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Abstract

Let Ωq = Ωq(H) denote the set of proper [q]-colorings of the hypergraph H. Let
Γq be the graph with vertex set Ωq where two colorings σ, τ are adjacent iff the corre-
sponding colorings differ in exactly one vertex. We show that if H = Hn,m;k, k ≥ 2,
the random k-uniform hypergraph with V = [n] and m = dn/k hyperedges then w.h.p.
Γq is connected if d is sufficiently large and q ≳ (d/ log d)1/(k−1). This is optimal up to
the first order in d. Furthermore, with a few more colors, we find that the diameter of
Γq is O(n) w.h.p, where the hidden constant depends on d. So, with this choice of d, q,
the natural Glauber Dynamics Markov Chain on Ωq is ergodic w.h.p.

1 Introduction

In this paper, we will discuss a structural property of the set Ωq of proper [q]-colorings of
the random hypergraph H = Hn,m;k, where m = dn/k for some large constant d. Here H
has vertex set V = V (H) = [n] and an edge set E = E(H) consisting of m randomly chosen
k-sets from

(
[n]
k

)
. Note that in the graph case where k = 2 we have Hn,m;2 = Gn,m. A

proper [q]-coloring is a map σ : [n] → [q] such that |σ(e)| ≥ 2 for all e ∈ E i.e. no edge is
mono-chromatic. Then let us define Γq = Γq(H) to be the graph with vertex set Ωq and an
edge {σ, τ} iff h(σ, τ) = 1 where h(σ, τ) is the Hamming distance | {v ∈ [n] : σ(v) ̸= τ(v)} |.
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Notation: f(d) ≳ g(d) if there exists a function ε(d) > 0 such that limd→∞ ε(d) = 0 and
f(d) ≥ (1 + ε(d))g(d) for d large.

Then let

α =

(
(k − 1)d

log d− 5(k − 1) log log d

) 1
k−1

, β = 3 log3k d. (1)

We prove the following.

Theorem 1.1. Suppose that k ≥ 2 and p = d

(n−1
k−1)

and m =
(
n
k

)
p and that d = O(1) is

sufficiently large. Then

(i) If q ≥ α + β + 1 then w.h.p. Γq is connected.

(ii) If q ≥ α + 2β + 1 then the diameter of Γq is O(αβn) w.h.p.

Note that Γq connected implies that the Glauber Dynamics, which in essence is a random
walk on Γq, is ergodic. At the moment we only know that Glauber Dynamics is rapidly
mixing w.h.p. when q ≥ (1.76 . . .)d, see Efthymiou, Hayes, Štefankovič and Vigoda [14]. So,
it would seem that the connectivity of Γq is not likely to be a barrier to randomly sampling
colorings of sparse random graphs.

In the Statistical Physics literature the definition of Γq may be that colorings σ, τ are con-
nected by an edge in Γq whenever h(σ, τ) = o(n). Our theorem holds a fortiori if this is the
case.

We note that the lower bound for q is close to where the greedy coloring algorithm succeeds
w.h.p. For the case k = 2 this follows from Shamir and Upfal [22]. For k ≥ 3, the authors
could not find relevant literature. Nevertheless the claim follows (partially) from the current
paper. In particular, Lemmas 4.4 and 4.5 show that the greedy coloring algorithm uses at
most α+ β colors. Furthermore, a simple argument based on the size of an independent set
selected by the greedy algorithm shows that the number of colors required is close to α.

We should note that it has been shown, for k = 2 by Molloy [21] and for k ≥ 3 by Ayre
and Greenhill [5], that w.h.p. there is no giant component in Γq if q ≲ d

log d
. . It is

somewhat surprising therefore that w.h.p. Γq jumps very quickly from having no giant to
being connected. One might have expected that q ≳ d

log d
would simply imply the existence

of a giant component.

Prior to this paper, it was shown in [13] that w.h.p. Γq, q ≥ d + 2 is connected. The
diameter of the reconfiguration graph Γq(G) for graphs G has been studied in the graph
theory literature, see Bousquet and Perarnau [10] and Feghali [15]. They show that if the
maximum sub-graph density of a graph is at most d − ε and q ≥ d + 1 then Γq(G) has
polynomial diameter. Using Theorem 1 of [10] we can show a linear bound on the diameter
with a small increase in the number of colors, See (ii) of Theorem 1.1.
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Theorem 1.1 falls into the area of “Structural Properties of Solutions to Random Constraint
Satisfaction Problems”. This is a growing area with connections to Computer Science and
Theoretical Physics. In particular, much of the research on the graph Γq has been fo-
cussed on the structure near the colorability threshold, e.g. Bapst, Coja-Oghlan, Hetterich,
Rassman and Vilenchik [7], or the clustering threshold, e.g. Achlioptas, Coja-Oghlan and
Ricci-Tersenghi [2], Molloy [21] or the condensation threshold, e.g. Ayre, Coja-Oghlan and
Greenhill [6] or the rigidity threshold, e.g. Ayre and Greenhill [5]. Other papers heuristically
identify a sequence of phase transitions in the structure of Γq, e.g., Krza̧kala, Montanari,
Ricci-Tersenghi, Semerijan and Zdeborová [20], Zdeborová and Krza̧kala [23] or Gabrié,
Dani, Semerjian and Zdeborová [17]. The existence of these transitions has been shown rig-
orously for some other CSPs. One of the most spectacular examples is due to Ding, Sly and
Sun [12] who rigorously showed the existence of a sharp satisfiability threshold for random
k-SAT.

Section 3 describes a property (α, β)-greedy-colorability such that if H has this property
then q ≥ α + β + 1 implies that Γq is connected. Section 4 proves that Hn,m;k, k ≥ 2, is
(α, β)-greedy-colorable for α, β defined in (1).

The paper uses some of the ideas from [4] which showed there is a giant component in
Γq(Gn,m), m = dn/2 w.h.p. when q ≥ cd/ log d for c > 3/2.

2 Outline argument

We show that with the values α ≈ ((k − 1)d/ log d)1/(k−1) ≫ β given in (1) then w.h.p.
H = Hn,m;k has the property that any greedy coloring of H will need at most α maximal
independent sets before being left with a graph without a β-core. (See Lemma 4.4.) We
call the colorings found in this way, good greedy colorings and we refer to this property as
(α, β)-greedy-colorability. Any good (α, β)-coloring uses at most α + β colors. It follows
from this, basically using the argument from [4], that if σ ∈ Ωq and q ≥ α+β+ 1 then there
is a good path in Γq to some good greedy coloring σ1.

Suppose now that σ1, τ1 are good greedy colorings. If q ≥ α + β + 1 then there is a color
c that is not used by σ1. From σ1 we move to σ2 by re-coloring vertices colored 1 in σ1 by
c. Then we move from σ2 to σ3 by coloring with color 1, all vertices that have color 1 in
τ1. At this point, σ3 and τ1 agree on color 1. σ3 may use more than α + β colors and so we
move by a good path from σ3 to a coloring σ4 that uses at most α + β colors and does not
change the color of any vertex currently with color 1. Here we use the fact that Hn,m;k is
(α, β)-greedy-colorable. After this, it is induction that completes the proof.
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3 (α, β)-Greedy-Colorability

The degree of a vertex v ∈ V in a hypergraph H = (V,E) is the number of edges e ∈ E
such that v ∈ e. (For completeness, we will state several things in this short paper that one
might think can be taken for granted.)

Let H = (V,E). A β-core of H is a maximal subgraph of H in which every vertex has degree
at least β. For every U ⊂ V , if the subgraph of H induced by U does not have a β-core then
there is an ordering

{
u1, u2, ..., u|U |

}
of the vertices in U such that every vertex in uℓ ∈ U

has degree at most β− 1 in the sub-hypergraph induced by {u1, u2, . . . , uℓ}. (Here, we mean
by induced that the edges of H[U ] are the edges of H contained entirely in U .)

If a hypergraph H that does not have a β-core then we can color it with at most β colors.
Let v1, v2, ..., vn be an ordering on V where for every i, there are at most β − 1 edges that
contain vi and are contained in {v1, v2, . . . , vi}. Such an ordering must exist when there is
no β-core. We can color the vertices in the order v1, v2, . . . , vn and assign to vi a color that
is not blocked by the neighbors that precede it. A color c is blocked for vertex v by vertices
w1, w2, . . . , wk−1 if e = {v, w1, . . . , wk−1} ∈ E(H) and w1, w2, . . . , wk−1 have already been
given color c.

Next let V1, V2, . . . , Vα be a sequence of disjoint independent sets of H such that for each
j ≥ 1, Vj is maximal in the sub-hypergraph Hj induced by V \

⋃
1≤i<j

Vi. (A set of vertices is

independent if it contains no edges.) We say that such a sequence is a maximally independent
sequence of length α. Note that we allow Vj = ∅ here, in order to make our sequences of
length exactly α.

Definition 3.1. We say that a hypergraph H is (α, β)-greedy-colorable if there does not
exist a maximally independent sequence of length α such that V \

⋃
i≤α

Vi has a β-core.

The main result of this section is the following.

Theorem 3.2. Let H be (α, β)-greedy-colorable. If q ≥ α+ β + 1 then, Γq(H) is connected.
In addition if q ≥ α + 2β + 1 then, the diameter of Γq(H) is O(αβn).

Later, in Section 4 we will show that Hn,m;k, k ≥ 2 is (α, β)-greedy-colorable, for suitable
values of m,α, β, viz. the values given in (1).

Lemma 3.3. Let H = (V,E) be an (α, β)-greedy-colorable hypergraph and V1 ⊆ V be a
maximal independent set of V . Set V ′ = V \ V1 and let H ′ be the subgraph of H induced by
V ′. Then H ′ is (α− 1, β)-greedy-colorable.

Proof. Assume that H ′ is not (α − 1, β)-greedy-colorable. Then there exists a partition of
V ′ into V ′

1 , ..., V
′
α−1 such that for j ∈ [α − 1], V ′

j is a maximal independent set of V ′ \
⋃
ℓ<j

V ′
ℓ
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and W ′ = V ′ \
⋃

ℓ≤α−1

V ′
ℓ has a β-core. For j ∈ [α − 1] set Vj+1 = V ′

j . Furthermore set

W = V \ (
⋃

1≤ℓ≤α

Vℓ) = V ′ \ (
⋃

ℓ≤α−1

V ′
ℓ ) = W ′. Then V1, ..., Vα is a maximal independent

sequence of length α and W has a β-core which contradicts the fact that H is (α, β)-greedy-
colorable.

Lemma 3.4. Let H be a hypergraph, α, β ≥ 0 and q ≥ α + β + 1. Let W ⊆ V be such that
the subgraph of H induced by W has no β-core. Furthermore let σ and τ be two colorings of
H such that

(i) They agree on V \W .

(ii) They use only α colors on the vertices in V \W .

(iii) τ uses at most β colors on W and these are all distinct from the ones it uses on V \W .

Then there exists a path from σ to τ in Γq(H).

Proof. Without loss of generality we may assume that σ and τ use [α] to color V \W . The
proof that follows is an adaptation to hypergraphs of the proof in [4] that Γq(G) is connected
when a graph G has no q-core. Because W has no β-core there exists an ordering of its
vertices, v1, v2, ..., vr, such that for i ∈ [r], vi has at most β − 1 neighbors in v1, v2, . . . , vi−1.
For 0 ≤ i ≤ r let τi be the coloring that agrees with τ on {v1, ..., vi} and with σ on
W \ {v1, ..., vi}. On V \W it agrees with both. Thus τ0 = σ and τr = τ . We note that
τ1, τ2, . . . , τr−1 may not be proper colorings.

We proceed by induction on i to show that there is a sequence of colorings Σi from σ to τi
such that (i) going from one coloring to the next in Σi only re-colors one vertex and (ii) all
colorings in the sequence Σi are proper for the hypergraph induced by V \ {vi+1, ..., vr}. We
do not claim that the colorings in Σi, i < r are proper for H. On the other hand, taking
i = r we get a sequence of H-proper colorings that starts with σ, ends with τ , such that
the consecutive pairs of proper colorings differ on a single vertex. Clearly, such a sequence
corresponds to a path from σ to τ in Γq(H).

The case i = 1 is trivial as we have assumed that σ, τ agree on V \W and so we can give v1 the
color τ(v1). Assume that the assertion is true for i = ℓ ≥ 1 and let σ = ψ0, ψ1, . . . , ψs = τℓ
be a sequence of colorings promised by the inductive assertion. Let (wj, cj) denote the
(vertex, color) change defining the move from ψj−1 to ψj. We construct a sequence of
colorings of length at most 2s+ 1 that yields the assertion for i = ℓ+ 1. For j = 1, 2, . . . , s,
we will re-color wj to color cj, unless there exists a set X such that X ∪ {wj} ∈ E and
ψj−1(x) = cj for all x ∈ X ⊆ {v1, v2, . . . , vℓ+1}. The fact that ψj is a proper coloring
of V \ {vℓ+1, ..., vr} implies that vℓ+1 ∈ X. Because vℓ+1 has at most β − 1 neighbors in
{v1, ..., vℓ} and τ only uses colors in [α] to color V \W , there exists a color c′ ̸= cj for vℓ+1

in [α + β + 1] \ [α] which is not blocked by a subset of {v1, v2, . . . , vℓ} and is different from
its current color. We first re-color vℓ+1 to c′ and then we re-color wj to cj, completing the
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inductive step. At the very end, i.e. after at most 2s + 1 steps, we give vℓ+1 its color in
τ .

Definition 3.5. A coloring with color sets V1, V2, . . . , Vα+β is said to be a good greedy
coloring if (i) V1, V2, . . . , Vα is a maximally independent sequence of length α and (ii) V \

⋃
ℓ≤α

Vℓ

has no β-core.

We prove Theorem 3.2 in two steps. In Lemma 3.6, we show that if q ≥ α+ β + 1 and H is
(α, β)-greedy-colorable then we can reach a good greedy coloring in Γq(H) starting from any
coloring. Then in Lemma 3.8, we show that if q ≥ α+ β + 1 then any good greedy coloring
τ can be reached in Γq(H) from any other good greedy coloring σ.

Lemma 3.6. Let H be an (α, β)-greedy-colorable hypergraph, q ≥ α + β + 1 and σ be a
[q]-coloring of H. Then there exists a good greedy coloring τ of H such that there exists a
path in Γq(H) from σ to τ .

Proof. We generate the coloring τ as follows. Let C1, C2, . . . , Cq be the color classes of σ.
Then let V1 ⊇ C1 be a maximal independent set containing C1. In general, having defined
V1, V2, . . . , Vℓ−1 we let V<ℓ =

⋃
1≤i<ℓ

Vi and then we let Vℓ be a maximal independent set in

V \ V<ℓ that contains Cℓ \ V<ℓ. Thus V1, V2, . . . , Vα is a maximal independent sequence of
length α. We now describe how we transform the coloring σ vertex by vertex into a coloring
σ′ in which vertices in Vi get color i for 1 ≤ i ≤ α. We first re-color the vertices in V1 \C1 by
giving them color 1, one vertex at a time. The coloring stays proper, as V1 is an independent
set. In general, having re-colored V1, V2, . . . , Vℓ−1 we re-color the vertices in Vℓ \Cℓ with color
ℓ. Again, the coloring stays proper, as Vℓ is an independent set, containing all vertices in
Cℓ that have not been re-colored. We observe that each re-coloring of a vertex v done while
turning σ into σ′ can be interpreted as moving from a coloring in Γq(H) to a neighboring
coloring.

Let W = V \
⋃

1≤i≤α

Vi. Because H is (α, β)-greedy-colorable, we find that W has no β-core.

Because W has no β-core there exists a proper coloring τ ′ of the subgraph of H induced by
W that uses only colors in [α+β]\ [α]. Set τ to be the coloring that agrees with σ′ on V \W
and with τ ′ on W .

Lemma 3.4 implies that there is a path from σ′ to τ . Hence there is a path from σ to τ .

Remark 3.7. In the proof of Lemma 3.6 we see that each vertex is re-colored at most
twice before we apply Lemma 3.4. Thus this part of the proof yields at most O(αn) vertex
recolorings.

Lemma 3.8. Let H be an (α, β)-greedy-colorable hypergraph, q ≥ α + β + 1 and let σ, τ be
two good greedy colorings. Then there exists a path from σ to τ in Γq(H).

Proof. We proceed by induction on α. For α = 0, H is (0, β)-greedy-colorable and so it does
not have a β-core. Thus the base case follows directly from Lemma 3.4 by taking W = V .
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Assume that the statement of the Lemma is true for α = ℓ− 1 and let α = ℓ. There exists
a maximal independent sequence V1, V2, . . . , Vℓ of length ℓ such that if V ′ = V \

⋃
1≤i≤ℓ

Vi then

(i) for i ∈ [ℓ], τ assigns the color i to v ∈ Vi and (ii) τ assigns only colors in [ℓ + β] \ [ℓ] to
vertices in V ′.

Let c be a color not assigned by σ. There is one as q ≥ ℓ+β+ 1. Starting from σ we recolor
all vertices that are colored 1 by color c to create a coloring σ̄. Then we continue from σ̄ by
recoloring all the vertices in V1 by color 1 and we let σ′ be the resulting coloring. Clearly
there is a path P1 from σ to σ′ in Γq(H).

We now set H1 = H\V1, and set σ′
1, τ1 to be the restrictions of σ′, τ on H1. Observe that since

V1 is a maximal independent set, Lemma 3.3 implies that H1 is (ℓ − 1, β)-greedy-colorable
and in addition that τ1 is a good greedy coloring of H1. Lemma 3.6 implies that in Γq−1(H1)
there is a path P2 from σ′

1 to some good greedy coloring σ1 that uses only ℓ − 1 + β colors
from [q] \ {1}. The induction hypothesis implies that in Γq−1(H1) that there is a path P3

from σ1 to τ1.

Color 1 is not used in σ′
1, τ1 or in any of colorings found in the path P2, P3. Thus the path

P2, P3 corresponds to a path P4 in Γq(H) from σ′ to τ . Consequently the colorings σ, τ are
connected in Γq(H) by the path P1 + P4.

Proof of Theorem 3.2: Let H be (α, β)-greedy-colorable, q ≥ α+β+ 1, and let σ1, σ2 be two
colorings of H. Lemma 3.6 implies that in Γq(H), there is path Pi from σi to a good greedy
coloring τi for i = 1, 2. Lemma 3.8 implies that there is a path in Γq(H) from τ1 to τ2.

When q ≥ α + 2β + 1 Remark 3.7 shows that while traversing between any pair of proper
colorings we perform O(αn) vertex recolorings in the context of Lemma 3.6. In addition
we recolor α + 2 times with 2β + 1 colors a hypergraph with no β-core. Theorem 1 of [10]
implies that we need (α + 2) · O(βn) vertex re-colorings to do this. Thus, there will be
O(αβn) re-colorings overall and this proves the second part of the theorem.

4 Random Hypergraphs

Theorem 1.1 follows from

Lemma 4.1. Let k ≥ 2 and suppose that q ≥ α + β + 1 and that d is sufficiently large. If
p = d

(n−1
k−1)

and m =
(
n
k

)
p then w.h.p. Γq(Hn,m;k) is connected.

To prove Lemma 4.1 we use Lemmas 4.2, 4.4, 4.5 (below) in order to deduce that w.h.p.
Hn,m:k is (α, β)-greedy-colorable. Then we apply Theorem 3.2. (Lemmas 4.2 and 4.5 are
hardly new or best possible, but we prove them here for completeness.)
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We will do our calculations on the random graph Hn,p;k, p = d/
(
n−1
k−1

)
and use the fact for

any hypergraph property P , we have (see [16])

Pr(Hn,m;k ∈ P) ≤ O(m1/2)Pr(Hn,p;k ∈ P). (2)

Lemma 4.2. Let p = d

(n−1
k−1)

and k ≥ 2 and d sufficiently large. Then, w.h.p. H = Hn,p;k

does not contain an independent set of size
(

2k log d
(k−1)d

) 1
k−1

n.

Proof. Let u =
(

2k log d
(k−1)d

) 1
k−1

n. The probability that there exists an independent set of size

u in H is bounded by(
n

u

)
(1 − p)(

u
k) ≤

(en
u

)u
exp

{
− d(

n−1
k−1

) · (u
k

)}

≤
(en
u

)u
exp

{
−du
k

(u
n

)k−1
(

1 +O

(
1

n

))}
=

(
ek−1 (k − 1)d

2k log d
· exp

{
−2 log d

(
1 +O

(
1

n

))})u/(k−1)

=

(
ek−1(k − 1)

2kd log d

(
1 +O

(
1

n

)))u/(k−1)

(3)

= o(1).

Notation 4.3. We let
m0 =

n

α
and n0 = 16m0 log2 d.

Furthermore, for t ≤ d we let

St =

{
(s1, s2, ..., st) ∈

[(
2k log d

(k − 1)d

) 1
k−1

n

]t
:

t∑
j=1

si ≤ min {tm0, n− n0}

}
.

Lemma 4.4. If k ≥ 2 and d is sufficiently large then, w.h.p. there does not exist
1 ≤ t ≤ d and disjoint sets V1, ..., Vt ⊂ V such that:

(i) V1, V2, . . . , Vt is a maximal independent sequence of length t in H = Hn,p;k.

(ii)
(
|V1|, |V2|, ..., |Vt|

)
∈ St.

Proof. Fix t ∈ [d], (s1, ..., st) ∈ St and let s̄ = 1
t

∑
i∈[t] si. Since (s1, ..., st) ∈ St we have that

s̄ ≤ 1
t
·tm0 = m0. There are

(
n

s1,s2,...,st,n−ts̄

)
ways to pick disjoint sets V1, V2, ..., Vt ⊆ V of sizes

s1, ..., st respectively. So V1, ..., Vt satisfy condition (i) of Lemma 4.4 only if for every i ∈ [t]
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and every v ∈ V \
⋃
j∈[i]

Vj, there exist u1, ..., uk−1 ∈ Vi such that {u1, ..., uk−1, v} ∈ E(H). So,

given V1, ..., Vt the probability that we have (i) is at most

p1 =
t∏

i=1

(1 − (1 − p)(
si

k−1))n−
∑i

j=1 sj ≤ exp

{
−

t∑
i=1

(
(1 − p)(

si
k−1)

(
n−

i∑
j=1

sj

))}
. (4)

Now let t′ = max
{
i :
∑

j≤i sj ≤ n− n
log2 d

}
and s′ =

∑t′

i=1 si and s̄′ = s′

t′
. We consider 2

cases.

Case 1: t′ ≥
(
1 − 1

log d

)
t.

Now ts̄ ≥ t′s̄′ and so s̄′ − s̄ ≤ t−t′

t
s̄′ ≤ s̄′

log d
, which implies that s̄′ ≤ s̄

(
1 − 1

log d

)−1

≤

m0

(
1 + 2

log d

)
. Then,

t∑
i=1

(
(1 − p)(

si
k−1)

(
n−

i∑
j=1

sj

))

≥
t′∑
i=1

(
(1 − p)(

si
k−1)

(
n−

i∑
j=1

sj

))

≥ n

log2 d

t′∑
i=1

(1 − p)(
si

k−1) ≥ nt′

log2 d
(1 − p)(

s̄′
k−1) ≥ nt

2 log2 d
(1 − p)(

m0(1+ 2
log d)

k−1
)

≥ nt

2 log2 d
exp

⎧⎨⎩−(p+ p2)

(( (log d−5(k−1) log log d)
(k−1)d

)1/(k−1) (
1 + 2

log d

)
n

k − 1

)⎫⎬⎭
≥ nt

2 log2 d
exp

{
− log d− 5(k − 1) log log d

k − 1
·
(

1 +
3(k − 1)

log d

)}
≥ nt log2 d

d1/(k−1)
.

Now (
n

s1, ..., st, n− ts̄

)
≤
(

n

s̄, ..., s̄  
t times

, n− ts̄

)
≤

t∏
i=1

(
n

s̄

)
≤
(en
s̄

)ts̄
≤
(
en

m0

)tm0

.

Thus the probability that for some t ≤ d there exist V1, ..., Vt satisfying conditions (i), (ii) of
Lemma 4.4 and the condition of Case 1 is bounded by

d∑
t=1

∑
(s1,...,st)∈St

(
n

s1, s2, .., st, n−
∑

i∈[t] si

)
p1

≤
d∑

t=1

∑
(s1,...,st)∈St

(
en

m0

)tm0

exp

{
−nt log2 d

d1/(k−1)

}
=

d∑
t=1

∑
(s1,...,st)∈St

(ea)tm0

(
1

dlog d

)nt/d1/(k−1)
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≤
d∑

t=1

nt · (ea)tm0 ·
(

1

dlog d

)nt/d1/(k−1)

≤
d∑

t=1

nt

(
(eα)(log d)

1/(k−1)

dlog d

)nt/d1/(k−1)

= o(1).

At the last equality we used that when d is sufficiently large then the term in the parenthesis
is smaller than 1.

Case 2: t′ <
(
1 − 1

log d

)
t.

Thus t− t′ ≥ t
log d

. Observe that from Lemma 4.2 we can assume that

t ≥ t′ ≥

((
1 − 1

log2 d

)/(
2k log d

(k − 1)d

) 1
k−1

)
− 1 ≥ 1

4

(
1 − 1

log2 d

)(
d

log d

) 1
k−1

. (5)

For (5) we are using Lemma 4.2 to argue that we need at least this many independent sets

to partition a set of size n
(

1 − 1
log2 d

)
. The -1 comes from the fact that the upper bound in

the definition of t′ may not be tight.

Thus,

u =
1

t− t′

t∑
i=t′+1

si ≤
log d

t
· n

(
1

log2 d
+

(
2k log d

(k − 1)d

) 1
k−1

)

≤ 4

(
1 +

2

log2 d

)(
log d

d

) 1
k−1

· n

log d
(6)

and now with p1 as defined in (4) we have

p1 ≤
t∏

i=t′+1

(1 − (1 − p)(
si

k−1))n−
∑i

j=1 sj ≤
t∏

i=t′+1

(1 − (1 − p)(
si

k−1))n0

≤ exp

{
−n0

t∑
i=t′+1

(1 − p)(
si

k−1)

}
≤ exp

{
−n0(t− t′)

( t∏
i=t′+1

(1 − p)(
si

k−1)
) 1

t−t′
}

≤ exp

{
−n0(t− t′) exp

{
−(p+ p2)

[
t∑

i=t′+1

(
si

k − 1

)]
· 1

t− t′

}}

≤ exp

{
−n0(t− t′) exp

{
−(p+ p2)

(
u

k − 1

)}}
≤ exp

{
−n0(t− t′) exp

{
−d
(u
n

)k−1
}(

1 +O

(
1

n

))}

≤ exp

⎧⎪⎨⎪⎩−n0(t− t′) exp

⎧⎪⎨⎪⎩−
4k
(

1 + 2
log2 d

)k
logk−2 d

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭

≤ e−(t−t′)n0/2.
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Thus the probability that for some t ≤ d there exist V1, ..., Vt satisfying conditions (i), (ii) of
Lemma 4.4 and the condition of Case 2 is bounded by

P =
d∑

t=1

∑
(s1,...,st)∈St

[
t′∏
i=1

(
n−

∑i−1
j=1 sj

si

) t∏
i=t′+1

(
n−

∑i−1
j=1 sj

si

)]
p1

≤
d∑

t=1

∑
(s1,...,st)∈St

(en
s̄′

)t′s̄′ (en
u

)(t−t′)u

e−(t−t′)n0/2.

For sufficiently large d, (6) implies u ≤ m0 and we also have that n0 = 16m0 log2 d. Therefore(en
u

)(t−t′)u

e−(t−t′)n0/4 ≤
(
en

m0

)(t−t′)m0

e−4(t−t′)m0 log
2 d ≤ e−3(t−t′)m0 log

2 d ≤ e−3tm0 log d.

Furthermore, Lemma 4.2 implies that s̄′ ≤
(

2k log d
(k−1)d

) 1
k−1

n ≤ 3m0. Thus

(en
s̄′

)t′s̄′
e−(t−t′)n0/4 ≤

(
en

3m0

)3tm0

e−4(t−t′)m0 log
2 d ≤

(
en

3m0

)3tm0

e−4tm0 log d ≤ e−tm0 log d.

So,
P ≤ dnde−4tm0 log d = dnde−4tαn log d = o(1).

Lemma 4.5. If k ≥ 2 and d is sufficiently large then w.h.p. every set S ⊂ V of size at most
n0 spans fewer than 3|S| log3k d edges in H. Hence no subset of size at most n0 contains a
3 log3k d core.

Proof. Let L = 3 log3k d. The probability that there exists S ⊂ V of size at most n0 that
spans at least t = L|S| edges is bounded by

n0∑
s=1

(
n

s

)((s
k

)
t

)
pt ≤

n0∑
s=1

((en
s

)s/t
·
e
(
s
k

)
t

· d(
n−1
k−1

))t

≤
n0∑
s=1

((en
s

)1/L eds
t

( s
n

)k−1
)t

=

n0∑
s=1

(( s
n

)k−1−1/L e1+1/Ld

L

)t

= o(1).

Proof of Theorem 1.1: Let α, β be as in (1). We argue next that the properties given by
Lemmas 4.2, 4.4 and 4.5 imply that Hn,p;k is (α, β)-greedy-colorable for d sufficiently large.
That is for any sequence of sets V1, V2, . . . , Vα such that Vi is maximally independent in
[n] \

⋃
j<i

Vj for j ≤ α we have that [n] \
⋃
i≤α

Vi does not have a β-core. Lemma 4.1 then follows

directly from (2) and Theorem 3.2.
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Consider such a sequence of sets V1, V2, . . . , Vα. It follows from Lemma 4.4 that because
αm0 = n, we must have

∑α
i=1 |Vi| ≥ n−n0 and then Lemma 4.5 implies that [n] \

⋃
i≤α

Vi does

not have a β-core.
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