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Abstract

Approximate Bayesian computation (ABC) is an important methodology for
Bayesian inference when the likelihood function is intractable. Sampling-based
ABC algorithms such as rejection- and K2-ABC are inefficient when the parame-
ters have high dimensions, while the regression-based algorithms such as K- and
DR-ABC are hard to scale. In this paper, we introduce an optimization-based ABC
framework that addresses these deficiencies. Leveraging a generative model for
posterior and joint distribution matching, we show that ABC can be framed as
saddle point problems, whose objectives can be accessed directly with samples.
We present the predictive ABC algorithm (P-ABC), and provide a probabilisti-
cally approximately correct (PAC) bound for its learning consistency. Numerical
experiment shows that P-ABC outperforms both K2- and DR-ABC significantly.

1 Introduction
Approximate Bayesian computation (ABC) is an important methodology to perform Bayesian
inference on complex models where likelihood functions are intractable. It is typically used in
large-scale systems where the generative mechanism can be simulated with high accuracy, but a
closed form expression for the likelihood function is not available. Such problems arise routinely
in modern applications including population genetics [Excoffier, 2009, Drovandi and Pettitt, 2011],
ecology and evolution [Csilléry et al., 2012, Huelsenbeck et al., 2001, Drummond and Rambaut,
2007], state space models [Martin et al., 2014], and image analysis [Kulkarni et al., 2014].

Formally, ABC aims to estimate the posterior distribution p(θ|y) ∝ π(θ)p(y|θ). The word “ap-
proximate” refers to the fact that the joint distribution π(θ)p(y|θ) is only available through fitting
simulated data {(θj , yj)}Nj=1 ∼ p(y|θ)π(θ). Based on how the fitting is performed, existing ABC
methods can be summarized into two main categories: sampling- and regression-based algorithms.
Sampling-based algorithms. A sampling-based algorithm directly approximates the likelihood
function using simulated samples “similar” to the true observations according to certain choices
of similarity measurement based on informative summary statistics, e.g., [Joyce and Marjoram,
2008, Nunes and Balding, 2010, Blum and François, 2010, Wegmann et al., 2009, Blum et al.,
2013]. More recent representative algorithms include rejection ABC, indirect score ABC [Gleim
and Pigorsch], K2-ABC [Park et al., 2016], distribution regression ABC (DR-ABC) [Mitrovic et al.,
2016], expectation propagation ABC (EP-ABC) [Barthelmé and Chopin, 2011], random forest ABC
[Raynal et al., 2016], Wasserstein ABC [Bernton et al., 2017], Copula ABC [Li et al., 2017], and
ABC aided by neural network classifiers [Gutmann et al., 2014, 2016]. The aformentioned work can
be viewed under a unified framework that approximates the posterior p(θ|y) with

pε(θ|y) ∝
∫
Y
Kε(sx, sy)p(x|θ)π(θ)dx ≈ π(θ)

N

N∑
i=1

Kε(sxi , sy), (1)
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where Y is the domain for the samples x and y, and the xi’s are drawn from the model p(xi|θ). We
use sy to denote the summary statistics for y, and let Kε(sx, sy) be an appropriate weighting kernel
that measures similarity. For example, when Kε(sx, sy) = 1{sx = sy} with sx = x and θ and y
discrete, (1) recovers the true posterior asymptotically. When Kε(sx, sy) = 1{ρ(sx, sy) ≤ ε} for
some metric ρ, (1) reduces to rejection-ABC. When Kε(sx, sy) = exp(−ρ(sx, sy)/ε), (1) reduces
to soft-ABC [Park et al., 2016], a variation of the synthetic likelihood inference [Wood, 2010, Price
et al., 2018] under the Bayesian setting. Finally, when Kε(sx, sy) is the zero/one output of a neural
network classifier, (1) reduces to ABC via classification [Gutmann et al., 2018].

Note that, most of the aforementioned algorithms require summary statistics and a smoothing kernel,
which suffer from information loss when the summary statistics are insffucient, and introduce bias.
To address the issue of insufficient summary statistics, Park et al. [2016] proposed K2-ABC, in which
Kε(sx, sy) is replaced by a smoothing kernel over the empirical maximum mean discrepancy (MMD)
obtained from kernel embedding of the empirical distributions of the samples. When a characteristic
kernel is selected, the kernel embedding of the distribution will be a sufficient statistics, therefore,
without information loss. Meanwhile, Rodrigues et al. [2018] proposed recalibration techniques
to debias the estimates of ABC algorithms. However, despite their simplicity and continuous
improvements, sampling-based ABC algorithms suffer from bias caused by the weighting kernel Kε,
and the potential need of large amount of samples when the dimensions of θ and y are large.
Regression-based algorithms. Regression-based ABC algorithms establish regression relationships
between the model parameter and the simulated data within an appropriate function space F . Repre-
sentative algorithms in this category include high-dimensional ABC [Nott et al., 2014], Kernel-ABC
(K-ABC) [Blum et al., 2013], DR-ABC [Mitrovic et al., 2016]. In DR-ABC, the posterior is obtained
by performing a distribution regression using the given samples. In contrary to the sampling-based
algorithms, regression-based algorithms mitigate the bias introduced by the smoothing kernel. How-
ever, they do not provide an estimation for the posterior density. Meanwhile, it is often hard for such
algorithms to scale. For example, the distribution regression involved in DR-ABC requires computing
the inverse of an N ×N kernel matrix, which has O(N3) computation cost as the dataset scales.

Neither sampling- nor regression-based algorithms are satisfactory: while regression-based algorithms
have better performances compared to the sampling-based algorithms, they are not scalable to high
dimensions. Therefore, an important question is whether one can design an algorithm that can
perform well on large datasets? In this paper, we propose an optimization-based ABC algorithm
that can successfully address the deficiencies of both sampling- and regression-based algorithms. In
particular, we show that ABC can be formulated under a unified optimization framework: finding the
saddle point of a minimax optimization problem, which allows us to leverage powerful gradient-based
optimization algorithms to solve ABC. More specifically, our contributions are three-fold: First,
we start with a generative model for posterior approximation and show that the ABC problem can
be formulated as a saddle point optimization through both joint distribution matching and posterior
matching. This approach circumvents the difficulties associated with choosing sufficient summary
statistics or computing kernel matrices, as needed in K2- and DR-ABC. More critically, the saddle
point objectives can be evaluated based purely on samples, without assuming any implicit form of
the likelihood. Second, we provide an efficient SGD-based algorithm for finding the saddle point,
and provide a probabilistically approximately correct (PAC) bound guaranteeing the consistency of
the solution to the problem. Numerically, we compare the proposed algorithm to K2- and DR-ABC.
The experiment shows that our algorithm outperforms K2- and DR-ABC significantly and is close to
optimal on the toy example dataset.

2 Approximate Bayesian Computation via Saddle Point Formulations
When the likelihood function is given, the true posterior p(θ|y) given observation y can be obtained
by optimizing the evidence lower bound (ELBO) in the space P that contains all probability density
functions [Zellner, 1988],

min
q(θ)∈P

KL(q||π)− Eθ∼q[log p(y|θ)], (2)

where KL denotes the Kullback-Leibler divergence: KL(q‖π) = Eθ∼q[log q(θ)
π(θ) ]. When dealing with

an intractable likelihood, this conventional optimization approach cannot work without combining it
with methods that fit p(y|θ) with samples. In this paper, we introduce a new class of saddle point
optimization objectives that allow the learner to directly leverage the samples from the likelihood
p(y|θ), which is available under the ABC setting, for estimating the posterior. The method we
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propose does not merely find θ∗ = argmaxθ p(θ|y) for a given data point y, but rather finds the
optimal p(θ|y), or a representation of θ generated from p(θ|y) from a transportation reparametrization
θ = f(y, ξ) for any data y (an idea inspired by Kingma and Welling [2013]), with asymptotically
diminishing statistical error. We introduce our method below.

2.1 Saddle Point Objectives

Joint distribution matching. Recall that p(y|θ)π(θ) = p(θ|y)p(y), a natural idea for estimating the
posterior is to match the empirical joint distributions, given the availability of sampling from the joint
distribution p(y|θ)π(θ) and from the posterior p(θ|y). Using an f -divergence associated with some
convex function ν, defined by Dν(p, q) =

∫
q(x)ν (p(x)/q(x)) dx, as our loss function, we have the

following divergence minimization problem for ABC:
p(θ|y) = argmin

q(θ|y)∈P
Dν (p(y|θ)π(θ), q(θ|y)p(y)) , (3)

in which the left-hand side is a posterior distribution while the right-hand side integrates over θ and
y. The above optimization problem is difficult to solve since Dν is nonlinear with respect to q(θ|y).
This nonlinearity makes gradient computation hard as the f -divergence cannot be computed directly
through samples obtained from the joint distribution. To address this issue, we apply Fenchel duality
and the interchangeability principle as introduced in Dai et al. [2017], which yield an equivalent
saddle point reformulation:

min
q(θ|y)∈P

max
u(θ,y)∈U

Φ(f, u) := E(θ,y)∼p(y|θ)π(θ) [u(θ, y)]− Eθ∼q(θ|y),y∼p(y) [ν∗ (u(θ, y))] . (4)

In (4), U is a function space containing u∗(θ, y) = ν′( p(y|θ)p(θ)p(θ|y)p(y) ) and ν∗ is the Fenchel dual of ν.
When P is expressive enough, a saddle point solution to (4) recovers the posterior distribution.

The class of f -divergence covers many common divergences, including the KL divergence, Pearson
χ2 divergence, Hellinger distance, and Jensen-Shannon divergence. Apart from f -divergences, we
can also employ other metrics to measure the distance between the joint distributions p(y|θ)p(θ) and
p(θ|y)p(y), e.g., the Wasserstein distance. If the training data come with labels, we can also choose
the objective function to be the mean square error between the label and the maximum a posterior
estimate from p(θ|y). 2 From a density ratio estimation perspective, the optimal solution of the dual
variable, u(θ, y), is a discriminator that tells the true and synthetic joint distributions by computing
their density ratios, which is related to the ratio matching in Mohamed and Lakshminarayanan [2016].
Posterior matching. Another way to learn the posterior representation is by directly matching the
posterior distributions. Similar to the objective function defined in K-ABC, we have

min
q(θ|y)∈P

max
h(θ)∈H

Ey
[
(Eθ|y[h(θ)]− Eθ∼q(θ|y)[h(θ)])2

]
. (5)

Directly solving the optimization (5) is difficult due to the inner conditional expectation, but a
saddle point formulation can be obtained by applying the same technique we used to obtain (4) (see
Appendix B for detailed derivations):

min
q(θ|y)∈P

max
h(θ)∈H
v(y)∈V

E(θ,y)∼p(y|θ)π(θ) [v(y)h(θ)]− E(θ,y)∼q(θ|y)p(y) [v(y)h(θ)]− 1

4
Ey
[
v2(y)

]
(6)

where V is the entire space of functions on Y . The resulting saddle point objective (6) is much easier
to solve than (5) and stochastic gradient-based methods could be applied in particular.

2.2 Representations of u(θ, y) and q(θ|y)

Under the most general setting where P and U are closed and bounded function spaces, (4) is convex-
concave for which a unique solution can be obtained. Practically, different representation methods
can be used for u(θ, y) and q(θ|y), for which different optimization techniques can be applied to
solving (4). Below, we discuss several commonly used options.
Gaussian mixtures. Consider the following Gaussian mixture representation for q(θ|y) and u(θ, y):

q(θ|y) =

m∑
i=1

c
(q)
i (y) · N (µ

(q)
i ,Σ(q); θ) and u(θ, y) =

m∑
i=1

c
(u)
i · N (µ

(u)
i ,Σ(u); (θ, y)). (7)

2Table 2 in Appendix provides some examples of divergences and the derivation of their corresponding
saddle point objectives.
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The coefficients c(u)1 , . . . , c
(u)
m are positive real numbers while c(q)1 (y), . . . , c

(q)
m (y) are y-dependent

coefficients. A simple way to guarantee that the summation of c(q)i (y) is one for any y is to assume
that they take the form of softmax functions:

c
(q)
i (y) =

exp([1, y>] · c(q)i )∑m
j=1 exp([1, y>] · c(q)j )

, ∀i ∈ {1, . . . ,m}, (8)

with c(q)1 = 0. This results (4) to be convex for c(q)i and concave for c(u)i .
Transportation reparametrization. When the dimensions of θ and y increase, the conditional
distribution q(θ|y) quickly becomes difficult to represent using parametric models. An effective way
to implicitly represent q(θ|y) is to use a sampler f(ξ, y) ∈ F for a function space F , in which θ is
sampled using θ = f(ξ, y) using a pre-determined distribution ξ ∼ p0(ξ). This idea is inspired by
the reparametrization technique used in variational autoencoders (VAEs) and neural networks. In our
case, both f and u can be represented using functions in reproducing kernel Hilbert spaces (RKHSs)
or neural networks.

2.3 Discussions

The saddle point framework is closely related to both regression- and GAN-based ABC algorithms.
Relationship with regression-based ABC algorithms. Regression-based ABC algorithms, such as
K-ABC, aim to compute the conditional expectation of the posterior by finding its conditional kernel
embedding C(y) : Y → H in an RKHS. With such parametrization, the objective (5) becomes

min
C:Y→H

L(C) := sup
‖h‖H≤1

Ey[(Eθ|y[h(θ)]− 〈h,C(y)〉H)2].

This problem is further relaxed to a distribution regression problem by swapping the square operator
with the inner expectation, which leads to minimizing Eθ,y[‖K(·, θ)− C(y)‖2], an upper bound of
L(C). Specifically, we have

sup
‖h‖H≤1

Ey
[(
Eθ|y [h(θ)]− 〈h,C(y)〉H

)2] ≤ sup
‖h‖H≤1

Ey
[(
Eθ|y [〈h, k(·, θ)〉]− 〈h,C(y)〉H

)2]
≤ sup

‖h‖H≤1

Eθ,y
[
〈h, k(·, θ)− C(y)〉2

]
≤ sup
‖h‖H≤1

‖h‖2H Eθ,y
[
‖k(·, θ)− C(y)‖2

]
= Eθ,Y

[
‖k(·, θ)− C(y)‖2

]
.

In contrast, the proposed optimization framework for posterior matching does not restrict h ∈ H.
Moreover, the saddle point objective (6) is an exact reformulation of (5), rather than an upper bound.
Relationship with GAN-based ABC algorithms. GAN-based algorithms leverage the represen-
tation power of the neural networks to optimize the ELBO. One example is the use of variational
autoencoder (VAE), where both q and p in (2) are represented by Gaussian distributions parameter-
ized by neural networks. Better performances have been observed in Mescheder et al. [2017] by
embedding the optimal value of q(θ|y) as the optimal solution of a real-valued discriminator network,
equivalent to performing reparametrization. However, compared to the saddle point formulation,
Mescheder et al. [2017] requires computing an additional layer of optimization due to the embedding
performed. Meanwhile, when the underlying parameter is discrete, the saddle point formulation can
be viewed as a special case of conditional GAN (CGAN) [Mirza and Osindero, 2014].

GAN-baseed ABC algorithms can also be modified to adapt to the saddle point framework. One
example is to parametrize q(θ|y) with a generative model θ = f(y, ξ), and try to find a discriminator
u to tell the “synthetic” θ, generated from f(y, ξ), from the “real” θ, generated from q(θ|y). More
specifically, we can use a neural network to solve

min
f(y,ξ)∈F

max
u(θ,y)∈U

Eξ∼p0(ξ),(θ,y)∼p(y|θ)π(θ)[L(u(θ, y), u(f(y, ξ), y))],

where L is some loss function, e.g. L(a, b) = |a− b|, and F is an appropriate function space, such
as one that is parameterized by a neural network.

3 Algorithm and Theory
In the last section, we introduced a stochastic saddle point framework to tackle the ABC problem.
In this section, we introduce a concrete algorithm named predictive-ABC (P-ABC) that solves the
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finite-sample approximation (i.e., empirical risk) of this problem. In particular, we consider the
empirical risk of (4), where the empirical expectations are taken over N samples {(θi, yi)}Ni=1:

min
q(θ|y)∈P

max
u(θ,y)∈U

Φ̂N (q, u) := Ê(θ,y)∼p(y|θ)π(θ)u(θ, y)− Êy∼p(y)
{
Eθ∼q(θ|y)[ν∗(u(θ, y))|y]

}
. (9)

We denote the optimal solution as q∗N and u∗N . In the following, we first introduce a general form of
P-ABC, followed by customizations to different representation methods for q(θ|y) and u(θ, y). We
then derive a probabilistically approximately correct (PAC) learning bound on the statistical error

εN = Dν(p(y|θ)π(θ), q∗N (θ|y)p(y))−Dν(p(y|θ)π(θ), q∗(θ|y)p(y)),

which holds for closed and bounded function spaces P and U in general, with q∗ and u∗ denoting
the solution to (4). Lastly, we present the convergence results of P-ABC. For representations of q
and u such that the objective function is convex-concave, e.g. Gaussian mixture representations, we
present the convergence of Algorithm 1. For transportation reparametrization, on the other hand, the
convergence behavior of P-ABC remains largely an open problem.

3.1 The P-ABC Algorithm

We introduce P-ABC for solving (9), the empirical counterpart of (4), in Algorithm 1. This algorithm,
in its general form, performs iterative updates to q and u using first-order methods. For the sake
of presenation, we use projected gradient descent as the update rule. In practice, depending on the
representations of q and u, other forms of updates can be used, such as the mirror descent. Below, we
specify the form of the gradients for the representation methods presented in Section 2.

To compute the gradient, we note that for any q ∈ P such that the integral can be interchanged with
the gradient, ∇qEq[f(X)] = Eq[f(X)∇ log q(X)]. This allows us to take gradient with respect to q
and use stochastic gradients for (9) assuming that a set of synthetic samples {θ̃i}Ni=1 can be drawn
from q(θ|y) given {yi}Ni=1.

Gaussian mixtures. Denote the coefficient vectors for q(θ|y) and u(θ, y) in (7) and (8) as c(q) and
c(u). Then, the stochastic gradients of Φ̂N (q, u) with respect to q(θ|y) and u(θ, y) reduce to its
gradients with respect to c(q) and c(u):

∇c(q)Φ̂N = −Êy∼p(y)

Êθ∼q(θ|y)

ν∗(u(θ, y))

q(θ, y)
·


∇
c
(q)
1

q(θ|y)

...
∇
c
(q)
m
q(θ|y)



 ,

∇c(u)Φ̂N = Êp(y|θ)π(θ)[N (µ(u),Σ(u); (θ, y))]− Êq(θ|y)p(y)
[

dν∗(u(θ, y))

du(θ, y)
· N (µ(u),Σ(u); (θ, y))

]
.

where N (µ(u),Σ(u); (θ, y)) denotes a vector containing the values of Gaussian proability density
functions whose means are specified in (7) and evaluated at (θ, y), while

∇
c
(q)
i
q(θ|y) =

m∑
i=1

[1; y] · exp([1, y>] · c(q)i ) ·
∑
j 6=i exp([1, y>] · c(q)j )(∑m

j=1 exp([1, y>] · c(q)j )
)2 · N (µ

(q)
i ,Σ(q); θ).

Transportation reparametrization. Consider the transportation reparametrization θ = f(y, ξ) for
θ ∼ p(θ|y). The stochastic gradients of Φ̂N (f, u) in (9) can be computed from the chain rule:

∇f Φ̂N = −Ê(y,ξ)∼p(y)p0(ξ)

{
dν∗(u(f(y, ξ), y))

du(f(y, ξ), y)
· ∂u(f(y, ξ), y)

∂f(y, ξ)
· ∇ff(y, ξ)

}
,

∇uΦ̂N = Ê(θ,y)∼p(y|θ)π(θ)∇uu(θ, y)− Ê(y,ξ)∼p(y)p0(ξ)

[
dν∗(u(f(y, ξ), y))

du(f(y, ξ), y)
· ∇uu(f(y, ξ), y)

]
.

When F and U are RKHSs, we have ∇ff(y, ξ) = KF ((y, ξ), ·) and ∇uu(θ, y) = KU ((θ, y), ·)
with KF and KU being the reproducing kernels of F and U , respectively, while ΠF and ΠU denote
the projections onto F and U . When f and u are represented by neural networks,∇f and∇u are the
gradients with respect to the coefficients representing those neural networks, which can be efficiently
calculated through back propagation.
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Algorithm 1 Predictive ABC

Input: Maximum number of iterations T . Prior distribution π(θ), model p(y|θ). Step sizes
{ηuk}Tk=1 and {ηqk}Tk=1, samples {(θi, yi)}Ni=1, objective function Φ̂N .
Initialize: q1, u1.
for k = 1 to T do

Given {y1, . . . , yN}, sample {θ̃1, . . . , θ̃N} from q(θ|y).
Update q: qk+1 ← ΠP(qk − ηqk · ∇qΦ̂N (qk, uk)).
Update u: uk+1 ← ΠU (uk − ηuk · ∇uΦ̂N (qk, uk)).

end for
Output: q̄ =

∑T
k=1 η

q
kqk∑T

k=1 η
q
k

, and ū =
∑T

k=1 η
u
kuk∑T

k=1 η
u
k

.

3.2 Theoretical Properties

Learning bounds. By invoking the tail inequality in Antos et al. [2008] and the ε-net argument, we
have the following theorem, the proof of which can be found in Appendix A.

Theorem 1. Suppose (θi, yi)
N
i=1 is a β-mixing sequence 3 with βm ≤ β̄ exp(−bmκ) for constants

β̄, b and κ, and suppose that function class U × P has a finite pseudo dimension D. 4 In addition,
suppose that u ∈ [−Cu, Cu] and the Fenchel dual satisfies ν∗(u) ≤ Cν . Then, with probability 1− δ,

εN ≤

√
C1(max(C1/b, 1))1/κ

C2N
,

where C1 = logN
D
2 eδ−1 + [log(2 max(16e(D + 1)C

D
2
2 , β̄))]+ and C2 = (512(Cν + Cu)2)−1.

Theorem 1 applies to all the formulations we introduced in Section 2, for which learning is consistent
at a rate of O(N−1/2 logN), with N being the number of samples, when the empirical saddle point
approximation can be exactly solved. Below, we discuss the convergence of Algorithm 1.

Convergence of P-ABC. From a theoretical perspective, global convergence of first-order methods
such as stochastic gradient descent (SGD) can be achieved when the objective function Φ is convex-
concave. For example, when u and q are Gaussian mixtures or belong to RKHSs. More often than
not, the objective function is not convex-concave, for which stochastic gradient descent (SGD) based
algorithms are only guaranteed to converge towards a stationary point in certain restricted cases
[Sinha et al., 2017, Li and Yuan, 2017, Kodali et al., 2018]. Below, we provide the convergence
results for Algorithm 1 when Φ̂N is convex-concave.

Consider the standard metric for evaluating the quality of any pair of estimates q̄ and ū:

ε(q̄, ū) = max
u∈U

Φ̂N (q̄, u)−min
q∈P

Φ̂N (q, ū),

for which we have the following result (See Appendix C for proof).
Theorem 2 (Convergence of P-ABC). Suppose that P and U are closed and bounded function spaces
with diameters DP and DU , respectively. Let Φ̂N be convex-concave, LN -Lipschitz, and suppose
that there exists qmin such that infθ,y q

∗
N (θ, y) ≥ qmin. Then, for the outputs of Algorithm 1 with T

iterates and whose step sizes satisfy ηqk = ηuk = ηk, denoted by q̄ and ū, we have

ε(q̄, ū) ≤
D2
P +D2

U +
∑T
k=0 2η2kL

2
N

2
∑T
k=0 ηk

.

Theorem 2 applies to the cases when P and U are spaces for Gaussian mixture coefficients or RKHSs,
in which case Φ̂N is convex-concave. It suggests that if there exist positive constants C3 and C4 such

3A discrete time stochastic process is mixing if widely separated events are asymptotically independent.
Here, βm provides an upper bound on the dependency of two events separated by n intervals of time. See Meir
[2000] for a detailed definition.

4Pseudo dimension, also known as the Pollard dimension, is a generalization of VC dimension to the function
class (see chapter 11 of Anthony and Bartlett [2009]).
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that C3k
−1/2 ≤ ηk ≤ C4k

−1/2, then limT→∞ ε(q̄, ū) = 0. Together with Theorem 1, we know that
the overall error, contributed by the summation of the learning error and the optimization error, can
be bounded by O(N−1/2 logN) upon selecting T = Θ(exp(N)).

4 Numerical Experiment
We test the performance of P-ABC under different objectives and representations, and compare the
result with K2- and DR-ABC as representitives from sampling- and regression-based ABC algorithms.

4.1 Synthetic Dataset I: Superpoisition of Uniform Distributions
Consider a toy example where we observe a set of samples Y ∗ := {y∗i }ni=1 where all y∗i ’s correspond
to the same underlying parameter θ∗ ∈ Rp. We assume the generating model is y∗i = θ∗ + ui with
{ui}ni=1 being i.i.d. random vectors and each dimension of ui as well as each dimension of θ∗ is
uniformly distributed on [−0.5, 0.5]. Denote the p coordinates of each observed sample y∗i and θ∗,
respectively, as y∗i1, . . . , y

∗
ip and θ∗1 , . . . , θ

∗
p , then the posterior can be written as

p(θ∗|Y ∗) ∝
p∏
j=1

1

[
max{−0.5, max

i∈{1,...,n}
y∗ij − 0.5} ≤ θ∗j ≤ min{0.5, min

i∈{1,...,n}
y∗ij + 0.5}

]
,

which is a uniform distribution whose boundary on the j-th dimension is defined by the values of the
maximum and minimum values of the j-th coordinate among all y∗i ’s. Due to the fact that K2- and
DR-ABC evaluate their performances using the mean square error, we use predictive ABC (P-ABC)
to find the optimal minimum mean square error (MMSE) estimator for θ∗. We denote the optimal
estimator by θ̂opt, which has a closed form solution with the j-th coordinate being

θ̂j =


1
2
·maxi∈{1,...,n} y

∗
ij , mini∈{1,...,n} y

∗
ij ≥ 0

1
2
·mini∈{1,...,n} y

∗
ij , maxi∈{1,...,n} y

∗
ij ≤ 0

1
2

(
maxi∈{1,...,n} y

∗
ij + mini∈{1,...,n} y

∗
ij

)
, mini∈{1,...,n} y

∗
ij ≤ 0 ≤ maxi∈{1,...,n} y

∗
ij

,

for all j ∈ {1, . . . , p}. A sub-optimal estimator for this example is θ̂ave = n−1
∑n
i=1(y∗i1, . . . , y

∗
ip),

which exploits the information that the expectation of the noise is a zero vector. We include these two
closed-form estimators in our benchmarks in addition to K2- and DR-ABC.

The scalar case. We first examine the case when θ∗ ∈ R and n = 1, and compare the performance
of P-ABC under different objectives and representations. The results are compared to that of the
theoretically optimal estimator, for which θ̂opt = y∗/2.

We tested the performance of P-ABC, when the neural networks representing f and u in (4) were
trained on 1000 samples. Each neural network contained two fully connected layers of size 8 with
exponential linear unit (ELU) activation functions, and the final output layer for f was activated
by the hyperbolic tangent. We chose ξ to be a one-dimensional uniform distribution on [−1, 1] and
used a learning rate of 10−4. In 2 × 105 iterations, P-ABC achieved 0.0413 MSE on the training
set and 0.0416 MSE on the test set. The optimal MSE corresponding to θ̂opt was 0.0411 for the
training set. Figure 1 shows the histogram of f(y, ξ) for different values of y in [−0.5, 0.5], using
104 trials of ξ. We see that the empirical probability distribution concentrates tightly around y∗/2,
demonstrating that the output of P-ABC was nearly optimal. The training and testing errors are
reported in Table 1, and the result shows that the performance of P-ABC was close to the theoretical
optimum. By comparison, since there is only one observation available, K2- and DR-ABC do not
output meaningful results as the computation of the MMD statistics requires at least two observations.
Performance under higher dimensions. We examined the performance of P-ABC when the dimen-
sion of θ∗ was higher. For illustration purpose, we chose dim(θ) = 16, 128, 256, and we assumed
that the set of observations, Y ∗, contained 10 samples for each parameter value. Once again, we used
neural networks to represent f and u in P-ABC, for which we trained with 1000 sets of samples.

To reduce the input dimension of the neural networks, for each input set of samples Y :=
{y1, . . . , yn}, we set f(Y, ξ) = 1

n

∑n
i=1 f(yi, ξ) and u(θ, Y ) = 1

n

∑n
i=1 u(θ, yi). More specifi-

cally, rather than taking the entire set of samples as the input, the neural network representing f took
each sample individually, and used their average as the final value of f(Y, ξ). Under this setting, for
2× 105 iterations, the obtained results are shown in Table 1. We can see that P-ABC outperformed
both K2- and DR-ABC in all four cases, and when the dimension of θ∗ was small, the performance
of P-ABC was close to that of θ̂ave.
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y∗ = −0.25 y∗ = 0 y∗ = 0.25

Figure 1: Histogram of f(y, ξ) computed from 104 samples of y ∼ p(y) and ξ ∼ p0(ξ). The
distribution shows that the estimated θ concentrates closely around θ̂opt = y∗/2, suggesting that the
P-ABC estimate is near optimal.

MSE P-ABC [test,train] K2-ABC DR-ABC θ̂opt θ̂ave
dim(θ∗) = 1 [0.009,0.010] 0.011 0.083 0.003 0.008
dim(θ∗) = 16 [0.182, 0.155] 1.283 1.143 0.050 0.134
dim(θ∗) = 128 [2.749,1.793] 21.478 10.730 0.409 1.064
dim(θ∗) = 256 [4.266,1.399] 41.830 21.324 0.818 2.119

Table 1: MSE for estimating θ∗ with different dimensions using K2-, DR- and P-ABC. For K2-
and DR-ABC, we set ε = 0.01 when computing MMD. For P-ABC, the hidden layer sizes are
8,32,128,256 for different values of dim(θ), and the dimension of ξ’s are 1,4,4,4, respectively.

4.2 Synthetic Dataset II: Gaussian Mixtures

Consider a model where the underlying parameter θ∗ ∈ R is uniformly distributed on [−0.5, 0.5],
and the observation y∗ was sampled from a Gaussian mixture: y∗ = (0.5 + θ∗)N (−1, 1) + (0.5−
θ∗)N (1, 1). In this example, we compared the performances between K2-, DR-, EP-, and the
proposed P-ABC. For P-ABC, we adopted the same network structures for the neural networks
representing f and g as in the previous example, and trained them with 4000 sets of samples. Each
set of samples contained 250 samples corresponding to the same θ∗ and the same amount of samples
were used for the benchmarks. P-ABC achieved an MSE of 0.004, and EP-ABC achiieved an MSE of
0.06. 5 Note that the implementation of EP-ABC requires Cholesky factorization for each iteration,
which is computationally expensive and particularly sensitive to initialization. In fact, the run time of
EP-ABC was significantly longer than P-ABC. While P-ABC took less than 5 minutes to average its
performance over 1000 sets of test samples, EP-ABC took 10 minutes to average its performance
over 100 sets of samples. K2- and DR-ABC, by comparison, were unable to run 100 trials within 1
hour. This experiment demonstrated the efficiency of implementing the P-ABC algorithm.

Although P-ABC has demonstrated superior numerical performances over the benchmarks, we point
out that it suffers from some of the defficiencies of the other existing ABC algorithms. One such
defficiency is that the algorithm is prone to mismatched priors. To see this, we plotted the histogram
of f(y, ξ) for θ∗ = 0 when P-ABC was trained on a mismatched prior. In particular, we applied the
transformation θ̃ = (θ + a)/(2a + 1), and used θ̃ as the sampled parameter from the prior. This
transformation introduced bias between the true prior and the prior used for training, and as can be
seen in Figure 2, the range of the estimated parameter by P-ABC shifted away from θ∗ as a increased.

4.3 Ecological Dynamic System

Time series observations are an important application scenario for ABC. We compared the perfor-
mances of K2-, DR- and P-ABC over the example of an ecological dynamic system studied in Park
et al. [2016], whose population dynamics follow the relationship

yt+1 = Pyt−τ exp

(
−yt−τ

y0

)
et + yt exp(−δεt).

Let Y = (y1, . . . , yt) denote the set of samples that contains the population size data up to time t.
The noise et ∼ Γ(σ−2p , σ2

p), εt ∼ Γ(σ−2d , σ2
d), while θ = (P, y0, σ

2
d, σ

2
p, τ, δ). Similar to Park et al.

5Per implementation of the code made available online by Barthelmé and Chopin [2011].
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θ∗ = 0, a = 0 θ∗ = 0, a = 1 θ∗ = 0, a = 10

Figure 2: Impact of improper prior on P-ABC. Consider finding uniformly distributed θ ∼
U [−0.5, 0.5] from y = (0.5 + θ)N (−1, 1) + (0.5 − θ)N (−1, 1). Improper priors are obtained
by θ̃ = (θ + a)/(2a+ 1) with a = 1, 10. We see that training on improper prior injects bias into the
output of P-ABC.

[2016], we sample each dimension of log θ from a uniform distribution on [−5, 2], and set τ = dτe.
For P-ABC, we implemented a recurrent neural network (RNN) with LSTM cells to capture the
dynamics of the underlying time series. The output of the LSTM cell is then plugged into a fully
connected layer along with θ or ξ. The structures of the neural networks representing f and u are
shown in Figure 4 in Appendix D. When training, we set the size of each sample set Y to 30, and we
used 1000 sets of samples to train the algorithms. For P-ABC, we set dim(ξ) = 4, the size of the
LSTM cell to 32 and the size of the fully connected layer to 16. For K2- and DR-ABC, the samples
within each set Y were regarded as i.i.d.. The obtained result is shown in Figure 3, with the verticle
axis denoting the MSE of the estimated parameter. P-ABC outperformed K2-ABC and DR-ABC
on all aspects: the MSE was 12.9 for P-ABC, 24.7 for K2-ABC, and 16.4 for DR-ABC. In addition,
P-ABC had the lowest average, quartile, and better performance on outliers.

5 Conclusion

Figure 3: Statistics of MSEs for P-, K2- and DR-
ABC trained on 1000 sequences of length 30.

In this paper, we presented a unifying optimiza-
tion framework for ABC, named Predictive-
ABC, under which we showed that ABC can
be formulated as a saddle point problem for dif-
ferent objective functions. We presented a high-
probability error bound that decays at the speed
of O(N−1/2 logN) with N being the num-
ber of samples and we presented a stochastic-
gradient-descent-based algorithm, P-ABC, to
find the solution. In practice, P-ABC signif-
icantly outperforms K2- and DR-ABC, repre-
sentatives for the state-of-the-art sampling- and
regression-based algorithms, respectively.
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Appendix
A Proof of Theorem 1

In this proof, we find the concentration bound for the statistical error for (4), which is defined as

εN = Dν(p(y|θ)π(θ), q∗N (θ|y)p(y))−Dν(p(y|θ)π(θ), q∗(θ|y)p(y)),

where q∗N (θ|y) is the distribution that optimizes (9) (for transportation reparametrization q∗N (θ|y) is
the distribution induced by the optimal empirical solution f∗N with N samples in (4)), and q∗(θ|y) is
the solution to (4). Let û := argmaxu∈U Φ(f∗N , u), we can bound the learning error εN by

εN = max
u∈U

Φ(q∗N , u)−max
u∈U

Φ(q∗, u) = Φ(q∗N , û)− Φ(q∗, u∗)

= Φ(q∗N , û)− Φ(q∗, û) + Φ(q∗, û)− Φ(q∗, u∗)

≤ Φ(q∗N , û)− Φ(q∗, û) ≤ 2 sup
q∈P,u∈U

|Φ̂N (q, u)− Φ(q, u)|.

In the following, we provide a high probability upper bound for supq,u |Φ̂N (q, u)− Φ(q, u)|.

A.1 Technical Lemmas

The concentration bound requires Lemma 5 in Antos et al. [2008]:

Lemma 1 (Lemma 5 [Antos et al., 2008]). Suppose that Z1, . . . , ZN ∈ Z is a sequence that is
stationary and β-mixing, and G is a class of bounded functions, then

P

(
sup
g∈G

∣∣∣∣∣ 1

N

N∑
i=1

g(Zi)− E[g(Z1)]

∣∣∣∣∣ > ε

)
≤ 16E [N (ε/8,G, (Z ′i; i ∈ H))] exp

(
−Nε2

256C2

)
+

+ 2mNβkN+1

where Z ′i is the ”ghost” sample that mirrors Zi, N (ε/8,G, (Z ′i; i ∈ H)) is the covering number for
G, and H = ∪mN

j=1Hi is the union of blocks in the sampling path.

The covering number in the above lemma can be bounded using the following result:

Lemma 2 (Corollary 3 [Haussler, 1995]). For any setX , and x1, . . . , xn ∈ X , assumeF of functions
on X are bounded within [0, C] with pseudo-dimension DF <∞. Then, for any ε,

N (ε,F , (x1, . . . , xn)) ≤ e(DF + 1)

(
2eC

ε

)DF

,

where e is the Euler’s number.

With the above two lemmas, we are ready to prove the theorem.

A.2 Learning Error

For any sample (θ, y), let φ(q, u) = u(θ, y)−Eθ∼q(θ|y)[ν∗(u(θ, y))|y]. Then, the objective function
in (4) can be written as Φ(q, u) = E[φ(q, u)], where the expectation is with respect to the joint
distribution of (θ, y) ∼ p(y|θ)π(θ).

By assumption, since |u(θ, y)| ≤ Cu, 6 the Fenchel dual in (4) can be bounded. In particular, we
denote the upper bound as ν∗(u) = supu′∈[−Cu,Cu]〈u

′, u〉 − ν(u′) ≤ Cν , 7 and hence

φ(q, u) ≤ Cν + Cu.

6Imagine Gaussian mixture representation with bounded coefficients, or neural networks whose last layer of
activation is a bounded function, such as the hyperbolic tangent or the sigmoid function, amplified by a constant
Cu such that |u(θ, y)| ≤ Cu.

7For example, for χ2-divergence, we have Cν = C2
u + Cu.
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Invoking Lemma 1, in which we let G = P × U , we have

P

(
sup

(q,u)∈P×U

∣∣∣Φ̂N (q, u)− Φ(q, u)
∣∣∣ > ε

)
≤ 2mNβkN+1+

+ 16E
[
N
( ε

8
,P × U , ((θi, yi), i ∈ H)

)]
exp

(
−mN ε

2

128(Cν + Cu)2

)
.

Next, invoking Lemma 2 and by assumption, 8 we have

P

(
sup

(q,u)∈P×U

∣∣∣Φ̂N (q, u)− Φ(q, u)
∣∣∣ > ε

)
≤ 16e(D + 1)

(
4eC

ε

)D
exp

(
−mN ε

2

128(Cν + Cu)2

)
+

+ 2mNβkN+1.

Lastly, by setting kN = (Nε2C2/b)
1/(κ+1), with C2 = 1/(512(Cν +Cu)2) and mN = N/2kN , we

have the right-hand side of the above equation bounded by δ with

ε =

√
C1(max(C1/b, 1))1/κ

C2N
,

and C1 = 0.5D logN + log(e/δ) + [log(2 max(16e(D + 1)C
D/2
2 , β̄))]+, with β̄ is such that

βm ≤ β̄ exp(−bmκ).

B Derivation of objective functions

Divergence Saddle point objective
χ2 divergence E(θ,y)∼p(y|θ)π(θ)[u(θ, y)]− Eθ∼f(y,ξ),ξ∼p0(ξ),y∼p(y)[u(θ, y) + u2(θ, y)/4]
Wasserstein distance E(θ,y)∼p(y|θ)π(θ)[u(θ, y)]− Eθ∼f(y,ξ),ξ∼p0(ξ),y∼p(y)[u(θ, y)]
KL divergence E(θ,y)∼p(y|θ)π(θ)[u(θ, y)]− Eθ∼f(y,ξ),ξ∼p0(ξ),y∼p(y)[1 + log(u(θ, y))]

Table 2: A list of divergences and their corresponding saddle point objective.

In this section, we present the detailed derivation of the objective functions in Section 2 and give
examples for deriving (4) for several choices of f -divergences in Table 2.

Posterior Distribution Matching For the posterior distribution matching objective, we want to
minimize

min
f∈F

max
h∈H

Ey
[(
Eθ|y[h(θ)]− Eθ∼p0(ξ)[h(f(y, ξ))]

)2]
.

By exploiting the dual embedding technique and the Fenchel duality, we have

max
h∈H

Ey
[(
Eθ|y [h(θ)]− Eθ∼p0(ξ) [h(f (y, ξ))]

)2]
= max

h∈H
Ey
[
max
vy∈R

vy

(
Eθ|y [h(θ)]− Eξ∼p0(ξ) [h(f (y, ξ))]− 1

2
v2y

)]
= max

h∈H
max
v∈V

Ey
[
v (y) ·

(
Eθ|y [h(θ)]− Eξ∼p(ξ) [h(f(y, ξ))]

)
− 1

2
v2(y)

]
,

thus achieving the equivalence between (5) and (6).

Joint Distribution Matching

• χ2-divergence. Recall that the divergence minimization objective (3) can be written in the
saddle point formulation:

min
f∈F

max
u∈U

E(θ,y)∼p(y|θ)π(θ) [u(θ, y)]− Eθ∼f(y,ξ),ξ∼p0(ξ),y∼p(y) [ν∗ (u(θ, y))] .

8For transportation reparametrization with neural networks, it is known that when the neural network is feed
forward and piecewise linear, there exists upper bounds for its pseudo dimension [Bartlett et al., 2017].
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For χ2 divergence, we have
ν(x) = (x− 1)2.

Therefore,

ν∗(x) = sup
y

(〈x, y〉 − ν(y)) = sup
y

(xy − (y − 1)2) =
x2 + 4x+ 8

4
.

Plugging in x = u(θ, y) gives the result of ν∗(u(θ, y)), and the expression for Φ follows
immediately.

ν∗(x) = sup
y

(〈x, y〉 − ν(y)) = sup
y

(〈x, y〉 − (y − 1)2) = x− x2

4
.

Plugging in x = u(θ, y) gives the expression of ν∗(u(θ, y), and hence we arrive at the
conclusion.
• KL divergence. For KL divergence, ν(x) = log x. We thus have

ν∗(x) = sup
y

(〈x, y〉 − log y) = 1 + log x.

Therefore, letting x = u(θ, y) gives the expression of ν∗(u(θ, y)), and hence we arrive at
the conclusion.

C Proof of Theorem 2

Following the notations in Algorithm 1, we denote the updates of q and u at iteration k by qk and
uk, respectively. Different representations of q and u will determine the detailed forms of qk and
uk. For example, when represented by Gaussian mixtures, both uk and qk in Algorithm 1 will be a
coefficient vector. However, for the purpose of proving convergence, using an abstract form uk and
qk is sufficient barring that U and P are closed and bounded.

By convex-concavity of the empirical loss function, we have

Φ̂N (qk, uk)− Φ̂N (q, uk) ≤ 〈∇qΦ̂N (qk, uk), qk − q〉,
and

Φ̂N (qk, u)− Φ̂N (qk, uk) ≤ 〈∇uΦ̂N (qk, uk), u− uk〉
for any q ∈ P and u ∈ U . Combining these two inequalities gives

Φ̂N (qk, u)− Φ̂N (q, uk) ≤ 〈∇qΦ̂N (qk, uk), qk − q〉+ 〈∇uΦ̂N (qk, uk), u− uk〉.

It is worth clarifying, at this point, that the gradient symbol we used for Φ̂N so far refer to the actual
gradient rather than the stochastic gradients given in Section 3.1. However, they are closely related
by the fact that the expectation of the stochastic gradient is the gradient. To avoid confusion, we use
∇̂qΦ̂N and ∇̂uΦ̂N to represent the stochastic gradients, for which we have

E
[
∇̂uΦ̂N (q, u)

]
= ∇uΦ̂N (q, u) and E

[
∇̂qΦ̂N (q, u)

]
= ∇qΦ̂N (q, u),

where the expectation is taken over the the second term in (9), where we have used θ ∼ q(θ|y) to
derive the stochastic gradients.

By convexity of Φ̂N , we have

ε(q̄, ū) = max
u∈U

Φ̂N (q̄, u)−min
q∈P

Φ̂N (q, ū)

= max
u∈U

Φ̂N

(∑T
k=1 ηkqk∑T
k=1 ηk

, u

)
−min
q∈P

Φ̂N

(
q,

∑T
k=1 ηkuk∑T
k=1 ηk

)

≤ max
u∈U

∑T
k=1 ηkΦ̂N (qk, u)∑T

k=1 ηk
−min
q∈P

∑T
k=1 ηkΦ̂N (q, uk)∑N

k=1 ηk

≤
maxu∈U,q∈P

{∑T
k=0

(
ηk〈∇qΦ̂N (qk, uk), qk − q〉 − ηk〈∇uΦ̂N (qk, uk), uk − u〉

)}
∑T
k=1 ηk

.
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We now prove that the numerator is upper bounded by the numerator of the right-hand side of the
bound in the statement of Theorem 2, which will bring us to the conclusion.

To prove this, we first note that, by the contractivity of the projection operator, we have

E‖qk+1 − q‖2P = E
∥∥∥ΠP(qk − ηk∇̂qΦ̂N (qk, uk))−ΠP(q)

∥∥∥2
P

≤ E‖qk − q‖2P + E
∥∥∥ηk∇̂qΦ̂N (qk, uk)

∥∥∥2
P
− 2

〈
qk − q, ηk∇qΦ̂N (qk, uk)

〉
,

which implies

2
〈
qk − q, ηk∇qΦ̂N (qk, uk)

〉
≤ E‖qk − q‖2P + E

∥∥∥ηk∇̂qΦ̂N (qk, uk)
∥∥∥2
P
− E‖qk+1 − q‖2P .

Similarly, we have

−2
〈
uk − u, ηk∇uΦ̂N (qk, uk)

〉
≤ E‖uk − u‖2U + E

∥∥∥ηk∇̂uΦ̂N (qk, uk)
∥∥∥2
U
− E‖uk+1 − u‖2U .

By the Lipschitz assumption, we have∥∥∥ηk∇̂qΦ̂N (qk, uk)
∥∥∥2
P
≤ (ηk)2L2

N , and
∥∥∥ηk∇̂uΦ̂N (qk, uk)

∥∥∥2
U
≤ (ηk)2L2

N .

Therefore,

2
〈
qk − q, ηk∇qΦ̂N (qk, uk)

〉
− 2

〈
uk − u, ηk∇uΦ̂N (qk, uk)

〉
≤ E

(
‖qk − q‖2P − ‖qk+1 − q‖2P + ‖uk − u‖2U − ‖uk+1 − u‖2U

)
+
[
(ηk)2 + (ηk)2

]
L2
N .

Lastly, by telescoping, we have

T∑
k=0

(
2
〈
qk − q, ηk∇qΦ̂N (qk, uk)

〉
− 2

〈
uk − u, ηk∇uΦ̂N (qk, uk)

〉)
≤ E

(
‖q0 − q‖2P + ‖u0 − u‖2U − ‖qT+1 − q‖2P − ‖uT+1 − u‖2U

)
+

T∑
k=0

[
(ηk)2 + (ηk)2

]
L2
N

≤ E
(
‖q0 − q‖2P + ‖u0 − u‖2U

)
+

T∑
k=0

[
(ηk)2 + (ηk)2

]
L2
N

≤ D2
P +D2

U +

T∑
k=0

2η2kL
2
N .

Hence we reached the conslusion.

D Neural Network Architecture for Biological Dynamic System Experiment

Below, we describe the structure for the neural network we used in the simulation of the ecological
dynamical system. The network structure is shown in Figure 4. On the left-hand side, we have
the network structure for f(Y, ξ), for which we first input y1, . . . , yn into an RNN comprised of
LSTM cells, and then use its output combined with ξ as the input for a fully connected layer. On
the right-hand side, the network structure for u(θ, Y ) is similar, except that we replace ξ with θ and
change the dimension of the fully connected layer accordingly. When θ is generated from f(Y, ξ),
we concatenate the two neural networks, using the output of f as part of the input to u.
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Fully Connected Layer 

Recurrent Neural Network 
with LSTM Cells 

𝜉 𝑦1 𝑦𝑛 ⋯   ⋯ 

𝑓(𝑌, 𝜉) 

Generator

Fully Connected Layer 

Recurrent Neural Network 
with LSTM Cells 

𝜃 𝑦1 𝑦𝑛 ⋯   ⋯ 

𝑢(𝜃, 𝑌) 

Discriminator

Figure 4: Network architectures for u and f .
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