On the cover time of dense graphs

Colin Cooper* Alan Frieze! Wesley Pegden?

June 3, 2020

Abstract

We consider arbitrary graphs G with n vertices and minimum degree at least dn
where ¢ > 0 is constant.
(a) If the conductance of G is sufficiently large then we obtain an asymptotic expression
for the cover time Cg of G as the solution to an explicit transcendental equation.
(b) If the conductance is not large enough to apply (a), but the mixing time of a random
walk on G is of a lesser magnitude than the cover time, then we can obtain an asymptotic
deterministic estimate via a decomposition into a bounded number of dense subgraphs
with high conductance.
(c) If G fits neither (a) nor (b) then we give a deterministic asymptotic (2+o0(1))-
approximation of Cg.

1 Introduction

Let G = (V, E) be a connected graph with vertex set V' = [n] = {1,2,...,n} and an edge
set F of m edges. In a simple random walk W on a graph G, at each step, a particle moves
from its current vertex to a randomly chosen neighbour. For v € V', let C, be the expected
time taken for a simple random walk starting at v to visit every vertex of G. The vertex cover
time Cg of G is defined as Cg = max,ecy C,. The (vertex) cover time of connected graphs has
been extensively studied. It is a classic result of Aleliunas, Karp, Lipton, Lovasz and Rackoff
[2] that Ce < 2m(n — 1). It was shown by Feige [14], [15], that for any connected graph G,
the cover time satisfies (1 — o(1))nlogn < Cg < (1 + o(1))5n?. As an example of a graph
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achieving the lower bound, the complete graph K,, has cover time determined by the Coupon
Collector problem. The lollipop graph consisting of a path of length n/3 joined to a clique of
size 2n/3 gives the asymptotic upper bound for the cover time.

It follows from [2] that there is a very simple randomised algorithm for estimating the cover
time. Simply execute enough random walks so that the average cover time can be used as
an estimate. It is much more challenging to estimate the cover time deterministically in
polynomial time. A theorem of Matthews [20] gives a deterministic O(logn) approximation.
This was improved to O((loglogn)?) by Kahn, Kim, Lovdsz and Vu [16]. In a breakthrough,
Ding, Lee and Peres [13] improved this to O(1) using a remarkable connection between the
cover time and Gaussian free fields. Subsequently, Ding [12] has improved the factor of
approximation to 1 + o(1), as n — oo for trees and bounded degree graphs. Zhai [24] has
recently shown that if the maximum hitting time is asymptotically smaller than the cover time
then the approximation ratio is 1 + o(1), implying the results of [I3] and [I2]. An important
point to note here is that Meka [21] gives a polynomial time approximation scheme for finding
the supremum of a Gaussian process. This is what provides the computational underpinning
for the results of [13], [12] and [24]. We note that none of these results give an explicit value of
the cover time as a function of the number of vertices n or imply a deterministic polynomial
time approximation scheme for the cover time.

The first two authors of this paper have studied the cover time of various models of a random
graph, see [5l [0 8, 9]. The main tool in their analysis has been the “First Visit Lemma”, see
Lemma {4l In this paper we see how this lemma can be used deterministically to give good
estimates of the cover time of dense graphs when the mixing time is asymptotically smaller
than the cover time.

Let G(n,0) denote the set of connected graphs with vertex set [n] and minimum degree at
least On. Our first result deals with the simplest case, where the mixing time of a random
walk on our graph is sufficiently small. Subsequent theorems will consider more general cases.

Notation: The degree sequence of the graph G = (V| E), |V| = n, will always be d =
(di,da,...,dy) so that 2m = 7" d;. For S C V we let d(S) = > ,.qd; and e(S) =

{{v,w} € (g) N E}

For two sequences A,, B, we write A, = (1£¢)B, if (1 —¢)B, < A, < (1+4¢)B, for n
sufficiently large. For two sequences A,, B, we write A, ~ B, if A, = (1 + o(1))B,, as
n — oco. We will write A,, > B,, or B, < A, to mean that A, /B, — oo as n — 0.

For ST CV,SNT =01let e(S,T) =eq(S,T) ={{v,u} e E:veSweT}let S=V\S
and

_ e(S.8)d(V)

B(S) = Bo($) = “ s

(1)



The conductance ®(G) of G is given by

®(G) = min 26(S).
We will make our walk lazy and ergodic by adding a loop at each vertex so that the walk
stays put with probability 1/2 at each step. This has the effect of (asymptotically) doubling
the cover time and the extra factor of two can be discarded. (Ergodicity only requires a
small probability of staying in place, but laziness allows us to use conductance to estimate
the mixing time. See (18]).) A simple random walk has a steady state of

d; . . 0 1
— —<m < —.

=g i€ [n] and if G € G(n,#) then S <M s o (2)
Next let o
e ™

F _ / - _ —7rvt'
(t) E - and so  F'(t) g e (3)
veV veV

Note that F' is monotone decreasing and F’ is monotone increasing and that F' is convex.

Next let
1

B log?3n’

(4)

Theorem 1. Let € > 0 be arbitrary and suppose that G € G(n,0) where = Q(1). Suppose
that ® = ®(G) > n=. Then there exists n. such that if n > n. then

Co= (1% )t (5)

where t* is the unique solution to F'(t) = —1, (see (3)).

Thus, if G is regular and satisfies the conditions of Theorem [I|then Cg ~ nlogn. Also, if G is
regular of degree On where 6 > 1/2, then the conditions of Theoremwill be satisfied. Indeed,
the condition that d(S) < m in the definition of conductance is equivalent to |S| < n/2 and

then
(0 —3)nlSld(V) 1
(%) = n|S|d(V) =0-5

Remark 1. Note also, that while it may be difficult to compute ®(G) exactly in deterministic
polynomial time, we can approximate it to within an O(logn) factor using the algorithm of
Leighton and Rao [19]. Thus if ®(G) > n~%logn then there is a deterministic polynomial
time algorithm that verifies that G satisfies the conditions of Theorem |1 and gives a (1 + ¢€)-
approzimation to the cover time.

The proof of Theorem (I} is given in Section |3 and closely follows the lines of the proofs for
random instances.



Suppose that we start our walk W, = (u = W, (0), W,(1),..., Wu(t),...) at vertex u and
that P (z) = Pr(W,(t) = z). Let

_ O () —

and let Ty, = Thniz(w) be such that, for ¢ > T,

P (@) —m,| 1
max |L ) =) 1 (6)
u,x€V Ty w
where w = w(n) — co. We will assume that
w=n. (7)

If the conditions of Theorem [1]fail, then we partition the vertex set V' into O(1) subsets which
satisfy the conditions of Theorem [1] If furthermore, our mizing time

Tmix - O(CG>
then we will obtain a (1 + €)-approximation to the cover time.

Remark 2. Note that by examining the powers of the transition matriz P, we can determine
the mizing time T (u,w), u € V in deterministic polynomial time. We note that Ty (u) =
O(n?), as long as the accuracy needed in (6)) is at most 1/w = e77°W")  see [18] (Proposition
10.28). In which case we only need to compute a poly(n) power of P.

Theorem 2. Let ¢ > 0 be arbitrary and suppose that G € G(n,0) where 8 = Q(1). Then
i deterministic polynomaial time we can find a partition of V into subsets Vi, 1 = 1,2,...,s
where s = O(1), where the induced subgraphs G[V;] satisfy the conditions of Theorem |1, and
have cover time C; which can be computed via Theorem [1]

Suppose furthermore that T,,;. = o(C), where C is given by

C:max{%:ie[s]}, 8)

then Cqa = (1+¢€)C .

The construction of this partition is described in Section

Finally, if T,,;. is too large for Theorem [2| to apply then we do not have a nice expression for
Cg, but instead we have

Theorem 3. Let ¢ > 0 be arbitrary and suppose that G € G(n,0) where 6 = Q(1). Then in
deterministic polynomial time we can compute an estimate C'g such that if n > n. then

6@ < (Cg < (2 + 0(1))6@. (9)
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The proof of Theorem [2[ uses a concentration inequality of Paulin [22], which requires a
sufficiently small mixing time. The proof of Theorem [3| uses the partition of Theorem [2| It
then describes how to use the transition matrix of the walk to give upper and lower estimates
for the time needed to visit each V.

2 First Visit Lemma

Our main tool will be Lemma [ below. The lemma has been used several times in the context
of random graphs, see for example [5] [6] 8, 9]. We sharpen the proof to make it fit the current
situation. Let G denote a fixed connected graph, and let u be some arbitrary vertex from
which a walk W, is started. Let W, () be the vertex reached at step ¢, let P be the matrix
of transition probabilities of the walk, and let

hy = PY(v) = Pr(W,(t) = v).

It follows from e.g. Aldous and Fill [1], Lemma 2.20, that d(t) satisfies d(s +t) < 2d(s)d(t)
which implies that

k
max |P*D (z) — 7, < 28! (max [P (z) — m,| )% < 281 (E)
u,z€V w,zeV o

And because d(t) is monotone decreasing in ¢, for t > T = T,,;, and k = [t/T'], we have

Plgt)(a:) — Ty

Ty

Qkfl
<

(10)

max

u,z€V wk '

Fix two vertices u,v. Let
H(z) =Y ho' (11)
=T
generate h; for t > T.

Next, considering the walk W, starting at v, let 7, = Pr(W,(t) = v) be the probability that
this walk returns to v at step t = 0,1, .... Let

R(z) = Z o2t
=0

generate r;. Our definition of return includes ry = 1.



For t > T let f, = f;(u—v) be the probability that the first visit of the walk W, to v in the
period [T,T +1,...] occurs at step t. Let

F(z) =) fi?
t=T

generate f;. Then we have

H(z) = F(2)R(z). (12)
Finally, let
T-1 T—1
Rr(z) = erzj and Hp(z) = Z hj2l. (13)
=0 =0
Now fix u # v € V. For a large constant K > 0, let
1
A= —. 14
"7 (14)

For t > 0, let A;(v) be the event that W, does not visit v in steps 7,7 + 1, ...,t. The vertex
u will have to be implicit in this definition.

Lemma 4. Suppose that

(a) For some constant ¢ > 0, we have

min [Rr(2)] > e (15)
(b)
T, <w ' =o(1). (16)

Let R, = Rr(1). Then we can write

Ty

y = ———— wh w1l = O(w™).
p RO+ 6) where &, 1| (w™)
And then for allt > T,

Pr(A,(v)) = % + o(Te72) where |¢,.5] = O(w™). (17)

Proof. The proof is very similar to that given in previous papers. We will defer its proof to
an appendix. O

Remark 3. We will not have to verify to use the theorem. It was shown in [11] that
follows from R, = O(1) and in our applications, R, =1+ o(1).
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3 Proof of Theorem [1

Because our results require n > n. we can state inequalities in asymptotic terms. le. if
we want to show that some parameters A,, B, satisfy A, < (1 + €)B, then we can write
A, < (14 0(1))B,. Then if n is large enough, so that the o(1) term is at most €, then we are
dealing with a bounded size problem, which can in principle, be dealt with by an exponential
time algorithm.

We continue by computing parameters for use in Lemma [4 We begin with the mixing time
T = T, We use the following Cheeger inequality, see for example Levin, Peres and Wilmer
[18], (13.6).

PS) (3:) o, —®2¢/8

Ty

e

max < O e B, (18)

u,x€V

~ min, 7,

where the last inequality follows from . (We have e~ 2°t/8 instead of e~ ®**/2 bhecause our
definition of ® is larger than that defined in (7.8) of [I§], but larger by a factor of at most 2.)

We can satisfy @ if we take

_ 8log(wn/0)  8log(n'*3%*/0) < 100logn _ 300

T (I)Q (I)2 — n—291/1 - <19>
With this value of T" we find that
T  n3
Tr, < — < — <w l=p>3% 20
o = n — On — u) " (20)
We therefore find that is satisfied.
Lemma 5. Let t* be as in Theorem[1 Then,
(a)
F(t*) = o(t"). (21)
(b)
nlogn < t* < 0 'nlogn. (22)

Proof. Now, by convexity,

and this implies the lower bound in (22)).



Next observe that implies
1= Ze—t*ﬂ'v < ne—@t*/n

veV
and this implies the upper bound in . Also we have that

—t* Ty, 1

F(t*) e
< = =o(1
t* _vezvélogn Ologn o(1),

as claimed in (21)). ]

3.1 Upper bound on Cg

We consider the walk W, and write T' = T,,,;,(u) for the mixing time. We observe first that
T

1§RU§1+9—:1+0(1). (23)
n

The inequality follows from the fact that if the walk W, is not at v then the probability it
moves to v at the next step is at most 1/0n. The final claim can be seen from (20]). Here we
have ignored the self loops added to each vertex to make the chain lazy. As already mentioned,
the addition of these loops multiplies the covertime by (2 + o(1)) and so to get the covertime
we would multiply and then divide by this factor. Here we just acknowledge that it multiplies
the mixing time by a factor (2 4 o(1)), which can also be ignored in the above equation.

Let T,op(u) be the time taken to visit every vertex of G by the random walk W,. Let U, be the
number of vertices of G which have not been visited by W, at step t. We note the following;:

Pr(T.pp(u) > t) =Pr(U; > 1) <min{l, E(U,)}, (24)
Cu = E(Toon () = Y Pr(Teos(u) > 1) (25)

It follows from , that for all ¢
C,<t+14+> EU)<t+1+> Y Pr(A(v)). (26)

s>t veV s>t



Putting ¢ = t*, defined in , we see from that

Cy <t*+1+22<1+§v2 O(Te_)‘s/2)>

veV s>t*

(1+6 .
—t+1+Z( +€2 —|—O(T2€_>\t/2))

Do 1_|_p t*+1

=t"+1+ Z ( A+ &p)exp{=(F + 1) log(l + po)) + O(TQe_)\t*/Q))

Py

veV

efpvt*+o(p%t*) *
=t + 14+ (140w ™) | —————+o(T /). (27)

veV Py

Remark 4. Observe that the term o(T?e"/2) is negligible, since t* = O(nlogn) and \ =
Q(n=3Y). It is in fact at most e ' " and we will assume always that € is sufficiently small.

Now, because t* = ©(nlogn), we have, using and (2)),

T 1 1
put™ = (1 + 0 ( ) +0 (_)) Tt = ot + O(n—1+39¢ logn) and pzt* -0 ( ogn) '
on n n

And so we can replace by

Co<t'+1+ (140w NFE)+0(e™ ™) < (1 + )t* <1+t  (28)

flogn
after using .

Remark 5. Using Remark[{] we obtain a simpler upper bound:

67(1+o(1))t7ru
Pr(T.(u) > ) <> Pr(A4v) < (1+0(1) Y ———

TrU
veV veV

Putting t = Kt*, we see that for any constant L > 0 there exists K = K (L) such that

Pr(T.o,(u) > Kt*) <n %,

3.2 Lower bound

Now let T, u be as in Section

1

/2,

tl = t*(l — 61) where €1 =
log

(29)



Then let U; denote the set of vertices that have not been visited by W, by time ¢;, and let
T ={W,(i) : 1 <i <T}. Then we have that

E(U)) =) Pr((veé T)AA,(v) > T + Y _ Pr(A,(v)). (30)

veV veV

Here we subtract T' to account for visits before the mixing time 7.

Applying Lemma [4 we see that

(|U1|) > T+ Z <1+—§U72 4 0<T6—)\t1/2)>

t

— \(1+p,)n
=T+ (1-of Ze"r”(l et

veV

> =T+ (1—o(1))e?/my "7t
veV

> T+ (1 — o(1))n?

~n?? — oo,
after using to lower bound e“?" and to bound 7', (here ¢ = o(ey)).

We summarise this as
E(|Ui]) = ) Pr(A, (v : (31)
veV
We now use the second moment method to show that |U;| > 0 w.h.p. Fix two vertices v, w
distinct from the start v of the walk. Let I' =T', ,, be obtained from G by identifying v, w as
a single vertex v = ,,, and keeping the loop if {v,w} € E(G).

There is a natural measure preserving map from the set of walks in G which start at v and
do not visit v or w, to the corresponding set of walks in I' which do not visit v. Thus the
probability that YV, does not visit v or w in the first ¢ steps is equal to the probability that
a random walk W, in I" which also starts at u does not visit v in the first ¢ steps.

We first check that Lemma [4] can be applied to Wu We observe that it is valid to use T
as a mixing time. This follows from Corollary 3.27 of [1] viz. that the relaxation time of a
collapsed chain is bounded from above by that of the uncollapsed chain. Our estimate for R,
should now be 1+ O(27/(6n)) (the 2 coming from vertices that are neighbors of v and w in

G). Now
7= oy = 0o () (7 7):
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And so since t; = O(nlogn) we have
Pr(v,w € Ur) = Pr((v,w ¢ T) A Ay, (v) A Ay, (w) = Pr((y ¢ T) A A, (7)) < Pr(Ay, (7))

= (1+O0(w™))exp {—;—:tl} =(1+O0(w™))exp {— (g—z + 2—2) tl}

= (1+ O(w™")Pr(A;, (v))Pr(Api (w)).
It follows therefore that after using ,
E(|U:*) < E(JU1]) + (1 + O(w™ " )E(|U])*
So, by the Chebyshev inequality,

2
n519'

B(U/[) - B(U/)? _ 1

Pr(|Ui| =0) < E(|Uy|) ~ E(|U1])

+

IN

(32)

1
w
This implies that C; > (1 — o(1))#; and completes the proof of Theorem [1}

We will need the following lemma in Section [5.2] Let
1

€g = ———.
? log1/4n

Lemma 6.
Pr (|70, (u) — t*] > €at™) < 3es.

Proof. The probabilistic lower bound for T¢,,(u) follows from (32)). For the upper bound, for
a given a > 0, we let P, = Pr(T..,(u) > (1 + «)t*) and then we have for some large constant
K > 0 that from ,

2
1 *> E(T >
< +010gn>t = B(Teon(u)) =

E(Teon () | Teon(w) < t1)Pr(Teow(u) < 1)+
E(Teou(u) | t1 < Toop(u) < (14 a)t)Pr(t; < Tooy(u) < (1 + a)t¥)
+ E(Teon(u) | (14 a)t” < Tepp(u) < Kt")Pr((1 4 o)t < Tep(u) < Kt¥)

>0+t (1 — % - Pa) + (14 a)t* (P, —O(n™%)). (33)

Here K and L are related as in Remark Bl We obtain

nq@ -

2
Pr(t; < Tepp(u) < (1 4+ a)t*) > (1 - Pa)
from ([32]).

11



It follows from (33)), after division by ¢*, that

2
1 >0 1— — - P, 1 P,.
+Qlogn_ +< ned 10g1/2n )"’( + )
We deduce from this that aP, < logl%n and then that P, < logl%n for a = bglﬁ. O

4 Partitioning the graph

Notation: For sets S C X C V|, let degy(v) denote the number of neighbors of v in X,
and let degy(S) = >, cqdegy(v). We will reserve the un-subscripted deg for deg,. For
given S C X C V', we also use X as the subgraph G[X] of G induced by X in the notation
Dx, Dx(S5).

We assume that the minimum degree 6(G) > On for some constant § > 0 and that ¢ =
1/ logz/3 n as in . Suppose that ¢ = n=%.

We partition V as follows: our initial partition Il consists of V' alone. Suppose that we have
created a partition II, and X € II. We can use the algorithm of Leighton and Rao, [19], to
find a cut (S : S) of X such that &y < ®x(S) < cLr®x logn, where ¢z > 0 constant. If
O (S) > (, we do not partition X any further. Otherwise, if ®x(S5) < (, we refine II by
splitting X into X; = S and Xo = X'\ S. For ¢ = 1,2 let

Yo = Y(Xe) = {v € X : degy, (v) < degy, ,(v)} . (34)
We replace X in the partition II by the pair
Zg = (Xg U ng_g) \ ng for ¢ = 1, 2. (35)

Suppose that, for all v € X, degy(v) > fn, where (see ) (8 = miny (3, satisfies 8 > 4¢1/2,
for d = O(1). If v € Yy, degx x,(v) > Bn/2, and thus

€X(X57X\Xg) < 2(:77/ < CI/Q’I’L
fn/2 - B3 - 2
For the second inequality we used the crude bound, ex(X,, X \ X;) < ¢(n?, which follows from

Oy (S) < ¢ and ().

Continue in this way until the output of the algorithm of [19] returns a cut (S, V; \ S) such
that ®y;(S) > ¢ for all sets of the partition IT = (V4, Vs, ..., Vs). The depth dp(V;) of V; in II
is defined as follows: dp, (V) = 0 and if X € II has depth d, then its descendants Zy, Zy will
both have depth d + 1. Suppose that V; has depth d. We claim that d = O(1) and that

6
min {degy, (v) : v € V;} > Byn, where Sy = 30 (37)

Yol < (36)

12



If so it follows from (37)), and d = O(1), that at depth d, |[V;| > B4n = Q(n).

We prove by induction. It is true for d = 0 and By = 0. If V; has depth d + 1 and arises
from splitting X at depth d then for v € V;, provided d = O(1), then from (36))

dog(0) 2 20 (0] 2 (% - 22 ) 0 2 an. (39)
We also have
| {v € V;: degy, (v) < deg(v) — d¢/*n} | < 3d¢H*n. (39)

This follows by induction. It is true for d = 0. If V; has depth d + 1 and arises from splitting
X at depth d then

| {v € Vi :degy. (v) < deg(v) — (d+ 1){1/271} | <
| {z € X : deg(x) < deg(v) — d¢*?*n} | +2¢"*n + ¢M*n.

The first term on the RHS is the number of vertices which have low degree at the previous
level. The next term counts the at most 2¢'/?n vertices which lose at least ¢('/?n/2 edges, as
the cut (X1, X5) of X which gave rise to (V3, V5) has at most (n? edges. The last term comes
from and compensates for the neighbours of Y (X,) with at most (/?n/2 edges in the
cut, who lost degree (at most) |Y(X,)| < ¢'/?n/2, when Y (X,) was moved out of X, to obtain
Vi.

It follows from and that if d = O(1) and X = Vj UV, then,
Vi, [Va| = On/2. (40)

To see this, suppose that X was initially partitioned into X; = S, X5 = X'\ S where ®x(5) < ¢
and that V; = (X, UYs_,) \ Y, as in (34), above, with V; replacing Z;,i = 1,2. As
Vi =X;\ Vi and Yy = V7 \ X7, implies that |(V1 \ X1) U (X1 \ Vi)| = o(n). This and
implies that |X;| = Q(n). Suppose that |Vi| < 6n/2. Then implies that there
are | X1|(1 — o(1)) vertices of X; of degree at least On(1 — o(1)) in X. So there are at least
0] X1|n(1 — o(1))/2 edges in the cut X; : X5. And hence,

(O]Xa[n(1 = o(1))/2) x d(V)

> Ox(Xy) > | Xi[n x d(V)

0
> Py
-3
which is a contradiction.

By we have that sets at depth d have size at least #n/2. On the other hand, at least n/2

vertices are moved at each partition step, and so sets at depth d have size at most n — dfn /2.
This means that n — dfn/2 > 0On/2, and partitioning must stop when d < 2/6.
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5 Computing the cover time

Let Vi, Vs, ..., Vs be as in Section 4 For each i we add weighted edges to create a multi-graph
H; such that a random walk on H; corresponds to the visits to V; of a random walk on G.
Thus, for each i, we define H; by adding extra edges to E(V;). If v,w € V; then we add an

oriented edge (v, w) and give it a weight p, ,,. Here p,,, is the probability that a walk started

deg(v)—degy, (v)
deg(v)

The (unoriented) edges of G contained in V; will be given weight one. We will use w() to

denote weight in H;.

Remark 6. If we take the random walk W, = (u = X(0), X(1),..., X(¢),...) and delete the
entries X (t) that are not in V; then the remaining sequence is a random walk Z; on H;.

at v leaves V; immediately and returns to V; at w and we have Zwev;- Pow =

A random walk Z; on H; will have steady state m,; = deg(v)/deg(V;), v € V; and will satisfy
the conditions of Theorem [I} Indeed, the walk is reversible. Checking detailed balance, we
have

deg(v) (degy,(v) liyw)erm
vi-Pz' ) = - ’ : v, w =
o Pi(v, w) deg(V;) ( deg(v) degy, (v) P,

1{v,w}€E(H) + deg(v>pv,w
deg(V;)

= ﬂw,ipi(wa U)v

since necessarily, deg(v)pyw = deg(w)puy,». This follows from the fact that for any individual

walk W = (zg = v,21,29,...,2% w) from v to w on G and its reversal W = (z;, =
W, Tp_1,-..,21,To = v) we have
deg(v) ool deg(w) i 1 —
v PT(W) = = = m,;Pr(W).
T Pr(W) deg(V;) ]1;[ deg(z;)  deg(V;) e deg(x;) TuiPr(W)

To obtain deg(v)pyw = deg(w)py,, we sum over all walks from v to w with interior vertices
not in V.

Now consider the conductance of H;. In what follows we use the fact that the weight of edges
incident with a vertex v in H; is equal to the degree of v in G. Suppose that S C V;. According
to the definition of @, (S) (or rather its extension to graphs with weighted edges),

WS w(V) _ e(S,5)des(V)) . deg(Vi)
= deg9)dea(S) = (s e T = 26ld)

92
57

assuming |V;| has at least On/2 vertices of degree On(1 — o(1)). Thus

02 Bu(S) 6 c02
O(H,) > _> 7 > _ >
(H;) 2 (G)3 ~ crrlogn 3 ~ 3cprlogn’
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where the last step comes from combining Theorem 2 of Leighton and Rao [19], with equation
(3) of that paper, that gives a deterministic polynomial algorithm to find a cut (S : S) such
that ®(G) < 5(5) < cLrP(G) logn.

5.1 When T = o(C): Proof of Theorem

We see from Theorem (1| that Z; will have to make a number of steps in some explicit range
(1+¢€)C; in order to cover V;.

Remark 7. The estimate C; does not depend significantly on the values p,,,. We see from
Theorem[] that up to a factor (14 0(1)), the C; depend only on the degrees of H;. But we can
compute close approximations to the p, .. For this we need to compute the values

Opyit = PrOWL(t) =y, Wy(T) ¢ Vi, 1 <7 <t). (41)

Given these values, we have

Pow = Z P(Ua‘r)P(va)Zo-x,yﬂ}t‘

z,y¢Vi t>1

Finally, to compute the values in we simply look at powers of the matriz (QQ; that is
obtained from P by replacing entries in columns associated with V; by zeroes.

Consider a walk VW starting in the steady state that walks for ¢ steps. The expected number
of visits to V; is tw(V;) and it will be concentrated around this, if the mixing time of W is
small. For example, Corollary 2.1 of Paulin [22] shows that if Z;; is the number of visits to

V; then

Pr(Z;; — tn(Vi)| > u) < exp {—%} | (12)
Next let
C’—max{ﬂ(‘;i) TR [s]}—Q(nlogn). (43)

Then Cg = (1 £€)C if T = o(C). Indeed, putting t = C,u = eC' in we see immediately
that w.h.p. T, () is within a factor 1+ o(1) of C. This immediately gives us a lower bound
of (1 —o(1))C for the expectation. For the upper bound we use Remark [5|in the following
way: we know that Pr(T,..,(u) € [(1 + 0(1))C, KC]) = o(1) and so this range adds o(C) to
the expectation. After this, [KC, oo] adds a negligible amount for large K.

This completes our proof of Theorem 2

15



5.2 When 7T is large: Proof of Theorem

While a nice formula for the cover time is not necessarily attainable, we claim that we can
deterministically compute quantities that give us a factor 2+ o(1) estimate for the cover time,
in a time polynomial in n.

Consider the nxn matrix @ where Q(u, v) = P(u,v){sw) where the &, i € [s] are indeterminate
and ¢ is defined by u € Vi), for V; € II. Now consider the ¢-th power of ). Then

Qt(u’ U) =

Z Pr(W goes from u to v in ¢ steps and makes 7; V;-moves, for ¢ € [s]) HSZ
T+ +Ts=t =1

Here a V;-move is from a vertex in V; to any vertex v € V. Note that the number of V; moves
is equal to the number of moves by Z;. The cover time of any connected n-vertex graph of
minimum degree 6 is O(n|E|/d), [I7]. When § = 6n, Cg = O(n?). Thus we compute Q' for
1 <t < n* and observe that this computation can be done in O(n") time. Let

k(u, T,1) denote the number of steps in W, needed for 7 V;-moves.

Next let O = (1 £ ;) C; be such that the cover time of Z; is in [C;", C;f] w.h.p., see Lemma
ol

Note that the C; are given by of Theorem [1, which can be computed in deterministic
polynomial time.

Let U; ; denote the set of unvisited vertices of V; at time ¢. We know from the proof of Theorem
that w.h.p. if t < k(u,C; ,4) then U;; # 0. This implies that

Cg > max E(max x(u, C; ,1)). (44)
ueV 1€[s]

For the RHS of (9), we note that at time max;es £(u, C; ,4) the walk W, will be at some
vertex v and then after a further max;c(q x(v, C;, 1) stepsﬂ the walk W, will w.h.p. have spent
at least time 2C; in V; for every i € [s].

Because 2C; > C;", the walk W, will w.h.p. have covered V. Thus

Ce < (24 o(1)) max E(max k(u, C; ,1)). (45)

ueV 1€[s]

and this completes the proof of Theorem [3|

'We could write max;e(s) £ (v, Cj' — C; ,1) here, but we cannot prove that this is significantly smaller than
what we have written.
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A  Proof of Lemma (4

Write
~ T2l
R(z) = Rr(2) + Br(z) + 7—, (46)
where Rr(z) is given by and
Ry(z) = Z(rt —7y) 2"
t>T
generates the error in using the stationary distribution m, for r, when ¢t > T'. Similarly,
T
~ T2
H(z) = Hr(s) + 7 (47)



Equation implies that the radii of convergence of both ]?BT and PAIT exceed 142\. Moreover,
for Z = H,R and |z| < 1+ A, we see from that

R i /7] N
LY () < o, (a9

w W
t>T

Using (46)), we rewrite F'(z) = H(z)/R(z) from as I(z) = B(z)/A(z) where

Alz) = mzT+(1— 2)(Rr(2) + Ry(2)), (49)
B(z) = mzl + (1 —2)Hy(2). (50)

For real z > 1 and Z = H, R, we have

Let z =1 + Bm,, where 0 < 8 < 1. Since T'm, < w™! we have

2
Zp(2) = Zr(1)(1 + &) where |6] < (1+B8m,)T —1< Uﬁ
Tr, <w ! and R, > 1 implies that
A(z) = my(1 — BR,(1 + &) where & = O(w™).
It follows that A(z) has a real zero at zy, where
14— 1+ (51)
Zo = —_— = -
0 Rv(l + 51) b

We also see that since |20 | <1+ 2w™!,

Al(20) = Tmozd ™ = (Rr(z0) + Rr(20)) — po( By (20) + Rip(20))
=O0(w™) = (R, + O(w™") + o(w™)) — o(my)

=—-R,+O(w™)
# 0.
and thus zg is a simple zero (see e.g. [3] p193). The value of B(z) at zj is
B(z) =m, (1+ 0w ) +o(w™)) =7, (1+O0(w™)) #0. (52)
Thus,
B(x
& = — (14 &) p, where |&| = O(w™). (53)
A'(20)
Thus (see e.g. [3] p195) the principal part of the Laurent expansion of F'(z) at zj is
B A
fz) = B(z0)/A'(z0) (54)
Z— 20
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To approximate the coefficients of the generating function F'(z), we now use a standard tech-
nique for the asymptotic expansion of power series (see e.g.[23] Theorem 5.2.1).

We prove below that F(z) = f(z) + g(z), where g(z) is analytic in C) = {|z] < 1+ A} and
that
M =max [g(2)| = O(w™).

zeC\y

Let a; = [2%]g(z), then (see e.g.[3] p143), a;, = g™ (0)/t!. By the Cauchy Inequality (see e.g.
[3] p130) we see that |¢®(0)| < Mt!/(14 A\)! and thus

< Me M2,

<
’at| — <1+)\)t —

As [ F(2) = [2']f(2) + [#Y]g(2) and [2']1/(z — 20) = —1/2"" we have

17 (e) = =P 4y 1) where o) < e (55)
Thus, we obtain
F(z) = % ).
Now
_ _ (1 + §2>pfu . 1+ 52
Pr(aw) = 30 () = 3 ({58 + ) = e )
where P
ng(t) = an(t> S m = O(Te*)‘/2>.

This completes the proof of .

Now M = max.,ec, |9(z)] < max|f(z)] + max|F(z)] = O(T'm,) + max |F(z)] = O(w™) +
max |F(z)|, where F(z) = B(z)/A(z). On C we have, using (48)-(50),

B T2t + o(m,) _ ezt O
O < i o~ (7o) =0

We now prove that zp is the only zero of A(z) inside the circle C) and this implies that
F(z) — f(2) is analytic inside C. We use Rouché’s Theorem (see e.g. [3]), the statement of
which is as follows: Let two functions ¢(z) and v(z) be analytic inside and on a simple closed
contour C. Suppose that |p(z)| > |v(2)| at each point of C, then ¢(z) and ¢(z) + ~v(z) have
the same number of zeroes, counting multiplicities, inside C.
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~

Let the functions ¢(z),v(z) be given by ¢(2) = (1 — 2)Ry(2) and v(2) = m2T + (1 — 2) Ry (2).

b m@+NT | |Be(2)
o(z)] = M 6

As ¢(z) + v(z) = A(z) we conclude that A(z) has only one zero inside the circle C. This is
the simple zero at z.
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