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AN INDEX THEOREM FOR SCHRODINGER OPERATORS ON
METRIC GRAPHS

YURI LATUSHKIN AND SELIM SUKHTAIEV

ABSTRACT. We show that the spectral flow of a one-parameter family of
Schrodinger operators on a metric graph is equal to the Maslov index of a
path of Lagrangian subspaces describing the vertex conditions. In addition, we
derive an Hadamard-type formula for the derivatives of the eigenvalue curves
via the Maslov crossing form.

1. INTRODUCTION

In this paper we establish a relation between the spectral flow of a one-parameter
family of self-adjoint Schrodinger operators on a compact metric graph and the
Maslov index of a path of Lagrangian subspaces. The spectral flow of a one-
parameter family of self-adjoint Fredholm operators is the net number of eigenvalues
passing through zero in the positive direction [APS], [BZ2]. The Maslov index is
a topological invariant counting the number of intersections of a curve in the La-
grangian Grassmanian with a fixed cycle [A67], [A85], [BZ2]. It is a fundamental
topological fact that these two quantities are closely related. This relation has
been extensively studied in the context of Sturm oscillation theory for systems of
differential equations and for multidimensional differential operators, cf., e.g., [BF],
[BW], [BZ1], [BZ2], [BZ3], [CIJLS], [CIM1], [CIM2], [DJ], [HS18], [HLS1], [LS17],
[LS18], [LSS]. In particular, it was recently used to derive an explicit formula for
the nodal deficiency of the Dirichlet eigenfunctions [CIM2], to provide a geometric
interpretation of celebrated L. Friedlander’s inequalities [Fr] for the Dirichlet and
Neumann eigenvalues [CIJM2], to obtain the oscillation results for Schrédinger op-
erators with matrix-valued potentials [HLS1], [HS18], and to establish instability
of pulses in systems of gradient reaction-diffusion equations [BCJLMS].

In this work, we consider the Schrodinger operator H = —% + g on a compact
metric graph I' subject to the vertex conditions

Af +Bf' =0, f € dom(H),

where A, B are the boundary matrices facilitating self-adjointness of H in L?(T).
For instance, the Dirichlet boundary condition corresponds to A = I, B = 0,
the Robin condition is defined by A = A*, B = I. The spectrum of H is dis-
crete and bounded from below, in particular, it accumulates only at 4+co. For a
family of Schrédinger operators {Hy}}_, corresponding to the matrices of bound-
ary conditions {(A¢, By)}{_o, we prove that the spectral flow through zero is
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equal to the Maslov index of the path of finite dimensional Lagrangian subspaces
Ly :=ran(—B;, A}), t € [0, 1], that is, we derive the formula

SpFlow({H;};—¢) = Mas({K, Li}1—),

where K is the Lagrangian subspace formed by the Cauchy data of all solutions
to the equation —f” + ¢f = 0, see Theorem 3.3. The Maslov index, originally
defined as an intersection number, is given by the signature of the Maslov form,
a finite dimensional, non-degenerate symmetric form on X N £; (whenever this
intersection is not empty), c¢f. Theorem 2.3. The signature of the Maslov form
is closely related to monotonicity of the eigenvalues passing through zero. An
analytical tool furnishing such a connection is given by the Hadamard formula for
the derivative of an eigenvalue with respect to the parameter. We establish this
formula for Schrodinger operators with varying boundary conditions, see Theorem
3.4. Finally, we revisit the classical eigenvalue interlacing inequalities, cf., e.g., [BK,
Theorem 3.1.8], and derive their modification using the spectral flow formula.
Notation. We denote by I,, the n x n identity matrix. For an n x m matrix
A = (aij);2} j=; and a k x £ matrix B = (bij)f’:ll7j:1, we denote by A ® B the
Kronecker product, that is, the nk x m¢ matrix composed of k x ¢ blocks a;; B,
t=1,...n,5=1,...m. Welet (-,-)x denote the complex scalar product in the
Hilbert space X. We denote by B(X) the set of linear bounded operators and by
Spec(T) the spectrum of an operator T on a Hilbert space X. Given a subspace

S C X we denote S := S @ S. We use notation J for the following 2 x 2 matrix,
0 1
J = [_1 0} . (1.1)

2. PRELIMINARIES

2.1. Schrédinger operators on graphs with fixed edge lengths. We begin
by discussing differential operators on metric graphs. To set the stage, let us fix
a discrete graph G = (V,€) where V and € denote the set of vertices and edges
respectively. We assume that G consists of finite number of vertices, |V|, and finite
number of edges, |€| . Each edge e € £ is assigned positive length ¢, € (0,000) and
some direction. The corresponding metric graph is denoted by I'. The boundary
OT" of the metric graph is defined by

O := Ueee{ac, be}, (2.1)

where a., b, denote the end points of edge e. It is convenient to treat 2|€| dimen-
sional vectors as a space of functions of the boundary 9I', in particular,

L2(ar) = 2l (2.2)

where the space L?(0') = @,c¢ (L*({ac}) @ L2({be})) corresponds to the discrete
Dirac measure with support Uecg{ae, be}. In addition to the space of functions on
the boundary we consider the Sobolev spaces of functions on the graph T,

L) == P L), BHT) =P H"(e), k€N,
ecé& ecé&

where HF(e) is the standard L? based Sobolev space of order k € N. As in the case
of compact manifolds with boundaries, the spaces L*(T') and L?*(dT') are related
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via the trace maps. We define the Dirichlet and Neumann trace operators by the
formulas

vp : H2(T) = L2, vpf = flor, f € HX (D), (2.3)
v+ H3(T) = L*(0T), yn f := O flor, f € H(T), (2.4)

where 9, f denotes the derivative of f taken in the inward direction. The trace
operator is a bounded, linear operator given by

Tr = [VD} , Tr: H2(T') — L2(0T) @ L2(aT) = C€!. (2.5)
TN

The Sobolev space of functions vanishing on the boundary OI' together with their
derivatives is denoted by

H2(T) := {f e HXD):Tr f = 0} .
Using our notation for trace maps, Green’s formula can written as follows
[ 1957 =~[ oug- 13 (26)
r ar

= —([J ® Le)| Tr £, Tr g)carer, f,9 € HX(D).
The right-hand side of Green’s identity defines a symplectic form

w: L0 x L2(8T) — C, (2.7)
w((1, ¢2), (Y1, ¢2)) := . Gath1 — pr1ba, (2.8)
(d1, P2), (¥1,b2) € “L2(T), (2.9)

where “L?(9T') := L?(dT) @ L?(aT).
Next, we introduce the minimal Schrédinger operator H,,,;, and its adjoint Hyy,qy -
To this end, let us fix a bounded real-valued potential ¢ € L (T';R). The linear

operator
2

da?

is symmetric in L2(T'). Its adjoint Hypay := H},,, is given by the formulas

2

. _ 172
Hoo = o +q, dom(Hpas)=H*(). (2.11)

The dificiency indices of H,,;, are finite and equal, that is,
0 < dimker(Hypqr — 1) = dimker(Hpqe + 1) < 00. (2.12)

By the standard von-Neumann theory, the self-adjoint extensions of H,,;, exist and
every self-adjoint extension H satisfies Hyiy C H = H* C Hypq,- There are various
possible parameterizations of all self-adjoint extensions of the minimal operator. In
this paper we utilize the one stemming from symplectic geometry [McS]. Namely,
we use the fact that the self-adjoint extensions of the minimal operator are in
one-to-one correspondence with the Lagrangian planes in some symplectic Hilbert
space, the fact that goes back to the classical Birman—Vishik—Krein theory [Kr, Vi],
see also [AS, BK, BF, Ha, L.S18, Pal.
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A subspace £ C ¢4L2(9T') := L?(0T') @ L*(9T) is called Lagrangian if L is equal
to its w—annihilator, i.e.,
L=L:={xeL*0T): w(ry) =0frallyc L}
The Lagrangian—Grassmannian is the space of Lagrangian planes
A(PL*(d0)) := {F c “L*(dT) : F is Lagrangian with respect to w},
equipped with metric
d(F1, F2) = | Pr, = Pr, || paracory), Fi:Fe € A(PL?(T)),
where Pr denotes the orthogonal projection onto F in ¢L%(9T).

Proposition 2.1. i) [BF, Ha, LS18] Assume that ¢ € L>®°(I';R). Then the self-
adjoint extensions of Hpyin (cf. (2.10)) are in one-to-one correspondence with the
Lagrangian planes in 2 (0T'). Namely, the following two assertions hold.

1) If H is a self-adjoint extension of Hin then

L(H) :=Tr (dom(H)) is a Lagrangian plane in L2(r).
Moreover, the mapping H — L(H) is injective.
2) Conversely, if L C 2 (0T') is a Lagrangian plane then the operator
2

da?
is a self-adjoint extension of Hpyin.
it) Let H,,n > 0, be a sequence of self-adjoint extensions of the operator Hn

and let L, C dLQ(Bl"),n > 0, be the corresponding sequence of Lagrangian planes
such that H, and L, are related to each other as indicated in 1) and 2). Then

H(L) = +q(x), dom (H(L)) = {f € H¥T): Tx f € L}, (2.13)

R(i, H,) — R(i, Hy), n — oo, in B(L*(T)), (2.14)
(here R(i, Hy,) denotes the resolvent of Hy, at i) if and only if
L, — Lo, n— oo, in A(PL?(AT)). (2.15)

Proof. This follows from [LS18, Theorem 5.4] and the fact that (“L?(dT),vp,vn)
is a boundary triple for the minimal operator H,, ;. O

2.2. The Maslov index of a path of Lagrangian planes in L?(9T') & L?(dT).
The Maslov index is defined as the spectral flow through the point 1 € C of a certain
family of unitary matrices, cf. (2.27), (2.28). This quantity can be expressed in
terms of the signature of the crossing form, see (2.29). Let us recall the precise
definitions from [BZ1], [BZ2], [BZ3]. To that end we introduce the operator

T = Or2ory  Ir2(0m)
—Ir2or) Or2(or)

and notice that the symplectic form w defined in (2.7)—(2.9) satisfies
w(u,v) = (Ju,v)ar2or), U,V € RGIN) (2.16)
Furthermore, one has J? = —Lip2(ory, J* = —J, and

AL2(0T) = ker(J — il) @ ker(J + il). (2.17)
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Every Lagrangian plane £ C¢ L?(0I') can be uniquely represented as a graph of a
bounded operator U € B(ker(J + ilar2(or)), ker(J — ilag2(ory))), cf. [BZ3, Lemma
3], that is,

L = graph(U) := {y + Uy : y € ker(J +ilaz2(sr))} (2.18)
Specifically, for arbitrary y € ker(J + ilaz2(gr)) there exists a unique z € ker(J —
ilag2(gry) such that y + 2z € L. For such a vector z we set Uy := z. Then

w(z,y) = —w(Ux,Uy), z,y € ker(J + ilap2(or))- (2.19)
The operator U is a unitary map acting between Hilbert spaces ker(J +ilaz2(sry))
and ker(J — ilaz2(gr)). Indeed, for arbitrary x,y € ker(J + ilaz2(sr)) one has
<$7y>dL2(8F) = i<~7$7y>dL2(8F) = iw(x,y)
= —iw(Ux,Uy) = —-i(JUx,Uy)ar2(or) = (Uz,Uy)ar2(ar)-

Let us fix a (reference) Lagrangian plane corresponding to a unitary operator
Ve B(ker(j + iIsz(ap)), ker(j — iIsz(ap))),

(2.20)

Z c9L2(ar), Z = graph(V). (2.21)

In addition, we fix a continuous path
Y:Z — A(PLAOT)), Y(s) = Fs, (2.22)
T € C(Z,A(*L*(aT))), T = [a,b] C R, (2.23)

and introduce the corresponding family of unitary operators Uy such that
Fs = graph(Us), s € Z,
v: T — B(ker(J +ilazzary), ker(J —ilaz2(ary)), v(s) = Us.
The following is proved in [BZ2]:

v E C(I, B(ker(j + iIdL2(6F)), ker(j — iIdL2(8F))))7 (224)
U,V ™! is unitary in ker(J — ilaz2(or)), s € Z, (2.25)
dim(F; N 2) = dimker(U,V ™ — Iy), s € T. (2.26)

Utilizing (2.24)—(2.26) we will now define the Maslov index as the spectral flow
through the point 1 € C of the family v(s),s € Z. An illuminating discussion of
the notion of the spectral flow of a family of closed operators through an admissible
curve { C C can be found in [BZ3, Appendix]. To proceed with the definition,
we note that there exists a partition ¢ = s9 < 81 < -+ < sy = b of [a,b] and
positive numbers ¢; € (0,7) such that e*i & Spec(U;V 1) if s € [s;_1,s,], for
each 1 < j < N, see [F, Lemma 3.1]. Denote

— : -1 _ ix
k(s,e) = Zogxgsdnnker(USV ), £>0, s €a,b]. (2.27)
The Maslov index is defined by the formula
Mas(Y, Z) Z (sj,65) — k(sj-1,¢5)) - (2.28)
j=1
We notice that this definition does not depend on the choice of the partition {s;} ;_v:l

and {e;}_,, cf. [F, Proposition 3.3].
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Next we turn to the computation of the Maslov index via the crossing forms.
Assume that T € C'(Z, A(“L?(9T))) and let s, € Z. There exists a neighbourhood
Ty of 5. and a family R, € C*(Zy, B(Y(s4), Y(54)1)), such that

T(s) = {u+ Rsulu € Y(s.)}, s € Iy,

see, e.g., [CJLS, Lemma 3.8]. We will use the following terminology from [F,
Definition 3.20].

Definition 2.2. Let Z be a Lagrangian subspace and T € C*(Z, A(*L?(0T))).
(i) We call s, € T a conjugate point or crossing if T(s.) N Z # {0}.
(#1) The finite dimentional form

d .
mg, z(u,v) = Ew(u, Rsv)’S:S* = w(u, Rs=s,v), for u,v € T(s,) N Z,

is called the crossing form at the crossing s..
(iii) The crossing s, is called regular if the form ms, z is non-degenerate, positive
if mg, z is positive definite, and negative if m,, =z is negative definite.

The following result (cf., [BZ2, Proposition 3.2.7]) provides an efficient tool for
computing the Malsov index at regular crossings. We denote by ny and n_ the
number of positive and negative squares of a form, the signature is defined by the
formula sign =n4; —n_.

Theorem 2.3. Let T € C*(Z,A(YL*(0T"))), and assume that all crossings are
regular. Then one has

Mas (T, 2) = —n_(maz) + »  sign(m, z) +ny (mp,z). (2.29)
a<s<b
We will now review the definition of the Maslov index for two paths with values
in Lagrangian—Grassmannian A(?L%(9I")), see [F, Section 3.5]. Let us fix two paths
of Lagrangian planes

Y1, T2 € C(Z,A(“L?(01))),
and let diag := {(p,p) : p € ?L?(AT")} denote the diagonal plane. On the Hilbert
space 1L2(0T") @ ?L2(9T") we define the symplectic form & := w @ (—w) with the
complex structure J := J @& (—J) and denote the resulting space of Lagrangian
planes by Ag (dLQ([?F) @® “L%(0T)). Let

T:=7,®Ys € C(Z,A(‘L*@T) & 2L2(aT))).
TheMaslov index of two paths Y1, Ty is defined by Mas(T1, Ts) := Mas(T, diag).
Remark 2.4. We notice that Mas(T1, Y2) = Mas(Y1, Z) whenever T3(s) = Z for
all s € Z then. If T1(s) = F for all s € Z then Mas(Y1, T2) = — Mas(Ys, F).
3. THE SPECTRAL FLOW, THE HADAMARD-TYPE FORMULA AND THE MASLOV
INDEX

The purpose of this section is twofold: (1) we derive a formula relating the
spectral flow of the family of Schrodinger operators and the Maslov index of the
associated path of Lagrangian planes; (2) we obtain an Hadamard-type formula
relating the derivative of the eigenvalue curves and Maslov crossing form.
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Hypothesis 3.1. Let T : ¢t — (A, By) be a one-parameter family of 2|E| x 4|&]
matrices. Suppose that T € C* ([, B], CHEXUEN) o, B € R. In addition, suppose
that rank(As, By) = 2|€| and A:Bf = B A} for all t.

We refer the reader to [BK, Section 1.4.1] and [Pa] for the following facts used
to describe self-adjoint extensions of Schrodinger operators on graphs (specifically,
see [Pa, Lemma 5] for item (ii), and the discussion following [Pa, Proposition 1] for
item (iii) below).

Proposition 3.2. Assume Hypothesis 3.1. Let us introduce the following subspace
of 1L*(aT),
Et = {(¢7¢) : At¢+ Btw = 0}7 te [Oé,ﬁ].
Then for all t € [a, B] one has
(i) £, € A(*L*(0T)),

(ii) Lo ={(=B{f, A{f): f € L*(00)},

(iii) det(A; A7 — B,BY) # 0,

(iv) if (¢,%) € Ly then there is a unique f € L*(OT') such that ¢ = —B} f and

W = Af f, moreover, f is given by f = (AtAf — ByB;) Y (B + Apih).

In what follows we use the same symbol T as in Hypothesis 3.1 to denote the
flow t — L; of the respective Lagrangian subspaces.
Using the family of matrices A;, By we introduce a family of Schrédinger opera-

tors as follows
2

d
Hy: = ——— +q Hy:dom(H,) € L*(T) = L(T),

dom(H;) = {f € ﬁ2(1—‘) c Ay f+ By f =0}
={f € H*D) : Tx f € L4}

By [BK, Theorem 1.4.4, 1.4.19], [Pa, Proposition 6] these operators are self-adjoint
extensions of H,,;,, their spectra are discrete and bounded from below, see [BK,
Theorem 3.1.1]. We recall that the number of negative eigenvalues of an operator
is called its Morse index. Our first goal is to express the difference between the
Morse indices of the operators H, and Hg in terms of the Maslov index of the path
of Lagrangian planes T € C*([a, 8]; A(“L?(8T))). Consequently, we will obtain a
relation between the the spectral flow of the family ¢ — H; and the Maslov index
of Y. Heuristically, the spectral flow is the net number of eigenvalues of H; that
pass through zero in a positive direction as ¢ changes from « to 5. In more rigorous

terms, there exists a partition a = tg < t; < --- < ty = [, and N intervals
[ag, be], ar <0 <bp, 1 << N, such that
ag,by & Spec (Hy), for all t € [ty_1,te], 1 < < N. (3.1)

Then, the spectral flow through A = 0 is defined by

N
SpFlow ({Ht}f:a) = ; ;;0 (dimker (Hy, , — \) — dimker (H, — \)) .
=lar<

Of course, one can show the spectral flow does not depend on the choice of the
partitions, see, for instance, [BZ2, Appendix]. Moreover, as discussed in [LS18,
Section 3.3], one has

SpFlow ({Ht}f:a) = Mor(Hy) — Mor(Hy).
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eigenvalues
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F1GURE 1. The Morse — Maslov box: the conjugate points are the eigenvalues

Theorem 3.3. Assume Hypothesis 3.1 and let
= d
Ko:={(vofirnf): f € H*T) and — f"+qf =0} € A("L*(0D)).  (3.2)

Then one has
Mor(Hy) — Mor(Hg) = Mas(Y, Ko), (3.3)
and, consequently,
SpFlow({H,}/_ ) = Mas(T, Ko). (3.4)

Proof. Let us outline the strategy of the proof. First, we recast the eigenvalue
problem Hyu = Au in terms of the intersection of Lagrangian planes

K= A{(rp frf) € HXT) and — f” +qf = Af} € A(*L2(aD)),
Ly = {(u,v) € “L*(0T) : Ay + By = 0} € A ("L*()).

Then we construct a loop of Lagrangian planes (Ky, L:), where (A,t) follows the
boundary of the square displayed in Figure 1. Due to homotopy invariance, the
Maslov index of this loop is equal to zero. Next, we show that the Maslov indices of
the parts of the loop corresponding to the horizontal sides of the square are equal
to the Morse indices of the respective operators. Finally, using the additivity of the
Maslov index under catenation of paths we obtain (3.3).

The operators Hy, a < t < § are bounded from below uniformly with respect
to t € [a, O], cf., e.g., [KS3, Section 3.3]. Hence, there exists Ao, < 0 such that
ker(H; — A\) = {0} for all t € [, 8] and all A < Ay. For such a Ay we consider the
parameter set 3, the square P in the (A, t)-plane, and the map from ¥ to P,

Yi=Uj_ B o P=Uj_ Pj, s e (A(s), 1(s)), (3.6)
where P;, 7 = 1,---,4 are the sides of the positively oriented boundary of the

square [Aso, 0] X [a, 8], and the parameter set ¥ = U}_; X, and A(-), t(-) are defined
as follows:

(3.5)

A(s) = s, t(s) = a, s € 1 := [As, 0], (3.7)
A(s) =0, t(s) =s+a, s€Xy:=1[0,8—al, (3.8)
As)=—s+B—a,t(s)=8,8€83:=[f—a,f— a— A, (3.9)
A(S) = Aoy B(8) = =5+ 28 — a0 — A, (3.10)

se€Xs=[—a—Ao,2(f— ) — Ax]-
The mapping
Tr : ker (Ht(s) — )\(S)) — IC)\(S) N Et(s), s €,
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is one-to-one and onto, hence,
dim(ker(Ht(S) —A9))) = dim(IC,\(s) N ‘Ct(s)); s €. (3.11)

In particular, A(s) is an eigenvalue of H, if and only if Ky N Ly(s) # {0}. Using
this observation we will first show that

Mas(Kx(s) |z, La) = —Mor(H,) and Mas(KCy(4)|x,, L) = Mor(Hg).  (3.12)

The argument is based on a standard computation of the Maslov form at the cross-
ings on the horizontal sides of the square, cf., e.g., [BF, (5.3)]. Let us focus on the
first equality in (3.12), the proof of the second one is analogous. We will show that
each crossing on ¥ is negative (hence, non-degenerate), and use (2.29) to verify
that geometric multiplicities of negative eigenvalues of H, add up to minus the
Maslov index. To begin the proof of the first equity in (3.12), we let s, € [Ax, 0]
be a conjugate point so that ICy;.) N Ly # {0}. By [BF, Theorem 3.8 and Remark
3.9] the map s — K4 is contained in C* ([Aso, 0], A(“L2(8T'))). Then there exists
a small neighbourhood X5, C [Ay, 0] of s, and a family of operators Ry, so that

(s + 8:) = Risps,) in CH(Zs,, B(Kx(s,) (Kagsa)) ™)), Rs. =0, (3.13)

and
IC)\(S) = {((ba ¢) + Rs-l—s* (¢7 ¢)’(¢7 ¢) € K:)\(s*)} for all (S + S*) € Es*a (314)
see, e.g., [CJLS, Lemma 3.8]. Let us fix (¢o,%0) € Ky(s,) and consider the family

(¢s,%s) := (¢0,%0) + R(s4s.)(¢0,%0) with small |s|.
Since (¢s,vs) € Ky(s), there exists a unique u; satisfying

—ul + qus = A\(s + si)us and Trug = (¢ps, 1)) for small |s|.

Next, using (2.6) we calculate:

w (B0, %0), (d0, %) + Risso.) (d0, %)) = /a o= oo

== / ugls — uouy
r
= <—u6/ + quo, Us>L2(r) — (uo, —u;' + qus>L2(F)
= (A(8x)u0, us) £2(r) — (U0, AN(Sx + 8)us) 2y = — (U0, SUs) £2(1).-

Recalling Definition 2.2 (i), we evaluate the crossing form

d
ms, £, ((¢07 ¢0)7 (¢07 1/10)) = d_Sw ((¢07 2/10)7 R(s+s*)(¢07 1/10)) ’s:O
 lim ¥ (605 %0)s Rists.)(¢0,%0)) _ lim —(uo, sus) 2y _ ol

s—0 S s—0 S

where we used the continuity of s — us at 0 established in a more general setting
in [LSS, page 355]. Therefore, the crossing form is negative definite at all conjugate
points on [Ax, 0] and, using (2.29), one obtains

Mas (Kx(s)lsexnys La) = —n— (mr z,) + Z sign mg ¢z,

Aoo <5<0:
KasyNLa#{0}
+ny(moe,) =— Z dimker (Hy — A(s)) = — Mor (H,), (3.15)

Ao <s<0
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where we used ny (mg 2, ) = 0, and the fact that there are no crossings to the left
of Ao
By the additivity of the Maslov index under catenation of paths we get

Mas ((Ki(s) Li(s))|sex) = Mas ((Ki(s), Ligs))lsess)

+ Mas ((Kt(s): Li(s))|sexs) + Mas ((Ky(s), Les))]sess) (3.16)

+ Mas ((’Ct(s)v‘ct(s))|5624) .
Finally, using Mas ((Ky(s), Li(s))|sex) = 0 (by homotopy invariance) and
Mas ((Kt(s),ﬁt(s))|s€g4) = 0 (since there are no crossing on P4), we arrive at
. [l

The following result provides an Hadamard-type formula for the derivative of
the eigenvalue curves of the operator family H;, o <t < . Formulas of this type
have rich history that goes back to [H] and [GS]; further information can be found
in [BLC, G, He] and [LS17]. The dependence of the eigenvalues of H; on boundary
matrices (A, By) is discussed in [BK, Theorems 3.1.2 and 3.1.4]. In particular, it
is known from these results that simple eigenvalues and the family of respective
eigenfunctions are differentiable with respect to the parameter t.

Theorem 3.4. Assume Hypothesis 3.1 and fiz tg € (o, ). Suppose that Ny, is a
simple eigenvalue of Hy, and let us, be the normalized eigenfunction. Then
dN¢
dt lt=tq

where ¢y, = (A Af, — By By)  (BiyVp ey + Aty tie,) and the derwative with
respect to t is denoted by “dot”.

= <(At0B:o - BtoAIo)(btm ¢t0>L2(6F) = mtoJCxto (TI‘ Uty Tr uto)a (317)

Proof. First we compute the derivative of the eigenvalue curve );. Since the vector
valued function ¢ — w; is differentiable near ¢y by [BK, Theorem 3.1.2 and 3.1.4],
we may differentiate the eigenvalue equation Hiu; = A\iu; for ¢ sufficiently close to
to, thus obtaining
— ’U/g + qut = )\tut + )\tut' (318)
Next, taking the scalar product of both sides of this equation with u,; yields
(= ue) pa(ry + (@le, we) p2ry = Ao + Ae(de, we) 2 ().
Green’s formula (2.6) and (2.8) imply
).\t = <’(lt7 Hut>L2(p) — )\t<ut7 ut>L2(p) + W(TI’ ’l.J/t, Trut), (319)
and since Hu; = \;u; we have
At = w(Tr iy, Tray). (3.20)

Since Truy = (y,ut, Yyue) € Li, by Proposition 3.2(iii) there exists a unique ¢; €
L?(dT) such that

Trut = (_B;ﬁ(btaAr(bt) (321)
Solving this equation for ¢; we have
by = (AcAf — BtBr)_l(BﬂDUt + Aryyut), (3.22)

and thus the mapping t — ¢, is differentiable. Differentiating (3.21) we obtain
Triy = (— Biép, Aj¢y) + (— Bibu, A dr). (3.23)



MASLOV INDEX 11

Plugging this and (3.21) in (3.20), using that ran(— By, A}) is a Lagrangian plane
by Proposition 3.2(ii) and formula (2.8) for the symplectic form, we have

| = (=B 0t Al o). (~ B b1, A7 1,)) (3:24)
= <Aro¢tov _B:O¢t0>L2(8F) - < - B:O¢t07AIO¢tU>L2(6F)
= <(AtoB£kg - BtoA;,ko)¢tou¢to>L2(ap)7

thus completing the proof of the first equality in (3.17)

Next, we compute the Maslov crossing form. Since A\, is an eigenvalue of Hy,,
the point ty € [a, 5] is the conjugate point for the path L£; with respect to a
reference plane Ky, , i.e. Ly, MKy, # {0}. Since the map ¢~ L; is contained in
C ([ev, B], A(UL2(0T))), by [CILS, Lemma 3.8] there exists a small neighbourhood
i C (e, B) of tp and a family of operators R, so that the map

t=to

t— Ry is in C' (¢, B(Ley, L1)), Ry =0, (3.25)
and
Ly = {v+ Rw|v € Ly} for all t € Ty, (3.26)
Let vy, := Trus, € Ly, and consider the family
v =gy + Revy, € Ly C CL2(OT), t € Xy, (3.27)

By definition of the crossing form
mto,tho (vtoavto) = _Ew(vtoavt)’t:to = _w(vtoa i}to)' (328)

Let us notice that the minus sign in (3.28) comes from the definition of the Maslov
index for two paths as discussed after Theorem 2.3, see Remark 2.4. Since vy € L,
by construction, due to Proposition 3.2 for ¢ € Xy, there exists a unique f; € L?(9T)
such that

v = (=B{ fr, AL 1), (3.29)
moreover, f; = (AfA; — B} B;) Y (Bip: + Aiqi), where we split v, = (py,q) €
L?(dT) @ L2(AT). Therefore the mapping ¢ — f; is differentiable in ¥;,. Differen-
tiating (3.29) yields

0= (= Bifu AL f) + (= B fu A7 ). (3.30)
Note that fi, = ¢, due to the uniqueness of the representations (3.29) and (3.21),

and because vy, = Tru,. Plugging (3.30) and (3.29) into (3.28) and using that
ran(— B}, A;) is a Lagrangian plane by Proposition 3.2(ii), we have

mto,tho (vtoavto) = _w((_B;fkgftm A;fkgfto)v (_Brftv A:ft))
Cdn

= w((_BrogbtovArogbto)a (—B;éf’to,A;éﬁto)) i

where in the last equality we used (3.24). O

)
t=to

Remark 3.5. Our assumption about simplicity of Ay, may be removed. If d :=
dim(KCy, ) > 1 then d eigenvalue curves cross at to. An Hadamard-type formula
(3.17) for each of these curves is still valid with ¢, replaced by the corresponding
normalized basis vector of Ky, M Ly,. Of course, in this case the eigenvectors are
not necessarily differentiable with respect to ¢. Hence, (3.18) cannot be used and



12 Y. LATUSHKIN AND S. SUKHTAIEV

an alternative argument is required. Such argument based on analytic perturbation
theory was carried out in [LS17] in a different context.

To demonstrate an application Theorem 3.3 and Theorem 3.4, we discuss a
well-known eigenvalue interlacing result for quantum graphs, cf. [BK, Theorem

3.1.8]. Consider the Schrédinger operator Hy = —;—; + q on a star graph I' with a
bounded real-valued potential subject to arbitrary self-adjoint vertex conditions at
the vertices of degree one, and the following J-type conditions at the center v,

> Onfe(v) =tf(v), tER, (3.31)

In this case the boundary matrices describing the vertex conditions (cf. Proposition
3.2) are given by A® A; and B @ B where

1 -1 ) 0 0
0 1 -1 -~ 0 0 - 0

At: ) B = )
0 1 -1 0 0
—t 0 . 0 11 --- 1

and the matrices A and B correspond to the vertex conditions at V' \ {v}. Clearly,
one has
00 --- 0
00 --- 0
A;B=DB*A, = . . (3.32)

00 -  —t
For t € R, let A, (t) denote the n-th eigenvalue of the Schrédinger operator H;
subject to —type condition (3.31), and let ¢, ; denote the corresponding eigenfunc-
tion of Hy. Next, we provide a modification of the classical interlacing inequalities
for the eigenvalues of H; cf., e.g., [BK, Theorem 3.1.8], and prove it using the
spectral flow formula.

Proposition 3.6. Fiz v € R and n € N. Assume that (A, (V), dn,) is a simple
eigenpair of H, and suppose that ¢n. ., (v) # 0. Then for arbitrary pn € R and 6 € R
one has

An—1(p) < A (¥) < Ang1(0), (3.33)
In addition, the function t — A\, (t) is strictly monotonically increasing near v.
Proof. First, we notice that (3.17), (3.32) v yield
A (V) = |¢nu(v)] > 0. (3.34)

Hence, the function t — A, (t) is strictly monotone near v.
Heuristically, (3.33) follows from the fact that the spectral flow through A, (v) is
equal to one. That is, the families of eigenvalues {A,+1(t) }rer do not cross Ay, (v).
Let us now provide a rigorous proof. First, we claim that v is a unique crossing
point on the line A = A, (v), that is,

An(v) € Spec(Hy), t # v. (3.35)
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Seeking a contradiction, we assume that \,(v) = Ag(7) € Spec(H,) for some
T # v, k € N, and denote the corresponding eigenfunction by ¢ .. We will show
that (7 4+ v)/2 is a also a crossing, in other words,

An(v) € Spec (Hi) . (3.36)

To that end we define a function
L ((r-(v)
¢ =~ . n,v T 5
2 ((¢n7U(U))¢ vt

3 0,8(v) = T;r”@(v). (3.37)
In addition, since A\, (v) = Ag(7), one has —®"” + q® = A\, (v)®. Thus (3.36) holds
true. Repeating this procedure one can produce a sequence of positive crossings
converging to v. However, existence of such a sequence contradicts the fact that v
is a regular crossing (cf. [F, Corollary 3.25]). Hence, v is a unique crossing on the
line A = A, (v) as asserted.
Let us fix an arbitrary s > 0 and recall the Lagrangian planes £, Ky from (3.5).
Then Theorem 3.3 yields

Mor(H, — Ap(v)) — Mor(Hy+5. — An(v)) = Mas({Ly, K, 1) }2). (3.38)

t=v

and notice that

Since v is a positive crossing it does not contribute to the Maslov index of the path
{L4, K, () }iLF according to (2.29). Furthermore, as we have shown earlier v is
a unique crossing, thus the Maslov index of this path is equal to zero. That is,
combining (2.29), (3.17), (3.34) we obtain

Mas(ﬁt,lCAn(y))”"’% =0. (339)

t=v
Next, Mor(H, — A\, (v)) = n — 1 since A\, (v) is the n — th eigenvalue of H,. Thus
by (3.38), (3.39) one has
Mor(Hy 4, — An(v)) =n — 1, (3.40)
Similarly, using (2.29), (3.17), (3.34) we compute the Maslov index of the path

{Lt,Kx, () }f=,—,. and the corresponding Morse indices as follows

Mas(ﬁt, ’C)\n(y))tu:l,,% =1,

Mor(H, .. = Ap(v)) = Mor(H, — A\p(v)) = Mas({Ls, Ky, ) }=p—se),  (3.41)

hence,

Mor(Hy—,e — M\ (v)) = n. (3.42)
To summarize, (3.40) and (3.42) yield
#{jeN: X)) < \(v)} €{n—1,n}, forallt eR. (3.43)

We are now ready to prove (3.33). Suppose that A,_1(p) > Ap(v) for some p € R.
Then A,—1 (1) # An(v) by (3.35), hence,

#{7eN:Aj(p) < @)} <n-2
which contradicts (3.43). Likewise, assuming that A, (v) > A\,41(0) for some 6§ € R
we arrive at

#{7eN:XO) < (W)} >n+1,
which again contradicts (3.43). O
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