
DistStream: An Order-Aware Distributed Framework
for Online-Offline Stream Clustering Algorithms

Lijie Xu1, 2, Xingtong Ye1, 2, Kai Kang1, 2, Tian Guo4, Wensheng Dou1, 2, Wei Wang1, 2, 3, ∗, Jun Wei1, 2
1State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences

2University of Chinese Academy of Sciences
3Institute of Software Technology, Chinese Academy of Sciences, Nanjing

4Worcester Polytechnic Institute
1, 2{xulijie, yexingtong17, kangkai17, wsdou, wangwei, wj}@otcaix.iscas.ac.cn; 4tian@cs.wpi.edu

Abstract—Stream clustering is an important data mining tech-
nique to capture the evolving patterns in real-time data streams.
Today’s data streams, e.g., IoT events and Web clicks, are
usually high-speed and contain dynamically-changing patterns.
Existing stream clustering algorithms usually follow an online-
offline paradigm with a one-record-at-a-time update model, which
was designed for running in a single machine. These stream
clustering algorithms, with this sequential update model, cannot
be efficiently parallelized and fail to deliver the required high
throughput for stream clustering.

In this paper, we present DistStream, a distributed framework
that can effectively scale out online-offline stream clustering al-
gorithms. To parallelize these algorithms for high throughput, we
develop a mini-batch update model with efficient parallelization
approaches. To maintain high clustering quality, DistStream’s
mini-batch update model preserves the update order in all
the computation steps during parallel execution, which can
reflect the recent changes for dynamically-changing streaming
data. We implement DistStream atop Spark Streaming, as well
as four representative stream clustering algorithms based on
DistStream. Our evaluation on three real-world datasets shows
that DistStream-based stream clustering algorithms can achieve
sublinear throughput gain and comparable (99%) clustering
quality with their single-machine counterparts.

Keywords—Stream clustering; data stream; scalability

I. INTRODUCTION

Today, we are increasingly leveraging data mining tech-

niques to extract insights from real-time data streams created

by IoT sensors, Web clicks, etc. Stream clustering is a key

technique to capture the evolving patterns, e.g., network intru-

sion patterns and online shopping behavior patterns, through

grouping similar records into clusters continuously.

Different from batch-mode clustering, stream clustering

needs to process unbounded data streams in one pass with

limited memory capacity. Under these constraints, most

stream clustering algorithms adopt a two-phase online-offline

paradigm [11], [19], which keeps an up-to-date sketch of the

streaming data in memory during the online phase and com-

putes the final clusters offline when necessary. By leveraging

this online-offline paradigm, researchers have proposed more

than 20 stream clustering algorithms including CluStream [11],

DenStream [16], D-Stream [17], and ClusTree [24].

* Corresponding author

These stream clustering algorithms leverage a one-record-

at-a-time update model that has strict sequential update con-

straint, i.e., a new record cannot be clustered until its previous

record has been processed. Thus, these algorithms are suitable

to work in a single machine, leading to low clustering through-

put. For example, CluStream’s throughput only achieves ∼5K

records per second on TCP connection stream in a single

machine [11]. However, today’s data streams are orders of

magnitude faster. For instance, the online shopping site Al-

ibaba needs to process 256K transactions per second [1], and a

leading Web company was hit by a DDoS attack at the peak of

292K requests per second [5]. Further, these data streams often

have dynamically-changing patterns, e.g., changing customer

shopping behaviors or evolving attack patterns.

Currently, there is not an effective approach for online-

offline stream clustering algorithms to achieve high throughput

and high clustering quality on dynamically-changing data

streams. Existing batch-mode distributed machine learning

frameworks, such as Spark MLlib [27] and Petuum [30], are

inadequate to support the unique characteristics of stream

clustering algorithms. Recently, researchers proposed several

approaches to implement stream clustering algorithms on

distributed stream processing systems [13], [23]. However,

these approaches are designed for a specific algorithm (i.e.,

CluStream) and cannot be extended to other algorithms like

DenStream [16] and D-Stream [17]. In addition, these ap-

proaches do not distinguish the data arrival orders and cannot

precisely reflect the latest changes for dynamically-changing

patterns, leading to degraded clustering quality.

In this paper, we propose a distributed framework Dist-

Stream to parallelize online-offline stream clustering algo-

rithms, with the goal of achieving both high throughput and

good clustering quality. We mainly address two challenges.

The first challenge is how to design an efficient up-

date model for stream clustering algorithms to achieve high

throughput. We design a mini-batch update model to overcome

the throughput inefficiency of one-record-at-a-time model, by

introducing a new batch-by-batch feedback loop and multiple

parallelization dimensions for the update steps. Through ana-

lyzing the latency and network communication, we judiciously

choose the most efficient dimension for parallelizing each step

of our mini-batch update model.

The second challenge is how to achieve good clustering

quality, comparable to that of one-record-at-a-time model.

Directly parallelizing the mini-batch model without distin-

guishing the data arrival orders will lead to low clustering

quality, because it fails to reflect the pattern changes in

data streams. To mitigate this problem, we design an order-

aware update mechanism in all update steps during parallel

execution. Further, we theoretically demonstrate that our order-

aware update mechanism can reflect the recent changes (over

unordered update mechanism) and mitigates the quality loss

associated with the mini-batch update model.

DistStream is implemented on top of Spark Streaming [31]

and exposes four high-level APIs for algorithm developers

to migrate and parallelize single-machine stream clustering

algorithms. We also implement four representative stream clus-

tering algorithms, i.e., CluStream, DenStream, D-Stream, and

ClusTree, based on DistStream for evaluation. The experiments

on three real-world datasets with different data distributions

show that our DistStream-based implementations can achieve

comparable clustering quality of 99% and sublinear throughput

gain of up to 13X (with 32 cores) to their single-machine

counterparts. The experiments also demonstrate the impor-

tance of our order-aware update mechanism—unordered mini-

batch implementations suffer from about 60% lower clustering

quality. In summary, we make the following key contributions.

• We design a mini-batch update model with efficient par-

allelization approaches for stream clustering algorithms to

overcome the scalability inefficiency of the traditional one-

record-at-a-time model.

• In our mini-batch update model, we design an order-

aware update mechanism and theoretically demonstrate its

importance in maintaining the clustering quality for the

dynamically-changing data streams.

• We implement our DistStream framework atop widely-

used Spark Streaming, as well as four representative algo-

rithms based on DistStream. The experiments on real-world

datasets show that DistStream-based implementations can

achieve sublinear throughput gain and comparable clustering

quality with their single-machine counterparts.

II. BACKGROUND

This section describes the online-offline paradigm and one-

record-at-a-time update model of stream clustering algorithms.

A. Online-offline paradigm

The objective of a clustering algorithm is to group a

set of d-dimensional data records {x1, x2, . . . , xm} into a

number of clusters C = {c1, c2, . . . , cn}, in which intra-cluster

records have high similarity and inter-cluster records have low

similarity. The similarity among records is typically measured

by distance functions such as Euclidean distance.

Different from batch-mode clustering algorithms [20], [27],

stream clustering algorithms process an unbounded sequence

of ordered data records that arrive in real time. Each data

record xi is associated with a timestamp ti, and stream

clustering algorithms incrementally update the clusters with

Fig. 1. The online-offline paradigm with one-record-at-a-time update model.

the arrival of new records. The clusters C at time t represent

the clustering results of the records arriving before t, where

the recent records are assumed to be more important to the

clustering results than the older records. The clustering quality

is measured by the compactness of each cluster and how well

recent records have been grouped to the correct clusters.

To satisfy the latency and throughput requirements, stream

clustering algorithms are designed to process the streaming

records in one pass with limited memory capacity, and update

the clustering results as fast as possible. To fulfill these

requirements, most of stream clustering algorithms [19], such

as CluStream [11] and DenStream [16], adopt a two-phase

online-offline clustering paradigm, as shown in Figure 1. The

key idea is to keep an up-to-date sketch (i.e., micro-clusters)

of the streaming data in memory at online phase and compute

the final clusters (i.e., macro-clusters) offline when necessary.

Take the network intrusion pattern detection as an exam-

ple. The incoming TCP connection streams contain normal

connections and multiple types of attack connections with

varying distributions. To identify the evolving patterns, e.g.,

which attack types are emerging, dominating and disappearing,

CluStream [11] summarizes the connections into a number

of in-memory micro-clusters and constantly updates these

micro-clusters. This online update procedure may create new

micro-clusters for new types of attacks, merge micro-clusters

together for emerging attacks, and decay/delete micro-clusters

for vanishing attacks. To identify recent intrusion patterns

and adjust defense strategies accordingly, security analyst can

invoke offline clustering to obtain recent clustering results (i.e.,

macro-clusters). In this case, the clustering quality can be mea-

sured by the number of correctly clustered TCP connections.

Formally, each micro-cluster is a statistical structure denoted

as qi = {Si, Ti, Ni}, where Si represents the spatial locality,

i.e., the compactness of the records in qi. For example in

CluStream, Si is measured by two d-dimensional feature

vectors as (CF 2, CF 1), which represent the squared sum and

linear sum of the records in the micro-cluster qi, respectively.

The temporal locality Ti measures the temporal weight of the

records in the micro-cluster by favoring newer records. Micro-

clusters with low temporal locality will be deleted during

update. Ni is the number of records in qi. DenStream regards

the micro-clusters with high temporal localities as density-

connected micro-clusters, and groups them together to find

2

arbitrary shapes of clusters. D-Stream partitions the feature

space into grids (i.e., micro-clusters) and groups the adjacent

grids with high Ti and large Ni as macro-clusters. ClusTree

organizes micro-clusters as a tree structure for better data

summarization and fast record insertion.

B. One-record-at-a-time update model

For the online phase as shown in Figure 1, current streaming

algorithms use a one-record-at-a-time update model to process

each incoming data record sequentially. For initialization,

stream clustering algorithms leverage batch-mode clustering

algorithms like K-means to generate n micro-clusters on user-

defined first m data records. Then, for each incoming record

xi, the algorithms decide whether to assign it to an existing

micro-cluster q based on spatial locality, i.e., the distance

between record xi and the centroid of each micro-cluster. If

xi falls within the maximum boundary (e.g., the radius) of q,

the algorithms update both the spatial and temporal locality of

q as q′ = λiq +∆xi, where ∆xi is the spatial and temporal

increment of record xi such as ∆xi = (x2
i , t

2
i), and λi denotes

a time decaying factor that controls the importance of newer

record over old record as β−∆ti (e.g., β = 1.2). Otherwise,

the algorithms create a new micro-cluster for record xi. Before

processing the next record, the algorithms merge the newly

created (or updated) micro-cluster with other micro-clusters

to form a new micro-cluster set Qt+1. This one-record-at-

a-time model can adapt to the dynamically-changing data

stream but cannot be efficiently parallelized due to its one-

by-one feedback loop, which is detailed in Section IV-A.

For the offline phase, the final clustering results can be

generated directly from the micro-clusters [19] using batch-

mode algorithms such as K-means and DBSCAN [20].

III. DISTSTREAM OVERVIEW

In this paper, we investigate the problem of how to design

a distributed framework to efficiently parallelize online-offline

stream clustering algorithms. Note that we focus on paral-

lelizing the online phase to achieve high throughput while

maintaining good clustering quality. We omit the discussion of

offline phase because it does not impose real-time requirement

and can be efficiently parallelized using existing batch-mode

implementations such as distributed K-means [27].

The architecture of DistStream is shown in Figure 2.

The core of DistStream is an order-aware mini-batch update

model (Section IV), which generates computation steps for the

implemented stream clustering algorithms. DistStream paral-

lelizes these computation steps using efficient parallelization

approaches (Section V), and launches Spark Streaming tasks

to perform the computation (Section VI). DistStream provides

APIs for algorithm developers to easily parallelize online-

offline stream clustering algorithms.

IV. ORDER-AWARE MINI-BATCH UPDATE MODEL

In this section, we present the key design principles of our

order-aware mini-batch update model. To improve throughput,

we leverage a relaxed batch-by-batch feedback loop, instead of

Fig. 2. The architecture of DistStream.

the original one-by-one feedback loop. We also decouple the

update step into local and global update steps, and parallelize

the local update step to improve update throughput. To achieve

good clustering quality, we design an order-aware update

mechanism, i.e., preserving the update order of records and

micro-clusters in both update steps. We theoretically demon-

strate that order-aware update mechanism can reflect the recent

changes (over unordered update mechanism) and mitigate the

quality loss associated with the mini-batch update model.

A. Batch-by-batch feedback loop

As shown in Figure 1, existing stream clustering algorithms

use a one-record-at-a-time model with two sequential update

steps. When a new record xi arrives, the first step is to identify

one micro-cluster q that is closest to record xi. In the second

step, the closest micro-cluster q is updated and then merged

with all existing micro-clusters Qt through operations such

as merging or deletion. The updated micro-clusters Qt+1 are

then made available to handle the next record. This one-by-one

feedback loop limits the clustering throughput as new record

can not be clustered until its previous record is processed.

To address the throughput limitation of one-record-at-a-

time model, our key insight is to relax its strict sequential

update-feedback constraint, by introducing a new batch-by-

batch feedback loop. Specifically, we allow a batch of records

to be processed on the same, albeit stale, micro-clusters Qt and

update Qt at the end of each batch, as shown in Figure 3(a).

This batch-by-batch feedback loop is also denoted as mini-

batch update model, which introduces more parallelization

dimensions for us to improve the throughput of each step.

For example, in the first step of Figure 3(a), we can compute

the closest micro-cluster of {x1, x2, x3, x4} in parallel.

However, this mini-batch update model incurs three chal-

lenges. First, the update step needs to update a batch of new

records to the stale micro-clusters at a time, while leveraging

traditional one-by-one update suffers from low throughput.

We describe how our decoupled update design improves the

update throughput in Section IV-B. Second, it is challenging

to achieve comparable clustering quality to the one-record-at-

a-time model, given that all records in a mini-batch use stale

micro-clusters for computation. We describe how our order-

aware update mechanism addresses this staleness problem in

Section IV-C. The third challenge is how to select batch size

3

(a) We decouple the computation procedure into three sequential steps and enforce the update order within each batch. (b) Batch size selection.

Fig. 3. DistStream’s order-aware mini-batch update model and batch size selection.

since it is related to clustering quality and throughput. We

discuss this problem in Section IV-D.

B. Decoupling local and global update steps

By using mini-batch update model, the first step is to

compute the closest micro-clusters for all records within the

same mini-batch, e.g., {q3, q2, q3, q2} are the closest micro-

clusters of records {x1, x2, x3, x4} in Figure 3(a). The second

step is to update these chosen micro-clusters together with

existing micro-clusters. Following the update step of one-

record-at-a-time model, i.e., updating each chosen micro-

cluster and immediately merging it with the existing micro-

clusters, suffers from low throughput.

To improve the update throughput, our key idea is to

decouple the update step to two independent sub-steps, i.e., a

parallel local update step and a global update step. The local

update step only updates the chosen micro-clusters, by adding

the increments of records to them. As different micro-clusters

can be independently updated, we can parallelize local update

step using model-based parallelism as described in Section

V-B. The next global update step performs global operations,

such as merging these updated/newly created micro-clusters

with existing micro-clusters, to reflect the data stream changes.

We run global update step in a single node, because this

step needs to collect all the updated micro-clusters together to

perform merging/deletion operations. To reduce the computa-

tion latency, we optimize this step by pre-merging the newly

created micro-clusters as described in Section V-C.

C. Order-aware update mechanism

In this section, we describe how we enforce the order-

aware update in both local and global update steps to achieve

good clustering quality as that of the one-record-at-a-time

model. Our key insight is to reflect the impacts of records

on clustering results based on their arrival orders.

1) Order-aware local update: To adhere to the same update

principle of one-record-at-a-time model, we design an order-

aware local update step. In this step, records that map to the

same micro-cluster are updated in the same order as their

arrivals. As shown in Figure 3(a), for each record xi and

its closest micro-cluster q, we compute xi’s increment ∆xi

towards q and then update q. If record xi arrives before

record xj and both identify micro-cluster q as the closest,

we will insert xi to q before xj . This is to guarantee that

each record’s increment is correctly decayed and added to its

closest micro-cluster according to its arrival order. As a result,

the record’s impact on the updated micro-clusters is consistent

with that of the one-record-at-a-time model, yielding similar

update effects.
Next, we provide a theoretical analysis that demonstrates

the importance of update order by comparing to an unordered

mini-batch update model [13]. Empirical comparisons between

these two update models are presented in Section VII-B.

Importance of update ordering. Let us denote a stream of

records as {x1, x2, . . .}. Because the order of records only

matters when records map to the same micro-cluster, we

assume two records that map to the closest micro-cluster q

arrive as {. . . , xi, . . . , xk, . . .}. Without loss of generality, we

compare the impact of ∆xi and ∆xk (where i < k) on the

micro-cluster q when updating in arrival order and in the

reverse order of {. . . , xk, . . . , xi, . . .}.
First, when updating in the order {xi, xk} based on an

update function as qnew = λiq + ∆xi, we have new micro-

cluster q′
→

as:

q′
→

= λk(λiq +∆xi) +∆xk = λkλiq + λk∆xi +∆xk,

where ∆xi and ∆xk represent the spatial and temporal in-

crements of xi and xk towards micro-cluster q; λi and λk

represent the decaying factor for record xi and xk, respec-

tively. The decaying factor λi = β−∆ti is a function of ∆ti
that denotes the time interval between xi and the previous

record that was updated to q. Since β is a constant and β ≥ 1,

we have λ ≤ 1.
We can then quantify the impact of data record xk (the most

recently updated data) on micro-cluster q′
→

as:

Impact→j =

[

∆xk

q′
→

]

j

=

[

∆xk

λkλiq + λk∆xi +∆xk

]

j

.

Since ∆xk and q′
→

are vectors, we use
[

∆xk

q′
→

]

j
to quantify

the impact of xk on q′
→

at the j-th dimension. When updating

in the reverse order, the new micro-cluster q′
←

can be repre-

sented as:

q′
←

= λi(λkq +∆xk) +∆xi = λiλkq + λi∆xk +∆xi.

Similarly, we can then quantify the impact of data record

xk on micro-cluster q′
←

as:

Impact←j =

[

λi∆xk

q′
←

]

j

=

[

∆xk

λkq +∆xk + ∆xi

λi

]

j

.

4

The reason we use λi∆xk instead of ∆xk is that record

xk’s increment ∆xk has been decayed by λi after updating

the next record xi to q′
←

. Further, because we have λi ≤ 1
and λk ≤ 1, we have λkλiq ≤ λkq and λk∆xi ≤ ∆xi

λi

. By

substituting these inequalities, we then have:

Impact→j ≥ Impact←j .

That is, for a given record, updating it in different orders

leads to different impacts on the updated micro-cluster. This

necessitates the need for ensuring update order in mini-batch

model, in order to match with the update principle of one-

record-at-a-time model and catch up with the dynamically

changing data distribution.

2) Order-aware global update: We design an order-aware

global update step, in which each micro-cluster is updated

based on its created/updated time. In detail, the global update

step needs to merge a set of newly created/updated micro-

clusters {q′i} with the old ones Qt. Since micro-cluster op-

erations such as deletion and merging are irreversible (e.g.,

deleted micro-clusters cannot be recovered), it is important

to perform these operations on micro-clusters by the order of

their updated/created time. If we were to process these micro-

clusters out-of-order, we may delete important micro-clusters

that reflect the current data pattern. For example, suppose

{q′1, q
′

2} are two newly created micro-clusters and q′1 was

created before q′2. The anticipated update outcome towards the

overall micro-clusters is to incorporate both q′1 and q′2, or at

least q′2. However, if updating with the reverse order {q′2, q
′

1},

the overall micro-clusters may only include q′1 but not q′2—

when q′2 is merged into an older micro-cluster that is later

deleted due to its lower temporal locality.

By preserving the update order in local and global update

steps, our approach is more resilient to the clustering quality

loss introduced by the stale micro-clusters. Concretely, as

the first step operates on stale micro-clusters, some of the

chosen micro-clusters are not necessarily the closest ones,

referred to as non-optimal micro-clusters. As such, the local

update step might operate on some non-optimal micro-clusters.

However, since the global update step has a global view of all

the existing micro-clusters, it can mitigate this problem by

merging non-optimal micro-clusters with existing ones. For

example, record x4 in Figure 3(a) is mapped to a non-optimal

micro-cluster q2 even though the true closest micro-cluster is

q3. In cases when the optimal micro-cluster q3 and non-optimal

micro-cluster q2 come from the same natural cluster, they tend

to have small distance. Therefore, q2 and q3 could be merged

in global update step.

D. Determining batch size

To determine the appropriate batch size, we first need to

understand its impact on clustering quality. When using mini-

batch update model, the clustering quality of micro-clusters Qt

is determined by the increments of records in the batch and

the previous micro-clusters Qt−1. Based on our order-aware

update mechanism, we can show that each record’s increment

towards the micro-clusters does not vary with batch sizes.

(a) Update with batch size = 2s. (b) Update with batch size = 4s.

Fig. 4. The record xi’s increment towards the micro-clusters Qt4
does not

vary with batch sizes, supposing each record arrives at 1 second interval.

When using small batch size as shown in Figure 4(a), record

x1’s increment towards Qt2 (i.e., ∆x1) will be decayed by λ2

when updating x2 to Qt2 with Qt2 = λ2(λ1Qt0+∆x1)+∆x2

in the first batch. Likewise, in the second batch, Qt2 will

be decayed twice to be λ4λ3(Qt2) when updating x3 and

x4 to Qt4 . Because x1 is absorbed in Qt2 , x1’s increment

towards Qt4 is decayed accordingly as λ4λ3(λ2∆x1), which

equals to record x1’s increment towards Qt4 when using large

batch size as shown in Figure 4(b). Therefore, batch size has

limited impact on clustering quality which is also empirically

evaluated in Section VII-B2.

When using large batch size, the record’s increment tends

to be decayed to a small value. As shown in Figure 4(b), x1’s

increment towards Qt4 (i.e., λ4λ3λ2∆x1 = β−(t4−t1)∆x1, β

is a constant) will become a small value, if ∆t = t4 − t1
is very large as shown in Figure 3(b). Small increments can

be problematic as they make the updated micro-clusters such

as Qt4 only reflect the latest records, but omit the interme-

diate clustering results like Qt2 . To mitigate this problem,

one potential way is to set the batch size by bounding the

decaying factor, in order to control the impact of records on

clustering. Concretely, given a user-defined threshold α, we

have β−∆t > α which leads to a maximum batch size of

logβ
1
α

. For example, the maximum batch size is about 25

seconds when α = 0.01 and β = 1.2.

Lastly, we empirically study the batch size impact on clus-

tering throughput in Section VII-D3 and discuss the potential

ways to select best batch size for improving throughput.

V. PARALLELIZING ORDER-AWARE MINI-BATCH MODEL

In this section, we describe approaches to parallelize order-

aware mini-batch update model for high clustering throughput

and good clustering quality. We first describe each com-

putation step and analyze the computation dependency. We

then select the most efficient parallelization approach for the

first two steps, based on theoretical analysis of computational

latency and network communication of two potential paral-

lelism dimensions. Specifically, we consider record-based and

model-based parallelisms based on our observations that the

computation for each data record and each micro-cluster is in-

dependent, respectively. Finally we explain our optimizations

for performing global update step in a single machine. Below

we use task to denote the computation unit that can run in

parallel in different machines.

5

Fig. 5. The parallelized order-aware mini-batch update model.

A. Finding the closest micro-cluster: record-based parallelism

The first step is to assign each incoming record within

the same mini-batch to its closest micro-cluster. For each

record xi, this step computes its distance with the centroid

of each micro-cluster, selects the closest micro-cluster q, and

performs outlier check by verifying whether xi falls within

the maximum boundary of micro-cluster q.
We choose the record-based parallelism, as shown in Fig-

ure 5, for more efficiently finding the closest micro-cluster.

Specifically, the incoming records are assigned to different

tasks and each task performs the distance computation and

verification of each record locally. To do so, we first broadcast

(copy) the entire micro-cluster set Qt = {qi}
n
i=1 to each task

at the beginning of each batch-by-batch feedback loop. We

then assign incoming records with different timestamps into

different tasks in a round-robin way. This is to facilitate the

goal of maintaining the relative orders between the input data

records and the output micro-cluster results. For each assigned

record xi, the task computes distances between xi and all the

micro-clusters {qi}
n
i=1, selects and verifies the closest micro-

cluster qj , and finally outputs 〈xi, qj〉.

Comparison with model-based parallelism: We can also

parallelize this step by dividing micro-clusters into different

tasks, and perform distance computation on each subset of

micro-clusters in parallel, namely model-based parallelism.

However, this approach requires an additional stage to aggre-

gate partial computation results from all parallel tasks, because

each task only computes the distance between a record and a

part of the micro-clusters. Therefore, this approach requires

additional inter-task communication, and thus leads to higher

computation latency than record-based parallelism. Moreover,

record-based parallelism provides higher flexibility in varying

the parallelism degree. Intuitively, record-based parallelism

is only bounded by the batch size m, while model-based is

limited by the number of micro-clusters n (n < m).

B. Locally updating the closest micro-cluster: model-based

parallelism

After finding the closest micro-clusters of the incoming

records in a batch, the next step is to update these micro-

clusters locally. Formally, this local update step computes the

increment of each record xi towards its closest micro-cluster q

as ∆xi, and update q to q′ with q′ = λq+∆xi. This function

leverages the additivity property of the micro-cluster, and the

decaying factor λ controls the importance of newer records

over old records. As discussed in Section IV-C, it is important

to enforce the local update order based on the arrival order of

the records, for maintaining comparable clustering quality. If

the incoming record is identified as an outlier record, a new

micro-cluster qo is created for it.

We select model-based parallelism, because it strictly keeps

the update sequence and outperforms record-based paral-

lelism in throughput. Concretely, we divide the closest micro-

clusters of incoming records into different tasks and up-

date each micro-cluster in parallel. As shown in Figure 5,

the output results of the first step (i.e., records with their

closest micro-clusters) are grouped by the micro-cluster id

as {qj , [xa, xb, . . . xk]}
n
j=1 and then distributed into different

tasks. Each task first sorts the absorbed records [xa, xb, . . . xk]
of each micro-cluster qj based on the timestamps to enforce

the update order. Then, it computes each record’s increment

∆xi and updates qj to q′j by q′j = λqj +∆xi iteratively, one

record at a time. Finally, the task outputs the updated micro-

cluster q′j for the next global update step.

Comparison with record-based parallelism: We choose to

parallelize the computation in this step using model-based

parallelism instead of record-based parallelism for two key

reasons. First, model-based parallelism allows us to strictly

keep the update order with minimal efforts. On the contrary,

record-based parallelism not only breaks the sequential update

constraint by updating the micro-clusters of a set of records

in parallel, but also requires access to carefully designed

function for merging these partial results. Second, model-

based parallelism has lower computation latency and network

communication. In model-based parallelism, the task computes

record increment and updates each micro-cluster locally. On

the contrary, record-based parallelism requires additional stage

(tasks) to merge the partially updated micro-clusters and thus

incurs additional intra-task communication.

6

C. Globally updating all the micro-clusters: optimized

The global update step needs to merge a set of newly

created/updated micro-clusters with existing micro-clusters.

The first step is to decay the old micro-clusters that are

not updated during the local update step to decrease their

importance. The second step is to accommodate newly created

micro-clusters, by deleting as many outdated micro-clusters as

possible and merging any of the two closest micro-clusters.

We choose to perform global update step in a single

powerful node for two reasons. First, we need to collect

newly created/updated micro-clusters together to find the old

micro-clusters to decay and perform the deletion/merging

operations. Second, the number of micro-clusters n is often

much smaller than that of the incoming records m. Thus, the

global update step has low latency, except when there are many

newly created micro-clusters. More newly created (i.e., outlier)

micro-clusters means that we need to perform more operations

to find two closest micro-clusters for merging. To reduce this

computation latency, we perform a pre-merge optimization

operation on outlier micro-clusters by letting current outlier

micro-cluster (e.g., qo2 in Figure 5) merge with the previously

created outlier micro-clusters (e.g., qo1). The key intuition is

that many outlier micro-clusters are from the same new cluster

when data distribution is evolving to this new cluster. Thus,

this pre-merge operation can reduce the number of outlier

micro-clusters as well as the computation latency.

VI. DISTSTREAM IMPLEMENTATION

We have implemented DistStream as a distributed frame-

work for parallelizing online-offline stream clustering algo-

rithms. We choose to build DistStream atop Spark Stream-

ing [31] instead of Flink [2] and Storm [3], because Spark

Streaming supports dividing data streams into mini-batches

and aggregating results of parallel tasks at the end of each

batch. These features facilitate our implementation of the

batch-by-batch feedback and global update step. Concretely,

we leverage existing Spark Streaming operators such as

window(), map(), groupByKey(), and sort() to implement our

order-aware mini-batch update model.

DistStream exposes four APIs, including micro-cluster rep-

resentation, distance computation, local update, and global

update, which abstract the computational flow of distributed

stream clustering algorithms. These APIs allow algorithm

developers to implement any stream clustering algorithms that

comply with the online-offline update paradigm, because such

algorithms only differ in their micro-cluster representations

and micro-cluster update functions [19].

We have implemented four representative stream cluster-

ing algorithms atop DistStream, namely CluStream, Den-

Stream, D-Stream, ClusTree. For instance, to implement the

partition-based algorithm CluStream and the density-based al-

gorithm DenStream, we define micro-cluster representations as

(
∑n

i=1 x
2
i ,
∑n

i=1 xi,
∑n

i=1 t
2
i ,
∑n

i=1 ti) for CluStream and as

(
∑n

i=1 wix
2
i ,
∑n

i=1 wixi) for DenStream, respectively. Here,

wi is the temporal weight of record xi. For both algorithms,

we use Euclidean distance function for distance computation.

We define the local update functions for CluStream and Den-

Stream as ∆xi = (x2
i , xi, t

2
i , ti); λi = 1 and ∆xi = (x2

i , xi);
λi = β−∆ti < 1, respectively. Finally, for the global update,

we use two different temporal thresholds for deleting older

micro-clusters.

DistStream uses Spark Streaming runtime to distribute and

schedule DistStream tasks to a cluster of machines. DistStream

leverages Spark Streaming’s parallel recovery mechanism for

fault tolerance [31]. DistStream executes the global update step

using Spark Streaming driver in a single machine.

VII. EVALUATION

In this section, we evaluate the clustering quality and perfor-

mance of stream clustering algorithms implemented on Dist-

Stream, and compare with that implemented on one-record-at-

a-time model and unordered mini-batch update model.

We select four representative stream clustering algorithms,

namely CluStream, DenStream, D-Stream and ClusTree, and

implement them atop DistStream. For all four algorithms,

we implement two sets of baselines: the first baselines (with

prefix MOA-) are implemented using the single-machine MOA

library [15], and the second baselines (with prefix unordered-)

are implemented based on an existing work [13] for CluStream

and based on DistStream for the other three algorithms. We

configure each algorithm with default values from original

papers [11], [16]. For example in CluStream, the number of

micro-clusters is set to ten times of the real cluster numbers.

In DenStream, we set β = 20.25 ≈ 1.2 and µ = 10, where µ

denotes radius threshold. Given that we observe similar results

for all four algorithms and consider space limitation, we only

detail the results of CluStream and DenStream from Section

VII-B to VII-D, and summarize the results of D-Stream and

ClusTree in Section VII-E.

A. Experimental setup

We perform the evaluation on a local cluster of ten nodes.

DistStream runs on a master-slave architecture with one master

and eight workers. To generate the data stream, the last node

runs a Apache Kafka producer that reads data records from

local disk sequentially and outputs the records at a user-defined

rate. DistStream pulls the data stream in mini-batches and

distributes the data stream into eight workers. Each worker

has 4 physical cores and 64GB memory, and we configure

each DistStream task with a physical core and 8GB memory.

Therefore, the maximum parallelism degree (i.e., the number

of parallel tasks) is thirty-two. We use Spark 2.4.0 standalone

version with Hadoop HDFS 2.7.4 and Apache Kafka 1.1.0,

running on Ubuntu 16.04 to perform all the experiments.

We choose three real-world datasets that are widely used

for evaluating stream clustering algorithms [11], [16], [22],

as shown in Table I. These datasets have different data

distributions and feature dimensions, making them ideal for

studying clustering quality. We convert each dataset to a data

stream through first setting the timestamp for each record and

then streaming them in chronological order. We use the cluster

labels as the ground truth for clustering quality measurement.

7

TABLE I
THE CHARACTERISTICS OF THE THREE DATASETS.

Dataset #Records #Used features #Clusters (a% b% c%)

KDD-99 [7] 494,021 34 23 (57%, 22%, 20%)
CoverType [4] 581,012 54 7 (49%, 36%, 6%)
KDD-98 [6] 95,412 315 5 (95%, 1.5%, 1.4%)

* We normalize each feature of the three datasets to have zero mean and
unit variance, to avoid biasing any features [21]. (a%, b%, c%) denotes
the record percentages of the three largest real clusters.

(1) KDD-99 is a network intrusion detection dataset from

KDD Cup 1999 [7], describing the dynamically changing TCP

connections in a network attack environment in MIT. This

dataset forms 23 clusters, including one normal connection and

22 different attack types such as buffer overflow and rootkit.

(2) CoverType is a cartographic dataset, describing forest

areas with different elevations in Colorado [4]. These records

have seven clusters that each represents one forest cover type.

(3) KDD-98 is a charitable donation dataset from KDD Cup

1998, describing people’s response to the donation promotion

mailing from a not-for-profit organization [6]. We group the

records into five clusters based on donation amount, ranging

from [$0], ($0, $10], ($10, $15], ($15, $20], and ($20, +∞).

For performance and scalability evaluation, we prepare a

larger dataset by instructing Kafka to read from the same

dataset ten times. Finally, we construct three larger datasets,

namely large-KDD99, large-CoverType, and large-KDD98.

B. Clustering quality comparison

1) Methodology: We use standard Clustering Mapping

Measure (CMM) criterion [25] to measure the stream clus-

tering quality, because it is more accurate than batch-oriented

metrics such as SSQ, Purity, and F-measure [25], [19]. CMM

does so by decaying the weights of aging records and pe-

nalizing three common clustering errors caused by evolving

clusters, namely missed records, misplaced records, and noise

records. CMM normalizes these errors as well as the difference

between clustering results and ground truth to a value between

0 and 1, where larger value denotes higher clustering quality.

For each dataset, we stream the data records at a rate of 1K

records/s. To fairly compare with MOA-based single machine

implementations, we run all distributed implementations in

a single machine with parallelism degree of one. We set

the batch size to be 10 seconds and calculate the CMM

values at the end of each batch using the clustering results

generated offline. We compute the CMM values of MOA-

based algorithms at the same interval.

2) Clustering quality results: Figure 6 plots the normalized

CMM values along the entire data stream, for all the algorithm

implementations on the three datasets. The normalized CMM

values are raw CMM values divided by that achieved by corre-

sponding MOA-based implementations. Thus, the normalized

CMM values of MOA-based implementations are always 1.0.

For both CluStream and DenStream algorithms, our Dist-

Stream-based implementations achieve comparable (average

99%) clustering quality to the MOA-based ones on all three

datasets. Specifically, the achieved clustering quality difference

between DistStream-CluStream (DistStream-DenStream) and

MOA-CluStream (MOA-DenStream) is 1.1% (0.3%) on aver-

age. In contrast, both unordered-CluStream and unordered-

DenStream suffer from up to 60% lower clustering quality

than MOA-based and DistStream-based implementations.

The clustering quality gaps between unordered and Dist-

Stream-based implementations suggest the importance of

maintaining update order in mini-batch update model. For

KDD-99 and CoverType datasets, unordered implementations

suffer from significantly lower clustering quality. We analyze

these clustering quality differences and find that the number of

missed records directly impact CMM values. In particular, for

KDD-99 and CoverType datasets, unordered implementations

cause on average 2.6X and 1.8X more missed records than

that of our order-aware implementations. The reason is that

unordered implementations mislabel 1.5-3.2X more incoming

records to be outliers than that of our order-aware implemen-

tations. The root cause is that unordered mini-batch model

fails to favor recent records, making the updated micro-clusters

cannot capture the recent data patterns. Further, unordered

implementations suffer from unpredictable (highly fluctuating)

clustering quality, because the data records within a mini-batch

have random impacts on the updated micro-clusters.

For KDD-98 dataset, the clustering quality differences be-

tween unordered and our order-aware implementations are

less obvious (up to 11%). The number of missed records of

unordered implementations is also much lower (up to 6%).

The key reason is that KDD-98 dataset is more stable than

KDD-99 and CoverType datasets. Here, a dataset is stable if

its data distribution has small change over time. For KDD-

98, this translates to that 95% of its data records belong to

a long-standing dominating cluster. In this case, most of the

updated micro-clusters map to the dominating cluster, reducing

the probability of mislabeling outliers. This reveals that the

update order exerts higher impacts on clustering quality for

datasets with more dynamically changing distributions.

Next, we repeat the experiments for different batch sizes,

including smaller batch size (5s) and larger batch sizes (15s to

30s with 5s interval). We observe on average 2.79% clustering

quality differences between DistStream-based and MOA-based

implementations, for all three datasets. This suggests that

the batch size has limited impact on clustering quality when

using order-aware mini-batch update model. The reason is that

the records’ increments, which directly impact the clustering

quality, will stay the same with different batch sizes, as long

as the update order is maintained. More theoretical analysis

can be found in Section IV-D.

Summary: DistStream-based implementations achieve

comparable (average 99%) clustering quality with MOA-based

counterparts, while unordered ones suffer from up to 60%

lower clustering quality. We also identify that more stable

datasets are less sensitive to update order. Further, batch

sizes have limited impact (average 2.79% clustering quality

difference) on our order-aware mini-batch update model.

8

representations and update functions. For example, partition-

based algorithms [9], [11] group the data stream into a

number of partitions and are suitable for finding spherical

clusters, while density-based algorithms like DenStream [16]

are good at finding arbitrary shapes. Grid-based algorithms

[17], [29] map the streaming data into discretized grids and

group connected dense grids into clusters. Researchers also

improve these algorithms for high-dimensional streams [12],

[29], for exploring the evolution of density mountain [22], etc.

Our work proposes an efficient framework for parallelizing

stream clustering algorithms that comply with the online-

offline paradigm.
To support high-speed distributed data streams, researchers

have extended some batch-mode clustering algorithms to work

in a distributed fashion [18], [32], [33]. These algorithms,

such as distributed k-center [18] and distributed probabilistic

algorithms [33], follow a different update paradigm called

two-phase merge paradigm. Recently, researchers [13], [14],

[23], [28] begin to implement a partition-based CluStream

algorithm on distributed stream processing systems such as

Spark Streaming and Storm. They adopt unordered mini-batch

paradigm [13], [14] or similar periodical update paradigm [23],

[28]. Our work improves clustering throughput and maintain

the clustering quality through order-aware mini-batch update

model.

Parallel approaches for machine learning algorithms. Cur-

rently, there are two types of parallel approaches for batch-

mode machine learning algorithms [30]. One is data-parallel

approach that horizontally splits the static big data into many

workers, iteratively trains model parameters in each worker,

and then aggregates the different model parameters together

in server node(s). This approach is widely supported by dis-

tributed machine learning frameworks like Spark MLlib [27].

The other approach is model-parallel that splits the large model

(e.g., parameter vectors) into different workers, iteratively

trains the partitioned model in each worker on all the dataset,

and then merges the trained partial models together. This

approach can be used in parameter-server based frameworks

such as Petuum [30] and Tensorflow [8]. We extend these

approaches to stream clustering by considering both the data

stream characteristics, namely one-pass, unbounded, ordering,

and computation characteristics such as sequential update

constraints and micro-cluster merging operation.

IX. CONCLUSIONS

Today’s data streams require high throughput that cannot

be delivered by single-machine stream clustering algorithms.

In this paper, we present DistStream to scale out the widely-

used online-offline stream clustering algorithms. DistStream

provides a new order-aware mini-batch update model with

efficient parallel approaches. DistStream is implemented atop

Spark Streaming and provides APIs for migrating single-

machine stream clustering algorithms to DistStream. Our eval-

uation shows that DistStream-based stream clustering algo-

rithms can achieve sublinear throughput gain and comparable

clustering quality with the single-machine counterparts.

X. ACKNOWLEDGEMENTS

This work is supported by the National Key R&D Pro-

gram of China (2017YFB1001804), National Natural Science

Foundation of China (61802377, 61872340), National Science

Foundation grants (1755659, 1815619), and Youth Innovation

Promotion Association at CAS.

REFERENCES

[1] Alibaba: Key highlights from the 2017 11.11 Global Shopping Festival.
https://www.alibabagroup.com/en/news/article?news=p171112.

[2] Apache Flink. http://flink.apache.org/.
[3] Apache Storm. http://storm.apache.org/.
[4] Covertype Dataset. http://archive.ics.uci.edu/ml/datasets/covertype.
[5] Imperva blocks DDoS. https://www.imperva.com/blog/imperva-blocks-

our-largest-ddos-l7-brute-force-attack-ever-peaking-at-292000-rps.
[6] KDD98 Data. http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html.
[7] KDD99 Data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
[8] M. Abadi et al. Tensorflow: A system for large-scale machine learning.

In OSDI, 2016.
[9] M. R. Ackermann et al. Streamkm++: A clustering algorithm for data

streams. ACM Journal of Experimental Algorithmics, 17(1), 2012.
[10] C. C. Aggarwal. A survey of stream clustering algorithms. In Data

Clustering: Algorithms and Applications, pages 231–258. 2013.
[11] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for

clustering evolving data streams. In VLDB, 2003.
[12] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for

projected clustering of high dimensional data streams. In VLDB, 2004.
[13] O. Backhoff and E. Ntoutsi. Scalable online-offline stream clustering in

apache spark. In ICDM Workshop, pages 37–44, 2016.
[14] A. Bifet et al. Streamdm: Advanced data mining in spark streaming. In

ICDM Workshop, pages 1608–1611, 2015.
[15] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: massive

online analysis. Journal of Machine Learning Research, 2010.
[16] F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over

an evolving data stream with noise. In SIAM SDM, 2006.
[17] Y. Chen and L. Tu. Density-based clustering for real-time stream data.

In KDD, 2007.
[18] G. Cormode, S. Muthukrishnan, and W. Zhuang. Conquering the divide:

Continuous clustering of distributed data streams. In ICDE, 2007.
[19] J. de Andrade Silva et al. Data stream clustering: A survey. ACM

Comput. Surv., 46(1):13:1–13:31, 2013.
[20] M. Ester et al. A density-based algorithm for discovering clusters in

large spatial databases with noise. In KDD, 1996.
[21] F. Farnstrom, J. Lewis, and C. Elkan. Scalability for clustering

algorithms revisited. SIGKDD Explorations, 2(1):51–57, 2000.
[22] S. Gong, Y. Zhang, and G. Yu. Clustering stream data by exploring the

evolution of density mountain. PVLDB, 11(4):393–405, 2017.
[23] P. Karunaratne et al. Distributed stream clustering using micro-clusters

on apache storm. J. Parallel Distrib. Comput., 108:74–84, 2017.
[24] P. Kranen, I. Assent, C. Baldauf, and T. Seidl. The clustree: indexing

micro-clusters for anytime stream mining. Knowl. Inf. Syst., 2011.
[25] H. Kremer et al. An effective evaluation measure for clustering on

evolving data streams. In KDD, 2011.
[26] S. Mansalis, E. Ntoutsi, N. Pelekis, and Y. Theodoridis. An evaluation of

data stream clustering algorithms. Statistical Analysis and Data Mining,
11(4):167–187, 2018.

[27] X. Meng et al. Mllib: Machine learning in apache spark. Journal of

Machine Learning Research, 17:34:1–34:7, 2016.
[28] G. D. F. Morales and A. Bifet. SAMOA: scalable advanced massive

online analysis. Journal of Machine Learning Research, 16:149–153,
2015.

[29] I. Ntoutsi et al. Density-based projected clustering over high dimensional
data streams. In SIAM SDM, 2012.

[30] E. P. Xing et al. Petuum: A new platform for distributed machine
learning on big data. In KDD, 2015.

[31] M. Zaharia et al. Discretized streams: fault-tolerant streaming compu-
tation at scale. In SOSP, 2013.

[32] Q. Zhang, J. Liu, and W. Wang. Approximate clustering on distributed
data streams. In ICDE, 2008.

[33] A. Zhou, F. Cao, Y. Yan, C. Sha, and X. He. Distributed data stream
clustering: A fast em-based approach. In ICDE, 2007.

11

