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Abstract—Cloud GPU servers have become the de facto way
for deep learning practitioners to train complex models on large-
scale datasets. However, it is challenging to determine the appro-
priate cluster configuration—e.g., server type and number—for
different training workloads while balancing the trade-offs in
training time, cost, and model accuracy. Adding to the complexity
is the potential to reduce the monetary cost by using cheaper,
but revocable, transient GPU servers.

In this work, we analyze distributed training performance
under diverse cluster configurations using CM-DARE, a cloud-
based measurement and training framework. Our empirical
datasets include measurements from three GPU types, six ge-
ographic regions, twenty convolutional neural networks, and
thousands of Google Cloud servers. We also demonstrate the
feasibility of predicting training speed and overhead using
regression-based models. Finally, we discuss potential use cases
of our performance modeling such as detecting and mitigating
performance bottlenecks.
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I. INTRODUCTION

The process of training deep neural networks (DNNs) has

evolved from using single-GPU servers [1] to distributed GPU

clusters [2, 3] that can support larger and more complex

DNNs. Cloud computing, providing on-demand access to

these critical yet expensive GPU resources, has become a

popular option for practitioners. Today’s cloud provides its

customers abundant options to configure the training clusters,

presenting opportunities for tailoring resource acquisition to

the specific training workload. When using cloud-based GPU

servers to train deep learning models, one can choose the

server’s CPU and memory, specify the GPU type, decide the

number of servers, as well as pick the desired datacenter

location. However, this configuration flexibility also imposes

additional complexity upon deep learning practitioners.

Concurrently, to lower the monetary cost of training, one

could also consider using a special type of cloud servers,

referred to as transient servers, that have lower unit costs with

the caveat that the server can be revoked at any time [4, 5].

Revoked GPU servers often mean significant loss of work

and require manual effort by the practitioner to request new

servers, to reconfigure the training cluster, and even to di-

agnose potential performance bottlenecks. Concretely, when

a GPU server is revoked, all its local training progress will

disappear and in the worst case, the revocation will also

impede the functionality of saving the trained model [6, 7].

In this work, we set out to characterize and predict the

impact of cluster configuration on distributed training, in the

context of transient and traditional on-demand cloud servers.

We measured and characterized several key factors that im-

pact distributed training on transient servers and evaluated

regression-based models for predicting training throughput and

fault-tolerance overhead.

To streamline measurement and data collection on dis-

tributed training, we designed and built a framework called

CM-DARE. It allows us to measure, monitor, and collect

metrics such as training speed and revocation time, which

supports our performance characterization and modeling and

enables use cases such as performance bottleneck detection.

We built CM-DARE on top of an existing distributed training

framework (TensorFlow [6]) and library (Tensor2Tensor [8]),

with transient-specific optimizations that mitigate the impact

of revocation and improve fault-tolerance. Though we exclu-

sively used TensorFlow and Google Cloud in this work, we

argue that our measurement methodology (e.g., the use of

custom convolutional neural networks) can be extended to

other deep learning frameworks and cloud providers.

Our work differs from prior work in distributed training

performance modeling in three key aspects. First, it consists

of large-scale, cloud-based measurement and data-driven per-

formance modeling rather than theoretical modeling and on-

premise measurement [1, 9, 10]. Second, we identified use

cases that benefit from having access to the raw measurement

data, performance models, and CM-DARE measurement in-

frastructure. Finally, we are the first to characterize and model

performance of distributed training with transient servers. In

short, we make the following contributions.

• We conducted a large-scale measurement study that includes

twenty convolutional neural networks on three types of

Google Cloud GPU servers. We observe, for example, that

the training speed of heterogenous clusters—i.e., clusters

consisting of different GPU hardware—is approximately

the sum of individual server speeds. Our dataset and CM-

DARE are available in the project GitHub repository1.

• We built and evaluated performance models that predict

the training speed and fault-tolerance overhead of GPU

clusters with as low as 3.4% mean absolute percentage error.

Such models serve as the building blocks for predicting

1https://github.com/cake-lab/CM-DARE
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VIII. SUMMARY

We explored the characteristics of and key factors im-

pacting distributed training on transient servers. We chose

three commonly-used GPUs from six data center locations

for measuring and modeling the performance of twenty CNN

models. We found that simple regression-based models have

adequate prediction accuracy, even for heterogeneous clusters

and when training CNN models with diverse characteristics.

Additionally, we demonstrated that the overhead of commonly

used fault-tolerance mechanisms (i.e., model checkpointing)

can be predicted with high accuracy and the associated impact

can be directly added to the predicted training time. Lastly,

we explored potential use cases of our performance modeling

including detecting and mitigating performance bottlenecks.

We envision that our study, together with our open-source

data, lays the the foundation for future research in optimizing

transient distributed training.
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