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Abstract

Given a sequential learning algorithm and
a target model, sequential machine teaching
aims to find the shortest training sequence
to drive the learning algorithm to the target
model. We present the first principled way
to find such shortest training sequences. Our
key insight is to formulate sequential machine
teaching as a time-optimal control problem.
This allows us to solve sequential teaching by
leveraging key theoretical and computational
tools developed over the past 60 years in the
optimal control community. Specifically, we
study the Pontryagin Maximum Principle,
which yields a necessary condition for opti-
mality of a training sequence. We present
analytic, structural, and numerical implica-
tions of this approach on a case study with
a least-squares loss function and gradient de-
scent learner. We compute and visualize the
optimal training sequences for this problem,
and find that they can vastly outperform the
best available heuristics for generating train-
ing sequences.

1 INTRODUCTION

Machine teaching studies optimal control on machine
learners (Zhu et al., 2018; Zhu, 2015). In controls lan-
guage the plant is the learner, the state is the model
estimate, and the input is the (not necessarily i.i.d.)
training data. The controller wants to use the least
number of training items—a concept known as the
teaching dimension (Goldman and Kearns, 1995)—to
force the learner to learn a target model. For exam-
ple, in adversarial learning, an attacker may minimally
poison the training data to force a learner to learn a ne-
farious model (Biggio et al., 2012; Mei and Zhu, 2015).
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Conversely, a defender may immunize the learner by
injecting adversarial training examples into the train-
ing data (Goodfellow et al., 2014). In education sys-
tems, a teacher may optimize the training curriculum
to enhance student (modeled as a learning algorithm)
learning (Sen et al., 2018; Patil et al., 2014).

Machine teaching problems are either batch or sequen-
tial depending on the learner. The majority of prior
work studied batch machine teaching, where the con-
troller performs one-step control by giving the batch
learner an input training set. Modern machine learn-
ing, however, extensively employs sequential learning
algorithms. We thus study sequential machine teach-
ing: what is the shortest training sequence to force a
learner to go from an initial model w0 to some target
model w?? Formally, at time t = 0, 1, . . . the controller
chooses input (xt, yt) from an input set U . The learner
then updates the model according to its learning algo-
rithm. This forms a dynamical system f :

wt+1 = f(wt,xt, yt). (1a)

The controller has full knowledge of w0,w?, f,U , and
wants to minimize the terminal time T subject to
wT = w?.

As a concrete example, we focus on teaching a gradient
descent learner of least squares:

f(wt,xt, yt) = wt − η(wT
t xt − yt)xt (1b)

with w ∈ Rn and the input set ‖x‖ ≤ Rx, |y| ≤ Ry.
We caution the reader not to trivialize the problem:
(1) is a nonlinear dynamical system due to the inter-
action between wt and xt. A previous best attempt
to solve this control problem by Liu et al. (2017) em-
ploys a greedy control policy, which at step t opti-
mizes xt, yt to minimize the distance between wt+1

and w?. One of our observations is that this greedy
policy can be substantially suboptimal. Figure 1 shows
three teaching problems and the number of steps T
to arrive at w? using different methods. Our optimal
control method formulated as Nonlinear Programming
(NLP) found shorter teaching sequences compared to
the greedy policy (lengths 151, 153, 259 for NLP vs
219, 241, 310 for GREEDY, respectively). This and
other experiments are discussed in Section 4.
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Figure 1: The shortest teaching trajectories found by different methods. All teaching tasks use the terminal
point w? = (1, 0). The initial points used are w0 = (0, 1) (left panel), w0 = (0, 2.5) (middle panel), and
w0 = (−1.5, 0.5) (right panel). The learner is the least squares gradient descent algorithm (1) with η = 0.01 and
Rx = Ry = 1. Total steps T to arrive at w? is indicated in the legends.

1.1 Main Contributions

Our main contribution is to show how tools from op-
timal control theory may be brought to bear on the
machine teaching problem. Specifically, we show that:

1. The Pontryagin optimality conditions reveal rich
structural properties of the optimal teaching se-
quences. Specifically, we provide a structural
characterization of solutions and show that, in the
least-squares case (1), the optimal solution always
lies in a 2D subspace. These results are detailed
in Section 3.

2. Optimal teaching sequences can be vastly more
efficient than what may be obtained via common
heuristics. We present two optimal approaches:
an exact method (NLP) and a continuous approxi-
mation (CNLP). Both agree when the stepsize η is
small, but CNLP is more scalable because its run-
time does not depend on the length of the training
sequence. These results are shown in Section 4.

We begin with a survey of the relevant optimal control
theory and algorithms literature in Section 2.

2 TIME-OPTIMAL CONTROL

To study the structure of optimal control we consider
the continuous gradient flow approximation of gradi-
ent descent, which holds in the limit of diminishing
step size, i.e. η → 0. In this section, we present the
corresponding canonical time-optimal control problem
and summarize some of the key theoretical and com-
putational tools in optimal control that address it. For
a more detailed exposition on the theory, we refer the
reader to modern references on the topic (Kirk, 2012;
Liberzon, 2011; Athans and Falb, 2013).

This section is self-contained and we will use notation
consistent with the control literature (x instead of w,
u instead of (x, y), tf instead of T ). We revert back to
machine learning notation in section 3. Consider the
following boundary value problem:

ẋ = f(x, u) with x(0) = x0 and x(tf ) = xf . (2)

The function x : R+ → Rn is called the state and
u : R+ → U is called the input. Here, U ⊆ Rm is a
given constraint set that characterizes admissible in-
puts. The initial and terminal states x0 and xf are
fixed, but the terminal time tf is free. If an admissible
u together with a state x satisfy the boundary value
problem (2) for some choice of tf , we call (x, u) a tra-
jectory of the system. The objective in a time-optimal
control problem is to find an optimal trajectory, which
is a trajectory that has minimal tf .

Established approaches for solving time-optimal con-
trol problems can be grouped in three broad categories:
dynamic programming, indirect methods, and direct
methods. We now summarize each approach.

2.1 Dynamic Programming

Consider the value function V : Rn → R+, where V (x)
is the minimum time required to reach xf starting
at the initial state x. The Hamilton–Jacobi–Bellman
(HJB) equation gives necessary and sufficient condi-
tions for optimality and takes the form:

min
ũ∈U

∇V (x)Tf(x, ũ) + 1 = 0 for all x ∈ Rn (3)

together with the boundary condition V (xf ) = 0. If
the solution to this differential equation is V?, then the
optimal input is given by the minimizer:

u(x) ∈ arg min
ũ∈U

∇V?(x)Tf(x, ũ) for all x ∈ Rn (4)
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A nice feature of this solution is that the optimal input
u depends on the current state x. In other words, HJB
produces an optimal feedback policy.

Unfortunately, the HJB equation (3) is generally dif-
ficult to solve. Even if the minimization has a closed
form solution, the resulting differential equation is of-
ten intractable. We remark that the optimal V? may
not be differentiable. For this reason, one looks for
so-called viscosity solutions, as described by Liberzon
(2011); Tonon et al. (2017) and references therein.

Numerical approaches for solving HJB include the fast-
marching method (Tsitsiklis, 1995) and Lax–Friedrichs
sweeping (Kao et al., 2004). The latter reference also
contains a detailed survey of other numerical schemes.

2.2 Indirect Methods

Also known as “optimize then discretize”, indirect ap-
proaches start with necessary conditions for optimal-
ity obtained via the Pontryagin Maximum Principle
(PMP). The PMP may be stated and proved in sev-
eral different ways, most notably using the Hamilto-
nian formalism from physics or using the calculus of
variations. Here is a formal statement.

Theorem 2.1 (PMP). Consider the boundary value
problem (2) where f and its Jacobian with respect to
x are continuous on Rn × U . Define the Hamiltonian
H : Rn × Rn × U → R as H(x, p, u) := pTf(x, u) + 1.
If (x?, u?) is an optimal trajectory, then there exists
some function p? : R+ → Rn (called the “co-state”)
such that the following conditions hold.

a) x? and p? satisfy the following system of differen-
tial equations for t ∈ [0, tf ] with boundary condi-
tions x?(0) = x0 and x?(tf ) = xf .

ẋ?(t) =
∂H

∂p

(
x?(t), p?(t), u?(t)

)
, (5a)

ṗ?(t) = −∂H
∂x

(
x?(t), p?(t), u?(t)

)
. (5b)

b) For all t ∈ [0, tf ], an optimal input u?(t) satisfies:

u?(t) ∈ arg min
ũ∈U

H(x?(t), p?(t), ũ). (6)

c) Zero Hamiltonian along optimal trajectories:

H(x?(t), p?(t), u?(t)) = 0 for all t ∈ [0, tf ]. (7)

In comparison to HJB, which needs to be solved for all
x ∈ Rn, the PMP only applies along optimal trajecto-
ries. Although the differential equations (5) may still
be difficult to solve, they are simpler than the HJB
equation and therefore tend to be more amenable to
both analytical and numerical approaches. Solutions
to HJB and PMP are related via ∇V ?(x?(t)) = p?(t).

PMP is only necessary for optimality, so solutions
of (5)–(7) are not necessarily optimal. Moreover, PMP
does not produce a feedback policy; it only produces
optimal trajectory candidates. Nevertheless, PMP can
provide useful insight, as we will explore in Section 3.

If PMP cannot be solved analytically, a common nu-
merical approach is the shooting method, where we
guess p?(0), propagate the equations (5)–(6) forward
via numerical integration. Then p?(0) is refined and
the process is repeated until the trajectory reaches xf .

2.3 Direct Methods

Also known as “discretize then optimize”, a sparse
nonlinear program is solved, where the variables are
the state and input evaluated at a discrete set of time-
points. An example is collocation methods, which use
different basis functions such as piecewise polynomi-
als to interpolate the state between timepoints. For
contemporary surveys of direct and indirect numerical
approaches, see Rao (2009); Betts (2010).

If the dynamics are already discrete as in (1), we may
directly formulate a nonlinear program. We refer to
this approach as NLP. Alternatively, we can take the
continuous limit and then discretize, which we call
CNLP. We discuss the advantages and disadvantages
of both approaches in Section 4.

3 TEACHING LEAST SQUARES:
INSIGHT FROM PONTRYAGIN

In this section, we specialize time-optimal control to
least squares. To recap, our goal is to find the mini-
mum number of steps T such that there exists a control
sequence (xt, yt)0:T−1 that drives the learner (1) with
initial state w0 to the target state w?. The constraint
set is U = {(x, y) | ‖x‖ ≤ Rx, |y| ≤ Ry}. This is an
nonlinear discrete-time time-optimal control problem,
for which no closed-form solution is available.

On the corresponding continuous-time control prob-
lem, applying Theorem 2.1 we obtain the following
necessary conditions for optimality1 for all t ∈ [0, tf ].

w(0) = w0, w(tf ) = w? (8a)

ẇ(t) =
(
y(t)−w(t)Tx(t)

)
x(t) (8b)

ṗ(t) =
(
p(t)Tx(t)

)
x(t) (8c)

x(t), y(t) ∈ arg min
‖x̂‖≤Rx, |ŷ|≤Ry

(
ŷ −w(t)Tx̂

)
(p(t)Tx̂) (8d)

0 =
(
y(t)−w(t)Tx(t)

)(
p(t)Tx(t)

)
+ 1 (8e)

1State, co-state, and input in Theorem 2.1 are (x, p, u),
which is conventional controls notation. For this problem,
we use (w,p, (x, y)), which is machine learning notation.
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We can simplify (8) by setting y(t) = Ry, as described
in Proposition 3.1 below.

Proposition 3.1. For any trajectory (w,p,x, y) sat-
isfying (8), there exist another trajectory of the form
(w,p, x̃, Ry). So we may set y(t) = Ry without any
loss of generality.

Proof. Since (8d) is linear in ŷ, the optimal ŷ occurs
at a boundary and ŷ = ±Ry. Changing the sign of
ŷ is equivalent to changing the sign of x̂, so we may
assume without loss of generality that ŷ = Ry. These
changes leave (8b)–(8c) and (8e) unchanged so w and
p are unchanged as well.

In fact, Proposition 3.1 holds if we consider trajectories
of (1) as well. For a proof, see the appendix.

Applying Proposition 3.1, the conditions (8d) and (8e)
may be combined to yield the following quadratically
constrained quadratic program (QCQP) equation.

min
‖x‖≤Rx

(Ry −wTx)(pTx) = −1 (9)

where we have omitted the explicit time specification
(t) for clarity. Note that (9) constrains the possible
tuples (w,p,x) that can occur as part of an optimal
trajectory. So in addition to solving the left-hand side
to find x, we must also ensure that it’s equal to −1. We
will now characterize the solutions of (9) by examining
five distinct regimes of the solution space that depend
on the relationship between w and p as well as which
regime transitions are admissible.

Regime I (Origin): w = 0 and p 6= 0. This regime
happens when the teaching trajectory pass through
the origin. In this regime, one can obtain closed-form
solutions. In particular, x = − Rx

‖p‖p and ‖p‖ = 1
RxRy

.

In this regime, both ẇ and ṗ are positively aligned
with p. Therefore, Regime I necessarily transitions
from Regime II and into Regime III, given that it is not
at the beginning or the end of the teaching trajectory.

Regime II (positive alignment): w = αp with
p 6= 0 and α > 0. This regime happens when w
and p are positively aligned. Again we have closed
form solutions. In particular, x? = − Rx

‖w‖w and α =

Rx‖w‖(Ry+Rx‖w‖). In this regime, both ẇ and ṗ are
negatively aligned with w, thus Regime II necessarily
transitions into Regime I and can never transition from
any other regimes.

Regime III (negative alignment inside the
origin-centered ball): w = −αp with p 6= 0

and α > 0 and ‖w‖ ≤ Ry

2Rx
. This regime happens

when w and p are negatively aligned and w is inside
the ball centered at the origin with radius R =

Ry

2Rx
.

Again, closed form solutions exists: x? = Rx

‖w‖w and

α = R‖w‖(1 − R‖w‖). Regime III necessarily transi-
tions from Regime I and into Regime IV.

Regime IV (negative alignment out of the
origin-centered ball): w = −αp with p 6= 0 and

α > 0 and ‖w‖ > Ry

2Rx
. In this case, the solutions

satisfies α =
R2

y

4 so that p is uniquely determined by w.
However, the optimal x? is not unique. Any solution
to wTx =

Ry

2 with ‖x‖ ≤ Rx can be chosen. Regime
IV can only transition from Regime III and cannot
transition into any other regime. In other word, once
the teaching trajectory enters Regime IV, it cannot
escape. Another interesting property of Regime IV is
that we know exactly how fast the norm of w is chang-
ing. In particular, knowing wTx =

Ry

2 , one can derive

that d‖w‖2
dt =

R2
y

2 . As a result, once the trajectory en-
ters regime IV, we know exact how long it will take for
the trajectory to reach w?, if it is able to reach it.

Regime V (general positions): w and p are lin-
early independent. This case covers the remaining
possibilities for the state and co-state variables. To
characterize the solutions in this regime, we’ll first in-
troduce some new coordinates. Define {ŵ, û} to be the
orthonormal basis for span{w,p} such that w = γŵ
and p = αŵ + βû for some α, β, γ ∈ R. Note that
β 6= 0 because we assume w and p are assumed to
be linearly independent in this regime. We can there-
fore express any input uniquely as x = wŵ + uû + zẑ
where ẑ is an out-of-plane unit vector orthogonal to
both ŵ and û, and w, u, z ∈ R are suitably chosen.
Substituting these definitions, (9) becomes

min
w2+u2+z2≤R2

x

(Ry − γw)(αw + βu) = −1. (10)

Now observe that the objective is linear in u and does
not depend on z. The objective is linear in u be-
cause β 6= 0 and (1 − γw) 6= 0 otherwise the entire
objective would be zero. Since the feasible set is con-
vex, the optimal u must occur at the boundary of the
feasible set of variables w and u. Therefore, z = 0.
This is profound, because it implies that in Regime V,
the optimal solution necessarily lies on the 2D plane
span{w,p}. In light of this fact, we can pick a more
convenient parametrization. Let w = Rx cos θ and
u = Rx sin θ. Equation (10) becomes:

min
θ

Rx(Ry − γRx cos θ)(α cos θ + β sin θ) = −1. (11)

This objective function has at most four critical points,
of which there is only one global minimum, and we can
find it numerically. Last but not least, Regime V does
not transition from or into any other Regime.
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Figure 2: Optimal trajectories for w? = (1, 0) for dif-
ferent choices of w0. Trajectories are colored according
to the regime to which they belong and the directed
graph above shows all possible transitions. The opti-
mal trajectories are symmetric about the x-axis. For
implementation details, see Section 4.

Intrinsic low-dimensional structure of the opti-
mal control solution. As is hinted in the analysis
of Regime V, the optimal control x sometimes lies in
the 2D subspace spanned by w and p. In fact, this
holds not only for Regime V but for the whole prob-
lem. In particular, we make the following observation.

Theorem 3.2. There always exists a global optimal
trajectory of (8) that lies in a 2D subspace of Rn.

The detailed proof can be found in the appendix. An
immediate consequence of Theorem 3.2 is that if w0

and w? are linearly independent, we only need to con-
sider trajectories that are confined to the subspace
span{w0,w?}. When w0 and w? are aligned, trajecto-
ries are still 2D, and any subspace containing w0 and
w? is equivalent and arbitrary choice can be made.

This insight is extremely important because it enables
us to restrict our attention to 2D trajectories even
though the dimensionality of the original problem (n)
may be huge. This allows us to not only obtain a more
elegant and accurate solution in solving the necessary
condition induced by PMP, but also to parametrize di-
rect and indirect approaches (see Sections 2.2 and 2.3)
to solve this intrinsically 2D problem more efficiently.

Multiplicity of Solution Candidates. The PMP
conditions are only necessary for optimality. There-
fore, the optimality conditions (8) need not have a
unique solution. We illustrate this phenomenon in Fig-
ure 3. We used a shooting approach (Section 2.2) to

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
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2.0
shooting trajectories

candidate 1, tf = 2.58s

candidate 2, tf = 3.26s

Figure 3: Trajectories found using a shooting approach
(Section 2.2) with w0 = (−2, 1) and w? = (1, 0). Gray
curves show different shooting trajectories while the
blue and orange curves show two trajectories that sat-
isfy the necessary conditions for optimality (8). Mark-
ers show intervals of 0.5 seconds, which is roughly 50
steps when using a stepsize of η = 0.01.

propagate different choices of p?(0) forward in time.
It turns out two choices lead to trajectories that end
at w?, and they do not have equal total times. So in
general, PMP identifies optimal trajectory candidates,
which can be thought of as local minima for this highly
nonlinear optimization problem.

4 NUMERICAL METHODS

While the PMP yields necessary conditions for time-
optimal control as detailed in Section 3, there is no
closed-form solution in general. We now present and
discuss four numerical methods: CNLP and NLP
are different implementations of time-optimal control,
while GREEDY and STRAIGHT are heuristics.

CNLP: This approach solves the continuous gradi-
ent flow limit of the machine teaching problem using a
direct approach (Section 2.3). Specifically, we used
the NLOptControl package (Febbo, 2017), which is
an implementation of the hp-pseudospectral method
GPOPS-II (Patterson and Rao, 2014) written in the
Julia programming language using the JuMP model-
ing language (Dunning et al., 2017) and the IPOPT
interior-point solver (Wächter and Biegler, 2006). The
main tuning parameters for this software are the inte-
gration scheme and the number of mesh points. We
selected the trapezoidal integration rule with 100 mesh
points for most simulations. We used CNLP to pro-
duce the trajectories in Figures 1 and 2.
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NLP: A näıve approach to optimal control is to find
the minimum T for which there is a feasible input
sequence to drive the learner to w?. Fixing T , the
feasibility subproblem is a nonlinear program over 2T
n-dimensional variables x0, . . . ,xT−1 and w1, . . . ,wT

constrained by learner dynamics. Recall w0 is given,
and one can fix yt = Ry for all t by Proposition 3.1.
For our learner (1), the feasibility problem is

min
w1:T ,x0:T−1

0 (12)

s.t. wT = w?

wt+1 = wt − η(wT
t xt −Ry)xt

‖xt‖ ≤ Rx, ∀t = 0, . . . , T − 1.

As in the CNLP case, we modeled and solved the sub-
problems (12) using JuMP and IPOPT. We also tried
Knitro, a state-of-the-art commercial solver (Byrd
et al., 2006), and it produced similar results. We stress
that such feasibility problems are difficult; IPOPT and
Knitro can handle moderately sized T . For our spe-
cific learner (1) there are 2D optimal control and state
trajectories in span{w0,w?} as discussed in Section 3.
Therefore, we reparameterized (12) to work in 2D.

On top of this, we run a binary search over positive
integers to find the minimum T for which the sub-
problem (12) is feasible. Subject to solver numerical
stability, the minimum T and its feasibility solution
x0, . . . ,xT−1 is the time-optimal control. While NLP
is conceptually simple and correct, it requires solv-
ing many subproblems with 2T variables and 2T con-
straints, making it less stable and scalable than CNLP.

GREEDY: We restate the greedy control policy ini-
tially proposed by Liu et al. (2017). It has the ad-
vantage of being computationally more efficient and
readily applicable to different learning algorithms (i.e.
dynamics). Specifically for the least squares learner (1)
and given the current state wt, GREEDY solves the
following optimization problem to determine the next
teaching example (xt, yt):

min
(xt,yt)∈U

‖wt+1 −w?‖2 (13)

s.t. wt+1 = wt − η(wT
t xt − yt)xt.

The procedure repeats until wt+1 = w?. We used
the Matlab function fmincon to solve the above
quadratic program iteratively. We point out that the
optimization problem is not convex. Moreover, wt+1

does not necessarily point in the direction of w?. This
is evident in Figure 1 and Figure 6.

STRAIGHT: We describe an intuitive control pol-
icy: at each step, move w in straight line toward w?

as far as possible subject to the constraint U . This

policy is less greedy than GREEDY because it may
not reduce ‖wt+1 −w?‖2 as much at each step. The
per-step optimization in x is a 1D line search:

min
a,yt∈R

‖wt+1 −w?‖2 (14)

s.t. xt = a(w? −wt)/‖w? −wt‖
(xt, yt) ∈ U
wt+1 = wt − η(wT

t xt − yt)xt.

The line search (14) can be solved in closed-form. In
particular, one can obtain that

a =

{
min{Rx, Ry‖w?−w‖

2(w?−w)Tw
}, if (w? −w)Tw > 0

Rx, otherwise.

4.1 Comparison of Methods

We ran a number of experiments to study the behavior
of these numerical methods. In all experiments, the
learner is gradient descent on least squares (1), and
the control constraint set is ‖x‖ ≤ 1, |y| ≤ 1. Our first
observation is that CNLP has a number of advantages:

1. CNLP’s continuous optimal state trajectory
matches NLP’s discrete state trajectories, espe-
cially on learners with small η. This is expected,
since the continuous optimal control problem is
obtained asymptotically from the discrete one as
η → 0. Figure 4 shows the teaching task w0 =
(1, 0) ⇒ w∗ = (1, 0). Here we compare CNLP
with NLP’s optimal state trajectories on four gra-
dient descent learners with different η values. The
NLP optimal teaching sequences vary drastically
in length T , but their state trajectories quickly
overlap with CNLP’s optimal trajectory.

2. CNLP is quick to compute, while NLP runtime
grows as the learner’s η decreases. Table 1
presents the wall clock time. With a small η, the
optimal control takes more steps (larger T ). Con-
sequently, NLP must solve a nonlinear program
with more variables and constraints. In contrast,
CNLP’s runtime does not depend on η.

3. CNLP can be used to approximately compute the
“teaching dimension”, i.e. the minimum num-
ber of sequential teaching steps T for the discrete
problem. Recall CNLP produces an optimal ter-
minal time tf . When the learner’s η is small,
the discrete “teaching dimension” T is related by
T ≈ tf/η. This is also supported by Table 1.

That said, it is not trivial to extract a discrete control
sequence from CNLP’s continuous control function.
This hinders CNLP’s utility as an optimal teacher.
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Figure 4: Comparison of CNLP vs NLP. All teaching tasks use the terminal point w? = (1, 0). The initial points
used are w0 = (0, 1) (left panel), w0 = (0, 2.5) (middle panel), and w0 = (−1.5, 0.5) (right panel). We observe
that the NLP trajectories on learners with smaller η’s quickly converges to the CNLP trajectory.

Table 1: Teaching sequence length and wall clock time
comparison. NLP teaches three learners with different
η’s. Target is always w? = (1, 0). All experiments
were performed on a conventional laptop.

NLP CNLP
w0 η = 0.4 0.02 0.001

(0, 1) T = 3 75 1499 tf = 1.52s
0.013s 0.14s 59.37s 4.1s

(0, 2.5) T = 5 76 1519 tf = 1.53s
0.008s 0.11s 53.28s 2.37s

(−1.5, 0.5) T = 6 128 2570 tf = 2.59s
0.012s 0.63s 310.08s 2.11s

Table 2: Comparison of teaching sequence length T .
We fixed η = 0.01 in all cases.

w0 w? NLP STRAIGHT GREEDY

(0, 1) (2, 0) 148 161 233
(0, 2) (4, 0) 221 330 721
(0, 4) (8, 0) 292 867 2667
(0, 8) (16, 0) 346 2849 10581

Our second observation is that NLP, being the
discrete-time optimal control, produces shorter teach-
ing sequences than GREEDY or STRAIGHT. This is
not surprising, and we have already presented three
teaching tasks in Figure 1 where NLP has the small-
est T . In fact, there exist teaching tasks on which
GREEDY and STRAIGHT can perform arbitrarily
worse than the optimal teaching sequence found by
NLP. A case study is presented in Table 2. In this set
of experiments, we set w0 = (a, 0) and w? = (0, 2a).
As a increases, the ratio of teaching sequence length
between STRAIGHT and NLP and between GREEDY
and NLP grow at an exponential rate.

−0.5 0.0 0.5 1.0 1.5 2.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 5: Points reachable in one step of gradient de-
scent (with η = 0.1) on a least-squares objective start-
ing from each of the black dots. There is circular sym-
metry about the origin (red dot).

We now dig deeper and present an intuitive ex-
planation of why GREEDY requires more teaching
steps than NLP. The fundamental issue is the non-
linearity of the learner dynamics (1) in x. For
any w let us define the one-step reachable set{
w − η(wTx− y)x

∣∣ (x, y) ∈ U
}

. Figure 5 shows a
sample of such reachable sets. The key observation
is that the starting w is quite close to the boundary
of most reachable sets. In other words, there is often
a compressed direction—from w to the closest bound-
ary of U—along which w makes minimal progress. The
GREEDY scheme falls victim to this phenomenon.
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NLP, T=14
w0
w⋆

0.0 0.5 1.0

GREEDY, T=21
w0
w ⋆

Figure 6: Reachable sets along the trajectory of NLP
(left panel) and GREEDY (right panel). To minimize
clutter, we only show every 3rd reachable set. For this
simulation, we used η = 0.1. The greedy approach
makes fast progress initially, but slows down later on.
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GREEDY STRAIGHT

−1 0 1
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NLP
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Figure 7: Trajectories of the input sequence {xt} for
GREEDY, STRAIGHT, and NLP methods and the
corresponding x(t) for CNLP. The teaching task is
w0 = (−1.5, 0.5), w? = (1, 0), and η = 0.01. Markers
show every 10 steps. Input constraint is ‖x‖ ≤ 1.

Figure 6 compares NLP and GREEDY on a teaching
task chosen to have short teaching sequences in order
to minimize clutter. GREEDY starts by eagerly de-
scending a slope and indeed this quickly brings it closer
to w?. Unfortunately, it also arrived at the x-axis. For
w on the x-axis, the compressed direction is horizon-
tally outward. Therefore, subsequent GREEDY moves
are relatively short, leading to a large number of steps
to reach w?. Interestingly, STRAIGHT is often bet-
ter than GREEDY because it also avoids the x-axis
compressed direction for general w0.

We illustrate the optimal inputs in Figure 7, which
compares {xt} produced by STRAIGHT, GREEDY,
and NLP and the x(t) produced by CNLP. The heuris-
tic approaches eventually take smaller-magnitude
steps as they approach w? while NLP and CNLP main-
tain a maximal input norm the whole way.

5 CONCLUDING REMARKS

Techniques from optimal control are under-utilized in
machine teaching, yet they have the power to provide
better quality solutions as well as useful insight into
their structure.

As seen in Section 3, optimal trajectories for the least
squares learner are fundamentally 2D. Moreover, there
is a taxonomy of regimes that dictates their behavior.
We also saw in Section 4 that the continuous CNLP
solver can provide a good approximation to the true
discrete trajectory when η is small. CNLP is also more
scalable than simply solving the discrete NLP directly
because NLP becomes computationally intractable as
T gets large (or η gets small), whereas the runtime of
CNLP is independent of η.

A drawback of both NLP and CNLP is that they pro-
duce trajectories rather than policies. In practice, us-
ing an open-loop teaching sequence (xt, yt) will not
yield the wt we expect due to the accumulation of
small numerical errors as we iterate. In order to find a
control policy, which is a map from state wt to input
(xt, yt), we discussed the possibility of solving HJB
(Section 2.1) which is computationally expensive.

An alternative to solving HJB is to pre-compute the
desired trajectory via CNLP and then use model-
predictive control (MPC) to find a policy that tracks
the reference trajectory as closely as possible. Such
an approach is used in Liniger et al. (2015), for ex-
ample, to design controllers for autonomous race cars,
and would be an interesting avenue of future work for
the machine teaching problem.

Finally, this paper presents only a glimpse at what
is possible using optimal control. For example, the
PMP is not restricted to merely solving time-optimal
control problems. It is possible to analyze problems
with state- and input-dependent running costs, state
and input pointwise or integral constraints, conditional
constraints, and even problems where the goal is to
reach a target set rather than a target point.
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