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Abstract—Crowdsourced image processing has the potential to
vastly impact response timeliness in various emergency situations.
Because images can provide extremely important information
regarding an event of interest, sending the right images to
an analyzer as soon as possible is of crucial importance. In
this paper, we consider the problem of optimally assigning
resources, both local (CPUs in phones) and remote (network-
based GPUs) to mobile devices for processing images, ultimately
sending those of interest to a centralized entity while also
accounting for the energy consumption. To that end, we use the
Network Utility Maximization (NUM) framework, coupled with
a hit-ratio estimator and energy costs, to enable a distributed
implementation of the system. Our results are validated using
both synthetic simulations and real-life traces.

Index Terms—Crowdsourcing, Optimization, Resource alloca-
tion.

I. INTRODUCTION

Crowdsourced image processing [1], [2] is an important
tool in gathering information rapidly for emergency response,
law enforcement and investigative applications. Images often
contain a rich set of information concerning an event. Extract-
ing this information is frequently time-critical. In this paper,
we propose a crowdsourced image processing system that
collects images containing an object of interest from mobile
devices distributed across a network. The system leverages
the processors in mobile devices that are designed to capture
images and videos, as well as relatively powerful processors
located at the edge of the wireless network. These network-
based processors form an edge cloud, a notion that is becom-
ing popular to support distributed analytics services [3]. A
challenge with such a system is determining how to optimally
allocate resources among the devices containing images. There
is contention between the mobile devices for the wireless
link to the edge cloud and for the processing capabilities
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within the edge cloud. In an attempt to avoid unnecessary
wireless congestion, mobile devices may choose to perform
processing locally to extract image information. However,
local processing consumes significant energy and can be orders
of magnitude slower than processing on a powerful GPU.
Furthermore, images found to contain the object of interest
must be uploaded to the cloud for collection anyway.

Our objective is to design a system and set of algorithms
to optimally assign resources to mobile devices for processing
and collecting images so that images of interest are prioritized.
Whereas prior work [1], [4] has focused on minimizing the
processing time for all images, we are instead interested in
maximizing the rate at which we gather important images
to obtain useful information as quickly as possible. This
implies that mobile devices with images unlikely to contain
information of interest receive lower priority when allocating
resources.

To solve this problem we resort to Network Utility Max-
imization (NUM). The NUM framework lends itself to a
distributed implementation that can be run on mobile devices
and edge cloud nodes, allowing for proportional fairness that
can be used to give higher priority to devices with more useful
images. Specifically, our contributions are:
• We formulate an optimization problem where the ob-

jective is to maximize the total utility, while capturing
weighted proportional fairness, given the shared wireless

Fig. 1. The system model for mobile crowdsourcing using a dual-path
approach incorporating proposed hit-ratios and energy conservation measures.978-1-7281-6630-8/20/$31.00 2020 © IEEE



Fig. 2. Utility aggregated across four users for Always Offload (AO), Always
Local (AL), and Dual-Path varying hit-ratio of Users 1 and 2.

link and GPU capacities, by using expected hit-ratios as
a component in the utility. We define hit-ratio as the
estimated likelihood of images containing the object of
interest.

• We propose a dual-path approach where a user can
either immediately offload images for processing, or first
process images locally and then upload. We show that
this approach can significantly improve performance.

• We incorporate an energy cost by allowing a user to
indicate a usable energy budget. We introduce a tunable
parameter that lets the system trade-off the importance of
instantaneous utility against system lifetime according to
the energy budget of each user.

• We present a hit-ratio estimator and provide extensive
validations of our results using both synthetic data and
data from real image traces.

Our results show that our dual-path approach of using
either the local CPU or offloading to the network based
GPU provides better performance than relying solely on local
processing or always offloading. We also obtain images with
the desired object of interest faster than algorithms focused
on minimizing completion time [4]. Further, we show that our
energy parameter allows the system operator to tune the system
to achieve higher instantaneous utility in the short term, or to
use energy more judiciously to allow more images of interest
to be found over a longer time period. Tuning this parameter
can increase the number of images of interest gathered by
75% while increasing the number of images processed by only
6%, thus showing that the algorithm is intelligent in allocating
resources to the most productive users.

This paper is organized as follows. In Section II we present
the motivation for this work, followed by the problem for-
mulation and the corresponding algorithms in Section III.
We introduce a hit-ratio estimator in Section IV, providing
numerical results and further insights in Sections V and VI,
including our analysis of hit-ratio estimators. In Section VII
we discuss some related work. Finally, we conclude our work
in Section VIII.

II. MOTIVATION

We consider a crowdsourcing system (Fig. 1) in which
mobile devices have stored images which may or may not
include an object of interest. A query is issued to mobile
devices wishing to assist in the search for the object. The
objective is to collect images that possess the object of interest
into the cloud as fast as possible.

The system includes mobile device CPUs with a processing
capacity of CD for performing object classification on images,

and batteries of capacity Q. The mobile devices communicate
with the network over a shared wireless link of capacity CW .
The edge network contains a GPU shared by the mobile
devices and has an available capacity of CG to process images
that are offloaded to it. The mobile devices have two choices
when processing images: they can (i) offload them to the
shared GPU for processing, or (ii) process them locally on
their own CPU. In the latter case, images containing the object
of interest are uploaded over the shared wireless link.

If the mobile device decides to process an image locally,
the load on the shared GPU is automatically reduced, and
the load on the shared wireless link is reduced if the image
does not contain the object of interest. However, processing on
the local CPU is slower than on the network GPU (assuming
the network GPU is not congested), and requires precious
energy from the battery of the local device. Intuitively, local
processing is desirable for devices with low hit-ratios.

If the mobile device decides to offload images to the
shared GPU for processing, experimental data confirms that
the mobile device will expend less energy than with local
processing. Nevertheless, this may cause more congestion at
the shared GPU and on the wireless link. Intuitively, offloading
images to the GPU is desirable for devices with high hit-ratios.

If there are no energy costs in the system, i.e., all devices
have persistent power sources, our solution provides optimal
resource allocation to maximize the aggregate utility of the
system where utility is a weighted function of the rate of
gathered images with the object of interest. If energy sources
are not persistent, there is a trade-off between instantaneous
utility and lifetime of the system. We provide a tunable
parameter that allows for the system operator to tune this
trade-off. In this case our solution provides optimal resource
allocation to maximize the utility of the system, given the
chosen energy-sensitive parameter setting.

Fig. 2 shows the aggregated utility of four devices as the
hit-ratio increases for three algorithms. We compare the utility
for the optimal allocation of resources (as derived in this paper,
called dual-path in Fig. 2), a system in which all images are
processed locally on the mobile devices (always local (AL)),
and a system in which all images are offloaded to the GPU
for processing (always offload (AO)). As can be seen, the
dual-path approach always provides the highest utility. In this
example, the GPU capacity is CG = 1.6 Gbps, the wireless
link capacity is CW = 25 Mbps, and the local CPU of the
mobile devices has a capacity of CD = 8 Mbps. Users 1 and
2 have equivalent variable hit-ratios, while users 3 and 4 have
a stable hit-ratio of hi = 0.33. We do not consider energy
costs in this motivating example.

III. PROBLEM FORMULATION

In this section, we present the optimization formulation for
our setting, where the hit-ratios and the energy consumption
are considered.

A. NUM Background
Our work builds upon the basic principles of Network

Utility Maximization (NUM) [5], [6], [7], as well as multi-path
approaches [8], [9]. The NUM framework is a well known
method for solving convex optimizations and lends itself to
a distributed implementation that can be proven as optimal.
NUM consists of maximizing the aggregate utility over all



users to obtain optimal resource allocation. To do this in a
decentralized setting, network resources set prices for their
usage, where the prices are a function of congestion. These
prices are sent to the users. The users set their optimal rates
using the received prices and their willingness to pay given
their individual utility functions, where utility is a function
of their rate. In our solution we adapt a dual-path version of
NUM where the first path is offloading images to the network
GPU for processing, and the second path is local processing on
the mobile device followed by uploading images that contain
the object of interest.

B. Dual-Path NUM with Hit-Ratio Considering Energy Con-
straints

The NUM formulation for the dual-path case, with
users i = 1, . . . , I , paths j = 1, 2 per each user i, and
resources ` = 1, . . . , L consists in solving the following
optimization [8], [9]:

SYSTEM (U,X; R,~c):

maximize
~x≥0

U(X) =
I∑
i=1

Ui (xi1 + xi2)

subject to
I∑
i=1

(R`i1xi1 +R`i2xi2) ≤ c`, ∀ `. (1)

The utility Ui is a function of the sum of matrix values
(X)ij = xij , denoting rates given to user i over path
j. We assume that all the rates belong to the convex set
S ′ = {xij ≥ 0 ∀ i, j, (xi1 + xi2) ⊂ R}. The capacity of
resource ` is denoted by c`. Indicator variable R`ij is 1 if
the route of path j for user i uses resource `, 0 otherwise.
For path 1, the resources are the shared wireless link and
the network-based GPU which are used for all images. For
path 2, the resources are the CPU on the mobile device, and
the shared wireless link for images that are uploaded. Since
the objective function in Eq.(1) is non-strictly concave, we
approximate the optimization function as in [9], defining a
new parameter θij =

xij

xi1+xi2
, ∀ i, j. The new utility function

becomes Ui (xi1 + xi2) = θi1Ũi

(
xi1

θi1

)
+ θi2Ũi

(
xi2

θi2

)
.

1) Incorporating Hit-Ratio: The hit-ratio of a specific user
i is the percentage of images possessing an object of interest.
Each user i has a unique hit-ratio hi ∈ [0, 1]. For proportion-
ally fair resource allocation with hit-ratio dual-path NUM, the
utility function for each path of user i is

Ũi

(
xij

θij
, hi

)
= hi log

(
xij

θij

)
, ∀ i, j. (2)

Because utility is only earned for images that have a hit,
the utility function is multiplied by hi.

2) Energy Considerations: Each mobile device has finite
battery life, represented by the percentage of energy remaining
in the system, Qi. We limit the energy devoted for crowd-
sourcing by the mobile device by setting a threshold, below
which the participation of the mobile user in the process
will stop. Denote this threshold as η∗i , for which it holds
0 ≤ η∗i ≤ Qi(t) ≤ 1 for all t. Define E`ij = E`ij(Qi(t))
to be the energy cost scaling of path j for user i when using
resource ` at time instant t. This scaling factor allows us to
incorporate energy as well as congestion into the prices of the
resources as more fully described below.

C. HED-NUM Optimization Formulation
We propose the optimization for hit-ratio, energy-conscious,

dual-path NUM (HED-NUM) as
∼

SYSTEMHED (Ũ,X,Θ, ~h; R,E,~c):

maximize
~x≥0

Ũ(X,Θ, ~h) =
I∑
i=1

2∑
j=1

hiθij log

(
xij
θij

)

subject to
I∑
i=1

2∑
j=1

E`ijR
`
ijxij ≤ c`, ∀ `. (3)

Let CGz
represent the resource constraint on the zth GPU,

CWm
denote the bandwidth restrictions for mth wireless link,

and CDi designate the maximum capacity of local processing
device for user i. We consider our scenario where every
user uses two possible paths to send the images; one path
forwards the images directly through the wireless link to a
GPU (offloading) with rate xi1, and the other option is through
the local processor first and then to be uploaded directly via
the wireless channel (uploading) with rate xi2. The constraints
for Eq.(3) are now∑I

i=1E
Gz
i1 R

Gz
i1 xi1 ≤ CGz

, z = 1, . . . , Z,∑I
i=1E

Wm
i1 RWm

i (xi1 + hixi2) ≤ CWm
, m = 1, . . . ,M,

EDi
i xi2 ≤ CDi , i = 1, . . . , I.

(4)
The energy cost scaling for this specific dual-path case,

given a chosen energy exponent b > 0, is1

EGz
ij = 1, EWm

i2 = hiE
Wm
i1 ,

EWm
i1 = 1

(Qi(t)−η∗i )b
, EDi

ij =
(
γ
(2)
i /γ

(1)
i

)
EWm
i1 ,

(5)

across all variables i, j,m, z. Setting b allows us to tune the
impact of energy on the resource allocations. The energy cost
scaling for the GPUs is unity because they have a persistent
power supply. The energy scaling factors E`ij = E`ij(Qi(t), b)
for wireless link Wm and local processing Di resources
are functions of the remaining battery Qi(t) per user i at
time instant t, as well as the energy consumption rate of
the resource (wireless transmission or CPU) and the energy
exponent b included in (Qi(t)−η∗i )b. Let the wireless channel
energy usage per second be denoted by γ

(1)
i and the local

processing energy usage per second be denoted by γ
(2)
i for

each user i. The ratio γ(2)i /γ
(1)
i determines the relative energy

cost of local processing compared to wireless transmission.2

D. Dynamic Operation
We decompose this optimization into two problems, each

solved iteratively. The first is solved by the network resources,
namely the GPU and base stations controlling the wireless
links, which derive prices that are sent to the mobile devices.
The second is solved by the mobile devices that set their
optimal rates for the two available paths based on the sum
of the costs for each of those paths and their utility functions.

1In the case of b = 0, set EWm
i2 = hi and E`ij = 1 for all other i, j, `.

2Experimental results show that γ(2)i /γ
(1)
i ≥ 1 [4]. A slightly modified

formulation of E`ij emerges for the case when γ(2)i /γ
(1)
i < 1.



When in operation, the values of θij , resource prices λ`, and
rates xij are updated iteratively.

To update θij , the mobile devices use their previous optimal
rates, calculated in Result 1 below, according to:3

θij(t+ 1) =
x∗ij(t)

x∗i1(t) + x∗i2(t)
, ∀ i, j. (6)

We introduce shadow prices ~λ = {λ1, . . . , λL} ≥ 0 cor-
responding to each resource `. These shadow prices emerge
mathematically as the Lagrange multipliers. Using the gradient
descent method, shadow pricing updates for each resource `
evolve as

λ`(t+ 1) =
[
λ`(t)− α

(
c` −

∑I
i=1

∑2
j=1 E

`
ijR

`
ijxij(t)

)]+
, (7)

where [·]+ denotes the projection onto the non-negative or-
thant, and α > 0 is a sufficiently small positive step-size
value [10]. Eq. (7) is solved by the network GPU and base
station of the wireless link to set their prices in each iteration.

To account for energy usage over time, the values of the
energy scaling factors must evolve by updating Qi(t). Define
∆t as the time duration throughout time step (t− 1)→ t and
the energy capacity of each mobile device as Ωi. Then Qi(t)
evolves as

Qi(t+ 1) = Qi(t)−
∆t

Ωi

[
γ
(1)
i

(
xi1(t) + hixi2(t)

)
+ γ

(2)
i xi2(t)

]
, (8)

where Qi(0) = 100% for each user i with full initial battery.
Given the natural battery constraint 0 ≤ η∗i ≤ Qi ≤ 1, the
thresh-holding constraint of η∗i requires user i to conserve
battery by terminating processing once η∗i · 100% remaining
battery has been reached.4

Given the prices from the network resources, the users then
set their optimal rates.

Result 1. The optimal solution at each iteration is [9]

x∗ij(t) =
hiθ
∗
ij∑L

`=1E
`
ijR

`
ijλ
∗
`

∀ i, j, (9)

where shadow prices λ∗` are found from slackness conditions.

The proof can be found in Appendix. Given a selected b,
the optimal rate values at each time instant t for user i for
each path can be expanded to:

x∗i1(t) =
hiθ

∗
i1(t)

λG + EWm
i1 λWm

, x∗i2(t) =
hiθ

∗
i2(t)

E
Di
i λDi

+ hiE
Wm
i1 λWm

. (10)

The mobile devices calculate these rates based on the prices
received from the network and their own calculation of θij .

IV. HIT-RATIO ESTIMATOR

A key part of our system is the use of expected hit-ratio to
help determine resource allocation, thus the proper estimation
of hit-ratio is critical for the operation of the algorithms.

We postulate that when using real-world image data sources
when looking for specific objects, there will be several images
in a cluster, which we call runs, that will have the object
with a high likelihood (hits), followed by a cluster of images
that do not (misses). To test this conjecture we analyze image

3So long as xi1 + xi2 6= 0 such that xij
θij

is defined, else θij = 1.
4In Section V we assume that the battery threshold is 20%.

data from several deployed cameras to determine realistic
distributions of object hits and misses. We then propose a
hit-ratio estimator.

A. Data Analysis
We used image data from a camera network deployed at

a major research university [11]. These stationary cameras
record video of sidewalks and roads. Images were simul-
taneously collected at ten second intervals from 6 camera
positions for approximately 45 minutes, resulting in six sets
of 273 images which we call traces. We analyzed, by hand,
the images gathered for several objects of interest. The data
confirm our conjecture. There are runs during which the large
majority of images have the object of interest, followed by runs
where very few, if any, images have the object of interest.

We found that the length of the runs for which there was a
high hit-ratio ranged from 1 image to all 273 images in a trace,
with the average hit-ratio during these runs being 81.7%. The
length of the runs for the low hit-ratio periods ranged from 1
image to 231 images with an average hit-ratio of 4.8%.

We expect the results taken from cameras that move to have
similar characteristics in that there will be states during which
the hit-ratios of objects of interest are high, and then states
during which the hit-ratio is low.

B. Estimator
We developed two classes of hit-ratio estimators. In the

first, we use the moving average of hit-ratios. We considered
and evaluated a straight average, and two-point and ten-point
weighted moving averages with both linear and quadratic
weighting. In the second, we use counting methods in which
we incremented a counter for a hit and decremented a counter
for a miss, coupled with a threshold. We considered several
thresholds but found the best performing to be when the
counter is initialized at 0 and incremented or decremented
for a hit or miss, respectively, within a range of -1 to +2. If
the counter value is +1 or +2, the estimator predicts the next
image to be a hit, otherwise it predicts a miss. We evaluate
these approaches in the next section.

V. RESULTS: UTILITY COMPARISON AND ENERGY
PARAMETERS ACROSS HOMOGENEOUS CELLS

In this section we highlight the effects of our algorithm
on resource allocation and the sensitivity of the performance
to different energy settings. To do this, we consider a ho-
mogeneous setting. We first discuss the simulation setting,
including the system configuration, the image processing used
and our assumptions regarding energy usage. We present an
evaluation of the hit-ratio estimator. We then present results for
variable settings of the energy usage parameter, b. Individual
user results are presented with the average values of allocated
resources to provide clarity behind aggregate behaviors.

A. Simulation Setup
We consider a system with 80 equivalent cells with indepen-

dent wireless channels. For convenience, all of the capacities
and resource usages in this paper are presented in terms of
bits per second (bps), a conversion from processing rates using
image sizes. All of the cells share a network-based GPU with
a capacity of CG = 1.6 Gbps (about 4K images/sec). The
wireless link in each cell has a capacity of CW = 25 Mbps



(about 6 images/sec) shared among all users in that cell. Each
device has a CPU with a maximum local processing rate
of CD = 16 Mbps (about 4 images/sec). Observe that the
maximum rate or speed through the local CPU is less than the
throughput of the wireless link. We set the energy threshold
of each user to 20% of its total battery capacity.

Each user i has the same log-based utility function, Ui =
hi · log(1 + xi1 + xi2), where hi is the estimated hit-ratio for
the user, xi1 is the rate in bps for which images are offloaded
to the GPU, and xi2 is the rate in bps at which images are
processing locally5. In each cell two users (users 1 and 2) have
an average hit-ratio of hi = 0.5, and eight users (users 3-10)
have an average hit-ratio of hi = 0.05. We refer to these as
high hit-ratio and low hit-ratio users, respectively. We describe
how the hits and misses are generated for each result obtained
in Sections V-VI. We pick processing values assuming that
an existing complex, pre-trained CNN (i.e., GoogLeNet [12])
is used for image processing on both the local CPU and GPU.
In the hit-ratio dual-path NUM model outlined in Section
III, the image analysis through the wireless-to-GPU path
of user i occurs once the image reaches the GPU. In the
second local-to-wireless path of user i, the image processing
is completed locally and only images defined as hits are sent
through the wireless link to decrease bandwidth congestion.
GoogLeNet requires image data inputs of size 224x224x3,
yielding 401, 408 bits per image at 8-bit color [12].

We assume an average user battery capacity of Ωi = 9.25
Wh for each user i. The energy consumption to send for
the wireless channels is set to γ

(1)
i = 0.125 mJ/sec [13].

Processing locally requires an estimated average consumption
rate of γ(2)i = 0.375 mJ/sec, as prior studies suggest that local
processing is thrice more energy expensive than offloading [4].
GPU processing is considered “free” in terms of energy costs.

Specific NUM parameter values for these simulations in-
clude a gradient descent updating parameter value of α =
5 · 10−5 (α = 3 · 10−6 for b = 2 to ensure convergence),
and the total number of iterations is T = 240k. Each iteration
proceeds after an interval of approximately 16 ms.

B. Hit-Ratio Estimator Evaluation
To evaluate the hit-ratio estimator, we used the simulation

setup described above. We generated synthetic sets of images
with hit and miss distributions that mimic the trace data we
analyzed. We present the hit and miss distribution generator
used for testing and the hit-ratio estimator evaluation below.

1) Distribution Generator: To approximate the hit and miss
distribution of the trace data we developed synthetic two-
state generator. The system transitions between a high state
and a low state, as shown in Fig. 3(c). While in the high
state, the hit-ratio is ph, and while in the low state the hit-
ratio is pl. The residence time in the two states depends on
the transition probabilities p and q. Using this model we can
closely approximate the trace data from the camera network.
We use this model in our simulations.

Specifically, high hit-ratio users with an average hit-ratio of
hi = 0.5 have parameters p = 0.10, q = 0.10, ph = 0.95
and pl = 0.05. This results in an average residence time in
the high hit-ratio state of 9 images and the low hit-ratio state

5We are using the modified function log(1 + x) in this section to avoid
having negative values for the utility functions.

(a)

High:
ph

Low:
pl

(1− p)

p

(1− q)
q

(b)

Fig. 3. (a) Comparative aggregate utility across ninety users in ten cells. (b)
Generator Markov chain for data simulation of hits and misses.

of 9 images. Low hit-ratio users with an average hit-ratio of
hi = 0.05 include parameters p = 1/3, q = 1/39, ph = 0.50
and pl = 0.026, resulting in an average residence time in the
high hit-ratio state of 2 images and the low hit-ratio state of
38 images. For simplicity of analysis, we present the results
of a single cell.

2) Hit-Ratio Estimator Evaluation: In Fig. 3(b) we show
the sum utility achieved by our system with a a counter-based
and average-based hit-ratio estimator. As can be seen in Fig. 3,
the counter-based hit-ratio estimator outperforms the average-
based hit-ratio estimator. Therefore, for the rest of this paper
we will use the counter-based hit-ratio estimator.

C. Comparison with PicSys
We compare HED-NUM to PicSys [4] which is a dual-

path crowdsourced image processing algorithm that has the
objective of minimizing the completion time required to pro-
cess all images, unlike HED-NUM which has the objective
of maximizing the rate of gathering images with the object
of interest. Similar to HED-NUM, PicSys allows for images
to be processed locally or offloaded to an external GPU for
analysis, and must upload all images that possess the object of
interest. PicSys does not perform wireless resource allocation.
We ignore energy in this comparison.

All parameters are the same as described in Section V-A.
We use the two-stage version of PicSys which includes local

Fig. 4. Comparison of HED-NUM and PicSys crowdsourced image process-
ing systems.



Fig. 5. Comparison of normalized aggregate utility across different energy
parameter scenarios: b = 0, b = 0 ∼ Always Offload, b = 0 ∼ Always
Local, b = 0.5, b = 1, and b = 2, for T = 150k iterations (40 minutes).

processing and image offloading. Since PicSys does include
dynamic resource allocation, we set their total wireless re-
source to CW = 100 Mbps, where PicSys dedicates equivalent
bandwidth to each user. Even with this strong advantage
for PicSys, we show in Fig. 4 that HED-NUM performs
almost 50% faster in both gathering images and, consequently,
gathering images possessing the object of interest.

D. Overview of Results
Fig. 5 shows the main result of the simulations, comparing

the achieved utility for the dual-path approach with different
values of energy parameter b over the number of iterations.
The utility values are normalized to that of the case b = 0,
the energy protocol achieving the highest instantaneous utility.
Also included on the graph are the results for the case in which
images are always offloaded (always offload (AO)) to the GPU
and the case in which all images are processed locally (always
local (AL)) and only those with a hit are uploaded. For these
results, we generate hits and misses for the images using the
synthetic distribution generator described in Section IV with
parameters set to achieve the desired average hit-ratio. The
dual-path approach outperforms the AO and AL approaches
by making optimal decisions on the allocation of the GPU
and wireless links. In all cases the aggregate utility drops
to zero when the remaining battery in the mobile devices
reaches its threshold. The results also show that as energy
usage is considered more important by virtue of increasing
the value of b, the system achieves a lower instantaneous
utility, but executes more iterations because of the more
intelligent energy-aware resource allocation. This illustrates
the usefulness of the parameter b.

The AO and AL results are not included moving forward.
To more clearly isolate the effects of hit-ratio and energy
constraints on resource allocation, we resort to using an
average hit-ratio that is uniformly distributed for the results
in Figs. 6 and 7.

E. No Energy Consideration, b = 0

The first case we examine is when energy is not considered
when making resource allocation decisions, requiring b = 0.

This setting achieves the highest instantaneous utility because
resource allocation is optimized solely to maximize immediate
utility. Thus, b = 0 is the typical setting when the system is
not expected to operate for a sustained period.

In Fig. 5, we observe that in this configuration the system
does achieve the highest aggregate utility for about 30k
iterations before the battery threshold in the devices is reached
and no more images are processed. Fig. 6 shows more details
of this case for two representative users, user 2 which has a
high hit-ratio (h2 = 0.5) and user 10 which has a low hit-ratio
(h10 = 0.05). The results for all other high and low hit-ratio
users are the same.

Fig. 6(a) shows that high hit-ratio user uploads images that
it has processed locally that have hits at more than four times
the rate that it offloads to the GPU for processing. The low hit-
ratio user performs all local processing, only using the wireless
capacity to upload hits. The entire 25 Mbps wireless link is
used within the cell, and both high and low hit-ratio users use
all 16 Mbps of their local CPUs (Fig. 6(b)). Yet very little
GPU capacity is used. As shown, the batteries of the high hit-
ratio users are depleted shortly before those of the low hit-ratio
users.

F. Energy Consideration: b = 1

In this case the resource allocation is made with consid-
eration of the energy utilization. For these results we set
b = 1, i.e., the “price” each user pays for a specific collection
of resources is multiplied by a factor inversely proportional
to the remaining battery percentage. As seen in Fig. 5, the
instantaneous utility for b = 1 is lower than in the case
of b = 0 initially, but the system processes images and
produces utility for significantly more iterations. After about
100k iterations, the utility drops after the high hit-ratio users
have depleted their allotted energy. The results are shown in
more detail in Fig. 7.

Fig. 7(a) shows the residual energy in users 2 and 10 versus
the number of iterations. The high hit-ratio user, user 2, is
allocated more resources because the system is optimizing the
rate at which images with hits are uploaded to the network.
As a result, the energy in the high hit-ratio user is depleted
more quickly than the low hit-ratio user, user 10. The energy
depletion drives the cost of the CPU of user 2 to increase
as shown in Fig. 7(b). User 2 has a high hit-ratio of 0.5,
meaning that half of all images processed locally need to be
uploaded directly to the cloud. As shown in Fig. 7(c), user 2
offloads images to be processed at the GPU at a rate 2-3 times
higher than it uploads images with hits that it processes locally.

(a) (b)

Fig. 6. Dual-path NUM analysis over T = 35k iterations (about 10 minutes)
for energy exponent parameter value b = 0. (a) Total summation of user rates.
(b) Resource capacity utilization.



(a) (b) (c) (d)

Fig. 7. Dual-path NUM analysis over T = 120k iterations (32 minutes) for energy exponent parameter value b = 1. (a) Energy consumption over time. (b)
Shadow price updates. (c) User rate allocation. (d) Resource capacity utilization.

This is the reverse of the case in which energy was not a
factor, i.e., b = 0. This result emerges since the energy cost for
local processing and then uploading half of the images is now
considered higher than directly offloading and processing the
images on the GPU. User 10 has a hit-ratio of 0.05, meaning
that only a small percentage of locally processed images need
to be uploaded to the cloud. To maximize the number of hits
sent over the wireless resource, the low hit-ratio user performs
all local processing. As battery level drops over time, user 10
decreases its rate of local image processing.6

Fig. 7(d) shows that the system throttles itself due to the
sensitivity towards energy. The wireless link is never fully
utilized. Likewise, neither the high or low hit-ratio user highly
tax their local CPU, each using less than 5 Mbps of the 16
Mbps available. The GPU in this case is much more heavily
used than in the case when b = 0 because of the increased
offloading of the high hit-ratio users. In fact, when considering
all 80 cells in the system, the GPU is used at 1.2 Gbps, which
approaches its limit. The usage of all resources declines as the
energy costs rise over time.

G. Comparison of Results
In this subsection we compare the performance of the

system with different settings of b. Recall that energy costs
are a function of remaining battery percentages Qi for each
user, and are used in the cost scaling factor (Qi − η∗i )b from
the energy NUM formulation in Section III.

The best selection of b is heavily dependent upon the
specific objectives of the user in terms of the trade-off between
instantaneous utility and the time duration that the system has
sufficient energy to continue processing images. While Fig. 5
shows the instantaneous utility achieved for different values
of b versus the number of iterations, Fig. 8 illustrates the
accumulated utility versus iterations for values of b of 0, 0.5, 1,

6Diminished wireless usage and minimal congestion account for the energy
cost of the wireless resource for user 10 to drop as shown in Fig. 7(b).

TABLE I
COMPARISON OF UTILITY PERFORMANCE, GIVEN ENERGY EXPONENTS

ENERGY b=0 b=0.5 b=1 b=2

No. Images 193, 175 204, 634 218, 587 205, 597

Image Hits 25, 924 31, 657 38, 624 45, 601

Est. Hit-Ratio 0.1342 0.1547 0.1767 0.2218

Battery (Min) 8.08 31.28 111.60 258.29

and 2. This shows that b can be set to maximize the utility
given a time window during which the query must complete.

Another way to set b is to use it to tune how many
stored images may be processed. Because the system gives
priority to devices with a higher hit-ratio, these devices tend to
expend their battery faster and therefore process fewer images.
By setting b to a larger value, we expect the high hit-ratio
devices to have more of a chance to process images before
exhausting their battery. Table I summarizes the number of
images processed across the system for different values of b
until the instantaneous utility is reduced to 1% of its peak
value. As can be seen, perhaps surprisingly, as b increases,
the growth in the number of images processed is relatively
small, and the number of images processed actually decreases
when b is increased from 1 to 2. This is because the system
throttles itself more aggressively to save energy. However, the
number of hits gathered by the system increases by more than
75% as b is increased from 0 to 2 despite the number of
images processed increasing by only about 6%. There is a
corresponding increase in effective hit-ratio, meaning that of
the extra images processed, and images processed in general,
more are from the high hit-ratio devices. This shows that the
extra sensitivity to energy benefits high hit-ratio devices.

Based on these results, it is clear that b can be used to tune
the system based on different objectives. It is for further study
to develop a general framework for setting b based on specific
numeric requirements, given a system configuration.

Fig. 8. Comparison of integrated aggregate utility for T = 184k iterations
(about 50 minutes) across different energy parameter scenarios.



Fig. 9. (Synthetic Data) Plot of aggregate utility with query duration of types
A, B, and C overlaid.

VI. RESULTS: SYNTHETIC SIMULATION AND TRACE
VALIDATION WITH HETEROGENEOUS CELLS

In this section we evaluate our system in more complex,
heterogeneous settings. We consider multiple types of over-
lapping queries with different numbers of users in each cell
responding, with users having different hit-ratios. We first
consider synthetically generated hits and misses, and then
evaluate the system with trace data from the camera network.

A. Heterogeneous Case: Synthetic Data
In this section we evaluate our system with synthetic data.

We consider a reduced version of the system described above
with nine cells, each with 21 users. All of the users have
access to a single network-based GPU via the shared wireless
link in their cell. Due to the reduced number of cells in the
network in this simulation, we reduce the capacity of the GPU
to CG = 160 Mbps so that it may experience high loads.
The wireless link in each cell has a capacity of CW = 25
Mbps. Each mobile device has a CPU with a maximum local
processing rate of CD = 16 Mbps.

We define three query types in the system (A, B, C). A
third of the users in each cell are assigned to each query type.
When a query of a type matching that of a user is received
by the user, a user has a 50% chance of accepting the query
which results in a heterogeneous number of users responding
in each cell. To define high, medium and low hit-ratio users,
we analyzed our trace data and found that given traces from all
six cameras, across all the objects of interest the hit-ratios for
different objects in the traces were evenly split into those with
hi ∈ [0.50, 1.0], hi ∈ (0.2, 0.5), and hi ∈ [0, 0.2]. We defined
these hit-ratio ranges as high, medium, and low, respectively,
and divided assignments of high, medium, and low hit-ratio
users equally across each cell. Users are randomly assigned
a hit-ratio within their respective range to give us a random
distribution of hit-ratios among users. For example, a high
hit-ratio user is given a hit-ratio randomly between 0.5 and 1.
The hits and misses are generated using the hit-ratio generator
presented in Section IV by tuning p, q, ph and pl.

Query Types A, B, and C have lengths randomly assigned
from a uniform distributed between 1000 and 4000 iterations,
with pauses between individual queries chosen from a uniform
distribution between 50 and 1000 iterations. The number of

Fig. 10. (Trace Data) Utility comparison between queries using camera data
for each user.

photos stored on each phone is obtained from a uniform
distribution between 100 and 1000 images. A query may end
when the designated length of the specified query has been
spent, or all photos from responsive users have been processed.
For simplicity of illustration in the following results, we
consider the case with persistent energy supplies and b = 0.
Conclusions from Section V regarding the battery parameter b
may be extended and applied to cases of heterogeneous cells
and queries. Fig. 9 illustrates the combined utility over time
across the three query types, with start time and duration of
each query overlaid for intuitive analysis.

While drastic increases in utility occur amid simultaneous
queries, wireless link congestion compounded with compe-
tition for the GPU yields a collective utility equalling less
than the sum of individual queries amid little to no resource
scarcity. However, hit-ratio dual-path NUM provides the ap-
propriate distribution of resources to achieve the maximum
utility across users for varying queries when the estimated
hit-ratio is included in the formulation.

B. Heterogeneous Case: Experimental Trace Validation

In this section, we define a scenario with the same number
of users and cells as in the previous experiment using trace
data from the camera network. We define three query types,
but unlike our previous experiment, each of these query types
correspond to an average hit-ratio. To realize this, every user
is given a single 273 time-series image trace from the camera
network. A third of the users are assigned trace data that will
result in each of the hit-ratio ranges, so that one-third will be
assigned as high, medium and low hit-ratio. These users are
then mapped to the corresponding query type.

Queries are generated with the same frequency and duration
as in the previous setting. The queries end when all images
have been processed or the query time expires. To prevent
users from being synchronized in their hits and misses, each
user has a random starting point in the sequence of 273 images.
The stream of images continues chronologically and wraps
back to the beginning of the trace if necessary.

The separate and combined utilities of each query type
are shown in Fig. 10. As expected, periods of simultaneous
queries produce regions of greatly increased overall utility.



Our hit-ratio dual-path NUM framework quickly adjusts to the
environment to reallocate congested resources appropriately.

VII. RELATED WORK

A considerable amount of research exists regarding crowd-
sourcing for video processing where users are coupled to the
cloud to assist in processing. In [1], [2], the primary objective
is to minimize the time required to process all videos or images
across all the mobile devices. These works are focused on
labeling all images as fast as possible, regardless of the fact
whether images contain the object of interest or not. While
these algorithms may process more images in a shorter time
frame, our optimization focuses on maximizing utility based
on uploading positive hits as quickly as possible.

Network utility maximization (NUM) was first proposed
by Kelly in his seminal works [5], [6], where shadow prices
were introduced to provide fairness in resource allocation,
which hold for static user settings and single-path source-
destinations. Extensions including dynamic NUM [14] and
multi-path NUM were proposed in [8] and [9], respectively,
which provide theoretical foundations for our current work.

The approach proposed in [15] incorporates both energy
costs and multi-path routing using NUM. The benefit of their
work lies in faster convergence using the gradient descent
method. However, the energy efficiency involves maximizing
a single variable - summation of rates over transmitted power.
The innovation of our work includes the adjustable energy
variable b, based upon mission objectives.

In [16], a multi-path routing algorithm for wireless ad-
hoc networks, called MP-DSR, considers network conditions
and congestion through error rates to improve end-to-end
reliability. In search for improvements in overall QoS, path
selection depends only on accuracy. On the other hand, in our
work, the selection of the transmission medium depends on the
energy consumption, since the limited battery life of mobile
devices is a very important factor to be taken into account.

Summarizing, the novelty of our work is along the following
dimensions: (i) we propose the incorporation of a hit-ratio
parameter for each individual user within the dual-path NUM
framework; (ii) we design an energy conservation method
for improved utility and sustained battery allotment; (iii) our
model maximizes the rate at which the images with hits arrive
at the edge cloud.

VIII. CONCLUSIONS

In this paper, we have considered the problem of opti-
mally allocating resources to mobile users that participate
in crowdsourced processing of images. The objective was
to maximize the rate at which the images that contain the
object of interest are transmitted to a central entity. The
problem formulation incorporates the energy consumption and
differentiates between the users depending on the hit-ratios of
the objects of interest in every user’s mobile device. We have
also proposed ways to estimate the hit-ratio of every user.
The dual-path approach that we propose is shown to provide
significant performance improvements.

APPENDIX

Proof. Define the Lagrangian function following constrained
optimization problem in Eq.(3), where the objective functions
are given by Eq.(2), as

L̃(~x, ~λ) =
∑I
i=1

∑2
j=1 hiθij log

(
xij

θij

)
+
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(
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`
ijR
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)
,

where ~λ = {λ1, . . . , λL} are the shadow prices for
every resource, necessitating λ` ≥ 0 for all `. Opti-

mal solutions x∗ij must satisfy ∂L̃
∂xij
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as well as λ∗`
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Differentiating the Lagrangian yields hiθ
∗
ij

(
1/θ∗ij
x∗
ij/θ

∗
ij

)
−∑L

`=1E
`
ijR
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ijλ
∗
` = 0, ∀ i, j, resulting in Eq.(9). Optimal

shadow prices λ∗` can be found from the slackness condi-
tions λ∗`

(
c` −
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i=1
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j=1E

`
ijR

`
ijx
∗
ij

)
= 0 for every link

`. Consider all possible combinations of λ∗` = 0, and
c` −

∑I
i=1

∑2
j=1E

`
ijR

`
ijx
∗
ij = 0 with λ∗` > 0. With the

objective of maximization, assume as many resources as
possible are fully utilized. Hence, we expect λ∗` > 0, and
c` −

∑I
i=1

∑2
j=1E

`
ijR

`
ijx
∗
ij = 0 for all depleted resources

`; otherwise, λ∗` = 0 for slackness. These last conditions
together with Eq.(9) provide the sufficient number of equations
to determine all optimal x∗ij and λ∗` values. The final solution
depends on actual routing configuration.
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