Speeding up Deep Learning with Transient Servers

Shijian Li*, Robert J. WallsT, Lijie Xuf and Tian Guo®
Computer Science, Worcester Polytechnic Institute* T8
Institute of Software, Chinese Academy of Sciences*
*sli8@wpi.edu, Trjwalls@wpi.edu, ixulijie@iscas.ac.cn, §tian@wpi.edu

Abstract—Distributed training frameworks, like TensorFlow,
have been proposed as a means to reduce the training time of
deep learning models by using a cluster of GPU servers. While
such speedups are often desirable—e.g., for rapidly evaluating
new model designs—they often come with significantly higher
monetary costs due to sublinear scalability. In this paper, we
investigate the feasibility of using training clusters composed of
cheaper transient GPU servers to get the benefits of distributed
training without the high costs.

We conduct the first large-scale empirical analysis, launching
more than a thousand GPU servers of various capacities, aimed
at understanding the characteristics of transient GPU servers
and their impact on distributed training performance. Our
study demonstrates the potential of transient servers with a
speedup of 7.7X with more than 62.9% monetary savings
for some cluster configurations. We also identify a number
of important challenges and opportunities for redesigning
distributed training frameworks to be transient-aware. For
example, the dynamic cost and availability characteristics of
transient servers suggest the need for frameworks to dynam-
ically change cluster configurations to best take advantage of
current conditions.

Keywords-Distributed deep learning; performance measure-
ment; cloud transient servers

I. INTRODUCTION

Distributed training is an attractive solution to the problem
of scaling deep learning to training larger, more complex,
and more accurate models. In short, distributed training
allows models to be trained across a cluster of machines
in a fraction of the time it would take to train on a single
server. For example, researchers at Facebook achieved near
linear scalability when training a ResNet-50 model on the
ImageNet-1k dataset using 32 GPU-equipped servers [1].

Distributed training is especially attractive for compa-
nies that want to leverage cloud-based servers. All major
cloud providers—Google, Microsoft, and Amazon—offer
GPU server options to support deep learning. However,
existing distributed training frameworks make traditional
assumptions about the lifetime of cloud servers in its cluster.
Namely, that once a server is acquired by the customer it will
remain available until explicitly released back to the cloud
provider by that customer. In this paper, we refer to such
servers as on-demand. While this assumption is reasonable
for many deployments, we argue that it also represents a
missed opportunity.

In this work, we ask the question: what if we use tran-
sient rather than on-demand servers for distributed training.
Transient servers offer significantly lower costs than their
on-demand equivalents with the added complication that
the cloud provider may revoke them at any time—violating
the availability assumption discussed in the preceding para-
graph. Google, Microsoft, and Amazon all offer transient
servers, so the idea of distributed training with transient
servers is applicable to all three major cloud platforms.

Consider the following motivating experiment. Using a
single on-demand GPU server on Google Compute Engine,
we were able to train a ResNet-32 model in 3.91 hours
with a total cost of $2.83 on average (Table . When
we use distributed training with four on-demand servers—
with each machine identical to the single server used the
in previous runs—we improved the average training time
to 0.99 hours with similar overall cost of $2.92. Finally,
when we use distributed training with four fransient servers
we retain the improvement in training time, 1.05 hours on
average, while significantly reducing the total cost to $1.05
on average (Figure . We saw these performance increases
even though we made no significant modifications to the
distributed training framework and 13 of the 128 transient
servers (affecting 11 out of the 32 clusters) were revoked at
some point prior to the completion of training. We provide
a more detailed analysis of this experiment and the impact
of server revocation in Section [III

Our goal is to identify the important design considerations
needed for rearchitecting distributed training frameworks
to support transient servers. While the simple experiment
above demonstrates the potential of distributed training with
transient servers (e.g., reduced training time and cost) as
well as the challenges (e.g., server revocation and availabil-
ity), we believe that transient servers also offer additional
opportunities. For example, price dynamics make it more
attractive to use clusters with machines drawn from multiple,
geographically-diverse, data centers. Such an approach raises
interesting questions about the impact of communication
costs and latency on training performance. Similarly, rather
than use a cluster composed of servers of the same type, we
might employ heterogeneous clusters composed of machines
with different computational resources and capabilities. Fi-
nally, the clusters themselves need not be static; instead,
we might dynamically add or remove servers to make

Training time Cost Accuracy
(hours) %) (%)

Trainin: 4 K80 transient (1.05, 0.17) (1.05, 0.02) (91.23, 1.30)
Setu s 1 K80 on-demand (3.91, 0.03) (2.83,0.02) (93.07, 0.002)

P 4 K80 on-demand (0.99, 0.02) (292, 0.05) (91.20, 1.01)
Transient | r = 0 (21 out of 32) (0.98, 0.01) (1.04, 0.01) (91.06, 1.43)
revocation | r =1 (8 out of 32) (1.13, 0.12) (1.07, 0.01) (91.83, 0.90)
scenarios r=2(2out of 32) (1.45, 0.50) (1.10, 0.02) (90.68, 0.30)

Table I: Benefits of transient distributed training. On average,
training with 4-K80 transient GPU servers results in a 3.72X
speedup with 62.9% monetary savings, compared to running on one
K80 on-demand GPU server. In addition, we observe a 1.2% drop
in accuracy compared to single GPU server training. However,
the slightly lower accuracy is due to training on stale model
parameters in distributed asynchronous training. That is, training
with 4-K80 servers, regardless of transient or on-demand, produces
models with almost identical accuracies. Here r = x (y out of 32)
denotes that the revocation of x workers happens in y clusters.
Performance metrics are represented in a tuple of average and
standard deviation throughout the paper, unless otherwise specified.

distributed training more robust to server revocation or to
take advantage of volatile server pricing.

We conduct the first large-scale empirical measurement
study that quantifies the training performance of deep learn-
ing models using cloud transient servers. Through our study,
we make the following additional contributions:

o« We compare the training time and cost of distributed

training using transient servers to on-demand servers.
We observe up to 7.7X training speedup and up to
62.9% monetary savings in our experiments when com-
pared to the single GPU baseline.

« We quantify the revocation impacts of transient servers
on training performance and identify the importance
of larger cluster sizes and the need to redesign dis-
tributed training frameworks. In addition, our observa-
tions about model accuracy reveal additional opportuni-
ties for mitigating revocation impacts, such as the need
for cloud providers to support selective revocation.

e We also demonstrate the benefits and limitations of
using heterogeneous servers in distributed training. In
particular, our findings suggest a number of plausible
transient-aware designs for deep learning frameworks,
including the ability to train with dynamic cluster sizes,
to better exploit these cheap transient servers.

II. BACKGROUND AND MOTIVATIONS

In this section, we first provide the necessary background
on distributed training and motivate our selection of param-
eter server-based asynchronous training (Section . We
then explain the opportunities and challenges presented by
training with transient servers (Section. An overview of
transient-based distributed training is illustrated in Figure[2]

A. Distributed Deep Learning

In this paper, we focus on evaluating distributed training
with parameter server-based asynchronous training due to its

Failed 2 Revocations 1 Revocation 0 Revocation

—
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12-C32(21)

1.0
w II HE B Bl
- AR
« NN

Accuracy(%)

swWiIl| pazieWION

90.9 90.5/92.6 92.4 91.6 89.8| 92.8 92.1 92.7 |91.9 (91.1,1.4)

Time(hour) 11181 1.2 1.02 1.0 1.26 1.02 1.18 1.19 1.07 (0.98,0.01)

Cost($) 1.09/1.11 1.07 1.07 1.06 1.07 1.06 1.07 1.07 1.07 [(1.05, 0.02)

Figure 1: Quantifying distributed training performance using
transient servers. We launched 32 transient GPU clusters for
training the ResNet-32 model on the Cifar-10 dataset. Each cluster
C; was configured with four K80 transient GPU servers (W1 to
W4) and one parameter server. We observed that 21 out of 32
transient clusters completed training with 0 revocations, and that
13 out of 128 K80 transient servers were revoked during various
training stages—the lighter the shade, the earlier the revocation.
On average, training with 4 K80 transient GPU servers resulted
in a 3.72X speedup and 62.9% monetary savings, compared to
running on one K80 on-demand GPU server.

popularity and potential resilience to training server failures.
The concept of distributed deep learning on multiple GPU
servers is relatively new [2], and a number of frameworks
such as TensorFlow |3|] and FireCaffe [4]| have started to
support training DNN models using clusters of GPU servers.
Note that this approach is different from training on a single
server with multiple GPUs.

Conceptually, the training of a convolutional neural net-
work can be divided into four phases. First, the model
parameters are initialized, often randomly or with a popular
function such as Xavier [5]. Second, one batch of input data
is selected and the feed-forward computation is performed
at each layer [by applying the function on the weights,
inputs, and the bias term from the previous layer [— 1.
The computation stops when the output layer is reached
and the results are recorded. This second phase is identical
to the process of generating predictions using a trained
model. Third, model errors are calculated by comparing the
probability distribution (i.e., the model output) generated for
each input to the known true value and multiplying by the
derivative of the output layer. The errors are then propagated
from layer [to its previous layer [— 1 until reaching the first
layer. Fourth, the model parameters between layer [— 1 and
layer [are updated by multiplying the learning rate and the
gradient of layer [and weights at layer [— 1.

As the model gets bigger—i.e., more parameters and
computation-intensive layers—the training time also in-
creases. To speed up the training process, phases two through
four above can be distributed across different servers to
parallelize training. A common way to do so is to have a
parameter server [[6], [7] that is in charge of updating model

parameters (phase four), and a cluster of powerful GPU
servers to work on the forward and backward propagation
(phases two and three). It is worth noting that phase two
is the most time-consuming of the training process [8] and,
therefore, would enjoy the largest benefit from adding more
GPU servers.

In this paper, we adopt the asynchronous distributed
training architecture depicted in Figure Here each worker
keeps an entire copy of the model and independently calcu-
lates gradients using its local copy of the input data—this
also referred to data-parallelism|’|In addition, each worker
can pull the most-recent model parameters from a parameter
server without needing to wait on the parameter server to
collect and apply gradients from all other workers, i.e.,
asynchronous training. It is also possible to use more than
one parameter server, in which case each worker needs to
contact all parameter servers (not depicted in the figure).
Consequently, workers might be working on slightly out-
dated models (indicated by different shades in Figure; this
model staleness can lead to a reduction of model accuracy.
Currently, in TensorFlow distributed training, one master
worker will also periodically save the model parameters
in a process called model checkpointing. Even if one of
the workers fails—e.g., the last worker colored with red in
Figure the training can still progress, albeit at a degraded
speed. However, if the master fails, the distributed training
also fails because we will not have access to the model files
with the converged accuracy.

B. Transient Servers

Transient servers are cloud servers that are offered at dis-
counted prices (up to 90% cheaper). Major cloud providers,
such as Amazon EC2 and Google Compute Engine (GCE),
offer transient servers in the form of spot instances and
preemptible VMs, respectively. Unlike traditional on-demand
servers, cloud providers can revoke transient servers at any
time |9]], [10]. When such situations arise, customers are
only granted a short time window—30 seconds for GCE
and 2 minutes for EC2—before permanently losing access
to the server. This is often referred to as server revocation.

Aside from revocation, transient servers offer the same
performance as equivalently configured on-demand servers.
For example, the training performance with 4 K80 transient
servers when r=0 (no revocations) and training with 4 K80
on-demand servers are almost identical, see Table

Cloud transient servers exhibit three key characteristics
that make them both beneficial and challenging to leverage
for distributed training.

First, transient servers are significantly cheaper allowing
customers to devote additional servers to training, speeding
up the training time while remaining within a fixed monetary

IFor training with large volumes of data, the data are also often divided
into shards.

Parameter Server

4. Compute new weights
Gradient Gradient Gradient
w' =w— pAw

1. Pull Weights w 1. Pull Weights w
3. Push gradients Aw

2. Compute gradientt 2. Compufe gradienty

1. Pull Weights w

3. Push gradients Aw 3. Push gradients Aw

Transient GPU Servers

Figure 2: Illustration of distributed training on transient GPU
servers. We adopt an asynchronous distributed training architec-
ture. The parameter server runs on an on-demand CPU server
and the workers (including a special master that is in charge of
model checkpointing) run on transient GPU servers. Workers are
in charge of calculating the gradient updates while the parameter
server incorporates the gradients to update the model parameters.
The training can still progress even if some of the workers (denoted
in red) are revoked by the provider.

budget. Depending on whether the transient servers are
statically priced (e.g, GCE preemptible VMs) or use a more
dynamic pricing model (e.g., Amazon spot instances), cloud
customers have a range of possible cluster configurations
that may evolve over time. For instance, in the case of
dynamic pricing, cloud customers may want to regularly
monitor prices and adjust the number and type of servers
to maximize training performance and reduce costs.

Second, the availability of transient servers, compared
to their on-demand counterparts, can be lower or even
unpredictable. Here the availability of cloud servers refers
to the probability of cloud providers fulfilling the resource
request in a timely manner. Availability depends, in part,
on the overall demand for servers (both on-demand and
transient) in the local region [11]. Therefore, to best utilize
transient servers it is likely that customers will need to
request servers with different (but more available) resource
capacities and from multiple regions.

Third, transient servers have uncertain lifetimes. Here a
server’s lifetime is the time interval between when the cloud
provider satisfies the customer’s request for a new server
and the time the server is revoked. Different cloud providers
have different policies that directly affect server lifetimes.
For Google Compute Engine, the maximum lifetime of any
transient server is at most 24 hours. That is, even though
GCE preemptible VMs can be revoked at any point, they
are guaranteed to be revoked after 24 hours.

We empirically measured the lifetime of GCE transient
servers (with the configurations detailed in Table [II). Our
measurement involves more than 600 transient servers that

1.0 ps o
0.8 —— K80

w P100

5 V100

~ 0.6

9

20.41

w ::—::—:/I
0.2
0.0L%

0 2 4 6 8 10 12 14 16 18 20 22 24
Transient VM Lifetime(hours)

Figure 3: CDF of Google preemptible GPU server lifetimes. We
measure the lifetime as the time between when a preemptible GPU
server is ready to use and when the server is revoked by the Google
cloud platform. Note that Google transient servers have a maximum
lifetime of 24 hours. We observe that less than 20% of transient
servers are revoked in the first two hours.

were requested at different times, from different data center
locations, and with different levels of resource utilization.
In Figure |3} we compare the lifetimes of GCE transient
servers. We observe that different GPU servers have dif-
ferent revocation patterns. Further we find that even though
approximately 70% of servers live the full 24 hours, about
20% are revoked within the first two hours—in the latter
case, distributed training that lasts more than two hours will
be subject to revocation impacts.

In summary, cloud transient servers present an opportunity
to speed up deep learning with cheaper server resources.
However, considering the potential revocations and unavail-
ability of transient servers, leveraging these resources re-
quires us to rethink existing techniques for distributed train-
ing. Current distributed frameworks, designed with stable
on-demand servers in mind, do not adequately support the
features that are necessary for leveraging transient servers;
e.g., dynamic cluster adjustment, robust model checkpoint-
ing, or support for heterogeneous and geographically dis-
tributed clusters.

ITII. EXPERIMENTAL EVALUATION

Our evaluation answers the following key research ques-
tions: (1) How do transient servers compare to on-demand
servers with respect to distributed training? (2) What is the
best cluster configuration given a fixed monetary budget?
(3) How does the revocation of transient servers impact
distributed training? (4) What are the benefits and challenges
associated with dynamic clusters? (5) What is the perfor-
mance impact of using heterogeneous server resources?

A. Experimental Setup

Public Cloud Infrastructure: We conducted our ex-
periments using Google Compute Engine (GCE) and the
server configurations are shown in Table We choose three

GCE Mem. CPU On-demand Transient Savings EC2
instance (GB) v ($/hr) ($/hr) potential(%) counterpart
K80 61 4 0.723 0.256 354 p2.xlarge

P100 61 8 1.43 0.551 385 -
V100 61 8 2.144 0.861 40.2 p3.2xlarge
PS 16 4 0.143 0.041 - m4.xlarge
CNN Num. Model size Num. Batch Top-1 Optimizer
model parameters (MB) layers size accuracy(%) ptimiz
ResNet-32 1.9M 14.19 32 128 92.49 Momentum

Table II: Server configurations and models used in our exper-
iments. We customized both GPU servers (used to run workers)
and a CPU server (shaded and referred to as PS) in Google Cloud
Engine. The first column specifies the type of GPU cards used for
each server. For ResNet-32, the top-1 accuracy is obtained from
the original paper that evaluates against Cifar-10 dataset.

GPU server configurations with different GPU capacities—
K80, P100, and V100 in increasing order of GPU memory,
parallel cores, etc. For simplicity of exposition, we refer to
each GPU server configuration by the attached GPU.

To better avoid memory and CPU bottlenecks in our
evaluation, we choose the max memory and virtual CPU
values allowed by GCE for each configuration.

The savings potential column illustrates the cost dif-
ference between transient and on-demand instances. It is
calculated as the unit on-demand price divided by the unit
transient cost. Recall that Google Compute Engine uses a
static pricing model.

The fourth server in Table labeled PS, was used to
run the parameter server during distributed training. This
server did not have an attached GPU—hence, the reduced
cost—and was run using an on-demand instance. The reason
we use an on-demand instance for the parameter server
for distributed training is to avoid the checkpoint restarts
that would result if parameter server was revoked. However,
we do use transient parameter servers when measuring the
lifetime of transient CPU server.

Deep Learning Framework: We leveraged the popular
deep learning framework TensorFlow [3] for all our experi-
ments given the relative maturity of the project and support
for distributed training. We also used the Tensor2tensor
library [12] to assist in the training process. For the model,
we selected ResNet-32 [13], in part, due to its popularity.
This CNN model can be trained to convergence using a
single GPU server in ~4 hours, making it practical for our
experiments. See Tablefor full model details.

For the training dataset, we used, Cifar-10 [|14], a standard
image recognition dataset consisting of 60K color images,
each 32 by 32 pixels, spanning 10 output classes. Following
standard conventions in the field of deep learning, we used
50K images for training and the rest for testing. We also
used the same hyperparameter configurations (e.g., learning
rate) as specified in the original paper for most of our
experiments—any differences are noted when appropriate.

Performance Metrics: We focus on the performance
metrics most relevant to comparing distributed training on
transient servers to training on on-demand servers. For tran-

sient servers, we monitor the revocation events and record
server lifetimes. For transient servers that were revoked by
GCE, their recorded lifetime will typically be shorter than
the total training time for the cluster. A training cluster is
said to have failed if the master worker is revoked prior to
training completion.

For distributed training, we measure training time, cost,
and accuracy. Training time is defined as the amount of
time required to complete the specified training workload.
When training the ResNet-32 model, we specify the training
workload to be 64K steps where each step equates to
processing a batch of 128 images in the Cifar-10 dataset.
We refer to the accuracy of the model at 64K steps as the
converged accuracy.

Training cost is calculated using the sum of all cloud
servers that participate in the training process. In the case
of distributed training, these include GPU servers that are
responsible for calculating the gradients and the CPU server
that is in charge of updating the model parameters. We
calculate the cost of each server by multiplying the unit
cost by the amount of time that server was active in training.
For a transient server, the active training time stops when
the server is revoked or the training has completed. When
analyzing the training cost, we use a fine-grained second-
based charging model [15]. For example, if the active
training time is 3601 seconds, we will charge the server for
3601 seconds. In the traditional hour-based charging model,
the cost would instead be based on two hours. Regardless
of the charging model, we can amortize the cost effectively
when transient training is offered as a service in which
different training sessions can share the training servers.

Training accuracy is measured as the top-1 accuracy,
i.e., the percentage of correctly predicted images using the
trained model on the test portion of the dataset. In the
case of the ResNet-32 model, we evaluate accuracy after
64K steps. While our goal is not to increase the accuracy
of existing models, it is important to demonstrate that
distributed training with transient servers does not have a
significant negative impact on accuracy.

B. Transient vs. On-demand Servers

For our first experiment (also described in the introduc-
tion), we evaluate the feasibility of using transient servers for
distributed training as opposed to the traditional, more ex-
pensive, and more available on-demand equivalents. Specif-
ically, we launched 32 transient GPU clusters for training
the ResNet-32 model on the Cifar-10 dataset. Each cluster
C; was configured with four-K80 transient GPU servers and
one parameter server PS. Our on-demand clusters used the
same configuration.

From Table we observe that distributed training offers
a significant reduction in training time and that distributed
training with transient servers further offers a significant
reduction in cost. More concretely, the speedup is up to

2 Revocations 1 Revocation 0 Revocation

N —
Cl C2 C3 C4 C5 ©6-C32(27)
' 1.0

2 Revocations 1 Revocation 0 Revocation

N ——
Cc1'C2 ©3 C4 C5 C6 C7-C32(26)

swI] pezifewioN

1.0
0.6

- HER |
w2
0.2

BuWI| paziewIoN

Accuracy(%)

92.1| 92.4 92,8 90.9 (922 (91.9,0.07) 90.1/88.5/86.4 89.4/90.1|(88.7, 1.5)

Time(hour)

2.68| 2.56 |3.61| 3.86 3.15 (1.96, 0.05) 0.54 0.53/0.56 0.51/0.53 |(0.51, 0.01)

Cost($)

1.12] 1.121.17| 1.18 1.13 (1.08, 0.03) 1.11/1.09/1.06 1.09/1.09 ((1.06, 0.02)

Figure 4: Performance comparison between distributed training
using transient and on-demand GPU servers. We measure the
distributed training performance with three different cluster sizes.
We repeat each cluster size 32 times and label them as C; where i €
[1,32]. The cluster runs are sorted by the number of revocations
and the workers W are sorted by their lifetime. On average, using
transient servers can achieve up to 62.9% cost savings and up
to 7.7X training speed up when compared to training using one
K80 on-demand server. In all cases of distributed training with
transient servers, the converged accuracy is comparable to that of
on-demand distributed training.

3.72X when using clusters that fit within the initial budget
for a single K80 on-demand server. Moreover, we see a
62.9% savings in training cost with slightly degraded top-1
accuracy (~1.2%) at convergence time. The slightly lower
accuracy is due to training on stale model parameters in
distributed asynchronous training and affects transient and
on-demand clusters equally.

Our empirical analysis reveals three other important obser-
vations. First, even with server revocation transient servers
offer tangible benefits over distributed training using on-
demand servers; namely, significantly lower cost with similar
accuracy at the cost of 5.7% longer training time. More
concretely, we observed 13 server revocations in 11 of our 32
transient clusters. In all but one case, the training continued
after revocation and finished successfully with an average
speedup of 3.72X and cost savings of 62.9%. Figure
illustrates the observed revocations for the transient clusters.
The caveat here is that the revoked servers cannot be the
master server for the cluster, hence our next observation.

Second, current distributed training architectures need to
be redesigned to support the failure of the server responsible
for checkpointing, i.e., the master. Currently, if the master
GPU server is revoked (happened once in our 32 runs for
this experiment) then the distributed training will fail.

Third, the number of revoked GPU servers had little
impact on the training cost and accuracy but increased train-
ing time (up to 48%). This implies that we could mitigate
the revocation impact on distributed training performance
by increasing the cluster size. We empirically evaluate this
hypothesis in the following sections.

Transient . .
Training Revocations Time (hours) Cost($) Accuracy(%)
2 K80+1 PS 6250 (2.16,0.50) (L.31,0.08) (91.93, 0.70)
4K80+1 PS) f”448) (1.05,0.17) (1.16,0.04) (91.23, 1.30)
8 K80+ 1PS outo 0.51,0.01) (1.11,0.02) (88.79, 1.50)
6.66%

1 P100 2 ot of 32) (150, 0.04) (0.83,0.02) (93.11, 0.24)
(¥

1 VIoo AsHI (123004) (1.06,0.03) (92.98, 0.39)

(14 out of 32)

Table 111: Scaling up vs. scaling out. Under the same training cost
budget constraint, we empirically measure and compare the train-
ing performance of scaling up and out using transient resources.
We calculate the average performance across all training setups
that completed successfully. In the scale up case, 28 (12) out of 32
runs for P100 (V100) were able to finish 64K steps. In the scale out
case, training only fails when the K80 master worker is revoked,
with a probability of 6.25%. Although K80 clusters with various
sizes have the same failure probability, the larger the cluster size,
the lower the impact of revocations. This is because training can
still progress in larger clusters, albeit at a degraded performance
compared to the initial cluster.

Summary: Distributed training with transient servers can
speed up deep learning by up to 3.72X with 62% cost sav-
ings, when compared to training using on-demand servers.
Our analysis motivates the need for redesigning distributed
training frameworks to support robust model checkpointing
and suggests that training with larger cluster sizes allows for
better tradeoffs between training time and accuracy.

C. Scaling Up vs. Out with Transient Servers

Using the cost of training on a single on-demand K80 as
a constraint, we investigate the merits of scaling up by using
more powerful GPU servers or scaling out by using a cluster
of GPU servers. Intuitively, we are asking the question: what
is the best cluster configuration given a fixed budget?

We selected three scaling out and two scaling up transient
cluster configurations, running each 32 times, and present
the average performance in Table All clusters were able
to finish within the specified monetary cost budget of $2.83.

Our results reveal three important insights. First, scaling
up is less resilient to server revocations. We observed a
training failure rate of 6.66% for the P100 and 43.8% for the
V100 compared to just 3.1% for a cluster of K80 machines.
The lifetime of revoked server during distributed training
is depicted in Figure [T] as well as Figure [4] Note, for the
two former configurations with a single machine, the server
revocation and training failure rates are the same.

Second, increasing the size of the cluster improves train-
ing speed but reduces the accuracy of the trained model. For
instance, scaling out to 4-K80 cluster is 30% (and 14.6%)
faster when compared to scaling up to one P100 (or V100,
respectively) with slight decrease of 1.75% accuracy.

Third, the accuracy decrease is non-linear as the cluster
increases. We observed a significant drop of 4.28% in
accuracy when the cluster consists of 8-K80 servers. We
also observed that the accuracy converges before 64K steps,

Avg. revocation overhead (%) \ Distributed training performance

Revocation Cluster Training Cost A Training time Cost Accuracy
scenarios Size time 08 ccuracy (hours) %) (%)
2 1.96 1.28 91.90
r=0 4 0.98 1.14 91.06
8 0.51 1.11 88.65
2 61.7 14.8 0.18 3.17 1.47 92.08
r=1 4 153 35 0.77 1.13 1.18 91.83
8 3.9 2.7 0.05 0.53 1.14 88.60
2 - - - - - -
r=2 4 48 9.6 0.38 1.45 1.25 90.68
8 5.9 5.4 1.45 0.54 1.17 90.10

Table 1V: Quantifying revocation overhead for different cluster
sizes. With the same revocation scenarios, i.e., v = 1 where
i is the number of GPU servers that were revoked during the
training session, the impact on training time and cost decreases
with increases in cluster size. In addition, with the same initial
cluster size, we observe higher revocation overheads the greater
the number of revocations.

i.e., prolonging training does not improve accuracy. These
observations are consistent with previously noted impacts
of stale model parameters on the converged accuracy [6],
[16]-18].

Summary: When configuring the transient server clusters,
one needs to consider various factors, including revocation
probability, training time reduction, and desired model ac-
curacy. Based on our measurements, a cluster size of four
balances the above factors for our target model.

D. Revocation Impact

As summarized in Table [IV| the impact of server revo-
cation depends on the size of the training cluster. Here the
revocation overhead is calculated by comparing the average
performance achieved in each revocation scenario to equiv-
alent cluster without any revocations. For both training time
and cost, the revocation overhead decreases with increased
cluster size. For example, for the 8-K80 cluster, the overhead
of a revocation is only 3.9% for training time and 2.7% for
training cost.

When we also consider the lifetime of revoked GPU
servers (Figure and Figure [4) it appears that the reduced
overhead observed in the larger cluster is a combination
of two factors: transient servers being revoked at different
stages relative to the cluster training time (though the actual
lifetime might be the same) and the percentage of lost
computation power relative to the cluster capacity. Note that
when a worker is revoked, the lost work is equivalent to
the time to generate gradients from one batch of data, in
the worst-case scenario. This implies that larger transient
clusters are more resilient to server revocations as it reduces
the time that each individual server is needed.

Interestingly, we observe a slightly increased accuracy for
clusters of size two and four (shaded cells). We suspect this
may be caused by losing an underperforming GPU server,
i.e., a server that happens to be slightly slower than average
and is working on more stale model parameters than the rest.
If true, this motivates the redesign of cloud transient server

revocation. In essence, when revoking transient servers, if
cloud providers could only specify the number of servers
needed from a particular cloud customer and leave the choice
of which servers to be revoked to the cloud customer, it
will enable more flexibility when making tradeoffs between
accuracy and training performance.

On the other hand, as the number of revocations increases
from one to two occurrences, the overhead for training
time and cost also increases significantly. In the case of
4-K80 clusters, the overhead triples. Again, this indicates
that in addition to the number of revocations, the timing
of revocations also plays an important role in defining
the revocation overhead. Although cloud customers cannot
control when and how many revocations will occur during
training, our results suggest strategies for reducing impact
by either increasing the cluster size or selectively returning
training servers, thereby improving accuracy by controlling
model staleness. The cost savings, up to 70% compared to
a single K80, also make it possible to launch more than
one transient cluster to further mitigate against the impact
of revocations.

Summary: The impact of server revocation on training
time and cost depends on the number of revocations, the
cluster size, and when the revocation events happen. Larger
cluster sizes are more resilient to revocation. Further, our
observations suggest that further improvements are possible
if the cloud provider adopts a more flexible revocation
policy, e.g., by allowing the customer to choose which
resources get revoked.

E. Scaling Up with On-demand Servers

Here, we compare the distributed training performance
between on-demand and transient clusters (without revo-
cations) using the same number of K80 servers. Given
the limited variance in on-demand performance, we only
repeat the on-demand training ten times. We present the
average performance and standard deviation in Table
Our measurements demonstrate that scaling up with on-
demand servers incurs almost 2X higher training costs with
almost identical training time and accuracy. This again
showcases the opportunity presented by transient servers
in keeping up with on-demand training performance while
being significantly cheaper.

F. Dynamic Transient Clusters

Given the extended time it can take to train a model and
the potential volatility of transient server prices, it may make
sense to dynamically add and remove GPU servers during
training. This would, for example, allow cloud customers
the flexibility to add cheaper transient servers to speed
up training and ensure they always have the best cluster
configuration given their budget and changing server prices.
We refer to this concept as dynamic transient clusters.

| Distributed training performance

Cluster Training Training time Cost Accuracy
size status (hours) 6] (%)
) r=20 (1.96, 0.05) (1.28, 0.03) (91.90, 0.70)
On-demand (1.99, 0.06) (3.16, 0.10) (91.90, 0.73)
4 r=0 (0.98, 0.01) (1.14,0.01) (91.06, 1.43)
On-demand (0.99, 0.02) (3.02, 0.05) (91.20, 1.01)
8 r=0 (0.51, 0.01) (1.11, 0.02) (88.65, 1.52)
On-demand (0.51, 0.01) (3.01, 0.03) (88.40, 2.23)

Table V: Comparison of distributed training performance using
on-demand and transient servers. For all three cluster sizes, we
observe little performance deviations on training time (1.5%) and
accuracy (0.25%) between on-demand and transient K80 servers.
However, on-demand distributed training exceeded the monetary
budget by up to 11.7% (highlighted in red), casting doubt on the
practicality of speeding up training with on-demand clusters.

100
5| 48k

901
851
80
75
70+

Top-1 Accuracy(%)

—— 1K80 +1PS
65 —— Naive learning rate
—— Adaptive learning rate

60— T T T T y y
0 10 20 30 40 50 60
Steps(k)

Figure 5: Benefits of dynamic transient distributed training and
adaptive learning rate. Dynamically scaling training cluster allows
training to be finished 40.8% faster than a static cluster. By
adaptively setting the learning rate, we mitigate the accuracy
degradation caused by naively using sparse mapping.

As existing distributed training frameworks do not na-
tively support dynamic clusters, we instead propose a tech-
nique called sparse mapping to enable dynamically adjusting
training cluster configurations during runtime. When using
sparse mapping, cloud customers specify the maximum
number of workers (i.e. GPU servers), also referred to as
slots, allowed in the cluster. These slots would then be
filled opportunistically during training. For example, a cloud
customer can initialize a cluster with four slots and start
training with one initial GPU server; the other slots will be
filled dynamically.

Intuitively, using sparse mapping allows cloud customers
to more efficiently utilize transient servers depending on
dynamic conditions, such as price. To demonstrate this,
we started a cluster with a single K80. After every 16K
steps, we added one additional K80 server to the cluster.
As shown in Figure |5] the training finishes in 2.28 hours
and is 40.8% faster compared to using a static cluster size.
Moreover, training with a dynamic cluster also leads to
21.5% cost savings when compared to training with the

o
S

—e— K80+1PS 1001 o kgo+1PS
—%— KB0+2 PS 90{ = KB0+2PS
—— V100+1PS —— V100+1PS
—— V10042 PS

&
S

—— V100+2 PS

60

Normalized Runtime(%)
Now
s &

Normalized Cost(%)
~
S

50

-
)

40

2 3 4 5 6 7 8 2 3 4 5 6 7 8
Cluster size Cluster size

(a) Training time. (b) Training cost.

Figure 6: Training performance bottleneck. We measure the
training time and monetary costs of scaling out with less powerful
K80 and more powerful V100, normalized to the single K80
training. For K80 clusters, the number of PS has little impact
on the training speed. In contrast, we observe up to 1.75X training
speed using 2 PS in V100 clusters compared to that of one PS.
Consequently, the negligible speedup with using more expensive
V100 has lead to an almost linear increase of training cost.
Note, training accuracy exhibits similar trend of decreasing with
the cluster size as shown previously, and therefore we omit the
accuracy comparison due to space limitation.

static cluster size. However, we observe 1.17% accuracy
degradation for training with a dynamic cluster size. This
is because an important hyperparameter, i.e., learning rate,
that can affect training accuracy, is currently calculated
based on the number of workers supplied in the training
configuration, instead of the number of active workers. We
refer to the method of leveraging sparse mapping without
changing learning rate as using a naive learning rate.

To further investigate the impact of incorrectly configured
learning rate, we implement an adaptive learning rate that
adjusts the learning rate based the number of active workers
instead of the number of total workers. In Figure |5] we
compare the top-1 accuracy with adaptive learning rate to
both the baseline of training with one K80 server and
training with a cluster with increasing number of K80
servers with naive learning rate. As shown, using an adaptive
learning rate can improve the converged accuracy by 1%.

Summary: Sparse mapping provides a practical way to
utilize transient servers dynamically. However, naively utiliz-
ing sparse mapping can lead to model accuracy degradation
due to inappropriate learning rate. But adaptively scaling
learning rate to current number of workers can achieve 1%
higher accuracy compared to naive learning rate.

G. Implications of heterogeneous training

As we empirically demonstrated previously, different
classes of transient servers exhibit different revocation prob-
abilities, cost savings, availability, and speed trade-offs.
Naturally, this suggests the need to support a mix of servers
to balance such trade-offs in distributed training. We refer to
such clusters as heterogeneous and in this section, we study
two types of heterogeneity: the first leverages differences in
hardware and the second uses differences in location.

For both types of heterogeneity, we use a fixed cluster
size of four transient workers plus an on-demand parameter

server. We use this cluster size for two reasons. First, when
scaling out with more powerful V100, we have observed
that training time quickly plateaus after using more than
four servers (Figure @) That is, the training bottleneck has
shifted from the ability to parallelize the gradient compu-
tations to how fast the single parameter server can handle
the weight pulling and gradient pushing from GPU servers.
When using two parameter servers for V100 clusters, we
again observe training speed up for up to 1.75X compared
to the single PS scenario. Second, under the current Google
Compute Engine transient pricing models, when scaling out
with more powerful V100, the monetary cost grows almost
linearly, as shown in Figure [6b]

To understand the impact of hardware heterogeneity, we
compared three baseline training scenarios using homoge-
neous clusters to the training performance of a variety of
heterogeneous cluster configurations. Homogeneous clusters
consist entirely of servers with the same GPU type while
heterogeneous clusters feature a mixture of K80, P100, and
V100 servers. We denote the configuration of each cluster
using the tuple (Ngso, Np1oo, Nvipo) Where each value
represents the number of GPU servers of that particular type
in the cluster. For example, we use the cluster configuration
(2, 1, 1) to represent clusters with two K80 servers and
one P100 and one V100. For all of the clusters, we set
the total number of GPU servers to be four, i.e., Nggo +
Npioo + Nyioo = 4. In Figure [7| we compare the training
performance of three different heterogeneous configurations
with that of three homogeneous configurations.

When swapping out two (or three) K80 machines for
more powerful GPU servers, we observe up to a 50%
speedup when compared to the homogeneous cluster of
four K80 servers. The heterogeneous configuration (1, 1, 2)
with V100 incurs 17% more monetary cost. Similarly, when
swapping out two (or three) V100 for less powerful GPU
servers, we observe up to a 28% slowdown when compared
to the homogeneous cluster of four V100 servers. The
heterogeneous configuration (2, 1, 1) with two K80 reduces
the monetary cost by 26%. Our evaluation suggests that
mixing in more powerful transient GPU servers significantly
increases training speed with a manageable cost increase and
negligible accuracy impact.

For understanding the implications of location heterogene-
ity, we compare the training performance of using clusters
where all the workers reside in a single geographic region
to clusters with workers split across multiple regions. We
choose three US-based regions for our experiments: us-
eastl, us-central and us-westl. We represent each cluster
configuration using the tuple (Negst, Neentral, Nwest) Where
each value represents the number of servers running in each
region. We place the parameter server in the data center with
the largest number of workers for any given cluster.

As shown in Figure 8] splitting servers across different
regions leads to significant slowdowns, up to 48%. This

1.6 .. (4,0,0) m=m (0,4,0) (0,0,4) - (4,0,0)

14 128

1.1 12
12 5 nb 115 113

1.04
1.06 ok Lo i 1.01

Normalized Cost
°
®
°
S
3

0.57
0.6 0.51 0.50

Normalized Runtime

(0,40 0,0.4)

1.06

W (4,0,0) W= (0,4,0) (0,0,4)

=
N

117 ™ 0.999 0.996 0.999 1.000 0,997 1.001 1.001 0.998 1.002

g
)

had
®

0.75
i

o
o

Normalized Accuracy

o
kS

o
N

(2,1,1) 1,2,1) 12) 2.11)
Heterogeneous Cluster Setting

(a) Training time.

(b) Training cost.

e
o

1.2,1) (11,2) (2,1,1) 1.2,1) 12
Heterogeneous Cluster Setting

Heterogeneous Cluster Setting

(c) Training accuracy.

Figure 7: Training with heterogeneous server hardware. Mixing workers with less powerful GPUs slows down training by up to 28%
but leads to 26% cost savings when compared to training with homogeneous servers. Further, the change in accuracy is negligible.

Accuracy . Accuracy

(2,2) @11 ’ (3,1) (2, (2,1,1)
K80 cross-region cluster setting P100 cross-region cluster setting

(a) K80 clusters. (b) P100 clusters.

(3, 1)

Figure 8: Training with heterogeneous server locations. Using
servers from different data centers resulted in a 48% slow down
when compared to training within the same region. Interesting,
splitting servers across three data centers showed similar perfor-
mance to splitting across just two regions.

is because a subset of the workers have to communicate
with a parameter server that resides in a different data
center. Even though our clusters use an asynchronous train-
ing architecture—where workers do not need to wait for
each other to receive the updated model parameters—the
separated workers contribute /ess work towards completing
the specified 64K steps, slowing down the overall training.
We do not observe any additional slow down when splitting
clusters across two regions versus all three regions. Interest-
ingly, there is a slight increase in accuracy as the training
speed slows, suggesting the potential to mitigate the impact
of cross-region training when transient costs are low enough.

Summary: Training with heterogeneous clusters, either in
terms hardware or location, results in non-trivial tradeoffs
in training cost, accuracy and time. For example, it is
more effective to train with heterogeneous hardware clus-
ters in the same data center as the training slow down
is roughly proportional to the cost reduction; the saved
money can be used to increase cluster size, speeding up
training and mitigating revocation impacts. Further, training
across geographically-diverse data centers incurs significant
overhead due to network communication. Our observations
motivate the need to optimize the network communication
of distributed training frameworks to take advantage of
heterogeneous location clusters.

IV. RELATED WORK

Deep learning frameworks. There are a number of deep
learning frameworks [3], [12], [19], [20] that provide a
composable pipeline for machine learning practitioners to
design, train, validate, and deploy deep learning models.
Although our measurement study is conducted on the pop-
ular TensorFlow framework |3]], we believe the results can
be extended to other frameworks, such as Caffe/FireCaffe,
CNTK, MXNet [19], [21]], |22]. The reason is that current
deep learning frameworks share the same distributed train-
ing method, adopt a parameter server to maintain training
parameters, use SGD-based methods for optimizing model
parameters |[18]], |23], and support distributed training on
multi-GPU servers. However, most current deep learning
frameworks do not natively support dynamically adding or
removing servers while the training process is ongoing. Very
recently, MXNet has embarked the efforts to dynamically
scale training jobs on EC2 [24]. Complementary to the
recent support of dynamic training, our work pinpoints the
need for elasticity in transient distributed training to better
utilize the dynamically available transient servers across
types, regions, and monetary costs.

Performance studies on deep learning. A plethora
of works [25] have compared and studied deep learning
performance under different hardware and software con-
figurations. In particular, researchers have investigated the
scaling potential of using CPU servers [2], single GPU
servers, and multi-GPU servers |26]. As the computational
needs of deep learning grows so does the support for
distributed training over a cluster of GPU servers [4], [7],
[27). Prior work has considered the impact of network
communication [28]-[30]; how to tune hyperparamters, e.g.,
learning rate and batch size [1f, [18], [31]-[33]; and how
to mitigate the communication bottlenecks and the impact
of stale model parameters [6], [16]-|18]. However, most
works on distributed training performance [26], [34], |35]
make the implicit assumptions of static and homogenous
cluster configurations. Our study aims to understand the
training performance of cheap transient servers that have

dynamic availability, revocation patterns, and unit costs. In
addition, these previous studies often focus on measuring
training speed using the average time to process one mini-
batch [25], [26], [36]. While in this work, we consider
multiple important performance metrics—including training
time, cost, and accuracy—that could be impacted by training
on transient servers.

Performance optimization based on transient servers.
Since transient servers are cheaper than their on-demand
counterparts, many researchers have studied how to effec-
tively run applications on cloud transient servers with as
few modifications as possible [37], [38]]. Some researchers
have proposed transient-aware resource managers [39], [40]
to optimize job schedulers by taking into account the re-
vocation rates of transient servers. Other researchers have
proposed system-level fault-tolerance techniques such as
dynamic checkpointing to optimize the execution time of
various applications, including web services [38], [41],
big data applications [42[|-[45] and other memory-intensive
applications [46]. DeepSpotCloud [47] looked at how to
effectively train deep learning models by migrating from
one GPU server to a cheaper transient server. Our efforts
differs from prior work in two major ways. First, we focus
on understanding how distributed training can benefit from
cheap transient servers. Unlike the commonly studied batch
jobs, big data applications, or even web services, training
deep learning models poses a unique trade-off of converging
accuracy and training speed. Second, we explored the fea-
sibility and quantified the benefits of performing distributed
training on transient servers and identify important transient-
aware design changes in distributed training frameworks in
order to more effectively utilize transient resources.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we described the first large-scale empirical
evaluation of distributed training using transient servers. We
compared various transient server cluster configurations for
training a popular CNN model called ResNer-32 with a
standard image recognition dataset Cifar-10. Using training
on a single GPU server as a baseline, we observe up to
a 7.7X training speedup within the same cost budget and
with a slight accuracy decrease—an artifact of asynchronous
training that is not caused by the use of transient servers. In
fact, we observe that model accuracy on average is higher
when workers are revoked when compared to distributed
training without revocation. Our observations suggest that
deep learning frameworks could better leverage trade-offs
across all three performance metrics—i.e., model training
time, training cost, and accuracy—if cloud providers rework
the revocation mechanism. In addition, our analysis reveals
several ways that current training frameworks can better
utilize transient servers, e.g., by offering increased flexibility
for model checkpointing and supporting dynamic scaling.

10

ACKNOWLEDGMENT

We thank all our anonymous reviewers for their insightful
comments. This work is supported in part by National
Science Foundation grants #1755659 and #1815619, Google
Cloud Platform Research credits, the National Natural Sci-
ence Foundation of China (61802377), and the Youth Inno-
vation Promotion Association at CAS.

REFERENCES

[1] P. Goyal, P. Dolldr, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large
minibatch sgd: Training imagenet in 1 hour,” arXiv preprint
arXiv:1706.02677, 2017.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
A. Senior, P. Tucker, K. Yang, Q. V. Le et al., “Large scale
distributed deep networks,” in Advances in neural information
processing systems, 2012.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean
et al., “Tensorflow: A system for large-scale machine learn-
ing,” in USENIX Symposium on Operating Systems Design
and Implementation, 2016.

F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer,
“Firecaffe: Near-linear acceleration of deep neural network
training on compute clusters,” in The IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings
of the thirteenth international conference on artificial intelli-
gence and statistics, 2010.

Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. Ganger, and E. P. Xing, “More effective dis-
tributed ml via a stale synchronous parallel parameter server,”
in Advances in neural information processing systems, 2013.
H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P.
Xing, “Geeps: Scalable deep learning on distributed gpus with
a gpu-specialized parameter server,” in Proceedings of the
Eleventh European Conference on Computer Systems, 2016.
V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proceedings
of the IEEE, 2017.

Amazon, “Amazon ec2 spot instances,” [accessed February
2019]. [Online]. Available: https://aws.amazon.com/ec2/spot/
Google, “Preemptible vm instances,” [accessed February
2019]. [Online]. Available: https://cloud.google.com/
compute/docs/instances/preemptible

X. Ouyang, D. Irwin, and P. Shenoy, “Spotlight: An informa-
tion service for the cloud,” in 2016 IEEE 36th International
Conference on Distributed Computing Systems, June 2016.
A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A. N. Gomez,
S. Gouws, L. Jones, L. Kaiser, N. Kalchbrenner, N. Parmar,
R. Sepassi, N. Shazeer, and J. Uszkoreit, ‘“Tensor2tensor
for neural machine translation,” CoRR, vol. abs/1803.07416,
2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” arXiv preprint arXiv:1512.03385,
2015.

A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” Citeseer, Tech. Rep., 2009.
Google Cloud Platform, “Extending per second
billing in google cloud,” [accessed February 2019].
[Online]. Available: https://cloud.google.com/blog/products/
gcp/extending- per-second-billing-in-google

[2]

(3]

(4]

(51

(6]

(71

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-
aware async-sgd for distributed deep learning,” arXiv preprint
arXiv:1511.05950, 2015.

S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nag-
purkar, “Slow and stale gradients can win the race:
Error-runtime trade-offs in distributed sgd,” arXiv preprint
arXiv:1803.01113, 2018.

J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefow-
icz, “Revisiting distributed synchronous sgd,” arXiv preprint
arXiv:1604.00981, 2016.

Facebook Research, “Caffe2,” [accessed February 2019].
[Online]. Available: https://caffe2.ai

A. Paszke, S. Gross, S. Chintala, and G. Chanan,
“Pytorch,” [accessed February 2019]. [Online]. Available:
https://pytorch.org

Microsoft Research, “Microsoft cognitive toolkit,” [accessed
February 2019]. [Online]. Available: https://github.com/
Microsoft/CNTK

A. Foundation, “Apache mxnet,” [accessed February 2019].
[Online]. Available: https://mxnet.incubator.apache.org

S. Zhang, A. E. Choromanska, and Y. LeCun, “Deep learning
with elastic averaging sgd,” in Advances in Neural Informa-
tion Processing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates,

Inc., 2015.

Amazon Web Services - Labs, “Dynamic train-
ing with apache mxnet,” [accessed February
2019]. [Online]. Available: https:/github.com/awslabs/

dynamic-training-with-apache-mxnet-on-aws

S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-
of-the-art deep learning software tools,” in 7th International
Conference on Cloud Computing and Big Data, 2016.

S. Shi, Q. Wang, and X. Chu, “Performance modeling and
evaluation of distributed deep learning frameworks on gpus,”
in 2018 IEEE 16th DASC/PiCom/DataCom/CyberScilech,
2018.

T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman,
“Project adam: Building an efficient and scalable deep learn-
ing training system,” in USENIX Symposium on Operating
Systems Design and Implementation, 2014.

Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gra-
dient compression: Reducing the communication bandwidth
for distributed training,” arXiv preprint arXiv:1712.01887,
2017.

W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li,
“Terngrad: Ternary gradients to reduce communication in
distributed deep learning,” in Advances in neural information
processing systems, 2017.

N. Strom, “Scalable distributed dnn training using commodity
gpu cloud computing,” in Sixteenth Annual Conference of the
International Speech Communication Association, 2015.

A. Srinivasan, A. Jain, and P. Barekatain, “An analysis of the
delayed gradients problem in asynchronous sgd,” 2018.

Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer,
“Imagenet training in minutes,” in Proceedings of the 47th
International Conference on Parallel Processing, 2018.

11

(33]

[34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

T. Akiba, S. Suzuki, and K. Fukuda, “Extremely large mini-
batch sgd: Training resnet-50 on imagenet in 15 minutes,”
arXiv preprint arXiv:1711.04325, 2017.

F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance
modeling and scalability optimization of distributed deep
learning systems,” in Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 2015.

T. Ben-Nun and T. Hoefler, “Demystifying parallel and dis-
tributed deep learning: An in-depth concurrency analysis,”
CoRR, vol. abs/1802.09941, 2018.

Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an
efficient dynamic resource scheduler for deep learning clus-
ters,” in Proceedings of the Thirteenth EuroSys Conference,
2018.

S. Shastri and D. Irwin, “Hotspot: Automated server hopping
in cloud spot markets,” in Proceedings of the Symposium on
Cloud Computing, 2017.

P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy,
“Spotcheck: Designing a derivative iaas cloud on the spot
market,” in Proceedings of the Tenth European Conference
on Computer Systems, 2015.

P. Sharma, D. Irwin, and P. Shenoy, “Portfolio-driven resource
management for transient cloud servers,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems,
2017.

A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B.
Gibbons, “Proteus: agile ml elasticity through tiered reliability
in dynamic resource markets,” in Proceedings of the Twelfth
European Conference on Computer Systems, 2017.

A. Harlap, A. Chung, A. Tumanov, G. R. Ganger, and P. B.
Gibbons, “Tributary: spot-dancing for elastic services with
latency slos,” in USENIX Annual Technical Conference, 2018.
N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. N.
Tantawi, and C. Krintz, “See spot run: Using spot instances
for mapreduce workflows.” HotCloud, vol. 10, 2010.

P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy,
“Flint: batch-interactive data-intensive processing on transient
servers,” in Proceedings of the Eleventh European Conference
on Computer Systems, 2016.

Y. Yan, Y. Gao, Y. Chen, Z. Guo, B. Chen, and T. Mosci-
broda, “Tr-spark: Transient computing for big data analytics,”
in Proceedings of the Seventh ACM Symposium on Cloud
Computing, 2016.

S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy,
“Spoton: a batch computing service for the spot market,” in
Proceedings of the sixth ACM symposium on cloud comput-
ing, 2015.

C. Wang, B. Urgaonkar, A. Gupta, G. Kesidis, and Q. Liang,
“Exploiting spot and burstable instances for improving the
cost-efficacy of in-memory caches on the public cloud,” in
Proceedings of the Twelfth European Conference on Com-
puter Systems, 2017.

K. Lee and M. Son, “Deepspotcloud: leveraging cross-region
gpu spot instances for deep learning,” in IEEE 10th Interna-
tional Conference on Cloud Computing, 2017.

