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Abstract—Distributed training frameworks, like TensorFlow,
have been proposed as a means to reduce the training time of
deep learning models by using a cluster of GPU servers. While
such speedups are often desirable—e.g., for rapidly evaluating
new model designs—they often come with significantly higher
monetary costs due to sublinear scalability. In this paper, we
investigate the feasibility of using training clusters composed of
cheaper transient GPU servers to get the benefits of distributed
training without the high costs.

We conduct the first large-scale empirical analysis, launching
more than a thousand GPU servers of various capacities, aimed
at understanding the characteristics of transient GPU servers
and their impact on distributed training performance. Our
study demonstrates the potential of transient servers with a
speedup of 7.7X with more than 62.9% monetary savings
for some cluster configurations. We also identify a number
of important challenges and opportunities for redesigning
distributed training frameworks to be transient-aware. For
example, the dynamic cost and availability characteristics of
transient servers suggest the need for frameworks to dynam-
ically change cluster configurations to best take advantage of
current conditions.

Keywords-Distributed deep learning; performance measure-
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I. INTRODUCTION

Distributed training is an attractive solution to the problem

of scaling deep learning to training larger, more complex,

and more accurate models. In short, distributed training

allows models to be trained across a cluster of machines

in a fraction of the time it would take to train on a single

server. For example, researchers at Facebook achieved near

linear scalability when training a ResNet-50 model on the

ImageNet-1k dataset using 32 GPU-equipped servers [1].

Distributed training is especially attractive for compa-

nies that want to leverage cloud-based servers. All major

cloud providers—Google, Microsoft, and Amazon—offer

GPU server options to support deep learning. However,

existing distributed training frameworks make traditional

assumptions about the lifetime of cloud servers in its cluster.

Namely, that once a server is acquired by the customer it will

remain available until explicitly released back to the cloud

provider by that customer. In this paper, we refer to such

servers as on-demand. While this assumption is reasonable

for many deployments, we argue that it also represents a

missed opportunity.

In this work, we ask the question: what if we use tran-

sient rather than on-demand servers for distributed training.

Transient servers offer significantly lower costs than their

on-demand equivalents with the added complication that

the cloud provider may revoke them at any time—violating

the availability assumption discussed in the preceding para-

graph. Google, Microsoft, and Amazon all offer transient

servers, so the idea of distributed training with transient

servers is applicable to all three major cloud platforms.

Consider the following motivating experiment. Using a

single on-demand GPU server on Google Compute Engine,

we were able to train a ResNet-32 model in 3.91 hours

with a total cost of $2.83 on average (Table I). When

we use distributed training with four on-demand servers—

with each machine identical to the single server used the

in previous runs—we improved the average training time

to 0.99 hours with similar overall cost of $2.92. Finally,

when we use distributed training with four transient servers

we retain the improvement in training time, 1.05 hours on

average, while significantly reducing the total cost to $1.05

on average (Figure 1). We saw these performance increases

even though we made no significant modifications to the

distributed training framework and 13 of the 128 transient

servers (affecting 11 out of the 32 clusters) were revoked at

some point prior to the completion of training. We provide

a more detailed analysis of this experiment and the impact

of server revocation in Section III.

Our goal is to identify the important design considerations

needed for rearchitecting distributed training frameworks

to support transient servers. While the simple experiment

above demonstrates the potential of distributed training with

transient servers (e.g., reduced training time and cost) as

well as the challenges (e.g., server revocation and availabil-

ity), we believe that transient servers also offer additional

opportunities. For example, price dynamics make it more

attractive to use clusters with machines drawn from multiple,

geographically-diverse, data centers. Such an approach raises

interesting questions about the impact of communication

costs and latency on training performance. Similarly, rather

than use a cluster composed of servers of the same type, we

might employ heterogeneous clusters composed of machines

with different computational resources and capabilities. Fi-

nally, the clusters themselves need not be static; instead,

we might dynamically add or remove servers to make











Transient
Training

Revocations Time (hours) Cost($) Accuracy(%)

2 K80+1 PS (2.16, 0.50) (1.31, 0.08) (91.93, 0.70)
4 K80+1 PS (1.05, 0.17) (1.16, 0.04) (91.23, 1.30)
8 K80+ 1PS

6.25%
(28 out of 448)

(0.51, 0.01) (1.11, 0.02) (88.79, 1.50)

1 P100
6.66%

(2 out of 32)
(1.50, 0.04) (0.83, 0.02) (93.11, 0.24)

1 V100
43.8%

(14 out of 32)
(1.23,0.04) (1.06, 0.03) (92.98, 0.39)

Table III: Scaling up vs. scaling out. Under the same training cost
budget constraint, we empirically measure and compare the train-
ing performance of scaling up and out using transient resources.
We calculate the average performance across all training setups
that completed successfully. In the scale up case, 28 (12) out of 32
runs for P100 (V100) were able to finish 64K steps. In the scale out
case, training only fails when the K80 master worker is revoked,
with a probability of 6.25%. Although K80 clusters with various
sizes have the same failure probability, the larger the cluster size,
the lower the impact of revocations. This is because training can
still progress in larger clusters, albeit at a degraded performance
compared to the initial cluster.

Summary: Distributed training with transient servers can

speed up deep learning by up to 3.72X with 62% cost sav-

ings, when compared to training using on-demand servers.

Our analysis motivates the need for redesigning distributed

training frameworks to support robust model checkpointing

and suggests that training with larger cluster sizes allows for

better tradeoffs between training time and accuracy.

C. Scaling Up vs. Out with Transient Servers

Using the cost of training on a single on-demand K80 as

a constraint, we investigate the merits of scaling up by using

more powerful GPU servers or scaling out by using a cluster

of GPU servers. Intuitively, we are asking the question: what

is the best cluster configuration given a fixed budget?

We selected three scaling out and two scaling up transient

cluster configurations, running each 32 times, and present

the average performance in Table III. All clusters were able

to finish within the specified monetary cost budget of $2.83.

Our results reveal three important insights. First, scaling

up is less resilient to server revocations. We observed a

training failure rate of 6.66% for the P100 and 43.8% for the

V100 compared to just 3.1% for a cluster of K80 machines.

The lifetime of revoked server during distributed training

is depicted in Figure 1, as well as Figure 4. Note, for the

two former configurations with a single machine, the server

revocation and training failure rates are the same.

Second, increasing the size of the cluster improves train-

ing speed but reduces the accuracy of the trained model. For

instance, scaling out to 4-K80 cluster is 30% (and 14.6%)

faster when compared to scaling up to one P100 (or V100,

respectively) with slight decrease of 1.75% accuracy.

Third, the accuracy decrease is non-linear as the cluster

increases. We observed a significant drop of 4.28% in

accuracy when the cluster consists of 8-K80 servers. We

also observed that the accuracy converges before 64K steps,

Avg. revocation overhead (%) Distributed training performance

Revocation
scenarios

Cluster
Size

Training
time

Cost Accuracy
Training time

(hours)
Cost
($)

Accuracy
(%)

2 - - - 1.96 1.28 91.90
4 - - - 0.98 1.14 91.06r = 0
8 - - - 0.51 1.11 88.65

2 61.7 14.8 0.18 3.17 1.47 92.08
4 15.3 3.5 0.77 1.13 1.18 91.83r = 1
8 3.9 2.7 0.05 0.53 1.14 88.60

2 - - - - - -
4 48 9.6 0.38 1.45 1.25 90.68r = 2
8 5.9 5.4 1.45 0.54 1.17 90.10

Table IV: Quantifying revocation overhead for different cluster
sizes. With the same revocation scenarios, i.e., r = i where
i is the number of GPU servers that were revoked during the
training session, the impact on training time and cost decreases
with increases in cluster size. In addition, with the same initial
cluster size, we observe higher revocation overheads the greater
the number of revocations.

i.e., prolonging training does not improve accuracy. These

observations are consistent with previously noted impacts

of stale model parameters on the converged accuracy [6],

[16]–[18].

Summary: When configuring the transient server clusters,

one needs to consider various factors, including revocation

probability, training time reduction, and desired model ac-

curacy. Based on our measurements, a cluster size of four

balances the above factors for our target model.

D. Revocation Impact

As summarized in Table IV, the impact of server revo-

cation depends on the size of the training cluster. Here the

revocation overhead is calculated by comparing the average

performance achieved in each revocation scenario to equiv-

alent cluster without any revocations. For both training time

and cost, the revocation overhead decreases with increased

cluster size. For example, for the 8-K80 cluster, the overhead

of a revocation is only 3.9% for training time and 2.7% for

training cost.

When we also consider the lifetime of revoked GPU

servers (Figure 1 and Figure 4) it appears that the reduced

overhead observed in the larger cluster is a combination

of two factors: transient servers being revoked at different

stages relative to the cluster training time (though the actual

lifetime might be the same) and the percentage of lost

computation power relative to the cluster capacity. Note that

when a worker is revoked, the lost work is equivalent to

the time to generate gradients from one batch of data, in

the worst-case scenario. This implies that larger transient

clusters are more resilient to server revocations as it reduces

the time that each individual server is needed.

Interestingly, we observe a slightly increased accuracy for

clusters of size two and four (shaded cells). We suspect this

may be caused by losing an underperforming GPU server,

i.e., a server that happens to be slightly slower than average

and is working on more stale model parameters than the rest.

If true, this motivates the redesign of cloud transient server
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dynamic availability, revocation patterns, and unit costs. In

addition, these previous studies often focus on measuring

training speed using the average time to process one mini-

batch [25], [26], [36]. While in this work, we consider

multiple important performance metrics—including training

time, cost, and accuracy—that could be impacted by training

on transient servers.

Performance optimization based on transient servers.

Since transient servers are cheaper than their on-demand

counterparts, many researchers have studied how to effec-

tively run applications on cloud transient servers with as

few modifications as possible [37], [38]. Some researchers

have proposed transient-aware resource managers [39], [40]

to optimize job schedulers by taking into account the re-

vocation rates of transient servers. Other researchers have

proposed system-level fault-tolerance techniques such as

dynamic checkpointing to optimize the execution time of

various applications, including web services [38], [41],

big data applications [42]–[45] and other memory-intensive

applications [46]. DeepSpotCloud [47] looked at how to

effectively train deep learning models by migrating from

one GPU server to a cheaper transient server. Our efforts

differs from prior work in two major ways. First, we focus

on understanding how distributed training can benefit from

cheap transient servers. Unlike the commonly studied batch

jobs, big data applications, or even web services, training

deep learning models poses a unique trade-off of converging

accuracy and training speed. Second, we explored the fea-

sibility and quantified the benefits of performing distributed

training on transient servers and identify important transient-

aware design changes in distributed training frameworks in

order to more effectively utilize transient resources.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we described the first large-scale empirical

evaluation of distributed training using transient servers. We

compared various transient server cluster configurations for

training a popular CNN model called ResNet-32 with a

standard image recognition dataset Cifar-10. Using training

on a single GPU server as a baseline, we observe up to

a 7.7X training speedup within the same cost budget and

with a slight accuracy decrease—an artifact of asynchronous

training that is not caused by the use of transient servers. In

fact, we observe that model accuracy on average is higher

when workers are revoked when compared to distributed

training without revocation. Our observations suggest that

deep learning frameworks could better leverage trade-offs

across all three performance metrics—i.e., model training

time, training cost, and accuracy—if cloud providers rework

the revocation mechanism. In addition, our analysis reveals

several ways that current training frameworks can better

utilize transient servers, e.g., by offering increased flexibility

for model checkpointing and supporting dynamic scaling.
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