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Abstract

We explore the opportunities and challenges of model exe-

cution caching, a nascent research area that promises to im-
prove the performance of cloud-based deep inference serving.
Broadly, model execution caching relies on servers that are
geographically close to the end-device to service inference
requests, resembling a traditional content delivery network
(CDN). However, unlike a CDN, such schemes cache execu-
tion rather than static objects. We identify the key challenges
inherent to this problem domain and describe the similarities
and di�erences with existing caching techniques. We further
introduce several emergent concepts unique to this domain,
such as memory-adaptive models and multi-model hosting,
which allow us to make dynamic adjustments to the memory
requirements of model execution.
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1 Introduction

Cloud-based deep neural networks (DNNs) are increasingly
leveraged to provide rich features—such as real-time lan-
guage translation, image recognition, and personal assistants—
making it possible for resource-constrained end-user devices
to bene�t from complex models [2, 9, 12, 14, 21]. However,
the bene�ts of cloud-based deep learning come at the cost of
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novel challenges. For example, applications must transmit in-
ference requests and receive responses over highly-variable
cellular networks; to illustrate, we measured the time to send
a small image �le (330KB) over a LTE network and observed
times ranging from 148ms to 1405ms. Such variation is am-
pli�ed when sending larger inference requests, e.g., audio
or video clips, leading to unpredictable end-to-end response
times and making it challenging to meet quality-of-service
requirements.

In this work, we exploremodel execution caching as a novel
research area for addressing network variability and, more
generally, improving the performance of cloud-based deep
inference serving. Intuitively, the idea is to adopt the basic
structure of a content delivery network (CDN)—wherein
the CDN provides server clusters geographically close to
end-users—but instead of servicing requests for static ob-
jects, such new systems must service requests for model
inference. Serving inference requests requires executing the
appropriate model. We adopt the term caching, as solutions
in this space must decide, for example, which models should
be loaded into the limited GPU memory (i.e., the cache) to
maximize the probability of servicing an incoming request
without swapping models in and out of memory (i.e., maxi-
mizing the chance of a model hit).

For ease of exposition, we frame our discussion in the con-
text of a hypothetical system for model execution caching.
Like a traditional CDN, this system must host the resources
(i.e., models) from multiple customers. It responds to infer-
ence requests from end-user applications by executing the
requested model with the given input. However, before a
model can be executed it must be loaded into memory, a
process that varies from hundreds of milliseconds to a num-
ber of seconds (see Table 1). To reduce the average response
time, it is prudent to keep a subset of the models pre-loaded
into memory. If an incoming request is for a model loaded
into memory, we refer to that as a model hit, otherwise the
request represents a model miss.
We assume that the number of models hosted by this

system is far larger than the size of the cache (i.e., GPU
memory). The need to host a large number of models is not
just due to the number of customers, but also emerges from
nascent but practical real-world scenarios beyond image
classi�cation—such as per-stock prediction and language



translation—wherein a single application/customer might
use thousands of models [1].

The reader might wonder why we advocate caching deep
learning models instead of caching the inference results. We
focus on model execution caching as it is better suited to
workloads that are unique and speci�c to a particular end-

device user, e.g., images taken by user or audio clips of the
user’s voice. Caching the inference results for user-speci�c
requests would not be particularly useful as there is a low
likelihood of receiving an identical request that could reuse
these results. An alternative and complimentary line of re-
search might be designing schemes to perform non-trivial
preprocessing [6] of incoming requests in order to map to
previously cached results [19]. However, we argue thatmodel
execution caching poses fewer demands on the model devel-
oper and thus represents a lower barrier to adoption.

2 Challenges of Model Caching

Caching deep learning models, at its core, is about moving
computation closer to end users. Similar to traditional con-
tent delivery networks, systems that support model execu-
tion cachingwill likely utilize amulti-level caching structure—
e.g., the model may be placed in GPU memory, in RAM, in
local disk-based storage, or at a remote location. Further, one
goal will be improving the ratio of hits tomisses at each cache
level. However, while traditional CDNs often use servers to
serve �xed-size objects to end-users to minimize response
time, execution of deep learning models often requires access
to servers with GPUs and focuses on an additional metric
called inference accuracy. These and other unique characteris-
tics of serving deep learning models pose new challenges to
e�ectively caching deep learning models, which we describe
next in detail.
There are four key di�erences between traditional CDN

caching and model execution caching. First, DNN models
have dynamic memory requirements that can depend on run-
time parameters such as request batch sizes. Second, DNN
models require a di�erent cache structure than traditional
CDN caches. Third, model misses need to be handled dif-
ferently, e.g., loading models into memory prior to being
executed. Finally, DNN serving requires e�cient manage-
ment of GPU memory.
Challenge 1: Runtime Memory Requirements. Tra-

ditional CDNs cache �xed-size static objects. This property
simpli�es resource management as CDNs know memory
requirements a priori and can allocate the same amount
of memory for an object in all cache levels. However, the
runtime memory requirements of a deep learning model
are often drastically di�erent from the space requirements
on disk [4]. We can attribute these di�erences, in part, to
di�erences between the in-memory versus on-disk repre-
sentation and memory overheads introduced by the deep

learning framework. Furthermore, the memory consump-
tion depends on runtime con�guration parameters, such as
the number of concurrent requests that are serviced by the
model (i.e., batch size) [4]. Request batching is widely used
in deep learning model serving systems, as a way to increase
throughput [5, 15]. However, as determining the actual batch
size depends heavily on the inference request rates as well
as the performance goals, it is di�cult to predict the actual
memory requirement of each model.
Challenge 2: DNN Cache Levels. Another key di�er-

ence between traditional content caching and model execu-
tion caching is the number of objects that need to be stored.
In particular, we envision that the set of possible deep learn-
ing models will be small enough such that each server cluster
will be able to store all models [1]. This avoids the need to de-
cide which models should be stored in which cluster location
and the need to transfer models across di�erent locations
when the inference request workload shifts. However, load-
ing models from disk to GPU memory—i.e., the di�erence
between model miss and model hit time as shown in Ta-
ble 1—might be order of magnitude slower than forwarding
an inference request to another cluster. This suggests the
need for caching algorithms to have knowledge of other
caches, an approach actively avoided by many traditional
caching schemes.
Challenge 3:Miss Behavior. In the case of DNN caching

systems, when a cache miss occurs, the requested model
needs to be admitted to the top level cache, i.e., GPUmemory,
completely before inference can occur. If this top-level cache
is full, then such systems need to make a model eviction
decision based on the factors detailed in Section 3.2. This
is in contrast to CNNs where requested objects can be read
from any cache level and do not necessarily get admitted
to higher-level caches completely before the request begins
to be served. The requested object can be sent in pieces
before it has been totally loaded into the cache. Implicitly,
this means that after each miss, traditional cache systems
have the additional �exibility to not admit the entirety of
the missed objects to higher level caches.
Challenge 4: Managing GPU Memory. Another im-

portant class of di�erences arises from the GPU hardware
needed for model execution caching. In particular, model
caching requires the ability to e�ciently manage multiple
distinct models stored in GPU memory. Only recently have
researchers considered using memory paging techniques
to simplify management and improve utilization [22]. Cur-
rently, GPU paging is still much slower than RAM memory
paging owing to the lack of pipelined page-fault handling
similar to what is used by modern CPUs.
Further, while GPUs are highly parallel, data must �rst

be loaded from RAM into GPU memory. Thus, GPU mem-
ory performance is heavily dependent on the capacity of its
connection to the CPU. This connection has traditionally
been the bottleneck in GPU optimization, and the typical



accuracy(%)
inference time

model hit (ms)

inference time

model miss(ms)
size(MB) #params (M)

SqueezeNet 72.9 28.6 ± 1.1 173.4 ± 25.7 4.8 1.2

MobileNetV1 0.25 74.1 25.7 ± 1.2 272.8 ± 45.0 1.9 0.5

MobileNetV1 0.5 84.9 26.3 ± 1.2 302.8 ± 45.5 5.2 1.3

DenseNet 85.6 49.6 ± 3.2 1149.0 ± 108.0 43.9 -

MobileNetV1 0.75 88.1 28.0 ± 1.1 351.9 ± 47.4 10.5 2.6

MobileNetV1 1.0 90.6 28.2 ± 1.2 421.2 ± 47.1 17.1 4.2

NasNet Mobile 91.5 55.3 ± 4.1 2817.2 ± 123.7 21.9 5.3

InceptionResNetV2 94.0 76.3 ± 5.7 2844.3 ± 106.5 121.6 55.8

InceptionV3 93.8 55.8 ± 1.2 1950.7 ± 101.2 95.7 23.8

InceptionV4 95.1 82.8 ± 0.9 3162.2 ± 134.0 171.2 42.7

NasNet Large 96.1 112.6 ± 6.1 7054.5 ± 238.4 356.6 42.3

Table 1. Statistics of popular CNN Models. We measured the average inference time using a p2.xlarge GPU server with 12GB GPU

memory on Amazon EC2.

approach has been for programmers to explicitly control this
data transfer.

3 Caching Model Design Principles

Given that model execution caching is inherently a caching
problem, we �rst evaluate the e�ectiveness of existing cache
replacement algorithms [3, 8, 20] in managing deep learning
models at edge locations. One promising way to adapt prior
cache algorithms to the domain of DNN execution caching
is by de�ning the utility and cost of a cache miss, as well
as isolating the features of DNN models which the caching
algorithm should consider in making admission and eviction
decisions. We next de�ne the concept of model misses and
outline such potential design factors.

3.1 Model Misses

In a DNN cache, a model miss indicates that we will not
be able to perform the inference request before the model
is loaded into GPU memory. Unlike in the case of typical
web servers, loading the model on-demand can take seconds.
Moreover, the cost of a model miss is dominated by the time
it takes to load models from storage to memory. There is also
a further cost, as once loaded, the model must be run on the
requested input, which costs additional memory and time.
This is a cost not present when caching static objects such
as in web serving. Because of this, it will be necessary to use
DNN runtime memory consumption and the time to load
DNN models into memory as two key aspects of the cost of
model misses.
This also means that in attempting to reduce the cost

of model misses, we must answer the question of how to
handle themodelmisses tomitigate performance impact. The
essential aspect of this problem is identifying the elements
of the models which increase the cost of a model miss, and
what the trade-o�s are for attempting to account for those
qualities. For instance, one could trade accuracy for time by
using a model that is already present in the GPU memory
instead of the requested one. This in turn translates to the

problem of which in-memory model we should use. The
choice of themodel needs to consider the impact on inference
delays and accuracy, as well as memory usage increase. In
particular, di�erent models might have batched inference
requests waiting for di�erent amounts of time, and the GPU
memory increases non-linearly with the number of inference
requests.

3.2 Possible Factors In�uencing Caching Policy

Model Size. In AdaptSize [3], a novel caching algorithm
for web servers, the authors showed that a probabilistic ad-
mission function dependent on the size of the object being
admitted drastically improved the object hit ratio simply by
virtue of there being more objects in the cache when a given
request is received.

One issue particular to our case is that the variable size on
which approaches such as the AdaptSize algorithm depend
is not as straightforward in the case of DNN serving as it is
when considering typical CDN caching problems. Because
model complexity is a fairly reliable estimate of the memory
overhead required to run the models, and batch size varies
with memory usage [4], a size statistic incorporating both
model complexity and input batch sizemay be a useful metric
for cache admission.
Since the model has to be run on the given input, the

memory requirements for the models are dynamic. Addition-
ally, the extent of the relationship between batch size and
memory requirements is largely model-dependent. Some of-
�ine model measurements may be necessary to understand
the relationship between these factors before the caching
algorithm can completely account for them.
Frequency of Use.A typical factor in caching algorithms

is the frequency of use of the object in question; more fre-
quently used items are less likely to be evicted because they
are more likely to be requested in the future.
AdaptSize [3] presents an eviction policy that employs

a Markov chain model to track an object’s position in the
least recently used list, so that the overhead required scaled



linearly instead of exponentially with the number of ob-
jects in the cache. This allows for e�cient serving of a large
number of small cache objects. The calculation in our case
would once again be further complicated by the dynamic
component to the size of the models.
In addition, a global least-recently-used list could allow

for cluster-wide awareness of admissions/eviction decisions
to improve e�ciently, but may be too costly to implement.
Model Accuracy. In the case where the user does not

have to specify a model to run, there are aspects of the model
that in�uence which should be selected for the request, and
one of those is the accuracy of the output. Because accuracy is
not directly proportional to model complexity or the number
of operations executed, model accuracy must be considered
separately from size. It may be the case that more accurate
models are requested more often regardless of their overhead
cost, since the inference would not be taking place on the
mobile device and therefore the user does not have to factor
the model overhead into their choice of model. This would
lead to a policy of more accurate models being admitted
more frequently. However, time complexity would still play
a role when considering model accuracy (see below).
Model Speed. The time complexity of the DNNswill have

a direct impact on rate of servicing requests. While it seems
that with high-end hardware, most models can achieve low
inference times, it is also true that maintaining a certain
throughput also diminishes model accuracy, meaning that
there exists a tradeo� between these two features. To resolve
this, it may be possible to split requests with large batch sizes
into subsets of smaller batches and run them concurrently.

4 Opportunities for Model Caching

The ability to cache deep learning models brings the bene�ts
of improved inference response time. However, as we have
discussed in previous sections, the inherent di�erences be-
tween deep learning models and traditionally cached objects
make it very challenging to design e�cient model caching
algorithms. The challenges can be summed up as high model
miss penalty, i.e., loading the model into the GPU memory
can take up to a few seconds; and the dynamic model mem-
ory requirements caused by model type and batch sizes. The
three broad open questions in the area of model execution
caching can be categorized as: (i) how to reduce the model
miss rate, (ii) how to handle a model miss, and (iii) when
to make model cache decisions. Bearing these questions in
mind, we next describe a few emerging opportunities.
Designing memory-adaptive models. One of the key

insights in caching deep learning models is to make the
models we use to service requests dynamic. To achieve this,
we would need a new type of model, which we refer to as
memory-adaptive models. These models, akin to scalable
video codec [16], could provide us the �exibility to dynami-
cally adjust the total model memory requirement based on

available GPU memory size and its corresponding batch size.
More concretely, to use these memory-adaptive models, we
could load the base model—a fully functional model that is
capable of producing inference results, i.e., having the output
layer, albeit at lower quality—when the batch size is large.
When the batch size decreases, we could enhance the model
complexity and accuracy by adding in additional layers. This
removes the need to evict and load the entire highest-quality
model, thus reducing the potential penalty of a model miss.
Currently, some existing works [17, 18] have demonstrated
promising results towards automatically searching for mod-
els that could balance trade-o�s between accuracy and other
metrics of interest, such as memory consumption.
Post-loading of deep learningmodels.What if we could

start executing models before the model is fully loaded? Here,
fully loaded means that all the model weights, layers, and
neurons are initialized and ready to serve the inference re-
quest. By only partially loading the model into the GPU
memory before starting execution, we can reduce the model
cache miss penalty in terms of time. The challenge lies in
deciding which model layers need to be preloaded into the
GPU memory without introducing “jitter”, i.e., unwanted ex-
ecution delay after inference execution started that is caused
by having to wait for loading in additional model data. One
needs to at least consider and understand the di�erence be-
tween model execution time and loading time. In addition,
if all the models residing inside the GPU memory are par-
tially loaded, we could also �t more models given a �xed
size GPU memory. To achieve post-loading, we could poten-
tially leverage techniques such as prepaging and page faults,
from post-copy live migration [11] in which the destination
VM can start executing after a small amount of data, e.g.,
processor states, has been transferred.
Co-designing scheduling and selection algorithms.

In addition to redesigning deep learning models, we could
achieve similar e�ects by co-designing the request schedul-
ing, model selection, and model caching algorithms. Here,
a request scheduling algorithm is in charge of assigning in-
ference requests to the model servers and a model selection
algorithm decides which speci�c model instance to assign
the requests to. Note that in the case of approximating in-
ference results, i.e., trading accuracy for fewer model cache
misses, the model selection algorithm could choose the mod-
els that are already residing in the memory instead of the
ones that are requested. More concretely, for requests that be-
long to the same type of inferences, e.g., image classi�cation
or object detection, the model selection algorithms can have
the liberty to choose from a set of functionally-equivalent
models—in essence, whichever models that are currently in
the GPU memory. The challenge is to de�ne and maintain
functionally-equivalent models, e.g., which two models can
be considered as functionally-equivalent given the perfor-
mance requirements, or make sure at least one model from



each functional class is present in the GPU memory at all
time.
To design a cache-aware request scheduling algorithm,

the key idea is to organize queued requests into buckets
ordered by models, and assign a batch of requests to models
once the bucket is full. Batching requests is currently used
to improve training speed [13] and inference throughput [5],
and can naturally happen in inference serving systems for
popular models as well as when model execution speed is
slower than request rate. The natural question is then how
we should con�gure the batch size for each model. One way
is to set the batch size based on the memory requirements of
each model (for a given batch size). Another way is to set the
timeout based on the maximum desired response time for a
request [5]. In summary, both co-designs help with reducing
the cache miss rate as well as mitigating the impact of model
cache miss.
Proactively loading and evicting models. Currently,

model caching decisions are made reactively, i.e., when there
is not enough GPU memory to load the requested DNN mod-
els, in-memory models have to be evicted to load the request
model. What if we could predict the model utility, e.g., mem-
ory requirements and model accuracy, and pre-evict and
pre-load models? This is akin to preloading objects to mem-
ory, a commonly-used technique to speed up application
execution time. However, the e�ectiveness of preloading is
often limited by the ability to predict the short-term model
request pattern. To account for this, we might be able to
leverage observed workload spikes, e.g., a burst of inference
requests for a particular DNN model [7]. While that model
is not currently present in the cache, we could start serving
requests using the functionally-equivalent model in memory
and start preloading the requested model with the anticipa-
tion of the increasing demand.
Coordinating andpooling clusters’ GPUmemory.Con-

ventionally, in the web caching scenario, when a cache miss
happens, the request is forwarded to the next-level authori-
tative source to fetch the content. In the case of model cache
misses of a GPU server, this could mean forwarding the infer-
ence request to a nearby location where the requested model
is present in the GPU memory. However, it is challenging to
have up-to-date information regarding model cache status
without incurring costly control messages—the number of
messages per second can be proportional to O(nmr ) where
n is the total number of locations,m is the maximum neigh-
bor location set, and r is the inference request rates. For
example, whenever a model loads into or unloads from GPU
memory, an accompanying control message will be sent to
a group of nearby cluster locations. On the other hand, it
might be possible to combine server resources from di�erent
cluster locations to create a virtual pool that coordinates
the model caching decisions—communicating among closer
cluster locations can still be orders of magnitude faster than

loading the model on-demand. This also helps to avoid one-

hit-wonder requests as we could now wait to load a model
into local GPU memory on the subsequent second inference
request.

5 Summary

In this paper, we outlined a nascent research area–model
execution caching. We identi�ed unique challenges and prin-
ciples associated with designing such systems. We further
recognized opportunities in this domain, such as designing
memory-adaptive models, that help with building coherent
and complementary solutions. As part of future work, we
plan to design a new caching algorithm for managing deep
learning models.
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