: a guided tour.

Princeton university press, 2015.

[16] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming

Zhang. Understanding data center traffic characteristics. SIG-

COMM Comput. Commun. Rev., 40(1):92–99, January 2010.

[17] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and

Uri Shaft. When is “nearest neighbor” meaningful? In

Catriel Beeri and Peter Buneman, editors, Database Theory —

ICDT’99, pages 217–235, Berlin, Heidelberg, 1999. Springer

Berlin Heidelberg.

[18] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and

Jörg Sander. Lof: Identifying density-based local outliers. In

Proceedings of the 2000 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’00, page 93–104,

New York, NY, USA, 2000. Association for Computing Ma-

chinery.

[19] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Lev-

enthal. Dynamic instrumentation of production systems. In

Proceedings of the Annual Conference on USENIX Annual

Technical Conference, ATEC ’04, pages 2–2, Berkeley, CA,

USA, 2004. USENIX Association.

[20] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and

Anthony D. Joseph. Understanding tcp incast throughput col-

lapse in datacenter networks. In Proceedings of the 1st ACM

Workshop on Research on Enterprise Networking, WREN ’09,

pages 73–82, New York, NY, USA, 2009. ACM.

[21] Mosharaf Chowdhury and Ion Stoica. Coflow: A networking

abstraction for cluster applications. In Proceedings of the 11th

ACM Workshop on Hot Topics in Networks, HotNets-XI, pages

31–36, New York, NY, USA, 2012. ACM.

[22] W.E. Cohen. Tuning programs with oprofile. Wide Open

Magazine, 1:53–62, 01 2004.

[23] William HE Day and Herbert Edelsbrunner. Efficient algo-

rithms for agglomerative hierarchical clustering methods. Jour-

nal of classification, 1(1):7–24, 1984.

[24] Nathan Farrington, George Porter, Sivasankar Radhakrishnan,

Hamid Hajabdolali Bazzaz, Vikram Subramanya, Yeshaiahu

Fainman, George Papen, and Amin Vahdat. Helios: A hybrid

electrical/optical switch architecture for modular data centers.

In Proceedings of the ACM SIGCOMM 2010 Conference, SIG-

COMM ’10, pages 339–350, New York, NY, USA, 2010. ACM.

[25] Karl Pearson F.R.S. LIII. on lines and planes of closest fit to

systems of points in space. The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science, 2(11):559–

572, 1901.

[26] Gigamon. Security and networking solutions | gigamon, 2018.

[27] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick.

Gprof: A call graph execution profiler. In Proceedings of

the 1982 SIGPLAN Symposium on Compiler Construction,

SIGPLAN ’82, pages 120–126, New York, NY, USA, 1982.

ACM.

[28] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang,

Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua

Chen, Zhi-Wei Lin, and Varugis Kurien. Pingmesh: A large-

scale system for data center network latency measurement and

analysis. In Proceedings of the 2015 ACM Conference on

Special Interest Group on Data Communication, SIGCOMM

’15, pages 139–152, New York, NY, USA, 2015. ACM.

[29] Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir

Bahl, and David Wetherall. Augmenting data center networks

with multi-gigabit wireless links. In Proceedings of the ACM

SIGCOMM 2011 Conference, SIGCOMM ’11, pages 38–49,

New York, NY, USA, 2011. ACM.

[30] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar,

David Mazières, and Nick McKeown. I know what your packet

did last hop: Using packet histories to troubleshoot networks.

In 11th USENIX Symposium on Networked Systems Design

and Implementation NSDI 14, pages 71–85, Seattle, WA, 2014.

USENIX Association.

[31] W Daniel Hillis and Guy L Steele Jr. Data parallel algorithms.

Communications of the ACM, 29(12):1170–1183, 1986.

[32] Moritz Hoffmann, Andrea Lattuada, John Liagouris, Vasiliki

Kalavri, Desislava Dimitrova, Sebastian Wicki, Zaheer Chothia,

and Timothy Roscoe. Snailtrail: Generalizing critical paths

for online analysis of distributed dataflows. In 15th USENIX

Symposium on Networked Systems Design and Implementa-

tion (NSDI 18), pages 95–110, Renton, WA, 2018. USENIX

Association.

[33] R. Hofmann, R. Klar, B. Mohr, A. Quick, and M. Siegle. Dis-

tributed performance monitoring: methods, tools, and applica-

tions. IEEE Transactions on Parallel and Distributed Systems,

5(6):585–598, June 1994.

[34] Intel. https://www.hyperscan.io/.

[35] Anil K. Jain. Data clustering: 50 years beyond k-means. Pat-

tern Recognition Letters, 31(8):651 – 666, 2010. Award win-

ning papers from the 19th International Conference on Pattern

Recognition (ICPR).

[36] Yu Jin, Esam Sharafuddin, and Zhi-Li Zhang. Unveiling

core network-wide communication patterns through applica-

tion traffic activity graph decomposition. In Proceedings of

14

the Eleventh International Joint Conference on Measurement

and Modeling of Computer Systems, SIGMETRICS ’09, page

49–60, New York, NY, USA, 2009. Association for Computing

Machinery.

[37] David Josephsen. Building a Monitoring Infrastructure with

Nagios. Prentice Hall PTR, Upper Saddle River, NJ, USA,

2007.

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-

genet classification with deep convolutional neural networks.

In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012.

[39] Anukool Lakhina, Mark Crovella, and Christiphe Diot. Char-

acterization of network-wide anomalies in traffic flows. In

Proceedings of the 4th ACM SIGCOMM Conference on In-

ternet Measurement, IMC ’04, page 201–206, New York, NY,

USA, 2004. Association for Computing Machinery.

[40] Will E. Leland, Murad S. Taqqu, Walter Willinger, and

Daniel V. Wilson. On the self-similar nature of ethernet traf-

fic (extended version). IEEE/ACM Trans. Netw., 2(1):1–15,

February 1994.

[41] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D.

Gribble. Tales of the tail: Hardware, os, and application-level

sources of tail latency. In Proceedings of the ACM Symposium

on Cloud Computing, SOCC ’14, pages 9:1–9:14, New York,

NY, USA, 2014. ACM.

[42] Inc. Lightstep. Lightstep [x]pm, 2019.

[43] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and

Thomas Anderson. F10: A fault-tolerant engineered network.

In Proceedings of the 10th USENIX Conference on Networked

Systems Design and Implementation, NSDI’13, pages 399–412,

Berkeley, CA, USA, 2013. USENIX Association.

[44] Vincent Liu, Danyang Zhuo, Simon Peter, Arvind Krishna-

murthy, and Thomas Anderson. Subways: A case for redun-

dant, inexpensive data center edge links. In Proceedings of the

11th ACM Conference on Emerging Networking Experiments

and Technologies, CoNEXT ’15, pages 27:1–27:13, New York,

NY, USA, 2015. ACM.

[45] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas

Sekar, and Vladimir Braverman. One sketch to rule them

all: Rethinking network flow monitoring with univmon. In

Proceedings of the 2016 ACM SIGCOMM Conference, SIG-

COMM ’16, pages 101–114, New York, NY, USA, 2016. ACM.

[46] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John)

Janakiraman, and Willy Zwaenepoel. Diagnosing performance

overheads in the xen virtual machine environment. In Pro-

ceedings of the 1st ACM/USENIX International Conference on

Virtual Execution Environments, VEE ’05, pages 13–23, New

York, NY, USA, 2005. ACM.

[47] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin

Vahdat. Trumpet: Timely and precise triggers in data cen-

ters. In Proceedings of the 2016 ACM SIGCOMM Conference,

SIGCOMM ’16, pages 129–143, New York, NY, USA, 2016.

ACM.

[48] Nicholas Nethercote and Julian Seward. Valgrind: A frame-

work for heavyweight dynamic binary instrumentation. In

Proceedings of the 28th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’07,

pages 89–100, New York, NY, USA, 2007. ACM.

[49] Barefoot Networks. Barefoot deep insight – product brief,

2018.

[50] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker,

and Byung-Gon Chun. Making sense of performance in data

analytics frameworks. In Proceedings of the 12th USENIX

Conference on Networked Systems Design and Implementation,

NSDI’15, pages 293–307, Berkeley, CA, USA, 2015. USENIX

Association.

[51] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-

cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blon-

del, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.

Scikit-learn: Machine learning in python. Journal of machine

learning research, 12(Oct):2825–2830, 2011.

[52] Remi Philippe. Next generation data center flow telemetry.

Technical report, Cisco, 2016.

[53] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne

Wong, Hank Levy, Brian Bershad, and Brad Chen. Instru-

mentation and optimization of win32/intel executables using

etch. In Proceedings of the USENIX Windows NT Workshop

on The USENIX Windows NT Workshop 1997, NT’97, pages

1–1, Berkeley, CA, USA, 1997. USENIX Association.

[54] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and

Alex C. Snoeren. Inside the social network’s (datacenter)

network. In Proceedings of the 2015 ACM Conference on

Special Interest Group on Data Communication, SIGCOMM

’15, pages 123–137, New York, NY, USA, 2015. ACM.

[55] Bong K. Ryu and Anwar Elwalid. The importance of long-

range dependence of vbr video traffic in atm traffic engineering:

Myths and realities. In Conference Proceedings on Applica-

tions, Technologies, Architectures, and Protocols for Computer

Communications, SIGCOMM ’96, pages 3–14, New York, NY,

USA, 1996. ACM.

[56] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath

Raghavan. Finding a" kneedle" in a haystack: Detecting knee

points in system behavior. In 2011 31st international con-

ference on distributed computing systems workshops, pages

166–171. IEEE, 2011.

[57] Sameer S. Shende and Allen D. Malony. The tau parallel

performance system. The International Journal of High Per-

formance Computing Applications, 20(2):287–311, 2006.

[58] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby

Armistead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Fel-

derman, Paulie Germano, Anand Kanagala, Jeff Provost, Jason

Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle, Stephen

Stuart, and Amin Vahdat. Jupiter rising: A decade of clos

topologies and centralized control in google’s datacenter net-

work. In Proceedings of the 2015 ACM Conference on Spe-

cial Interest Group on Data Communication, SIGCOMM ’15,

pages 183–197, New York, NY, USA, 2015. ACM.

[59] Ningombam Anandshree Singh, Khundrakpam Johnson Singh,

and Tanmay De. Distributed denial of service attack detection

15

using naive bayes classifier through info gain feature selection.

In Proceedings of the International Conference on Informatics

and Analytics, ICIA-16, New York, NY, USA, 2016. Associa-

tion for Computing Machinery.

[60] Amitabh Srivastava and Alan Eustace. Atom: A system for

building customized program analysis tools. In Proceedings

of the ACM SIGPLAN 1994 Conference on Programming Lan-

guage Design and Implementation, PLDI ’94, pages 196–205,

New York, NY, USA, 1994. ACM.

[61] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang

Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig. Elastic sketch:

Adaptive and fast network-wide measurements. In Proceedings

of the 2018 Conference of the ACM Special Interest Group on

Data Communication, SIGCOMM ’18, pages 561–575, New

York, NY, USA, 2018. ACM.

[62] Nofel Yaseen, John Sonchack, and Vincent Liu. Speedlight

bmv2, 2018.

[63] Nofel Yaseen, John Sonchack, and Vincent Liu. Synchronized

network snapshots. In Proceedings of the 2018 Conference

of the ACM Special Interest Group on Data Communication,

SIGCOMM ’18, pages 402–416, New York, NY, USA, 2018.

ACM.

[64] Marco Zagha, Brond Larson, Steve Turner, and Marty

Itzkowitz. Performance analysis using the mips r10000 per-

formance counters. In Proceedings of the 1996 ACM/IEEE

Conference on Supercomputing, Supercomputing ’96, Wash-

ington, DC, USA, 1996. IEEE Computer Society.

[65] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott

Shenker, and Ion Stoica. Spark: Cluster computing with work-

ing sets. HotCloud, 10(10-10):95, 2010.

[66] Jiong Zhang and Mohammad Zulkernine. Anomaly based

network intrusion detection with unsupervised outlier detec-

tion. 2006 IEEE International Conference on Communications,

5:2388–2393, 2006.

[67] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krish-

namurthy. High-resolution measurement of data center mi-

crobursts. In Proceedings of the 2017 Internet Measurement

Conference, IMC ’17, pages 78–85, New York, NY, USA, 2017.

ACM.

[68] Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick Duffield, and

Carsten Lund. Online identification of hierarchical heavy hit-

ters: Algorithms, evaluation, and applications. In Proceedings

of the 4th ACM SIGCOMM Conference on Internet Measure-

ment, IMC ’04, pages 101–114, New York, NY, USA, 2004.

ACM.

[69] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan

Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang,

Ben Y. Zhao, and Haitao Zheng. Packet-level telemetry in

large datacenter networks. In Proceedings of the 2015 ACM

Conference on Special Interest Group on Data Communication,

SIGCOMM ’15, pages 479–491, New York, NY, USA, 2015.

ACM.

16

	Introduction
	The Anatomy of a Traffic Pattern
	tpprof Design Overview
	Sampling Framework
	Counter Implementation and Sampling
	Batching and Aggregation

	The tpprof Profiling Tool
	Network States
	Network State Subsequences
	Example Visualization: memcached
	Case Study #1: Detecting Load Imbalance
	Case Study #2: Debugging a Noisy Neighbor

	Traffic Pattern Scoring
	Implementation and Evaluation
	Profiling More Complex Applications
	Profiling Large Production Networks
	Efficacy of the TPS Module
	Overhead and Performance of tpprof

	Related Work
	Discussion
	Conclusion

