tpprof: A Network Traffic Pattern Profiler

Nofel Yaseen
University of Pennsylvania
nyaseen@seas.upenn.edu

Abstract

When designing, understanding, or optimizing a computer
network, it is often useful to identify and rank common pat-
terns in its usage over time. Often referred to as a network
traffic pattern, identifying the patterns in which the network
spends most of its time can help ease network operators’ tasks
considerably. Despite this, extracting traffic patterns from a
network is, unfortunately, a difficult and highly manual pro-
cess.

In this paper, we introduce tpprof, a profiler for network
traffic patterns. tpprof is built around two novel abstrac-
tions: (1) network states, which capture an approximate snap-
shot of network link utilization and (2) traffic pattern sub-
sequences,which represent a finite-state automaton over a
sequence of network states. Around these abstractions, we
introduce novel techniques to extract these abstractions, a ro-
bust tool to analyze them, and a system for alerting operators
of their presence in a running network.

1 Introduction

When designing, understanding, or optimizing a computer
network, it is often useful to identify common patterns in
its usage over time. Often referred to as a network traffic
pattern, identifying the patterns in which the network spends
most of its time can result in useful insights:

o All-to-all traffic, which might manifest as uniform utiliza-
tion of all paths between a set of application nodes, might
suggest the importance of bisection bandwidth and guide
future provisioning decisions.

e Chronic stragglers, where we expect all-to-all traffic but a
significant amount of time is spent with only a few flows
active, might suggest the need for better sharding and
mitigation techniques.

e FElephant flow dominance, in which utilization is domi-
nated by isolated path-level hotspots, might guide future
provisioning decisions.

o Finally, synchronized requests/responses, indicated by re-
peated bursts of cross-network communication all orig-
inating at a single node, might motivate changes in the
application or network architecture.

While there are a number of existing tools that capture
flow- and switch-level trends (e.g., heavy hitter analysis [68],

John Sonchack
University of Pennsylvania
jsonch@seas.upenn.edu

Vincent Liu
University of Pennsylvania
liuv@seas.upenn.edu

Frequency

@

=8

@

(7]

O w

© &

[®)] [72]

g g

o O}(W) c

S . o

o . I}

To Hosts 3

(a) Network topology (b) Common Patterns
'@ 1@ AlertThreshold
b & L
i Al --- all-to-all
A ’,’ ‘\ I\ I,’\‘ — - stragglers
1Y, ! .
———— T — - — “: - k- l.-_—'l\-‘.-_-_—_- = -_" _“-_—:: imbalance

Time

(c) Traffic Pattern Scores
Figure 1: tpprof’s visualizations for b common traffic pat-
terns and c the TPS score over time for a simple leaf-spine
topology, a. We describe these in more detail later, but in b,
states are heatmaps of common utilization patterns over the
network in a; darker is hotter. Subsequences are common tran-
sition patterns between the aforementioned states. These are
ranked by their frequency of occurrence and their cumulative
coverage of the profiled run, respectively. The subsequence
shows an all-to-all pattern: the network starts unutilized (left
state), becomes fully utilized (right state) for 10s of samples,
then returns. In ¢, tpprof is tracking three different known
traffic patterns. When the score of any of them crosses the
alerting threshold (twice in the figure), tpprof deduces that
the pattern has occurred in the network.

network tomography [28], or the vast array of network ana-
lytics suites on the market [1-6,30]), identifying prevalent
network-level patterns typically requires a significant amount
of manual effort and specialized analyses. To determine the
presence of synchronized requests/responses, for instance, an
operator might need to instrument the start and stop times of
all flows in the system, correct for the time drift of different
machines, compute the cluster tendencies of the data (e.g.,
with a Hopkins statistic or heuristic), and distinguish it from
all-to-all traffic by examining the sources and destinations of
synchronized flows. To determine whether this pattern is a
particularly common one would require additional analyses.

Our goal in this work is a tool for the automatic identifica-
tion of the most prevalent traffic patterns in a network. To that
end, we present the design and implementation of tpprof, a
network traffic pattern profiler.

Similar to traditional application profilers like gprof [27]
or Oprofile [22] that have helped programmers understand
and improve their software for decades, tpprof automati-
cally measures, extracts, and ranks common traffic patterns of
individual applications within running networks. It also facili-
tates the monitoring of known patterns so that, when specific
patterns appear in the network, the operator is informed. It
does both of these things without modifying applications and
without affecting existing network traffic—the only changes
we require are to switch monitoring configurations. Examples
of both of the above tools in action are shown in Figure 1.

Traffic patterns are, unfortunately, significantly more chal-
lenging to profile than applications. Traditional profilers ben-
efit from well-defined building blocks (functions or lines of
code) connected by well-defined call graphs. In contrast, net-
works offer little such structure: switch and link utilizations
are noisy and measured in real values (Bps); their evolution
over time is even less constrained. In the end, two different
instances of something as simple as all-to-all traffic will never
look exactly the same.

Thus, tpprof is built around two novel abstractions: (1)
network states, which capture an approximate snapshot of
a network’s device-level utilization and (2) traffic pattern
subsequences, which represent a finite-state automaton over a
sequence of network states. As hinted above, subsequences
serve as both output and input to our system: output in the case
of profiling an existing network, input in the case of specifying
a traffic pattern alert. In both cases, classification of network
states and sub-sequences is approximate and implemented
through specialized clustering techniques.

We implement and deploy tpprof to a small hardware
testbed in order to monitor and profile the traffic patterns of
real distributed applications like memcache, Hadoop, Spark,
Giraph, and TensorFlow. We demonstrate that, using tpprof,
we can find meaningful patterns and issues in their behav-
ior. Further, we demonstrate tpprof’s utility on larger and
more complex networks by profiling a trace taken from one
of Facebook’s frontend clusters. While our evaluation focuses
on data center networks (where interesting and impactful dis-
tributed applications are plentiful), tpprof and its techniques
generalize to arbitrary networks.

Specifically, this paper makes the following contributions:

e Novel abstractions for describing common traffic pat-
terns: We introduce two abstractions, network states and
traffic pattern subsequences, that together enable network
operators to easily describe and reason about common
traffic patterns. Network states capture similar configura-
tions of approximate utilization of a specific application
or set of applications running in a network. Subsequences
are then strings of states with bounded repetition that

summarize traffic pattern changes over time.

e Domain-specific algorithms for clustering and rank-
ing both network states and subsequences: Through
empirical analysis of a variety of application traffic pat-
terns, we identify and design algorithms that transform
a network trace into the building blocks of traffic pat-
terns. Specifically, we demonstrate through PCA and way-
point analysis of real application traffic that GMMs are
well-suited to capturing first-order similarities between
different network utilization patterns. In the case of subse-
quences, we create a domain-specific clustering algorithm
that extracts sequences that are both common and that
provide broad coverage of the measured network traces.

e A language and mechanism for expressing and fuzzily
matching known traffic patterns in observed traces:
Finally, to complement the above, we develop a simple
grammar for describing traffic patterns and introduce an
algorithm that automatically identifies approximate oc-
currences of known traffic patterns within network traces.
Our scoring engine outputs a confidence score that can be
used to generate alerts when known traffic patterns appear
in observed traces.

Taken together, tpprof is, to the best of our knowledge,
the first profiling tool for network-wide traffic patterns. Our
implementation is in Python and the code is open source.'

2 The Anatomy of a Traffic Pattern

We begin by introducing the definitions and abstractions on
which tpprof is built. First and foremost, we define the over-
all traffic pattern of a network as follows:

NETWORK TRAFFIC PATTERN — A function f(x,7) that rep-
resents, for an entire network N across a time span [fo, 1],
the utilization of device x € N at time ty <1t <1fy.

We also define, for each application in the network:

APPLICATION-SPECIFIC TRAFFIC PATTERN — fa(x,t),
equivalent to the network traffic pattern, but only account-
ing for a single application or set of applications, A.

For the purposes of our clustering and ranking algorithms, the
distinction is unimportant; unless otherwise specified, we use
‘traffic pattern’ to refer to both. Instead, the choice of whether
to filter by application is entirely the user’s (with the mech-
anisms in Section 4); Regardless, for a given network and
overall workload, we note that the traffic pattern of both the
network and its constituent applications will typically exhibit
predictable and repeated characteristics given a sufficiently
long measurement period. These patterns can occur over short
time spans of individual packets and flows, or over longer time
spans in the form of diurnal or weekday/weekend effects.

A contribution of this paper is the decomposition of traffic
patterns into a more convenient low-level primitive:

"https://github.com/eniac/tpprof.

NETWORK SAMPLE — |N| real values that capture an ap-
proximate snapshot of f(x,z) for all devices x € N, at a
particular time ¢, and averaged over the last #4 seconds.

NETWORK SAMPLE SEQUENCE — A chain of network sam-
ples that sample f(x,7) over increments of ¢z, where 7 is
bounded by the measurement granularity of the system.

Any traffic pattern can be described in these terms. For the
network in Figure 1a, the all-to-all pattern in Figure 1b is
one example. Another is chronic stragglers, which we can
describe as a transition between two configurations, assuming
a load balanced network: (1) all switches at high utilization
and (2) only /1, I, and s at high utilization; or the same but
replacing s; with s;.

We can perform a similar exercise for all of the many (pos-
sibly application-specific) traffic patterns in the literature,
e.g., rack-level hotspots in data centers [24,29,44,58], syn-
chronized behavior of distributed applications [9, 20, 67], and
stragglers in data-intensive applications [21,41,43]. We do
the same for the link- and switch-level traffic patterns that are
the focus of most existing automated profiling tools [1-6,30].

While not necessarily the way these patterns were described
originally, sequences of network samples provide a general
primitive with which we can represent arbitrary patterns.

3 tpprof Design Overview

Our goal in this paper is the design and implementation of a
profiler for network and application-specific traffic patterns.
Our system, tpprof, is intended to identify traffic patterns,
rank them in prevalence, and assist network operators in mon-
itoring for their recurrence. Like other profiling tools, tpprof
is not intended to improve networks directly; rather, its fo-
cus is on assisting users with designing, understanding, and
optimizing them.

On that note, we take inspiration from traditional sampling
profilers like gprof [27], Oprofile [22], and Valgrind [48].
These profilers take an unmodified application and they peri-
odically sample system state (e.g., stack traces) to produce a
statistical profile of the target application. Early instantiations
solely sampled program counters; over time, they expanded to
capture trends in function utilization and call graph traversal.

tpprof uses a similar approach to construct profiles of
traffic patterns. To that end, network samples and sequences
of samples present an attractive substrate. In principle, a se-
quence of network samples creates a statistical profile of an
application’s network utilization. Unfortunately, these sam-
ples are unlikely to ever repeat: small differences in applica-
tion processing time, workload, and background traffic can
cause substantive differences in traffic, as can slight noise
in the sampling frequency of the measurement framework.
Extracting patterns from raw samples is challenging.

Core abstractions. To address this challenge, we introduce
two additional abstractions:

Alerts Traffic Patterns

A V1 4

Scoring Profile
Engine Generator

Aggregator

(Poliing & Batching
k Switch

Figure 2: The overall architecture of tpprof. tpprof polls,
batches, and aggregates switch counters from the network.
These are fed into (1) a scoring engine that alerts on detection
of known patterns and (2) a profile generator that extracts
common traffic patterns from the gathered trace.

NETWORK STATE — A class of network samples defined by
a single, n-device network sample, S, and n variance val-
ues, v such that S is a centroid of the multivariate normal
distribution with shape defined by 7.

NETWORK STATE SUBSEQUENCES — A class of sequences
of network states that allows for bounded repetition of
states. A state subsequence can be represented as a regular
expression or finite state automata of network states.

Multiple network samples can be mapped to a single net-
work state and multiple sample sequences can be mapped to
a single state subsequence. These abstractions are tolerant to
noise by design: variations of link utilization from sample to
sample are smoothed by our method of extracting network
states; variations in the evolution of those samples over time
are smoothed by our method of extracting subsequences. The
precise construction of both of the above elements is described
in Sections 5.1 and 5.2.

Components. tpprof consists of three primary components:

1. A configurable sampling framework that periodically
samples the device-level utilization of a specified applica-
tion, set of applications, or the full network (Section 4).

2. A profiling tool for the automatic extraction and visualiza-
tion of the most common states and state subsequences
in the captured data (Section 5).

3. An alerting system that scores incoming traces against a
set of user-defined patterns using a fuzzy string search in
order to facilitate network automation (Section 6).

Of the above, only (1) affects the network itself; (2) and
(3) occur out-of-band. As such, the overhead of tpprof is
minimal: in the case of an non-application-specific traffic
pattern, little is required beyond an SNMP poller; application-
specific patterns only require simple iptables and switch
configuration changes on top of that.

Our current implementation leverages programmable
switches and a recently proposed network-wide monitoring
framework [63]. This provides slightly more control and ac-
curacy than an implementation based on top of traditional

switches, but it is not a strict requirement; we detail both
approaches in Section 4.

Workflow. tpprof profiles production networks. A typical
workflow thus proceeds as follows. First, users specify three
configuration parameters: the start time a, the end time b,
and the sampling interval i. The network can optionally be
configured to track certain applications separately. Regardless,
a centralized service periodically polls the byte counters of
the entire network between time a and b, with interval i.

The centralized service will stream the data through a set
of scoring algorithms that quantify the prevalence of a set
of target patterns in the measured trace. If the score of the
trace exceeds a threshold for a given pattern, an alert will be
generated. By default, the measurement data is not stored.
This changes when users request a profile, i.e., a visualiza-
tion, of common traffic patterns in the network. In this case,
raw network samples are stored for a specified profiling dura-
tion for clustering and analysis. The resulting profile can be
used to construct additional pattern alerts or analyzed sepa-
rately. The remainder of this paper describes each of the three
components of tpprof in more detail.

4 Sampling Framework

tpprof’s sampling framework continually polls a custom set
of switch counters to capture traffic patterns. Most produc-
tion networks already implement some form of this—tpprof
can piggyback on these existing polling suites. tpprof is,
however, parameterized by at least two configuration options.

e Application filters: To profile application-specific traffic
patterns, users must provide a proper filter for the traffic
in question. In tpprof, this takes the form of iptables
rules. Any filter that can be expressed as an iptables
rule is allowed. Thus, multiple applications can be cap-
tured by a single filter and different flows from the same
application can be split into different filters by port, packet
type, etc. All traffic matching installed filters are marked
with a special set of bits, e.g., in the DSCP field of the
packet header. We term the value of these bits a filterid.

e Sampling interval: Users must also specify an interval,
1A, at which tpprof’s sampling framework will poll all
devices in the network. This interval is common to the
entire system, so the network and all application-specific
traffic patterns will be read at this rate. Though this is a
user-defined value, we anticipate that it should be set to
the minimum value feasible for the target network without
incurring sample loss. We note that, because the raw data
is discarded after alert pattern matching, measurement
data storage capacity is not a bottleneck in tpprof.

4.1 Counter Implementation and Sampling

Network devices in a tpprof-enabled network track a set of
device-level application-specific byte counters corresponding

to the space of possible filterids. For every packet traversing
the switch, the counter associated with the specified filterid is
incremented by the size of the packet; all categories summed
will give the cumulative byte counter of the device. In this
design, the network is never reconfigured; instead, users asso-
ciate applications to filterids directly through the iptables
rules at every end host.

tpprof samples these counters at an interval of 75 via a
recently proposed measurement primitive, Speedlight. For
brevity, we omit the details of its operation and refer inter-
ested readers to its non-channel-state variant [62, 63]. At a
high level, the primitive is that of a synchronized, causally con-
sistent snapshot of network-wide switch counters. Compared
to SNMP and other naive polling tools, Speedlight provides
increased accuracy and low minimum sampling interval, both
of which are useful when profiling network traffic patterns.

Alternative implementations. We note that, at its core, the
only requirement of tpprof is for configurable counters and
a method to periodically poll all such counters in the network.
There are other implementations that satisfy this requirement.

For instance, most modern switches typically include sup-
port for configurable ACL entries with per-entry counters.
This approach has the advantage that it can be implemented
without end host cooperation. Class of Service (CoS) coun-
ters are similarly promising. Note that, if application-specific
tracking is not required, periodic SNMP polling is sufficient.

4.2 Batching and Aggregation

While it is possible to directly transmit polled counter results
to a centralized profiling service, the scale of measurement
data collected by tpprof necessitates careful handling. In
particular, there are two issues we must address: decreasing
overhead and handling sample loss.

For the first, to decrease the number of messages and the
overhead per sample, tpprof agents running on each network
device assemble results locally before shipping batches of
size B in the following format:

sampleBatch: {
switch: <SWITCH_ID>,
indexes: [i : <SAMPLE_ID> for i from 0 to B],
appl_bytes: [i : <BYTE_COUNT> for i from 0 to B],

appM_bytes: [i : <BYTE_COUNT> for i from 0 to B]}
indexes[k] and *_bytes[k] should correspond to a sin-
gle network sample. Gaps in the samples, e.g., from failures
or measurement packet drops, will manifest as gaps in the
indexes array. In these cases, tpprof attempts to interpolate
values by taking the difference between byte counters before
and after any gap and averaging the difference over the length
of the gap. If the device has rebooted or if it stays down for too
long, we will treat the device as ‘failed’ during the missing
measurement intervals. ‘Failed’ devices are excluded from

0.8
0.6 {
0.4
0.2

Variance Explained

0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45

Number of PCA Dimensions
Figure 3: Covariance explained by different numbers of PCA
dimensions. Dataset is a trace of utilization over 48 ToR
switches in a Facebook frontend cluster.

profiling and treated as wildcards during alerting. Note that
reboots are also excluded from interpolation as we do not
know how much traffic was sent before the counter was reset.

Storing data for profiling. While tpprof does not store raw
counter values in the common case, raw values are necessary
for generating profiles. Profiles are, therefore, executed on-
demand using the API:

start_profile(start, end, filter_id)

The duration of collection should be long enough to capture a
representative slice of behavior. In general, longer is better,
but this may be subject to limitations of sample storage space
and the user’s timeline. filter id = —1 indicates the sum
of all application-specific counters.

S The tpprof Profiling Tool

We first discuss how tpprof extracts and ranks traffic pat-
terns before delving into the scoring and alerting system in
Section 6. To that end, the output of the previous subsec-
tion (4.2) is a network sample sequence, i.e., a sequence of
n-device samples of network utilization. Using that, the out-
put of the tpprof profiler is a ranked list of network states
and a ranked list of state subsequences, as sketched by Fig-
ure 1b and demonstrated in Section 7. tpprof achieves this
using a pair of domain-specific clustering techniques that are
designed to capture first-order patterns in network traffic.

5.1 Network States

The first challenge in identifying meaningful traffic patterns
is the inherent noise present in a trace of network samples.
Small variations in workload, TCP effects, background traffic,
or any number of other factors mean that, most likely, no two
network samples will look exactly alike.

To de-noise the data, tpprof summarizes network samples
into a small number of distinct network states. We can natu-
rally frame this as a clustering problem, where the points to
be clustered are the n-element vectors representing network
samples. Clustering has been used to great effect in a number
of fields, from image segmentation to recommendation sys-
tems and anomaly detection; each of these has its own set of

challenges and associated clustering algorithms.

Network state extraction is no different in that regard. In
this work, we leverage empirical analysis of a variety of appli-
cations and traces to identify and design algorithms suited to
the domain. Applications observed include Hadoop, Giraph,
TensorFlow, Spark, Memcache, and a trace from a production
Facebook frontend cluster (see Section 7 for their details).

Dimensionality reduction. Before delving into tpprof’s
clustering algorithm, we note that, in general, networks
present a particular challenge to clustering because of their
high device counts. Profiling the ToRs of a 48-rack data center
cluster, for instance, might result in a 48-feature input vector,
which prior work has indicated might be too many dimensions
for typical distance metrics [17].

The general solution to this well known ‘curse of di-
mensionality’ [15] is transforming the data into a lower-
dimensional space before clustering. The simplest approach
is to cluster on only a subset of features. While this works
in other domains, it is not well suited for our problem be-
cause the load on every device may be important. Instead,
tpprof preprocesses data with Principle Component Analy-
sis (PCA) [25], which derives a small set of features that are
an orthogonal linear transformation of the original features.
Said differently, PCA removes redundancies in the original
data by creating a new set of independent features that explain
most of the variability in the original data.

PCA is most effective when features are strongly corre-
lated, and there is good reason to believe that this is true in
our domain. Recent work [21] shows that network usage is
highly correlated, driven by the data-parallelism in distributed
systems [31, 65]. Analysis of the Facebook traffic trace ver-
ifies this: each ToR had strong and statistically significant
correlations (r > .7, p < .001) with an average of 3.25 other
ToRs. The applications we profiled showed similar results.

Figure 3 measures the effect of PCA on that data, gauged
by plotting the number of PCA dimensions (i.e., features) ver-
sus explained variance. All other traces we obtained showed
similar results. A value of 1 means that a PCA transformation
to K dimensions preserved all the information contained in
the original data with 48 dimensions. Even for this large and
complex trace, one dimension already explains over 80% of
the variance and two dimensions explain ~85%. Striking a
balance between clustering efficacy and explained variance,
tpprof projects all data into 2D by default. This can be ad-
justed depending on the data.

Gaussian Mixture Models (GMMs) for sample classifi-
cation. tpprof clusters around typical network variations
through its use of GMMs. To demonstrate this effect, we con-
sider the 2D PCA projections described above and visualized,
for our set of profiled applications and traces, in Figure 4. To
help interpret points in the PCA space, we also plot network
load at 4 extreme waypoints along the convex hull of each
trace. We observe two general cluster shapes in the projected

O 0
N o N N © o
€ € € e
g g x g g
s x s s s| O
a a a a
£ £ % £ x £
8 x ¢] 8 o] 8 % 8 x
< < < <| &
3] 3] 3] o] 8
a a o a a
¢ O x
0 o]
PCA component 1 PCA component 1 PCA component 1 PCA component 1
D [0%, 0%, 0%, 0%] [43%, 43%, 0%, 43%] D [15%, 8%, 3%, 3%] [77%, 49%, 26%, 23%] D [79%, 79%, 79%, 0%] [83%, 43%, 0%, 43%] D [9%, 3%, 0%, 3%] [32%, 42%, 17%, 10%]
Q [99%, 99%, 66%, 33%] {) [56%, 56%, 56%, 0%] Q [71%, 100%, 40%, 25%] () [41%, 78%, 21%, 16%] QO [0%, 0%, 0%, 0%] [58%, 58%, 58%, 0%] QO [80%, 100%, 37%, 31%] {) [23%, 12%, 0%, 12%]
(a) Hadoop TeraSort (b) Giraph (c) TensorFlow AlexNet (d) Spark
Y O
~ ~ o ~
g] g g €
€ < < O @
g g L § \
gl & = x X £ | O s x x O £ - . g ¢
S S S 1 53 5 x
S S S] »
< < < .‘ S g
3] O S < i
-4 -4 -4 9 .
[®) O o 0 o]
PCA component 1 PCA component 1 PCA component 1

[185%, 99%, 32%, 32%] 8 [58%, 24%, 12%, 12%]

[158%, 85%, 43%, 15%] [22%, 49%, 13%, 9%]
Q [0%, 0%, 0%, 0%] [20%, 55%, 10%, 10%]

QO (0%, 0%, 0%, 0%] [100%, 100%, 49%, 18%]

(e) Memcache (f) Memcache Imbalance

PCA component 1
[1% (average) (O 48% (average)

(h) Facebook Trace

[[36%, 8%, 4%, 4%]

[32%, 68%, 16%, 16%]
Q [78%, 100%, 33%, 33%]

[75%, 54%, 27%, 27%]

(g) Memcache Straggler

Figure 4: Network samples projected into a 2-dimensional PCA space. Cluster centers are marked with x’s. Shaped-markers map
points in the space to sample vectors [11, 12, 51, s2] (see Figure 1a) or, for the Facebook trace, average utilization.

data: ‘rays’ and ‘clouds’.

e Rays, like the ones prominent in Figures 4a and 4c, are
typically associated with rising or falling utilization on a
set of highly correlated nodes. We can see this effect most
clearly in Figure 4c through the relationship between ©,
¢, and O. Compare their utilizations with that of O.

e Clouds, like the ones in Figures 4b and 4g, typically char-
acterize samples that are similar in configuration, but sep-
arated by noise that offsets points by a small amount in all
directions of the PCA space. These clouds can be more or
less dense, depending on the coherence of the pattern. The
memcache variants, for instance, exhibit strong all-to-all
behavior, which manifests as dense clouds to the right of
the PCA plots.

Synchronized behavior and noise around a specific configu-
ration capture most of the key behavior in our empirical tests.
For these two types of clusters, GMMs are known to perform
well. GMMs model a cluster as a multivariate Gaussian with
independent parameters for each dimension of the data. This
independence provides the flexibility for clusters to fit both
types of clusters with arbitrary densities. We fit GMMs to
the data using the expectation-maximization algorithm from
Scikit-learn [51], which finds clusters that are each defined
by a centroid sample and a vector of per-feature variances.

Automated detection of cluster count. GMMs are defined
in terms of a fixed number of clusters, K. tpprof selects K
automatically by using a Bayesian Information Criteria (BIC)
score. Informally, a better (lower) BIC score means that a
specific clustering, if used as a generative function, is more
likely to produce the observed data.

We note, however, that BIC scores tend to improve as K
increases, but a high number of clusters can overfit the data.
To overcome this issue, we select a K value at which the
benefit gained by adding an extra cluster starts to diminish.

Finding such “elbows”, or points of maximum curvature, is a
common problem in machine learning and systems research.
We use the Kneedle method [56], a simple but general al-
gorithm based on the intuition that the point of maximum
curvature in a convex and decreasing curve is its local min-
ima when rotated 6 degrees counter-clockwise about (xmin,
ymin) through the line formed by the points (xmin, ymin) and
(xmax, ymax). Specifically, we plot the BIC score versus K
and draw a line segment connecting the points for K = 2 and
a configured maximum of K = 10, which we set based on the
typical working set capacity of humans. The optimal value
of K is given by the point furthest from that line. Figure 5
shows the results of this analysis for the applications and
traces introduced above.

5.2 Network State Subsequences

Network state subsequences extend network states to capture
temporal patterns in traffic. Like states, subsequences require
compression of the full sequence of samples taken during the
profiling run into a small set of representative patterns. Unlike
states, existing sequence-based clustering algorithms are a
poor fit for network traffic patterns.

To see why identifying and ranking network state subse-
quences is challenging, consider a strawman solution: take all
possible subsequences of the trace and count their frequencies,
e.g., the trace ABC would result in the following subsequences
{Ax1,Bx1,Cx1,ABx 1,BC x 1,ABC x 1}.

Challenge 1: (a) A5 = AAAAA versus (b) ASB...AAB...AAB
Intuitively, the interesting bit of sequence (a) is that there
is a long run of A’s. The strawman solution will instead
output that the most common subsequence and frequency
is the single state A x 5, followed by AA x 4, etc. With
the naive approach, short subsequences will always take

-131K

-131.5K

-132K

-132.5K

BIC score (lower is better)
BIC score (lower is better)
&
2
=

BIC score (lower is better)

-156K

-158K

-160K

-162K

-164K

-166K

BIC score (lower is better)

0 1 2 3 4 5 6 7 8 9 10
Number of clusters

(b) Giraph

0123425678910
Number of clusters
(a) Hadoop terasort

0 1 2 3 4 5 6 7 8 9 10
Number of clusters

(d) Spark

01 2 3 4 5 6 7 8 9 10
Number of clusters

(c) Alexnet

N, == Scores
~ ® elbow

BIC score (lower is better)
BIC score (lower is better)

BIC score (lower is better)

-30K

-40K

-50K

-60K 1

-14K 4

-14.5K 1

-15K

-15.5K 4

BIC score (lower is better)

-16K

3450678 910
Number of clusters
(f) Memcache imbalance

3456 78 910 0 1 2
Number of clusters
(e) Memcache

0 1 2

0 1 2 3 4 5 6 7 8 9 10
Number of clusters

(h) Facebook cluster

3 45 6 7 8 9 10
Number of clusters

(g) Memcache straggler

0o 1 2

Figure 5: Selecting the number of clusters with Bayesian Information Criteria (BIC) and the elbow heuristic.

param stateSequence[# samples in the trace]: Full sequence of
network states.

param minFreq: The minimum number of subsequence
occurrences before it is counted as a ‘common’ subsequence.

1 Function getSubSequences:
2 for targetLength : len(stateSequence) to 2 do
3 maxStart <— len(stateSequence) — targetLength
4 for start : 0 to maxStart do
5 end < start+ targetLength
6 if [start,end] contained in takenRanges then
7 continue
8 subseq < log10Merge(stateSequence/start:end])
9 if (# subseq observations) > minFreq then
10 Add (start, end) to takenRanges after loop
1 Increment subseqs[subseq]
12 else
13 Hold subseq until the threshold is reached
14 subsequenceCoverage <— computeCoverage(subseqs)
15 totalCoverage < computeTotalCoverage(subseqs)
16 return subseqs, subsequenceCoverage, and totalCoverage

Figure 6: Pseudocode for finding common subsequences in a
sequence of network states.

priority; in fact, we can prove that subsequences will never
beat their member states. On the other hand, sequence (b)
demonstrates a case where it might be useful to be able
to observe the shorter subsequences. In this case, greedily
setting aside the A% would miss the third occurrence of
AAB, which is arguably the more important pattern.

Challenge 2: XA¥®Y .. . XA®Y ... XA*lY
The strawman solution also performs poorly with similar,
but not identical ranges. While it may find here that there
are long strings of As, or even that X is typically followed
by As, or that Y is typically preceded by As, it will fail
to find that As are typically sandwiched between X and

Y. Variance in duration is common in networks, where
measurement timing, available capacity, and workload
size changes frequently.

Challenge 3: (AB)*(CDEFGHIJKLMNOPQRSTUVXYZ)?
Finally, we note that frequency itself is not an ideal
metric. Consider the above trace. The longer trace is
much rarer and more interesting, but a pure frequency
analysis will rank AB higher in importance.

tpprof’s subsequence extraction (outlined in Figure 6) ad-
dresses these challenges through a series of rules, which we
describe below. Line numbers reference Figure 6.

Only consider subsequences of length 2+ [Line 2]. While
knowing the most frequent single states is useful, the goal
of extraction is to capture patterns in traffic. We, therefore,
prune subsequences of length 1 from consideration and list
the relative frequency of single states separately.

Ignore strict subsequences [Lines 6-7]. To better summa-
rize cases like Challenge 1(a), we exclude any subsequence
that is wholly contained within another subsequence. We
implement this efficiently using two data structures: (1) taken-
Ranges, a list of existing subsequences sorted by start, and (2)
a heap-based index of the currently overlapping subsequences,
sorted by end (not shown).

Frequency threshold before a subsequence is counted
[Lines 9-13]. The above rule, applied directly, might pro-
duce a single subsequence encompassing the entire trace. To
account for this, we set a minimum frequency threshold, min-
Freq, before which the subsequence is not counted. We note
that a lower value of minFreq promotes the inclusion of longer
but sparser subsequences, while a higher value favors many,
shorter subsequences. tpprof automatically tunes this value
using the hyperopt library to optimize for ‘total coverage’, a
metric we describe at the end of this section.

Log10 repetition frequencies [Line 8]. To handle cases like

(a) memcache — Baseline (b) memcache — Imbalance

52.3%
98.6%

40.6%
98.2%

.

10)

7.2%
80.0%

% time:
stability:

53.9%
98.6%

38.1%
98.0%

8.0%
81.1%

% time:
stability:

cover:

cover: 39.3%

41.0% 0(1) 0(1)
38.6% mm/o 0(1)
37.1%
o) 34.9% o
0o(1)

24.1%

o=

% time:
stability:

cover:
25.0%

(c) memcache — Strageler (d) Cross-traffic durine ¢

51.9%
98.5%

38.8%
98.0%

L

0

4.9%
77.6%

4.4%
71.5%

10)

83.2%
94.1%

16.8%
70.7%

0.0%
0.0%

% time:
stability:

cover:
36.0%

20.6%

31.4%

m/o(l)

20.2%

m.
.@60
26.7% *‘%’

00&2\. o(1)

0o(1)

Figure 7: tpprof profiles of memcache in three different environments (a—c), plus a profile of cross-traffic (d) active during c.

that of Challenge 2, common in network traces, we compress
repetitive states into the nearest power of 10. Doing so ignores
small differences in duration while still retaining the length’s
rough magnitude.

Coverage rather than frequency [Lines 14-15]. As evi-
denced in Challenge 3, differences in the length of subse-
quences and the ability of subsequences to overlap diminish
the utility of frequency as a way to reason about the rela-
tive importance of different subsequences. Instead, we pro-
pose coverage as a metric for ranking subsequences and for
hyperparameter-tuning minFreq. Coverage measures, for ei-
ther a single subsequence or the union of all subsequences,
the cumulative fraction of states in the stateSequence that are
included in at least one subsequence.

We encourage the reader to step through several short exam-
ples of network state sequences to see why the above rules
produce intuitive results.

5.3 Example Visualization: memcached

To tie the above discussion together and showcase the utility
of tpprof, we present to the reader several real profiles pro-
duced by the tpprof tool suite. See Section 7 for a description
of the hardware testbed used in these tests.

As a baseline, we first look at a memcache workload gen-
erated using the memaslap [7] benchmarking utility, running
in isolation. Each machine in the testbed was configured as
a memcache server with 64 B keys and 1024 B values. Gets
and sets were randomly generated from two machines—one
in each rack—with a ratio of 9:1. In this simple test, the two
memcache clients, every 6s, will simultaneously begin per-
forming 290k get/set operations.We profiled this behavior,
collecting a total of 7000 network samples at a 50 ms interval.

Visualization structure. Figure 7a shows the tpprof profile
for this run. Like Figure 1b, heatmaps of network state are
at the top of the figure and the most common network state
subsequences are below. Each heatmap shows the centroid of
the sample clusters it represents. We add to this the state’s %

time (the amount of time the network spends in the state) as
well as its stability (the probability that the network, once in
the state, will stay there); states are sorted by % time.

For subsequences, we include the top three by coverage;
more can be generated on demand. Subsequences are depicted
with a series of points (representing states) connected by ar-
rows (denoting transitions between states). The points align
horizontally with the states they represent. Solid points ac-
companied with an O(x) label indicate an x—10x repetition of
that state. The number on the left of each subsequence is the
percentage of the trace that it covers. Note that coverage can
add to more than 100% due to overlapping subsequences.

Observations. We can observe several characteristics in Fig-
ure 7a. First, we can see that there are three states in which
the network spends its time. In the one that accounts for more
than half the trace, the network is unutilized. The other two
show different states of even leaf and even spine utilization,
indicating that the network is relatively balanced when it is be-
ing used. Note that the leaves of the network are consistently
hotter than the spines due to rack-internal communication.

As expected of the workload, the subsequences of the pro-
file show a trace composed of on-off periods of all-to-all
traffic. We can also deduce from the duration of repetitions
that the on and off periods both last on the order of seconds.
Further, we can infer that the network takes time to ramp
up/down from full utilization. This is inferred from the pres-
ence of the (L-to-R) 3rd state and the absence of direct transi-
tions between states 1 and 2. Ramp ups seem to be an order
of magnitude faster than ramp downs.

tpprof’s observations can inform network and application
changes. For example, if an operator were to see a similar
profile in practice, she could conclude that load balancing is
not an issue. Instead, a more promising approach would be
to either desynchronize traffic to spread out utilization over
time or augment the leaf switches with additional capacity.

5.3.1 Case Study #1: Detecting Load Imbalance

tpprof can also help to detect acute problems in networks.
As a case study, we artificially introduced an ECMP miscon-

signature) = { ((target state set)) ; (target sequence) }

(
(target state set) ::= (target state) , (target state set)
(target state) ::= utilization
(target sequence (P)) ::= (target state) | ~(P)

| (PYA(P) I (P)V(P)

| (P)* | (P){ min repetitions , max repetitions}

Figure 8: Definition of a traffic pattern signature.

figuration [69] into the network. Specifically, we configured
one of the ToR switches to only use the left spine; otherwise,
the workload is identical to Figure 7a. Figure 7b shows the
output of our tpprof’s Python-based visualizer. An operator
comparing this profile to that of the baseline would be able to
see the new and stark differences between the two spines in
all states with load and conclude that ECMP was not doing
its job. While imbalance can also be due to elephant flows
and hash collisions, the fact that this happens consistently and
always with the same spine points to a structural issue.

5.3.2 Case Study #2: Debugging a Noisy Neighbor

As another case study, we use tpprof to debug an apparent
straggler in the system. In this experiment, we add a heavy
background flow between two hosts connected to the lower-
left leaf, /1. Figure 7c shows the profile in question. From this
profile, an operator can observe that, in 5-10% of samples,
there is a slight bias toward /; while the other leaf is largely
un-utilized. These samples are summarized in the right two
network states. If the operator is expecting an even all-to-all
pattern like the one in Figure 7a, these states would lead her
to suspect that a task in the system is straggling.

tpprof’s ability to profile concurrent applications indepen-
dently can also help to diagnose this issue. In particular, she
can view the profile of non-memcache traffic present during
the same profiling period. In this case, tpprof would provide
her with Figure 7d, which clearly shows a competing flow or
set of flows within /;.

6 Traffic Pattern Scoring

The tpprof components described in prior sections allow
users to profile their networks and find prominent traffic pat-
terns. In many cases, after finding certain patterns, users are
likely to want to know if (or when) they occur in the future.
The tpprof traffic pattern scoring engine solves this problem.
The key challenge is designing both a language that makes
it simple for users to specify pattern signatures and also an
algorithm efficient enough to detect those patterns in realtime.

Traffic pattern signatures. A traffic pattern signature de-
scribes the approximate spatial and temporal characteristics
of a traffic pattern. It is defined by the grammar in Figure 8
and has two components.

o A set of target network states describe the approximate
samples that are likely to be observed during the traffic

Target state set S1 S2 S3

Target pattern (P) (S1)* (S3) (S1)
start . @ ccspt
state “ state

Figure 9: An example traffic pattern signature that detects a

synchronized all-to-all burst.

pattern. These can be generated from prior profiling runs
or manually specified.

o A target subsequence, written as a regular expression, that
estimates how the network transitions between the target
states during the pattern.

As an example, Figure 9 illustrates a signature to detect a
synchronized all-to-all burst of traffic in our example topology.
The target states in the signature are: Sy, 0% utilization on all
links; S5, 50% utilization on all links; and S3, 100% utilization
on all links. The signature’s target subsequence is, thus, one
in which the network is in S before transitioning to S3 (i.e.,
high, all-to-all utilization) and immediately going back to Sy,
signaling a quick end to the all-to-all utilization.

Scoring signatures. tpprof’s Traffic Pattern Score (TPS)
algorithm quantifies a signature’s prominence in a network
sample sequence by finding and scoring subsequences that are
similar to it. This amounts to a streaming fuzzy string search.
Figure 10 illustrates the scoring algorithm for the all-to-all
signature in Figure 9, while Figure 11 provides psuedocode
of our streaming implementation. There are three steps.

1. State matching: The TPS algorithm first maps each in-
coming sample to the most similar target state, transform-
ing the stream of samples into an intermediate stream.

2. Pattern matching: It then scans the intermediate stream
for the target subsequence using a finite automata [34].
A match occurs when the automaton reaches an accept
state, at which point it is executed in reverse to identify
the start point of the longest matching subsequence.

3. Match scoring: A match indicates that the exact target
subsequence has been found in the intermediate stream;
however, how this relates to the underlying sample stream
is unclear. Thus, the final step is to score match strength
by calculating the average similarity between the two
streams during the subsequence.

Writing signatures. There are two sources for signatures.
First, they can be automatically generated by the profiler, from
the network state subsequences it identifies. This allows the
TPS algorithm to automatically identify future reoccurrences
of events identified with the tpprof profiler.

Second, users can manually write signatures that charac-
terize the most important attributes of a traffic pattern. Since
TPSes use a fuzzy algorithm, patterns do not need to be ex-
act. Instead, they can be defined programmatically. With the

. (Similarity[P1] + Similarity[P2]) (2.5 +1.25)

Total score: [Trace] = il = 0.54
Scoring

Pattern: P1 P2

Similarity: .75 + .75 + 1.00 = 2.5 5+.756=1.25
Pattern A A
matching N

State: S1 S3 S1 S2 S1 S3 S1

Similarity:75% 75% 100% 50% 90% 50% 75%
State
matching
Snapshot
trace 1 2 3 4 5 6 7

Figure 10: Matching and scoring a sample trace against the
all-all signature in Figure 9.

1 signature < (targetStates,regexp)
2 Function TPSGrep(signature, sampleStream):

3 Initialize matchStream
4 compile_patterns(matchStream)
5 scoreBuf <[]
6 offset <0
7 for each (sample, timestamp) in trafficPattern do
8
9 stateSymbol <— nearestNeighbor(sample,targetStates)
10 similarity + |netState — sample|
1
12 scoreBuf.append(score)
13 if len(scoreBuf)>BUF_LIM then
14 scoreBuf.pop()
15 offset < offset+ 1
16
17 (begin, end) = scan(matchStream, stateSymbol)
18
19 if end # NULL then
20 emit sum(scoreBuf[begin-offset:end-offset]

Figure 11: The streaming TPS algorithm.

three primitives described below, users can express simple
but powerful signatures.
e State definition, e.g., (x:v, y:u), which defines a state
with switch x having utilization v and switch y having
utilization u.

o Set assignment, e.g., X:v. This sets every switch x € X to
utilization value v.

e [teration (over sets or switches) e.g., { (x:v) for x €
X}, which defines a set of states: one state for each switch
in X, defining that switch to utilization value v.

Table | lists five example signatures written with these
primitives. We evaluate them later in Section 7.3.

7 Implementation and Evaluation

tpprof is implemented in Python/C++ as a standalone ser-
vice that aggregates samples, profiles them, and scores them
for the presence of known traffic patterns, as described in
the previous sections. Each of the profiles shown in this sec-
tion is a real output of tpprof, generated programmatically

10

State Definitions

{81}=N:0.0,{Ss}=N:0.5
{S1}=N:0.0,{Ss}=N:0.5

Pattern Signature

Short all-all S75>{1,10}S;
Long all-all $75,{10,100}S;

Hotspots (S] |Sz|S3‘S4){10,100} {S1, ..., Sa}={(x:1.0, -x:0.0)
for x € N}

Imbalance S}[S; {S1,8}={ (x:1.0, -x:0.0)
for x € (s1, $2)}

Stragglers (S]|S2|S3)*S3 {81,82.,83}={(ly:v, -[,:0.0)

for v € (0.1,0.01,0.0)}

Table 1: Traffic pattern signatures for a leaf-spine network N
with spines (s1, s2) and leaves (11, b>).

using Python and Matplotlib 3.1.1. The requisite counters
and polling/batching components that run on each device are
implemented in P4 and Python, respectively. Traffic Pattern
Scoring is implemented in C++ using hyperscan [34].

Hardware testbed. To verify the utility of tpprof and its
outputs, we used it to profile and score the traffic patterns of
real applications running on a small hardware testbed consist-
ing of a Barefoot Wedge100BF-32X programmable switch
connected to six servers with Intel(R) Xeon(R) Silver 4110
CPUs via 25 GbE links. The testbed is configured to emu-
late a small leaf-spine cluster like the one in Figure 1a. To
implement this network, we split the Wedgel 00BF switch
into 4 fully isolated logical switches. Each logical switch runs
ECMP to balance load across paths.

Application workloads. On our hardware tested, we profile
four popular networked applications, in addition to the mem-
cache evaluation in Section 5.3:

1. Hadoop running a TeraSort [11] benchmark workload
with 5B rows of data. Our Hadoop instance ran version
2.9.0 with YARN [12] on 10 mappers and 8 reducers
spread across the 5 servers (and 1 master).

2. Spark’s GraphX [13] running a connected components
benchmark workload with 1.24M vertices. We ran Spark
2.2.1 with Yarn on 5 servers (and 1 master).

3. Giraph [10] running a PageRank synthetic benchmark
workload with 120,000 vertices and 3,000 edges on each
vertex. We used 23 workers in total across our 6 servers.

4. TensorFlow running the AlexNet [38] image processing
model with 1 server managing parameters and 5 workers.
We used ILSVRC 2012 data for training.

Unless otherwise specified, these applications were run in
the presence of background TCP traffic derived from a well-
known trace of a large cluster running data mining jobs [8].
Profiles are of the target application only.

Large-scale trace. To augment our small testbed, we also
profile packet traces of 48 Top-of-Rack switches from three of
Facebook’s production clusters: a frontend cluster, a database
cluster, and a Hadoop cluster. As the datasets are sampled
by a factor of 30,000, we divide the timestamps by 30,000

(a) Hadoon — Terasort (b) Snark — CC
% time: 97.4% 1.5% 1.1% % time: 96.9% 2.5% 0.6% % time:
stability: 99.5% 81.8% 54.0% stability: 99.1% 64.6% 50.0% stability:
cover: cover:
71.5% © 0(1000) 47.3% © 0(1000) cover:
20.1%
10.1% @ 0(100) 32.8% @ 0(100)

(c) Giranh — PR

49.3%
91.7%

(d) TensorFlow — AlexNet

46.9%
86.0%

2.9% 0.9%

3.0%

% time:
stability:

84.1%
96.7%

6.5%
79.4%

6.1%
75.4%

2.3%
61.1%

1.0%
56.8%

0(10) 23.1% :ij>o o(1)
1]

17.4%
1 cover:

9.5% 18.1% 10) 19.8%

:ﬁ>oom

0o(1) 00)

10) 15.7% 0o(1)

17.2%

10)

0(10) 11.6%

*QLK.
0(1)

Figure 12: Profiles of more complex applications running with realistic background traffic.

to obtain an approximate representation of a full trace. Note
that multiplying traffic by 30,000 would have given a more
accurate distribution, but resulted in artificially stable patterns.

7.1 Profiling More Complex Applications

To evaluate how tpprof’s algorithms deal with more complex
applications, we profile each of the application workloads we
introduced earlier in this section. These applications all ran in
the presence of background traffic, but we only show profiles
of the application-specific traffic.

From the resulting profiles in Figure 12, we can see that,
for the most part, the network was only lightly utilized during
these tests. In Hadoop and Spark, for instance, the network
spent > 96% of the time unutilized, indicating that our par-
ticular testbed tends to be CPU-bound. Giraph is the notable
exception, spending about equal time utilized and not.

The states reveal some interesting behavior of the appli-
cations. For Hadoop and TensorFlow, we see heavy skew in
spine utilization, but not to a consistent spine. This likely
indicates the presence of a few large flows that dominate the
network and sidestep ECMP’s flow-level balancing. We also
see in these two workloads a slight bias toward the lower-left
switch. This is due to task placement: for Hadoop, that switch
is home to the controller and name server; for TensorFlow, it
holds both the chief worker and the parameter server.

7.2 Profiling Large Production Networks

tpprof is able to profile more complex networks as well. To
demonstrate this, we run tpprof’s profiler over large-scale
traces of the combined traffic for three production Facebook
clusters and show the output in Figure 13. We separate the
states and subsequences for readability.

Figure 13a shows the profile for the frontend cluster. As
in the original paper describing this trace (Figure 5 of [54]),
we can observe a clear split between the average utilization
of cache, multifeed, and web servers. States A—C show mem-
cache at full utilization, webservers at low utilization, and
varying levels of multifeed traffic. Diverging from the origi-
nal paper, we find an additional network state (occurring 3.8%
of the time) in which the multifeed server utilizations spike.
The stability of this state indicates that this may manifest as

11

Signature Accuracy Precision Recall
Straggler 0.943 0.867 0.720
Imbalance 0.936 1.000 0.868

Table 2: Classification performance of signatures in the mem-
cached testbed.

small, but intense and correlated bursts. Subsequences further
show frequent transitions between states A and B, with state
C representing a short-lived relative lull in multifeed traffic.

Figure 13b and Figure 13c show the profiles of a database
and Hadoop cluster, respectively. Notably, the database cluster
is very uniform and stable across the trace, indicating a steady
workload and good load balancing properties. The Hadoop
profile is also notable in that it diverges substantially from
the averaged results in Figure 5 of the original paper, which
showed balanced utilization across racks. While the traffic
is balanced across longer timescales, our results match more
closely with their more granular findings of on-off periods
and significant variance at medium timescales.

7.3 Efficacy of the TPS Module

We showcase Traffic Pattern Scores by demonstrating how
they can help answer an important question: is my network
performing poorly due to load imbalance or stragglers? For
this, we use the straggler and network imbalance signatures
from Table | to diagnose issues in the memcache deploy-
ment from Section 5.3. We run the deployment in baseline,
noisy neighbor, and ECMP misconfiguration scenarios. We
then generate labeled network sample traces by manually
identifying the precise time windows during which each un-
desired behavior occurred. Finally, we run tpprof on each of
the traces and compare signature scores against ground truth
scores calculated from sample labels.

Figure 14 plots the rolling average of ground truth and
signature scores in each of the three scenarios. The signature
scores are highly correlated with the ground truth. Table 2
lists the classification performance. Both signatures have high
accuracy and precision, with slightly lower recall—a desir-
able tradeoff in an alerting system. We note that tpprof’s
per-scenario precision and recall are 100%: no signature’s
score is high in the baseline scenario; only the straggler sig-

wn
4
2
%
w

State Subsequences States

1
1
A B CD | A B C
% time: 67.9% 169% 114% 3.8% \
- stability: 91.6% 51.0% 65.2% 95.9% | -
1
1
A BCOD '
cover: 1
9.6% ® 0(100) \
1
10) 1
8.0% o) |
1
10) !
7.0% o(1) :
10) \
1
o) 1
6% i |
1
) X
5.0% o) \
T0) \
= 1=
% 10) 1 % m |
& 5.0% A
o(1) !
1
1
o 1
47% “rm \
1
10) 1
1
4.3% o(1) !
1] :
70) H
1
10) 1
4.0% 1) 1
1
1
1
1
o o(1) \
) |
0) 1
N (S
%) | oo
1

(a) Frontend Cluster

® 0(100)

State Subsequences 1 States State Subsequences
1
) A B C
% time: 93.9% 4% 07% 9% time: 46.6% 30.5% 22.9%
stability: 94.6% 6.7% 95.2% \ - stability: 91.6% 93.1% 74.6%
1
ABC K " ¥ A B C
: cover:
igvg:/: ::%ﬂ , - m 31.1% ® 0(10)
6% ,
10) , 20.5% ® 0(10)
u N
1
10) \ 13.5% e 0(1)
1
23.7% % : ne 11.9% .ém___//e
1 , m
\ 11.9% o-n.u.)\e
10) | ||
1
17.7%) ! - o-ﬂu)\.
| [| - . 8.6% o(1)
0 1
) I 8.4% .eﬂr—_____—oom
L [~ }
) . %
1
16.7%) . 17 8.2% ee-'/. 0(1)
1
) |
: 8.1% \Dm
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

(b) Database Cluster

A
)

(c) Hadoop Cluster

Figure 13: tpprof profile of three 48-rack Facebook clusters. Figures include both (1) a collection of states (A—D) organized
as a 1 x 48 heatmap, and (2) a list of the most common state subsequences. Letters map between the two representations.

Scenario: baseline

Scenario: Noisy neighbor

Scenario: ECMP misconfiguration

g 1.04 =——ground truth = =imbalance -=-=straggler g 1.0 ——ground truth == imbalance === straggler g 1.0 =——ground truth == imbalance === straggler
a b b
205 205 | 2 0.5
o o L o
: : : 1 Pl - PR S
<0l BT % ST <40 Ll "l L.a [T gL Srn s ni

0 100 200 300 0 100 200 300 0 100 200 300

Time (s) Time (s) Time (s)

Figure 14: Signature scores for memcache in a baseline configuration, with noisy neighbors, and with an ECMP misconfiguration.

0
0.44

128
0.65

256
0.84

512
1.18

1024
L.77

Filter count
CPU Util (%)

Table 3: tpprof’s iptables CPU utilization.

nature’s score is high in the noisy neighbor scenario; and
only the imbalance signature’s score is high in the ECMP
misconfiguration scenario.

7.4 Overhead and Performance of tpprof

Finally, tpprof is designed for efficiency and minimal over-
head. Only two components in the sampling framework can
potentially impact traffic: sample collection and iptables
tagging. Analytically, snapshots of all ports on a 128 port
switch at a 50 ms interval generate only 0.1 Mb/s of mea-
surement data. As Table 3 shows, the iptables rules used to
construct application-specific profiles also have low overhead.

In addition to measuring overhead, we also benchmark the

12

Hyperscan [34]-based TPS scoring engine, which operates
online in parallel with the network. Specifically, we measure
average CPU load while operating on the Facebook trace.
Figure 15 shows single-core CPU load. It increases linearly
with the number of signatures, but even in this large network
with 100 signatures and a 50 ms sampling frequency, average
load for real-time processing is only around 10%.

8 Related Work

Traffic pattern inference. We note that the concept of
a network traffic pattern is not novel. Many prior works
have both identified and used traffic patterns to great ben-
efit [20,29,40,54,55,67]. Unfortunately, these insights have
typically been limited to situations where the pattern can be
measured at a single link/device [40,55,67,68] or have been a
result of property-specific analyses, often with a large dose of
manual effort [16,20,29,54]. The goal of tpprof is instead

=
N

\

\
\

Average CPU Load Percentage
N (=)
\\

o

10 20 30 40 50 60 70 80 90
Number of Signatures

Figure 15: Signature vs CPU Load

100

the automatic extraction and ranking of common patterns
from running networks.

Network monitoring and visualization tools. We also ac-
knowledge the vast array of existing network monitoring and
visualization tools, both commercial [1-5,26,37,49,52] and
academic [30,45,47,57, 61, 68]. We lack sufficient space
to discuss them all, but one worth mentioning is Cisco’s re-
cent Tetration platform [52]. Among other features, Tetration
can extract the control flow of a distributed application by
clustering hosts based on the partners with which they com-
municate. Other work has attacked similar problems [36].
To the best of our knowledge, tpprof is the first tool that
extracts common network-wide traffic patterns, rather than
application-level communication patterns or packet/flow-level
behavior. Broadly speaking, tpprof operates at a higher-level
of abstraction than these existing systems.

Wee note, however, that tpprof is compatible with some
infrastructure monitoring frameworks like Nagios [37] that
collect monitoring data from across the network. By default,
none of these provide the same abstraction as tpprof, but
many allow custom measurement configurations and plugins,
of which tpprof could be one.

Application performance profilers. Our work draws inspi-
ration from a long history of work in application performance
profiling [19,22,27,46,53,60,64]. Some of which are even
able to profile distributed applications [32,33,42,50]. While
tpprof borrows its approach from the subset of these that
profile stochastically, it does this for traffic patterns, which
have their own unique set of challenges.

Anomaly detectors. Our alerting mechanisms are related to
prior work in anomaly detection. Compared to unsupervised
anomaly detection [18,66], however, tpprof provides a much
more accurate and fine-grained detection method. Compared
to traditional profiling-based anomaly detection in which a
user provides a ‘correct’ trace and the system determines
whether the current system diverges [39, 59], tpprof can
distinguish between different anomalies and does not require
the user to obtain a correct trace. More generally, tpprof’s
scoring engine presents a natural, declarative interface for
the user tell the detector, via traffic pattern signatures, the
approximate characteristics of relevant traffic patterns.

Clustering and compression. Finally, we note that our tech-
niques for compressing network states borrow from or are

13

related to the rich literature on clustering and compres-
sion [14,23,25,35]. Our network state extraction techniques,
in particular, leverage existing algorithms. The contribution of
this work is instead the choice and tuning of these clustering
algorithms to the domain of network traffic pattern analysis.

9 Discussion

Other metrics. While we focus on utilization in this paper,
we note that tpprof easily extends to any metric collectible
from the network. These include simple extensions like packet
counts to more advanced metrics like buffer depth and high-
water marks. As these metrics are generally correlated with
utilization, we anticipate that tpprof’s techniques will extend
intrinsically, but we leave an exploration of these extensions
to future work.

Canned reactions. We also note that the ability of tpprof’s
scoring engine to distinguish different traffic patterns presents
an attractive substrate for building network-level reactions
to different traffic patterns. This can also work in reverse:
tpprof can identify common patterns for which operators
should pre-compute reactions. We leave an investigation of
this class of applications to future work as well.

10 Conclusion

We present tpprof, a network traffic pattern profiler. Just
as tools like gprof made it easy for programmers to design,
understand, and optimize their programs, tpprof does the
same for profiling the utilization of large networks. tpprof
leverages recent advancements in programmable networks
and network-wide measurement to capture packet-accurate
snapshots of utilization over time. On top of that, tpprof
builds user-centric profiling, visualization, and automation
tools. tpprof is agnostic to the application set running over
the network and can profile networks in situ, making it an
ideal fit for multi-tenant or transit networks. We profile several
classic applications in order to demonstrate its utility.

Acknowledgments

We gratefully acknowledge Amin Vahdat for providing com-
ments on drafts, our shepherd Andrew Moore, and the anony-
mous NSDI reviewers for all of their thoughtful reviews. This
work was funded in part by Facebook, VMWare, NSF grant
CNS-1845749, and DARPA contract HR0011-17-C0047.

References
[1]
[2]
[3]
[4]
[5]

https://www.nutanix.com/products/epoch.
https://www.pluribusnetworks.com/.
https://www.logicmonitor.com/.
https://endace.com.

https://www.bigswitch.com/products/big-
monitoring-fabric/.

(6]

(71
(8]

(9]

(10]
(11]
[12]
(13]
(14]

(15]

[16]

(7]

(18]

(19]

(20]

[21]

(22]

(23]

https://aws.amazon.com/blogs/security/tag/
network-monitoring-tools/.

http://docs.libmemcached.org/bin/memaslap.html.

Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jiten-
dra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta,
and Murari Sridharan. Data center tcp (dctep). In Proceedings
of the ACM SIGCOMM 2010 Conference, SIGCOMM 10,
pages 63-74, New York, NY, USA, 2010. ACM.

Dormando Anatoly Vorobey, Brad Fitzpatrick. Memcached,
2009.

Apache Software Foundation. Giraph, 2012.

Apache Software Foundation. Hadoop, terasort, 2012.
Apache Software Foundation. Hadoop, yarn, 2012.
Apache Software Foundation. Spark, 2016.

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker.
Control plane compression. In Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data Communi-
cation, SIGCOMM 18, pages 476-489, New York, NY, USA,
2018. ACM.

Richard E Bellman. Adaptive control processes: a guided tour.
Princeton university press, 2015.

Theophilus Benson, Ashok Anand, Aditya Akella, and Ming
Zhang. Understanding data center traffic characteristics. SIG-
COMM Comput. Commun. Rev., 40(1):92-99, January 2010.

Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and
Uri Shaft. When is “nearest neighbor” meaningful? In
Catriel Beeri and Peter Buneman, editors, Database Theory —
ICDT’99, pages 217-235, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and
Jorg Sander. Lof: Identifying density-based local outliers. In
Proceedings of the 2000 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’00, page 93-104,
New York, NY, USA, 2000. Association for Computing Ma-
chinery.

Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Lev-
enthal. Dynamic instrumentation of production systems. In
Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC 04, pages 2-2, Berkeley, CA,
USA, 2004. USENIX Association.

Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and
Anthony D. Joseph. Understanding tcp incast throughput col-
lapse in datacenter networks. In Proceedings of the 1st ACM
Workshop on Research on Enterprise Networking, WREN ’09,
pages 73-82, New York, NY, USA, 2009. ACM.

Mosharaf Chowdhury and Ion Stoica. Coflow: A networking
abstraction for cluster applications. In Proceedings of the 11th
ACM Workshop on Hot Topics in Networks, HotNets-XI, pages
31-36, New York, NY, USA, 2012. ACM.

W.E. Cohen. Tuning programs with oprofile. Wide Open
Magazine, 1:53-62, 01 2004.

William HE Day and Herbert Edelsbrunner. Efficient algo-
rithms for agglomerative hierarchical clustering methods. Jour-
nal of classification, 1(1):7-24, 1984.

14

[24]

[25]

(26]
(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]
(35]

(36]

Nathan Farrington, George Porter, Sivasankar Radhakrishnan,
Hamid Hajabdolali Bazzaz, Vikram Subramanya, Yeshaiahu
Fainman, George Papen, and Amin Vahdat. Helios: A hybrid
electrical/optical switch architecture for modular data centers.
In Proceedings of the ACM SIGCOMM 2010 Conference, SIG-
COMM ’10, pages 339-350, New York, NY, USA, 2010. ACM.

Karl Pearson F.R.S. LIII. on lines and planes of closest fit to
systems of points in space. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 2(11):559—
572, 1901.

Gigamon. Security and networking solutions | gigamon, 2018.

Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick.
Gprof: A call graph execution profiler. In Proceedings of
the 1982 SIGPLAN Symposium on Compiler Construction,
SIGPLAN ’82, pages 120-126, New York, NY, USA, 1982.
ACM.

Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang,
Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua
Chen, Zhi-Wei Lin, and Varugis Kurien. Pingmesh: A large-
scale system for data center network latency measurement and
analysis. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIGCOMM
’15, pages 139-152, New York, NY, USA, 2015. ACM.

Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir
Bahl, and David Wetherall. Augmenting data center networks
with multi-gigabit wireless links. In Proceedings of the ACM
SIGCOMM 2011 Conference, SIGCOMM 11, pages 38-49,
New York, NY, USA, 2011. ACM.

Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar,
David Mazieres, and Nick McKeown. I know what your packet
did last hop: Using packet histories to troubleshoot networks.
In 71th USENIX Symposium on Networked Systems Design
and Implementation NSDI 14, pages 71-85, Seattle, WA, 2014.
USENIX Association.

W Daniel Hillis and Guy L Steele Jr. Data parallel algorithms.
Communications of the ACM, 29(12):1170-1183, 1986.

Moritz Hoffmann, Andrea Lattuada, John Liagouris, Vasiliki
Kalavri, Desislava Dimitrova, Sebastian Wicki, Zaheer Chothia,
and Timothy Roscoe. Snailtrail: Generalizing critical paths
for online analysis of distributed dataflows. In /5th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 18), pages 95-110, Renton, WA, 2018. USENIX
Association.

R. Hofmann, R. Klar, B. Mohr, A. Quick, and M. Siegle. Dis-
tributed performance monitoring: methods, tools, and applica-
tions. IEEE Transactions on Parallel and Distributed Systems,
5(6):585-598, June 1994.

Intel. https://www.hyperscan.io/.

Anil K. Jain. Data clustering: 50 years beyond k-means. Pat-
tern Recognition Letters, 31(8):651 — 666, 2010. Award win-
ning papers from the 19th International Conference on Pattern
Recognition (ICPR).

Yu Jin, Esam Sharafuddin, and Zhi-Li Zhang. Unveiling
core network-wide communication patterns through applica-
tion traffic activity graph decomposition. In Proceedings of

(371

(38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

the Eleventh International Joint Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS °09, page
49-60, New York, NY, USA, 2009. Association for Computing
Machinery.

David Josephsen. Building a Monitoring Infrastructure with
Nagios. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2007.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
genet classification with deep convolutional neural networks.
In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097-1105. Curran Associates, Inc., 2012.

Anukool Lakhina, Mark Crovella, and Christiphe Diot. Char-
acterization of network-wide anomalies in traffic flows. In
Proceedings of the 4th ACM SIGCOMM Conference on In-
ternet Measurement, IMC ’04, page 201-206, New York, NY,
USA, 2004. Association for Computing Machinery.

Will E. Leland, Murad S. Taqqu, Walter Willinger, and
Daniel V. Wilson. On the self-similar nature of ethernet traf-
fic (extended version). IEEE/ACM Trans. Netw., 2(1):1-15,
February 1994.

Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D.
Gribble. Tales of the tail: Hardware, os, and application-level
sources of tail latency. In Proceedings of the ACM Symposium
on Cloud Computing, SOCC 14, pages 9:1-9:14, New York,
NY, USA, 2014. ACM.

Inc. Lightstep. Lightstep [x]pm, 2019.

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and
Thomas Anderson. F10: A fault-tolerant engineered network.
In Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation, NSDI’13, pages 399-412,
Berkeley, CA, USA, 2013. USENIX Association.

Vincent Liu, Danyang Zhuo, Simon Peter, Arvind Krishna-
murthy, and Thomas Anderson. Subways: A case for redun-
dant, inexpensive data center edge links. In Proceedings of the
11th ACM Conference on Emerging Networking Experiments
and Technologies, CONEXT ’15, pages 27:1-27:13, New York,
NY, USA, 2015. ACM.

Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas
Sekar, and Vladimir Braverman. One sketch to rule them
all: Rethinking network flow monitoring with univmon. In
Proceedings of the 2016 ACM SIGCOMM Conference, SIG-
COMM 16, pages 101-114, New York, NY, USA, 2016. ACM.

Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John)
Janakiraman, and Willy Zwaenepoel. Diagnosing performance
overheads in the xen virtual machine environment. In Pro-
ceedings of the 1st ACM/USENIX International Conference on
Virtual Execution Environments, VEE °05, pages 13-23, New
York, NY, USA, 2005. ACM.

Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin
Vahdat. Trumpet: Timely and precise triggers in data cen-
ters. In Proceedings of the 2016 ACM SIGCOMM Conference,
SIGCOMM °16, pages 129-143, New York, NY, USA, 2016.
ACM.

15

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

Nicholas Nethercote and Julian Seward. Valgrind: A frame-
work for heavyweight dynamic binary instrumentation. In
Proceedings of the 28th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI *07,
pages 89-100, New York, NY, USA, 2007. ACM.

Barefoot Networks. Barefoot deep insight — product brief,
2018.

Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker,
and Byung-Gon Chun. Making sense of performance in data
analytics frameworks. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation,
NSDI'15, pages 293-307, Berkeley, CA, USA, 2015. USENIX
Association.

Fabian Pedregosa, Ga&l Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blon-
del, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
Scikit-learn: Machine learning in python. Journal of machine
learning research, 12(Oct):2825-2830, 2011.

Remi Philippe. Next generation data center flow telemetry.
Technical report, Cisco, 2016.

Ted Romer, Geoftf Voelker, Dennis Lee, Alec Wolman, Wayne
Wong, Hank Levy, Brian Bershad, and Brad Chen. Instru-
mentation and optimization of win32/intel executables using
etch. In Proceedings of the USENIX Windows NT Workshop
on The USENIX Windows NT Workshop 1997, NT’97, pages
1-1, Berkeley, CA, USA, 1997. USENIX Association.

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and
Alex C. Snoeren. Inside the social network’s (datacenter)
network. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIGCOMM
’15, pages 123—-137, New York, NY, USA, 2015. ACM.

Bong K. Ryu and Anwar Elwalid. The importance of long-
range dependence of vbr video traffic in atm traffic engineering:
Myths and realities. In Conference Proceedings on Applica-
tions, Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’96, pages 3—14, New York, NY,
USA, 1996. ACM.

Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath
Raghavan. Finding a" kneedle" in a haystack: Detecting knee
points in system behavior. In 2011 31st international con-
ference on distributed computing systems workshops, pages
166-171. IEEE, 2011.

Sameer S. Shende and Allen D. Malony. The tau parallel
performance system. The International Journal of High Per-
formance Computing Applications, 20(2):287-311, 2006.

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby
Armistead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Fel-
derman, Paulie Germano, Anand Kanagala, Jeff Provost, Jason
Simmons, Eiichi Tanda, Jim Wanderer, Urs Holzle, Stephen
Stuart, and Amin Vahdat. Jupiter rising: A decade of clos
topologies and centralized control in google’s datacenter net-
work. In Proceedings of the 2015 ACM Conference on Spe-
cial Interest Group on Data Communication, SIGCOMM ’15,
pages 183-197, New York, NY, USA, 2015. ACM.

Ningombam Anandshree Singh, Khundrakpam Johnson Singh,
and Tanmay De. Distributed denial of service attack detection

[60]

[61]

[62]

[63]

[64]

using naive bayes classifier through info gain feature selection.
In Proceedings of the International Conference on Informatics
and Analytics, ICIA-16, New York, NY, USA, 2016. Associa-
tion for Computing Machinery.

Amitabh Srivastava and Alan Eustace. Atom: A system for
building customized program analysis tools. In Proceedings
of the ACM SIGPLAN 1994 Conference on Programming Lan-
guage Design and Implementation, PLDI *94, pages 196-205,
New York, NY, USA, 1994. ACM.

Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang
Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig. Elastic sketch:
Adaptive and fast network-wide measurements. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM °18, pages 561-575, New
York, NY, USA, 2018. ACM.

Nofel Yaseen, John Sonchack, and Vincent Liu. Speedlight
bmv2, 2018.

Nofel Yaseen, John Sonchack, and Vincent Liu. Synchronized
network snapshots. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication,
SIGCOMM ’18, pages 402—-416, New York, NY, USA, 2018.
ACM.

Marco Zagha, Brond Larson, Steve Turner, and Marty
Itzkowitz. Performance analysis using the mips r10000 per-
formance counters. In Proceedings of the 1996 ACM/IEEE
Conference on Supercomputing, Supercomputing *96, Wash-
ington, DC, USA, 1996. IEEE Computer Society.

16

[65]

[66]

[67]

[68]

[69]

Matei Zaharia, Mosharat Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with work-
ing sets. HotCloud, 10(10-10):95, 2010.

Jiong Zhang and Mohammad Zulkernine. Anomaly based
network intrusion detection with unsupervised outlier detec-
tion. 2006 IEEE International Conference on Communications,
5:2388-2393, 2006.

Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krish-
namurthy. High-resolution measurement of data center mi-
crobursts. In Proceedings of the 2017 Internet Measurement
Conference, IMC ’17, pages 78-85, New York, NY, USA, 2017.
ACM.

Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick Duffield, and
Carsten Lund. Online identification of hierarchical heavy hit-
ters: Algorithms, evaluation, and applications. In Proceedings
of the 4th ACM SIGCOMM Conference on Internet Measure-
ment, IMC 04, pages 101-114, New York, NY, USA, 2004.
ACM.

Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan
Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang,
Ben Y. Zhao, and Haitao Zheng. Packet-level telemetry in
large datacenter networks. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication,
SIGCOMM ’15, pages 479-491, New York, NY, USA, 2015.
ACM.

	Introduction
	The Anatomy of a Traffic Pattern
	tpprof Design Overview
	Sampling Framework
	Counter Implementation and Sampling
	Batching and Aggregation

	The tpprof Profiling Tool
	Network States
	Network State Subsequences
	Example Visualization: memcached
	Case Study #1: Detecting Load Imbalance
	Case Study #2: Debugging a Noisy Neighbor

	Traffic Pattern Scoring
	Implementation and Evaluation
	Profiling More Complex Applications
	Profiling Large Production Networks
	Efficacy of the TPS Module
	Overhead and Performance of tpprof

	Related Work
	Discussion
	Conclusion

