
Characterizing and Modeling Distributed Training

with Transient Cloud GPU Servers

Shijian Li

Worcester Polytechnic Institute, USA

sli8@wpi.edu

Robert J. Walls

Worcester Polytechnic Institute, USA

rjwalls@wpi.edu

Tian Guo

Worcester Polytechnic Institute, USA

tian@wpi.edu

Abstract—Cloud GPU servers have become the de facto way
for deep learning practitioners to train complex models on large-
scale datasets. However, it is challenging to determine the appro-
priate cluster configuration—e.g., server type and number—for
different training workloads while balancing the trade-offs in
training time, cost, and model accuracy. Adding to the complexity
is the potential to reduce the monetary cost by using cheaper,
but revocable, transient GPU servers.

In this work, we analyze distributed training performance
under diverse cluster configurations using CM-DARE, a cloud-
based measurement and training framework. Our empirical
datasets include measurements from three GPU types, six ge-
ographic regions, twenty convolutional neural networks, and
thousands of Google Cloud servers. We also demonstrate the
feasibility of predicting training speed and overhead using
regression-based models. Finally, we discuss potential use cases
of our performance modeling such as detecting and mitigating
performance bottlenecks.

Keywords-distributed training, measurement, modeling

I. INTRODUCTION

The process of training deep neural networks (DNNs) has

evolved from using single-GPU servers [1] to distributed GPU

clusters [2, 3] that can support larger and more complex

DNNs. Cloud computing, providing on-demand access to

these critical yet expensive GPU resources, has become a

popular option for practitioners. Today’s cloud provides its

customers abundant options to configure the training clusters,

presenting opportunities for tailoring resource acquisition to

the specific training workload. When using cloud-based GPU

servers to train deep learning models, one can choose the

server’s CPU and memory, specify the GPU type, decide the

number of servers, as well as pick the desired datacenter

location. However, this configuration flexibility also imposes

additional complexity upon deep learning practitioners.

Concurrently, to lower the monetary cost of training, one

could also consider using a special type of cloud servers,

referred to as transient servers, that have lower unit costs with

the caveat that the server can be revoked at any time [4, 5].

Revoked GPU servers often mean significant loss of work

and require manual effort by the practitioner to request new

servers, to reconfigure the training cluster, and even to di-

agnose potential performance bottlenecks. Concretely, when

a GPU server is revoked, all its local training progress will

disappear and in the worst case, the revocation will also

impede the functionality of saving the trained model [6, 7].

In this work, we set out to characterize and predict the

impact of cluster configuration on distributed training, in the

context of transient and traditional on-demand cloud servers.

We measured and characterized several key factors that im-

pact distributed training on transient servers and evaluated

regression-based models for predicting training throughput and

fault-tolerance overhead.

To streamline measurement and data collection on dis-

tributed training, we designed and built a framework called

CM-DARE. It allows us to measure, monitor, and collect

metrics such as training speed and revocation time, which

supports our performance characterization and modeling and

enables use cases such as performance bottleneck detection.

We built CM-DARE on top of an existing distributed training

framework (TensorFlow [6]) and library (Tensor2Tensor [8]),

with transient-specific optimizations that mitigate the impact

of revocation and improve fault-tolerance. Though we exclu-

sively used TensorFlow and Google Cloud in this work, we

argue that our measurement methodology (e.g., the use of

custom convolutional neural networks) can be extended to

other deep learning frameworks and cloud providers.

Our work differs from prior work in distributed training

performance modeling in three key aspects. First, it consists

of large-scale, cloud-based measurement and data-driven per-

formance modeling rather than theoretical modeling and on-

premise measurement [1, 9, 10]. Second, we identified use

cases that benefit from having access to the raw measurement

data, performance models, and CM-DARE measurement in-

frastructure. Finally, we are the first to characterize and model

performance of distributed training with transient servers. In

short, we make the following contributions.

• We conducted a large-scale measurement study that includes

twenty convolutional neural networks on three types of

Google Cloud GPU servers. We observe, for example, that

the training speed of heterogenous clusters—i.e., clusters

consisting of different GPU hardware—is approximately

the sum of individual server speeds. Our dataset and CM-

DARE are available in the project GitHub repository1.

• We built and evaluated performance models that predict

the training speed and fault-tolerance overhead of GPU

clusters with as low as 3.4% mean absolute percentage error.

Such models serve as the building blocks for predicting

1https://github.com/cake-lab/CM-DARE

1





















VIII. SUMMARY

We explored the characteristics of and key factors im-

pacting distributed training on transient servers. We chose

three commonly-used GPUs from six data center locations

for measuring and modeling the performance of twenty CNN

models. We found that simple regression-based models have

adequate prediction accuracy, even for heterogeneous clusters

and when training CNN models with diverse characteristics.

Additionally, we demonstrated that the overhead of commonly

used fault-tolerance mechanisms (i.e., model checkpointing)

can be predicted with high accuracy and the associated impact

can be directly added to the predicted training time. Lastly,

we explored potential use cases of our performance modeling

including detecting and mitigating performance bottlenecks.

We envision that our study, together with our open-source

data, lays the the foundation for future research in optimizing

transient distributed training.

ACKNOWLEDGMENT

We would like to first thank all anonymous reviewers for

their insightful comments. This work is supported in part by

National Science Foundation grants #1755659 and #1815619,

and Google Cloud Platform Research credits.

REFERENCES

[1] S. Shi et al., “Performance modeling and evaluation of
distributed deep learning frameworks on gpus,” in IEEE

DASC/PiCom/DataCom/CyberSciTech, 2018.
[2] F. N. Iandola et al., “Firecaffe: Near-linear acceleration of deep neural

network training on compute clusters,” in The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016.
[3] H. Cui et al., “GeePS: Scalable Deep Learning on Distributed GPUs with

a GPU-specialized Parameter Server,” in Proceedings of the European

Conference on Computer Systems (Eurosys), 2016.
[4] Amazon, “EC2 Spot Instances,” https://aws.amazon.com/ec2/spot/.
[5] Google, “Preemptible VM Instances,” https://cloud.google.com/

compute/docs/instances/preemptible.
[6] M. Abadi et al., “Tensorflow: A system for large-scale machine

learning,” in USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2016.
[7] S. Li et al., “Speeding up Deep Learning with Transient Servers,”

in Proceedings of the IEEE International Conference on Autonomic

Computing (ICAC), 2019.
[8] A. Vaswani et al., “Tensor2tensor for neural machine translation,”

arXiv:1803.07416, 2018.
[9] F. Yan et al., “Performance Modeling and Scalability Optimization of

Distributed Deep Learning Systems,” in Proceedings of ACM Interna-

tional Conference on Knowledge Discovery and Data Mining, 2015.
[10] H. Qi et al., “Paleo: A performance model for deep neural networks,”

in Proceedings of the International Conference on Learning Represen-

tations (ICLR), 2017.
[11] Y. Peng et al., “Optimus: an efficient dynamic resource scheduler for

deep learning clusters,” in Proceedings of the European Conference on

Computer Systems (Eurosys), 2018.
[12] S.-H. Lin et al., “A model-based approach to streamlining distributed

training for asynchronous sgd,” in IEEE International Symposium on

Modeling, Analysis, and Simulation of Computer and Telecommunica-

tion Systems (MASCOTS), 2018.
[13] H. Zheng et al., “Cynthia: Cost-efficient cloud resource provisioning for

predictable distributed deep neural network training,” in Proceedings of

the 48th International Conference on Parallel Processing, 2019.
[14] A. Krizhevsky et al., “CIFAR-10,” http://www.cs.toronto.edu/∼kriz/

cifar.html, 2017.
[15] K. He et al., “Deep residual learning for image recognition,”

arXiv:1512.03385, 2015.
[16] X. Gastaldi, “Shake-shake regularization,” arXiv:1705.07485, 2017.
[17] J. Dean et al., “Large scale distributed deep networks,” in Advances in

neural information processing systems, 2012.

[18] S. Kundu et al., “Modeling virtualized applications using machine
learning techniques,” in ACM Sigplan Notices, vol. 47. ACM, 2012.

[19] C. J. Willmott et al., “Advantages of the mean absolute error (mae)
over the root mean square error (rmse) in assessing average model
performance,” Climate research, vol. 30, no. 1, 2005.

[20] Google, “Instance life cycle,” https://cloud.google.com/compute/docs/
instances/instance-life-cycle, 2019.

[21] C. King, “stress-ng - a tool to load and stress a computer system,” https:
//manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html, 2017.

[22] C. Coleman et al., “Dawnbench: An end-to-end deep learning bench-
mark and competition,” Training, vol. 100, 2017.

[23] X. Ouyang et al., “Spotlight: An information service for the cloud,”
in IEEE International Conference on Distributed Computing Systems

(ICDCS), 2016.
[24] A. Sergeev et al., “Horovod: fast and easy distributed deep learning in

tensorflow,” arXiv:1802.05799, 2018.
[25] T. Ben-Nun et al., “Demystifying parallel and distributed deep learning:

An in-depth concurrency analysis,” arXiv:1802.09941, 2018.
[26] N. Strom, “Scalable distributed dnn training using commodity gpu cloud

computing,” in Sixteenth Annual Conference of the International Speech

Communication Association, 2015.
[27] F. Research, “Caffe2,” https://caffe2.ai, 2019.
[28] M. Research, “Microsoft cognitive toolkit,” https://github.com/

Microsoft/CNTK, 2019.
[29] A. Foundation, “Apache mxnet,” https://mxnet.incubator.apache.org,

2019, accessed in 2019.
[30] S. Zhang et al., “Deep learning with elastic averaging sgd,” in Advances

in Neural Information Processing Systems 28, 2015.
[31] J. Chen et al., “Revisiting distributed synchronous sgd,”

arXiv:1604.00981, 2016.
[32] S.-X. Zou et al., “Distributed training large-scale deep architectures,” in

International Conference on Advanced Data Mining and Applications.
Springer, 2017.

[33] M. Jeon et al., “Analysis of Large-scale Multi-tenant GPU Clusters
for DNN Training Workloads,” in Proceedings of the 2019 USENIX

Conference on Usenix Annual Technical Conference (ATC’19), 2019.
[34] J. Jiang et al., “Heterogeneity-aware distributed parameter servers,” in

Proceedings of the 2017 ACM International Conference on Management

of Data, 2017.
[35] H. Zhang et al., “Poseidon: An efficient communication architecture for

distributed deep learning on GPU clusters,” in 2017 USENIX Annual

Technical Conference (ATC’17), 2017.
[36] L. Luo et al., “Parameter Hub: A Rack-Scale Parameter Server for

Distributed Deep Neural Network Training,” in Proceedings of the ACM

Symposium on Cloud Computing (SoCC), 2018.
[37] P. Xie et al., “Orpheus: Efficient Distributed Machine Learning via Sys-

tem and Algorithm Co-design,” in Proceedings of the ACM Symposium

on Cloud Computing (SoCC), 2018.
[38] P. Sharma et al., “Spotcheck: Designing a derivative iaas cloud on the

spot market,” in Proceedings of the Tenth European Conference on

Computer Systems, 2015.
[39] S. Subramanya et al., “Spoton: a batch computing service for the spot

market,” in Proceedings of the ACM symposium on cloud computing

(SoCC), 2015.
[40] P. Sharma et al., “Flint: Batch-interactive data-intensive processing

on transient servers,” in Proceedings of the European Conference on

Computer Systems (EuroSys), 2016.
[41] A. Harlap et al., “Tributary: spot-dancing for elastic services with latency

slos,” in USENIX Annual Technical Conference (ATC’18), 2018.
[42] N. Chohan et al., “See spot run: Using spot instances for mapreduce

workflows,” HotCloud, 2010.
[43] P. Ambati et al., “Optimizing the cost of executing mixed interactive

and batch workloads on transient vms,” Proceedings of the ACM on

Measurement and Analysis of Computing Systems, vol. 3, 2019.
[44] C. Wang et al., “Exploiting spot and burstable instances for improving

the cost-efficacy of in-memory caches on the public cloud,” in Proceed-

ings of the European Conference on Computer Systems (Eurosys), 2017.
[45] P. Sharma et al., “Portfolio-driven resource management for transient

cloud servers,” Proceedings of the ACM on Measurement and Analysis

of Computing Systems, 2017.
[46] A. Harlap et al., “Proteus: agile ml elasticity through tiered reliability in

dynamic resource markets,” in Proceedings of the European Conference

on Computer Systems (Eurosys), 2017.

11


