An Experimental Evaluation of Garbage Collectors on Big
Data Applications

Lijie Xu!, Tian Guo?®, Wensheng Dou'2, Wei Wang*2+, Jun Wei'?
!State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences
2University of Chinese Academy of Sciences
3Worcester Polytechnic Institute
'{xulijie, wsdou, wangwei, wj}@otcaix.iscas.ac.cn, *tian@wpi.edu

ABSTRACT

Popular big data frameworks, ranging from Hadoop MapReduce to
Spark, rely on garbage-collected languages, such as Java and Scala.
Big data applications are especially sensitive to the effectiveness of
garbage collection (i.e., GC), because they usually process a large
volume of data objects that lead to heavy GC overhead. Lacking in-
depth understanding of GC performance has impeded performance
improvement in big data applications. In this paper, we conduct
the first comprehensive evaluation on three popular garbage collec-
tors, i.e., Parallel, CMS, and Gl1, using four representative Spark
applications. By thoroughly investigating the correlation between
these big data applications’ memory usage patterns and the collec-
tors’ GC patterns, we obtain many findings about GC inefficiencies.
We further propose empirical guidelines for application develop-
ers, and insightful optimization strategies for designing big-data-
friendly garbage collectors.
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1. INTRODUCTION

Big data frameworks, e.g., Hadoop MapReduce [1] and Apache
Spark |2], are developed using garbage-collected languages, such
as Java and Scala. These languages speed up the framework and
application development because garbage collection (GC) liberates
developers from complicated memory management and reduces
the chance of memory leaks. However, automatic memory man-
agement has great impacts on application performance when the
garbage collector has too many objects to manage.

Different from traditional Java/Scala applications, big data ap-
plications are both data-intensive and memory-intensive. These ap-
plications not only store a large amount of data in memory but also
generate a lot of intermediate computing results in memory. Aside
from the large volume, these in-memory data objects have different
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lifecycles that further complicate garbage collection. As a result,
big data applications often have significant memory pressure that
leads to heavy GC overhead such as frequent GC cycles and long
GC pauses. For example, existing studies reported that GC activi-
ties can take up to 50% of big data application execution time |21}
33], and thus inevitably lead to poor application performance.

The ineffectiveness of GC for big data applications can be at-
tributed to three intertwined reasons. First, the large volume of
input data and intermediate computing results generated by user-
defined data operators lead to substantial memory usage. More-
over, some reusable intermediate data are cached in memory for
better performance [3], and thus further increase the memory pres-
sure. Second, the current frameworks’ memory management mech-
anisms only tackle data-level memory management. For example,
Spark splits the memory space into two logical parts: the first part
for data caching & shuffling, and the second part for storing inter-
mediate computing results. This coarse-grained partition is inef-
ficient in memory management: Spark cannot utilize empty space
in the second part for data caching & shuffling. Third, the current
object-level memory management approaches in garbage collectors
do not take into account object characteristics of big data applica-
tions when determining how to allocate new objects and how to
reclaim the unused objects.

Existing works have explored GC inefficiency from different as-
pects. MemTune [52] dynamically tunes the configuration for data
cache to optimize the memory utilization. Facade [45], Deca [42],
and Broom [37] propose region-based and lifetime-based mem-
ory managers to reduce the GC overhead. Recently, Yak [44]| and
NG2C |32] optimize garbage collection mechanisms, such as heap
layout and GC algorithms. However, none of these works explore
GC inefficiency by studying the correlation among the abovemen-
tioned three aspects. To thoroughly understand GC inefficiency for
big data applications, we investigate three key research questions.

e RQ1: What are the typical memory usage patterns of big data
applications?

e RQ2: Are current garbage collectors sufficient for big data ap-
plications? If not, why?

e RQ3: What are the guidelines for application developers and
insights for designing big-data-friendly garbage collectors?

To answer the above research questions, we first analyze the
computation features and memory usage patterns of four widely-
used Spark applications for SQL, machine learning, and graph com-
putation. Then, we conduct a comprehensive evaluation on the
four representative Spark applications using three popular garbage
collectors, i.e., Parallel, CMS (Concurrent Mark Sweep), and G1
(Garbage First). By analyzing the correlation between applica-
tions’ memory usage patterns and the GC patterns, we identify the



root causes of performance differences among the three garbage
collectors. Based on the above analysis, we obtain ten findings on
the GC inefficiencies for big data applications. We further propose
several guidelines for application developers and GC optimization
strategies for researchers. Our main findings and optimization ap-
proaches are summarized as follows.

Key Findings. (1) Big data applications’ unique memory usage
patterns (e.g., long-lived shuffled data and humongous data ob-
jects), and computation features (e.g., iterative computation and
CPU-intensive data operators) contribute to the substantial perfor-
mance differences among garbage collectors. (2) The concurrent
collectors, such as CMS and G1, can reduce the GC pause time
while reclaiming the long-lived shuffled data. However, they hinder
CPU-intensive data operators due to serious CPU contention. (3)
All three collectors are inefficient for managing humongous data
objects, which lead to frequent GC cycles and even OOM errors in
non-contiguous collectors like G1.

Proposed optimizations. (1) All three collectors cannot allocate
proper heap space to accommodate long-lived shuffled data. To
optimize object allocation, we propose a new heap resizing policy
through memory usage prediction and dynamic heap space adjust-
ment. (2) All three collectors suffer from unnecessary continuous
GC while reclaiming the long-lived shuffled and cached data. By
leveraging data lifecycles, we propose a new object marking algo-
rithm to reduce GC frequency. (3) All three collectors are ineffi-
cient for iterative applications that need to reclaim large volume of
shuffled data in each iteration. By leveraging the distinctive lifecy-
cles and fixed size of these data, we propose a new object sweeping
algorithm for achieving no GC pause for iterative applications.

In addition, we identify the root causes of two OOM errors,
namely Spark framework’s memory leak in handling consecutive
shuffle spills and G1’s heap fragmentation problem. Spark and
OpenJDK communities have confirmed our identified causes |19}
10]. In summary, our main contributions are as follows.

e We summarize the typical memory usage patterns of big data
applications, and empirically evaluate three widely-used garbage
collectors on four Spark applications. Our in-depth study re-
veals the inefficiencies of current garbage collectors.

e Based on our findings on GC inefficiencies, we propose four
guidelines for application developers and three GC optimization
strategies for researchers.

e Our findings and implications can open up new research direc-
tions for designing big-data-friendly garbage collectors.

2. BACKGROUND

2.1 Spark memory management

The key part of a Spark application is the user-defined driver pro-
gram. It contains a series of data operators manipulating key-value
data. In Spark, the input, output, and intermediate data are mod-
eled as Resilient Distributed Dataset (RDD) [54], which is a data
structure that represents a partitioned collection of data as shown
in Figure 1. Spark framework automatically transforms the driver
program into a DAG-based dataflow graph according to the data
dependencies among RDDs. The dataflow graph is further trans-
formed into a MapReduce-like execution plan, including several
stages split by shuffle dependencies. In this paper, map stages refer
to the stages that do not need data shuffling and are usually the first
stages, while reduce stages refer to the stages that need to shuffle
data from previous stages. At runtime, Spark framework allocates
multiple executors (i.e., JVMs) that run map/reduce tasks to per-
form the data operations in each stage.

The memory usage of a Spark application consists of three parts.
(1) Cached data. Big data applications, especially iterative ones,
usually cache reusable data in memory to reduce disk I/O. The
cached data are usually long-lived objects and span multiple stages.
Spark allocates a logical storage space to store the cached data
as shown in Figure lc. (2) Shuffled data. As shown in Figure
la, if the application contains N-to-N shuffle dependencies (e.g.,
dependencies between ParallelRDD and CoGroupedRDD), Spark
performs shuffle write/read to transfer the data between map and
reduce stages as shown in Figure 1b. In the shuffle write phase,
each map task outputs key-value (k, v) records into different parti-
tions according to the key k. In the shuffle read phase, reduce tasks
fetch (k, v) records from map outputs and perform in-memory ag-
gregation. Aggregation means that the reduce task uses HashMap-
like data structures to accumulate the shuffled (k,v) records into
(k, list(v)) or directly combine the list(v) into new v’ using data
operators such as sum(list(v)). The aggregated records are usually
long-lived data objects since they need to be kept in memory until
the task ends. As shown in Figure lc, Spark allocates an execu-
tion space to keep the shuffled records. The execution space and
storage space share the default 60% of the JVM heap space. (3)
Operator-generated data. User-defined data operators may gener-
ate intermediate computing results during data processing. Since
these operators process the data records one by one, the in-memory
computing results can be short-lived objects (e.g., temporary output
records) or long-lived records (e.g., buffered intermediate results).
Spark allocates a logical user space with the default 40% of the
heap space for storing these intermediate computing results.

2.2 JVM memory management

All the cached, shuffled, operator-generated data are stored as
objects in JVM heap and managed by garbage collectors. In this
section, we explain the key differences of heap layouts and GC al-
gorithms used by three popular garbage collectors, i.e., Parallel,
CMS and G1. We focus on the important aspects of garbage col-
lectors’ designs and their implications.

The weak generational hypothesis |11] states that most objects
survive for a short time and only a few objects live long. Based on
this hypothesis, garbage collectors divide the heap into two gener-
ations: young generation for keeping short-lived objects, and old
generation for keeping long-lived objects. The young generation
consists of an Eden space and two Survivor spaces. New objects
are initially allocated in Eden space and further copied to Survivor
space when GC occurs. If the objects in Survivor space survive a
few GC cycles, they will be promoted to old generation. In Par-
allel and CMS, the young and old generations are both contiguous
space with an explicit boundary. In contrast, G1 logically separates
young and old generations in a non-contiguous way, by dividing
heap space into a large number of equal-sized regions. Each region
can be Eden, Survivor, or Old space. Specially, G1 stores humon-
gous objects (larger than 50% of the region size) into humongous
regions, which span multiple regions in old generation.

GC algorithms. A typical GC cycle involves two tasks: (1) object
marking that identifies the live (reachable) objects through travers-
ing the object reference graph; (2) object sweeping that reclaims
the memory space occupied by the unused objects. To obtain con-
sistent results, garbage collectors may suspend application threads
while performing object marking and sweeping. Such scenarios are
referred to Stop-The-World (STW) GC pauses.

For garbage collection in young generation, namely minor or
young GC, all three collectors use the STW mark-copy algorithm.
This algorithm first marks the live objects in Eden space, and then
copies the live objects to one of the Survivor spaces. The other
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Figure 1: Illustrations of an example Spark application from dataflow graph, execution plan, to memory management.

Table 1: Representative Spark applications with different computation features and memory usage patterns. The bold ones are long-lived data objects.

.. Application features
Application | Type #Cached data #Shufﬂegli‘ecords Space complexity Memory usage patterns
GroupBy SQL None Medium: O(Nyows) reduceByKey(sum) : O(1) | Accumulated records
Join SQL None Heavy: O(Nrowsorrav) | join() : O(m +n) Accumulated records, Temporary output records
SVM ML O(Nuatrix.rows) | Light: O(Nyap_rask) reduce() : O(]z[) Humongous data objects, Cached records
PageRank Graph | O(Nedges) Medium: O (Negges) Jjoin() : O(m + n) Iterative accumulated records, Cached records

Survivor space is used for swapping the live objects. The live ob-
jects that survive several young GCs in Survivor space are finally
promoted to old generation.

For garbage collection in old generation, namely major or full
GC, the three collectors use different GC algorithms. Parallel col-
lector is designed for high throughput by launching multi-threads to
perform full GC. Its object marking and sweeping phases are stop-
the-world, and performed together in a single full GC. So, Parallel
collector suffers from long full GC pause when there are too many
objects to mark and sweep. Parallel collector also compacts the
free space in full GC cycle to eliminate heap fragmentation. CMS
is designed for low latency by offloading much object marking and
sweeping work to background threads that do not require stopping
application threads. Its object marking phase is divided into three
phases: the concurrent mark phase is for marking all the live ob-
jects, while the other two STW phases (initial mark and remark
phases) are for identifying the GC roots and updating the marking
results. Its object sweeping phase also runs concurrently with ap-
plication threads. CMS does not have compacting step that may
lead to heap fragmentation. G1 is designed to balance the through-
put and latency, through profiling the percentage of live objects in
each region and incrementally reclaiming the regions that are filled
with unused objects. Its object marking phase is similar to that of
CMS. However, to balance the GC frequency and memory utiliza-
tion, it performs object sweeping incrementally in two phases. One
is at the end of each object marking phase, which only sweeps the
regions without any live objects and selects the old regions with
high occupancy of unused objects as candidate regions. When the
total unused objects in these candidate regions reach a threshold,
G1 launches a STW mixed collection phase to reclaim them. This
mechanism reduces the GC frequency at the cost of high memory
consumption. In this paper, we focus on full GC performance since
full GC is usually more time-consuming than young GC.

3. METHODOLOGY

We first explain how we select representative applications to trig-
ger diverse memory usage patterns in Spark. We then introduce
how we setup the experiments with different input data sizes and
configurations. We finally present how we perform GC analysis
by scrutinizing the correlation between the applications’ memory
usage patterns and the collectors’ GC patterns.
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3.1 Application selection

The memory usage of Spark applications is affected by data fea-
tures (e.g., cached data, shuffled data, and operator-generated data)
and computation features (e.g., iterative computation). We select
four Spark applications in Table 1 as our experimental subjects.
The four applications are representative. (1) They are from differ-
ent domains, e.g., SQL query, machine learning, and graph compu-
tation; (2) They have different computation patterns, e.g., heavy/-
light data shuffle, data aggregation with different space complexi-
ties, iterative computation with data cache; (3) They have diverse
memory usage patterns, e.g., long-lived accumulated results, tem-
porary output records, and humongous data objects. We explain
these four applications as follows.

Map Stage Reduce Stage

UserVisits  (sourcelP, visr’tDate)i | Long-lived accumulated records |

a, sum[1, 3, 2] a6
¢, sum[2, 5] c7
4 R4
b, sum(3, 4] b,7
6 R6 d, sum[6] d, 6
-7 "7 i S~ 7 TTge0)
8 R8 reduceByKey() m[G]

adRevenue

Row ID Columns Spill the records onto disk if too large

Figure 2: The dataflow of GroupBy application.

(1) GroupBy is a SQL application simplified from the aggre-
gation query in Spark’s BigSQL benchmark [20, 47]. Figure 2
illustrates the GroupBy dataflow, where sourcelP, visitDate, and
adRevenue are three columns of table UserVisits.

SELECT sourcelIP, visitDate, SUM(adRevenue)
FROM UserVisits GROUP BY sourcelP, visitDate;

This application is implemented with basic RDD APIs. In map
stage, the map tasks transform each row of table UserVisits to be
((sourcelP, visitDate), adRevenue) record. In reduce stage, each
reduce task performs reduceByKey() to group shuffled records with
the same key to ((sourcelP, visitDate), list(adRevenue)) records,
and simultaneously performs the aggregation function sum() on
each list(adRevenue). Although the space complexity of sum/()
in reduceByKey() is O(1), these aggregated records are memory-
consuming. These records are accumulated in a HashMap-like data
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Figure 3: The dataflow of SVM and PageRank applications.

structure with different (sourcelP, visitDate) keys and remain in
memory until either being spilled onto disk or the completion of
reduce task. Therefore, reduceByKey() exhibits memory usage pat-
tern of long-lived accumulated records.

(2) Join is a SQL application simplified from the join query in
the benchmark [20!/47]. Figure 1b shows the dataflow of Join.

SELECT URL, pageRank, adRevenue
FROM Rankings As R, UserVisits As U
WHERE R.URL U.URL;

This application is implemented with basic RDD APIs. The map
tasks transform each row of table Rankings to (URL, pageRank)
record and transform each row of UserVisits to (URL, adRevenue)
record. In shuffle phase, each reduce task performs join() op-
erator to group the two tables’ rows with the same key URL as
(URL, list(pageRanks, adRevenues)) records. These grouped shuf-
fle records are kept in memory until being spilled onto disk or the
completion of reduce task, so they are referred to long-lived ac-
cumulated records. In output phase, the join() operator calculates
the Cartesian product of the two sets pageRanks and adRevenues,
and output new records (URL, pageRank, adRevenue) one by one.
Since these records are directly output into HDFS, they are re-
garded as massive temporary output records. The space complex-
ity of join() is O(m + n), where m and n denote the length of
set pageRanks and set adRevenues. Join application suffers from
heavy shuffle, because the number of its shuffled records equals the
number of rows from both Rankings and UserVisits tables.

(3) Support Vector Machine (SVM) is an iterative machine
learning application from Spark MLIib [15] for large-scale data
classification. The training data is a large matrix that contains a
large number of data points. Each data point contains a feature vec-
tor « and a class label y. SVM uses gradient descent algorithm to
iteratively compute the best hyperplane vector w to separate data
points into two classes by minimizing a loss function. Figure 3a
shows the dataflow of SVM, which uses a linear kernel with L2
regularization. The bold variables in the code denote vectors.

gradient = matrix.map(x =>(grad(w,x), loss(w,x)))
.reduce (sum(grad), sum(loss))
W = w - stepSize * gradient

At the beginning of each iteration, the initial hyperplane w is
broadcasted to each map task. Map tasks then perform map() to
compute the vector grad(w, z) and value loss(w, z) of each data
point z and sums the (grad, loss) together. The space complexity of
map() is O(|z|), where |z| represents the dimension of data point
z. Since |z| is usually huge (~60 millions in our experiments),
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the grad vector and hyperplane vector w are humongous data ob-
Jjects (large double array). Different from GroupBy and Join, SVM
has light shuffle because each map task only outputs one record and
only Niuap_rask records are shuffled to subsequent reduce tasks. Each
reduce task does not accumulate the shuffled records but perform
reduce() to aggregate them into one (> grad, > loss) record. The
space complexity of reduce() is also O(]x|). Finally, the driver
program collects grad vectors from all the reduce tasks, sums these
vectors, and updates the hyperplane w. The training data are re-
garded as long-lived cached records, because they are cached in
memory and serve as the input data for each iteration.

(4) PageRank is an iterative graph application for measuring the
importance of each vertex according to the linked edges. Here,
PageRank is used to compute the rank of each user in Twitter’s
user-followers graph [23].

contribs = followers.join(ranks) .flatMap{
(user, (followers, rank)) =>
followers.map (f => (f,rank/|followers]|))
}
ranks = contribs.reduceByKey (sum(contrib))

.map (rank => 0.15 + 0.85xrank)

As shown in Figure 3b, map tasks perform map() to transform
each edge to be (user, follower) record. In the first iterative stage,
each reduce task groups the shuffled (user, follower) records into
(user, list(followers)), which are further cached in memory as the
input data for the following iterations. Therefore, these records are
long-lived cached records. Next, reduce tasks join these records
with users’ ranks as (user, list(followers, rank)), and compute the
Cartesian product on each list(followers, rank). This join operation
does not require additional data shuffling because the followers and
ranks RDDs are co-partitioned. Join is performed in each iteration
and generates massive temporary records. In the second iterative
stage, reduce tasks perform reduceByKey() to aggregate the shuf-
fled (user, rank) records into {(user, sum(list(rank))). These shuf-
fled records occupy O(Neqges) space and remain in memory un-
til the iteration ends, so they are long-lived accumulated records.
Different from GroupBy and Join, these long-lived accumulated
records are generated and reclaimed in each iteration. Finally, the
reduce tasks perform map() to compute the new rank of each user.
The rest of iterative stages are the same as the second iterative stage.

3.2 Experimental setup

3.2.1 Input data variation

Input data size is the key to decide the volume of shuffled data
and affects the memory usage of user-defined data operators. We



Table 2: Input data selection and variation. Table Uservisits and table Rank-
ings are generated by HiBench [9].

Application | Data-1.0 (100 %) dataset Data-0.5 (50%) dataset
GroupBy 200GB Uservisits (1.2B rows) | 50% rows (100GB)
Join 200GB Uservisits (1.2B rows), | 50% rows

40GB Rankings (600M rows) | (100GB, 20GB)
SVM 21GB KDD2012 matrix | 12] 50% columns

(149M rows, 54M features) (11.2GB, 27M features)
PageRank | 25GB Twitter graph [23] 50% edges

(476M edges, 17M nodes) (12.2 GB, 238M edges)

select different data sizes that can lead to different memory pres-
sures. As shown in Table |2| we select four widely-used datasets
with two different sizes: data-1.0 (100% of the input data) and
data-0.5 that consists of 50% of the input data. Note that data-0.5
is sampled from data-1.0 based on individual dataset’s characteris-
tics. For dataset in GroupBy and Join, we select the first 50% rows
of each table. For SVM, we randomly select 50% of the matrix
columns because the memory usage of data operators is related to
the matrix dimension. For dataset in PageRank, we select the first
50% of the edges because the memory usage of data operator is
related to the number of edges.

3.2.2 Dataflow and GC configurations

Spark applications contain dataflow-related configurations such
as input block size and partition number. These configurations de-
termine the task parallelism. The number of map tasks is equal to
input data size divided by input block size (default at 128MB). The
number of reduce tasks equals partition number. To fully use the
cluster resource, we set the partition number to be the number of
CPU cores in the cluster. For other configurations, we adopt the de-
fault values to reduce test space. We enable Parallel collector using
-XX:+UseParallelGC, CMS using -XX:+UseConcMarkSweepGC,
and G1 using -XX:+UseGIGC.

3.2.3 Experimental environments

We perform the evaluation on a cluster of nine mn4.2xlarge nodes
on Alibaba Cloud. One node serves as the master, and the others
serve as workers. Each node has 4 physical cores (8 virtual cores)
and 32 GB RAM that concurrently runs 4 executor JVMs. To avoid
memory contention, each JVM is configured to run only one task.
Therefore, each JVM has one physical core with 6.5 GB heap, and
the remaining 6 GB memory of each node is used for off-heap Java
NIO buffers, operating system, and Hadoop DataNode process. For
the master node, the driver program is configured to use 16 GB
memory to accommodate the large (12.8 GB) parameter vectors in
SVM. We use Spark 2.1.2 standalone version with Hadoop HDFS
2.7.1, running on Ubuntu 16.04 and Oracle HotSpot JVM 64-Bit
1.8.0, to perform all the experiments. We use Spark standalone
version instead of YARN-based version to eliminate the memory
effects of YARN containers [[18]. Before each run, we clear OS
buffer caches and restart the workers to eliminate the cache effects.

3.3 Analytical approaches

For each application, we run it with two input data sizes and three
garbage collectors. We repeat each run five times and report the
average application execution time. We also select the application
with the medium execution time from the five repeated experiments
for comparing the stage and task execution time.

3.3.1 Application profiling
We design and implement three profilers to collect various per-
formance metrics. (1) The execution time profiler measures the
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execution time of each application and each map/reduce task. (2)
The dataflow profiler collects the number and size of the records
in each data processing phase. We extend the Spark log system to
record the spilled data size and spill time. (3) The resource profiler
collects the CPU, memory usage, and GC metrics of each task. All
three profilers are open at our github project SparkProfiler [22].

3.3.2  Performance comparison and analysis

For each application, we quantify the performance difference
among three garbage collectors through comparing the following
metrics. (1) Application execution time identifies whether the three
collectors have different impacts on the application performance.
(2) Task execution time identifies where the performance difference
occurs since map tasks and reduce tasks have different memory us-
age patterns. (3) Fine-grained task execution time identifies the po-
tential causes of the performance difference. Task execution time
is decomposed to three parts: data computation time, shuffle spill
time, and GC time. If GC time dominates the performance differ-
ence, we further perform GC pattern comparison.

GC pattern comparison. This comparison aims to identify the
root causes of the GC time difference. The GC patterns we study
include (1) Memory allocation pattern. The three collectors may
allocate different young/old generation sizes to accommodate the
data objects with different lifecycles. We analyze how difterent
allocation policies affect the GC time. (2) GC time and GC fre-
quency pattern. The three collectors adopt different GC algorithms
that may lead to different GC time. For concurrent collectors such
as CMS and G1, the GC time consists of young GC time, full GC
time, and concurrent GC time, as shown in Figure Full GC time
only refers to the duration of stop-the-world full GC phases (e.g.,
initial mark and remark phases), while concurrent GC time denotes
the duration of concurrent GC phases like concurrent marking. Par-
allel collector’s full GC is completely stop-the-world, so its concur-
rent GC time is 0. We compare these types of GC time across three
collectors and identify the most time-consuming GC phases.

y Concurrent
N , Young , , STW / fullGC |, STW ,
CMS/G1 ol N KeToll T XeTom
N , Young , ; STW , , STW
Parallel LECToN et U TINeTol
App thread App thread App thread

Figure 4: The timeline of application thread with GC cycles.

4. EXPERIMENTAL RESULTS

4.1 Overall results

We compare the applications’ average execution time under dif-
ferent data sizes and garbage collectors in Table 3. The key experi-
mental results and key findings are summarized as follows.

(1) Applications that generate long-lived accumulated records
are more prone to garbage collectors’ inherent inefficiency, with
over 10.8% increased execution time. Long-lived accumulated
records refer to the large number of shuffled records, which are
accumulated in memory by data aggregation operators such as re-
duceByKey() and join(). As shown in the grey cells in Table 3,
the applications with long-lived accumulated records demonstrate
over 10.8% and up to 49.1% relative execution time difference. The
smallest execution time difference (3.2-4.6%) happens in SVM ap-
plication, which has light shuffle and does not generate long-lived
accumulated records. Each SVM reduce task only shuffles 12~14
records (1/Npapask) that are further combined into only one record
in memory.



Table 3: The average application execution time comparison with different data sizes. X (OOM) means that the applications failed with OOM errors.

Application Data-0.5 Data-1.0

pp Parallel CMS G1 Comparison Parallel CMS G1 Comparison
GroupBy 20.4(1‘1) 18.2(0'2) 18.4(0'4) C<dGl< P(lO.S%) 45.4(19) 36.3(0'9) 39.4(1'2) C<Gl< P(20.1%)
SVM 6.2(0.4) 6003 | 600.1) C=G1<P(32%) | 156210) | 145(1.1) | x (OOM) C < P(4.6%)
PageRank | 26.1(113) | 19535 | 38333 | O < P < GI1(49.1%) | x (OOM) | x (OOM) | x (OOM) X

* This table compares the application’s average execution time (¢) with different data sizes and garbage collectors. P, C, G1 denotes Parallel, CMS, and
G1. Take the first cell 20.4; 1) for example, the average time it takes to run GroupBy application with half of the data size using Parallel GC is 20.4 min,
and the corresponding GC time is 1.1 min. C' < G'1 means that the relative execution time difference between the application with CMS GC and the appli-
cation with G1 GC is (tg1 — to)/tg1 < 20%. < means that the relative execution time difference is 20%+. (10.8%) means that the relative execution
time difference between the fastest and the slowest applications with different GCs is 10.8%.

(2) Applications with concurrent collectors achieve 8.3 %-94%
shorter GC time than applications with Parallel collector. CMS
and G1 are concurrent collectors that perform most of the full GC
concurrently with application threads. Aside from the applications
with OOM errors, concurrent collectors achieve 8.3-94% shorter
GC time than Parallel collector in all the applications.

(3) G1 is the only collector that suffers from OOM errors while
processing the humongous objects in SVM-1.0 application. Al-
though Gl is designed for managing memory larger than 6 GB [7],
its region-based heap management is not reliable for managing the
humongous objects.

4.1.1 Key contributors to the performance differences

The root causes of the performance differences include big data
applications’ memory usage patterns, computation features, and
the garbage collectors’ different GC algorithms. Among these
memory usage patterns, the patterns of long-lived accumulated
records and humongous data objects are the key contributors to
the substantial performance differences.

Long-lived accumulated records refer to the shuffled records
that are kept in memory for both shuffle and output phases until
being spilled to disk. Since big data applications usually generate
millions of long-lived accumulated records, these records lead to
frequent and long full GC pauses due to the mismatched require-
ment with current GC algorithms. (1) The long-lived accumulated
records require large old generation to accommodate. Therefore,
inappropriate young/old generation sizing polices will lead to fre-
quent full GC pauses (Finding 2, 3). (2) It is time-consuming and
CPU-intensive to reclaim the long-lived accumulated records. Cur-
rent object marking/sweeping algorithms need to traverse the whole
object graph to identify the live referenced objects. Since long-
lived accumulated records are numerous and all referenced, the
object marking/sweeping phase is both time-consuming and CPU-
intensive. Stop-the-world marking/sweeping algorithm performs
sequential object marking and sweeping that leads to long individ-
uval full GC pause. Concurrent marking/sweeping algorithms can
reduce full GC time by performing object marking and sweeping
in parallel with application threads (Finding 4, 10). However, they
suffer from concurrent mode failures problem (Finding 4) and de-
grade the CPU-intensive data operators like join() (Finding 8). (3)
Without awareness of the data object lifecycles, current GC algo-
rithms leverage static GC triggering thresholds that lead to repeti-
tive work during each GC cycle (Finding 7).

Humongous data objects refer to objects that are larger than
G1’s maximum region size (32 MB). It is common for big data ap-
plications to generate humongous objects, such as large vector (big
double array) in SVM. The non-contiguous region-based collectors
like G1 may not have large enough contiguous space to accom-
modate these humongous objects, and therefore suffers from heap
fragmentation that eventually leads to OOM errors (Finding 9).
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4.2 GroupBy results

We explore the impact of long-lived accumulated records on the
application performance using GroupBy-1.0 as an example.

4.2.1 Performance comparison results

(a) GroupBy-1.0-task-execution-time (b) GroupBy-1.0-task-GC-time
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Figure 5: The execution time comparison among GroupBy-1.0 reduce
tasks. Paralle]lGC task is the slowest one due to its longest full GC time.

GroupBy-1.0 application contains a map stage (1680 map tasks)
and a reduce stage (32 reduce tasks). The performance difference
was only observed in reduce stage, where the memory space is
dominated by long-lived accumulated records. Since the slowest
reduce task dominates the execution time of reduce stage, we com-
pare the execution time of the slowest reduce tasks with different
garbage collectors and obtain CMS17,m < Glaom < Parallelagm,.
As shown in Figure 5a, we further break down the task execution
time and group them logically into data computation time (Comp-
Time), shuffle spill time (SpillTime), and GC time to pinpoint po-
tential performance bottlenecks. Data computation time refers to
the time that the task spends on data processing. Figure 5a shows
that ParallelGC task achieves 29-72% shorter shuffle spill time than
CMS and Gl tasks. This is caused by the three collectors’ different
heap layouts (Finding 1). To understand GC time differences, we
further decompose the GC time into young GC (YGC) time, full
GC (FGC) time, and concurrent GC (ConGC) time in Figure 5b.
This figure shows that ParallelGC task suffers from ~50x longer
full GC time than CMS and G1 tasks. The root causes are due to
the three collectors different young/old generation sizing polices
and different object marking algorithms (Finding 2, 3, 4).

4.2.2  Findings and their implications

Finding 1: ParallelGC tasks trigger 1.5x more shuffle spills
than CMS and G1 tasks. The root cause is that Parallel collec-
tor has the smallest available heap size that leads to the lowest
spill threshold of ParallelGC tasks. By default, Spark allocates
60% of the JVM heap to store the shuffled data and cached data.
In shuffle phase, the reduce task launches a reduceByKey() oper-
ator to aggregate all the shuffled (k,v) records with the same &
into (k, list(v)) records. These records are accumulated in memory
and will trigger shuffle spill if their size exceeds the spill threshold



(~60% of the heap size). Figure@illustrates the distribution of
the accumulated shuffled records in the 32 reduce tasks. It shows
that ParallelGC tasks totally spill 60 times and the spill threshold
is 3.29 GB, while CMS/G1 tasks totally spill 39 times and the spill
threshold is 3.69/3.70 GB. We find the root cause is that Parallel
collector has smaller available heap size than CMS and G1 col-
lectors under the same heap size configuration. Take the 6.5 GB
JVM for example, the runtime available heap size comparison is
Parallels 73 < CMSs.44¢ < Glg.50c. In Parallel collector, the
missing 0.72 GB (6.50-5.78) heap space is used as a Survivor space
for swapping the survival objects during young GC [24]. This Sur-
vivor space is not used for storing new objects, so it is not included
in the available heap space. CMS collector has the same problem
but only 0.06 GB (6.50-6.44) missing space due to its smaller Sur-
vivor space. In contrast, G1 adopts region-based heap layout and is
able to use the Survivor space as available heap space. Since Spark
does not change the spill threshold at runtime, ParallelGC tasks
achieve the shortest spill time due to the smallest size of spilled
data (3.29GB). However, ParallelGC tasks suffer from more shuf-
fle spills and disk I/O.

Implication: We need to design dynamic spill threshold to balance
the spill time and spill frequency according to the available runtime
heap size.
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Figure 6: The distribution of accumulated shuffled records in 32 GroupBy
reduce tasks. Due to data skew, some tasks spilled twice and others spilled

only once. The spill threshold is Parallels 73 < CMSg.44c < Glg.50G-

f
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Finding 2: Different young/old generation sizing polices lead to
different full GC frequencies, because the long-lived accumu-
lated records require large old space to accommodate. By al-
locating large old space without shrinkage, CMS tasks achieve
~48% less full GC pauses than ParallelGC and G1 tasks. As
described in Finding 1, the reduceByKey() operator constantly ac-
cumulates shuffled records into memory (about 5.5GB in the slow-
est reduce task). These long-lived accumulated records span from
shuffle phase to output phase. Even when they are spilled onto disk,
they will be gradually read back into memory to merge with the un-
spilled records in output phase. In JVM, these long-lived records
are constantly transferred from young generation to old generation,
and will trigger full GC when the old generation becomes full. This
indicates that the size of the young/old generation has impacts on
the GC performance. Fortunately, the three collectors have adap-
tive generation sizing polices, which can dynamically adjust the
young/old heap size according to the statistics of GC pause time
and heap occupancy (known as GC Ergonomics |8]). However, we
find that the three collectors demonstrate inefficient generation siz-
ing patterns that lead to high young or full GC frequencies. (1)
Parallel GC prefers to expand and shrink the old space according
to the heap occupancy. As shown in “Allocated” line in old gen-
eration in Figure 7a, Parallel GC constantly enlarges the old space
to accommodate the increasing shuffled records. However, its allo-
cated old space grows up to the smallest size (4.33GB) compared
to that of CMS/G1 GC (~6GB) in Figure 7b/c. The reason is that
Parallel GC limits its old space to be 66.6% of the heap size. When
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the memory usage drops down after shuffle spill, Parallel GC also
shrinks the old space to a small size (~2.6GB). Small old space
leads to frequent full GC pauses. (2) CMS prefers to expand the
old space without shrinkage. Since CMS allocates large old space
(about 90% of the heap size) and does not shrink at the spill time,
it has enough old space to keep the long-lived accumulated records
in both shuffle and output phases. As a result, CMS task only trig-
gers 27 full GC cycles that are 48-68% less than that of Parallel/G1
task. However, CMS task suffers from 2x more young GC pauses
due to its smallest young space. (3) GI prefers to balance the size
of young/old space according to the statistics of GC pause time and
heap usage. As shown in Figure 7¢, G1 allocates large old space
to accommodate the increasing shuffled records in shuffle phase.
However, after shuffle spill, it tries to enlarge the young space and
shrink the old space to accommodate the read-back spilled records.
This policy leads to 10 more full GC cycles than CMS tasks since
the read-back shuffled records still require large old space.

Implication: Current young/old generation sizing polices are inef-
ficient for accommodating the long-lived accumulated records. We
need to design more intelligent heap sizing polices with awareness
of the memory usage in each data processing phase.

Finding 3: Compared to CMS and G1 collectors, Parallel col-
lector’s inappropriate generation resizing timing mechanism
leads to 38 % more full GC pauses. Finding 2 shows that all the
three collectors can resize the old space to accommodate the long-
lived accumulated records in shuffle phase. However, their dif-
ferent generation resizing timing mechanisms (i.e., when to resize
the old generation) also result in different GC frequencies. Parallel
collector can only resize the old generation at full GC pauses. As
a result, all its full GC pauses in shuffle phase are caused by this
resizing timing requirement. In contrast, CMS and Gl collectors
can resize the old generation during lightweight young GC pauses,
which reduces the full GC pauses.

Implication: We not only need to solve how to resize the young/old
generation but also when to take the resizing action.

Finding 4: For reclaiming the long-lived accumulated records,
Parallel collector’s stop-the-world object marking algorithm is
10x slower than CMS and G1 collectors’ concurrent marking
algorithms. As shown in Figure 7, ParallelGC tasks suffer from
10x longer individual full GC pause than CMS and G1 tasks. The
reason is that Parallel GC uses stop-the-world object marking al-
gorithm named mark-sweep-compact, which needs to suspend ap-
plication threads to mark the live objects and sweep the unused
objects. Since the long-lived accumulated records are numerous
(~38 millions), this stop-the-world marking is time-consuming that
leads to up to 10-20s individual full GC pause. In contrast, CMS
and GI1 collectors use concurrent marking algorithms, which per-
form most of the object marking work concurrently with applica-
tion threads. Therefore, their average full GC pauses drop down to
~1s. However, these concurrent algorithms may suffer from long
full GC pause when the object reclamation cannot catch up with the
need of object allocation. Figure 7b shows that CMS task suffers
from a long (11 s) full GC pause caused by concurrent mode fail-
ure. The failure means that the concurrent marking phase cannot
finish before the old space becomes full (when the spilled records
are read back into memory). In this occasion, CMS falls back to
launch a stop-the-world full GC pause, similar to Parallel collector.

Implication: Concurrent object marking algorithm can reduce GC
pause time while reclaiming the long-lived accumulated records.
However, they may suffer from unexpected concurrent mode fail-
ure when the object reclamation is slower than object allocation.



(a) GroupBy-1.0-Slowest-Parallel-Task

(b) GroupBy-1.0-Slowest-CMS-Task

(c) GroupBy-1.0-Slowest-G1-Task
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Figure 7: The performance comparison among the GroupBy-1.0 slowest tasks with different GCs. BeforeGC denotes the size of live objects in old generation
before each young or full GC. AfterGC denotes the size of live objects in old generation after each young/full GC. Allocated denotes the allocated old space.

Finding 5: ParallelGC tasks suffer from 2.5-7.6x higher CPU
usage than CMS and G1 tasks, due to 1.7-12x more full GC
pauses and 10x longer individual full GC pause. The implication
is that we need to reduce full GC frequency and individual full GC
pause to lower the tasks’ CPU consumption.

Finding 6: G1 tasks suffer from 1.1-1.2x higher physical mem-
ory usage than ParallelGC and CMS tasks. The reason is that
G1 collector allocates a large native data structure remembered sets
for keeping object information used for GC [6]. The implication is
that we need to allocate more physical memory for G1 or design
more memory-efficient object storing structure for G1.

4.3 Join results

In this section, we explore the combined impact of long-lived
accumulated records and massive temporary records on the appli-
cation performance while using Join-1.0 as an example.

4.3.1 Performance comparison results

(a) Join-1.0-task-execution-time (b) Join-1.0-task-GC-time
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Figure 8: The execution time comparison among Join-1.0 reduce tasks is
CMS32., < Gl3sm < Parallelgay,. ParallelGC task is 1.8x slower than
CMS and Gl tasks, due to its extremely long full GC time. The data com-
putation of CMS and Gl tasks are 1.6x slower than ParallelGC task.

Join-1.0 application has two map stages (1680/320 map tasks)
and a reduce stage (32 reduce tasks). The performance differences
only happen in reduce stage, where the memory usage consists
of long-lived accumulated records and massive temporary output
records. As described in Section 3, the massive temporary out-
put records refer to the records generated by the Cartesian prod-
uct operation in join(). We compare the execution time of the
slowest reduce tasks with different garbage collectors, and obtain
CMS32m < Glszsm < Parallelgs,,. We further break down the
tasks’ execution time and GC time in Figure 8. (1) Figure 8b shows
that ParallelGC tasks suffer from 60x more full GC time than CMS
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and G1 tasks. This is mainly caused by the different full GC trig-
gering conditions (Finding 7). (2) Figure 8a shows that CMS and
G1 tasks suffer from 1.6x longer data computation time than Par-
allelGC task. This is caused by the CMS and G1 collectors’ CPU-
intensive object marking algorithms (Finding 8).

4.3.2 Findings and their implications

Finding 7: Threshold-based full GC triggering conditions lead
to frequent, but unnecessary full GC pauses towards the long-
lived accumulated records. Due to different full GC triggering
thresholds, ParallelGC suffers from 1.7x more full GC pauses
than G1, and G1 suffers from 7x more full GC pauses than
CMS. Figure 9 shows that the three collectors demonstrate differ-
ent GC patterns in output phase, where the long-lived accumulated
records are kept in memory and massive temporary output records
are constantly generated. ParallelGC task triggers 136 full GC
pauses that leads to ~40 min GC time. In contrast, G1 task triggers
81 full GC pauses, while CMS task does not trigger any full GC
pauses in output phase. The first root cause is that the three collec-
tors have different generation sizing policies. Parallel collector’s
generation sizing policy limits the old generation to be a small size
(default 2/3 of the heap space), while CMS and G1 collectors allo-
cate 1.2x more old space. The second root cause is that the three
collectors have different full GC triggering conditions. Parallel GC
uses a lazy triggering condition that launches full GC when the
old space becomes full. Since the long-lived accumulated records
have occupied 98% of the old space as shown in Figure 9a, Paral-
lel GC constantly launches full GCs to perform object reclamation.
However, these full GCs are unnecessary because the long-lived
accumulated records cannot be reclaimed until the output phase
finishes. In contrast, CMS and G1 use aggressive triggering con-
ditions that start the GC cycle before the old space is exhausted.
G1 GC starts a full GC cycle when the heap usage reaches a cer-
tain threshold (default 45% of the heap space). CMS GC starts a
full GC cycle at a higher threshold (default 92% of the old space)
and according to the runtime estimation of when the old generation
will be exhausted. Since the long-lived accumulated records ex-
ceed the 45% threshold but has not reached the 92% threshold, G1
task suffers from consecutive full GC cycles while CMS task does
not trigger full GC cycles in output phase.

Implication: Current threshold-based full GC triggering condi-
tions tend to trigger unnecessary full GC pauses without being
aware of the data objects’ characteristics, e.g., sizes and lifecycles.



(a) Join-1.0-Slowest-Parallel-Task

(b) Join-1.0-Slowest-CMS-Task
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Figure 9: The memory usage and GC time comparison among the Join-1.0 slowest tasks. FGC Pause only illustrates the time of stop-the-world phases in
each full GC cycle, including initial-mark and remark phases. The span time of each concurrent mark phase is illustrated by the diameter of the blue circle.

Finding 8: Concurrent object marking algorithms used in CMS
and G1 collectors are inefficient for handling long-lived accu-
mulated records due to CPU contentions with CPU-intensive
data operators. As shown in Figure 8, CMS and Gl tasks have
~95% shorter GC time but 1.6x longer data computation time than
ParallelGC task. The root cause is that the concurrent marking al-
gorithms in CMS and G1 have CPU contention with the data pro-
cessing threads. Parallel collector uses stop-the-world object mark-
ing algorithm that pauses the data processing thread during each
full GC. In contrast, both CMS and G1 collectors use concurrent
marking algorithms that perform object marking in parallel with
the data processing threads. While reclaiming the long-lived accu-
mulated records, concurrent marking algorithms are CPU-intensive
that degrade the simultaneous CPU-intensive data operators like
Jjoin(). To mark the live objects, the concurrent marking algorithm
needs to traverse the whole object graph. This marking step is
CPU-intensive because the long-lived accumulated records are nu-
merous (~57 millions) and living in both shuffle and output phases.
Unfortunately, the data operator join() is also CPU-intensive. As
described in Section 3, join() operator needs to compute the Carte-
sian product of the rows with the same key from two tables, which
has O(n?) time complexity and finally processes a large number of
(~38 millions) output records. Due to CPU contention, the concur-
rent marking algorithms slow down this CPU-intensive data com-
putation in CMS and G1 tasks. Moreover, as interpreted in Find-
ing 7 and shown in blue circles in Figure 9c, G1 task suffers from
more full GC cycles (i.e., concurrent mark phases) than CMS task
in output phase. Therefore, the CPU usage of G1 task is much
higher than CMS task and G1 task’s output phase is 1.2x longer
than that of CMS task. Given that many Spark applications are
CPU-intensive [46], such CPU contention between GC activities
and Spark applications is common.

Implication: Concurrent marking algorithms reduce the GC pause
time at the cost of degraded CPU-intensive Spark applications’ per-
formance. Given the prevalence of CPU-intensive big data applica-
tions, we need to design new object marking algorithm to balance
GC pause and CPU usage of object marking.

4.4 SVM results

In this section, we explore the combined impact of long-lived
cached records and humongous data objects while using SVM-0.5
as an example application.
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4.4.1 Performance comparison results

(a) SVM-0.5-task-execution-time (b) SVM-0.5-task-GC-time
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Figure 10: The execution time comparison among SVM-0.5 iterative re-
duce tasks is CMS175s < Gl181s < Parallel1s7s. These tasks have 6.4%
execution time difference but up to 66% GC time difference.

The SVM-0.5 application has 10 iterations. Each iteration has
a map stage (89 map tasks) and a reduce stage (8 reduce tasks).
In both map and reduce tasks, the memory space is dominated by
the long-lived cached records and humongous data objects. The
performance differences only happen in reduce stages, so we pick
the slowest reduce task in each reduce stage and sum their execu-
tion time together as the execution time of iterative reduce tasks.
As shown in Figure 10, the iterative reduce tasks with different
garbage collectors exhibit zero spill time and small (8%) data com-
putation time difference. The reason is that SVM application has
lightweight shuffle. Each SVM reduce task only needs to shuffle 12
records of (grad vector, loss value), compared to millions of shuf-
fled records in GroupBy and Join. Moreover, these shuffled records
are combined into only one (> grad, > loss) record in memory.
So, most of the shuffled records are short-lived and do not lead
to shuffle spill. However, each shuffled record is humongous object
(about 200MB), which causes up to 95% full GC time difference as
shown in Figure 10b. The root cause is that the humongous objects
are directly allocated into old generation if the young generation
does not have enough space |14]. Given that CMS has the smallest
young space (only 600MB) and ~20% of the old space is occupied
by long-lived cached records, this direct allocation has led to a to-
tal of 24 full GC cycles. Parallel GC also suffers from frequent (in
total 19) full GC pauses, because its smallest old generation can-
not hold all the directly allocated humongous objects. However,
G1 tasks only trigger 8 full GC pauses owing to its eager humon-
gous object reclamation mechanism introduced in Java 8 [4]. This
mechanism allows G1 to reclaim humongous objects at young GC



instead of full GC. As a result, G1 tasks trigger 75% less full GCs
than CMS tasks, and therefore leads to 83.3% shorter concurrent
GC time. However, G1’s humongous object management mecha-
nism can lead to OOM error (Finding 9).

4.4.2  Findings and their implications

Finding 9: For the applications with humongous data objects,
G1’s non-contiguous region-based heap management has heap
fragmentation problem that leads to OOM errors. We observe
an unexpected OOM error while running SVM with data-1.0 us-
ing G1. The error occurs when there is a sufficiently large amount
of free heap space left (about 3GB). We find the root causes are
due to SVM application’s humongous data objects and G1’s heap
fragmentation problem. (1) Humongous objects. After analyzing
the OOM heap dump by Eclipse MAT |[5], we find four humon-
gous data objects of 417MB, including a parameter double array,
a gradient double array, and two byte arrays. For G1 collector,
these objects are humongous objects because their size exceeds the
region size (default IMB and up to 32MB). (2) Heap fragmenta-
tion in G1. Different from Parallel and CMS collectors’ continuous
heap layout, G1 uses region-based heap management that splits the
heap space into equal-sized regions. The humongous object is di-
rectly allocated into humongous regions that contain a set of con-
tiguous old regions |7]|. However, G1 may not find enough contigu-
ous old regions to accommodate SVM’s many humongous objects
even though there are many non-contiguous free regions. Although
the eager humongous object reclamation mechanism can improve
the efficiency of humongous object reclamation, it cannot solve
this fragmentation issue. We have submitted this issue to Open-
JDK community [16], and the developers plan to fix this defect in
JDK 11 by a brute-force approach of launching additional full GC
to move humongous objects [10]. According to JVM developer’s
suggestions, one way to decrease the chance of humongous object
fragmentation is to increase G1’s region size. We experiment with
various region sizes and find that the OOM error disappears when
the region size is enlarged to 16MB+. However, determining the
right region size is challenging due to the unpredictable humon-
gous object memory requirements exhibited by different big data
applications and the intricacies of region-based heap management.

Implication: Region-based heap management uses fine-grained
memory management that improves memory utilization. However,
it is not suitable for managing humongous objects that require large
and contiguous space. Increasing the region size can reduce the
chance of OOM errors but also decrease the memory utilization.
Since humongous object is a common pattern in big data applica-
tions, we should redesign the object allocation algorithm to balance
the trade-off between memory utilization and reliability.

4.5 PageRank results

In this section, we explore the combined impact of iterative long-
lived accumulated records and long-lived cached records while us-
ing PageRank-0.5 as an example application. We also find that the
OOM errors in PageRank-1.0 applications are due to the memory
leak in handling consecutive shuffle spills [19].

4.5.1 Performance comparison results

PageRank-0.5 application has a map stage (98 map tasks) and 10
iterative reduce stages (32 reduce tasks in each iteration). We only
observe performance differences in reduce tasks, where the mem-
ory usage is dominated by iterative long-lived accumulated records
and long-lived cached records. As described in Section 3, iterative
long-lived accumulated records refer to the shuffled records that
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Figure 11: The execution time comparison among the PageRank-0.5 tasks
is CMS19y, < Parallelogn, < Gl33m. G1 task is 1.7x slower than Paral-
1elGC task due to its longest data computation time.

are accumulated in memory in each iteration. We merge the slow-
est task in each iteration as an iterative task, and compare the task
execution time in Figure Figure shows that CMS and G1
tasks has 1.1~2x longer data computation time than ParallelGC
tasks. The root cause is due to the CPU-intensive concurrent object
marking as interpreted in Finding 8. The decomposed GC time in
Figure shows that ParallelGC tasks suffer up to 142x longer
full GC time than CMS and G1 tasks. The root causes are due to
the stop-the-world object marking and the full GC triggering con-
ditions interpreted in Finding 4 and 7. Finally, we observe that G1
tasks suffer from 16x longer full GC time than CMS tasks, due to
the different object sweeping algorithms (Finding 10).

4.5.2 Findings and their implications

Finding 10: For iterative applications that require to reclaim
massive long-lived accumulated records in each iteration, CMS
collector’s concurrent sweeping algorithm achieves 16x shorter
full GC time than G1’s incremental sweeping algorithm. Dif-
ferent from GroupBy and Join, PageRank application generates
new long-lived accumulated records in each iteration during shuf-
fle phase. Since these long-lived accumulated records are unused in
the next iteration, the collector needs to reclaim a large (~12 mil-
lions) number of records totaling 3.7GB after each iteration. This
leads to heavy pressure on object marking and sweeping. Due to
concurrent object marking algorithms, CMS and G1 tasks achieve
89-99% shorter full GC time than ParallelGC tasks. However, we
find that G1 tasks suffer from 16x longer full GC time than CMS
tasks. The root cause is that G1 uses a semi-concurrent incremen-
tal sweeping algorithm that is less efficient than CMS’s concur-
rent sweeping algorithms for reclaiming long-lived accumulated
records in iterative applications. In order to achieve predictable
pause time, G1’s sweeping algorithm reclaims the garbage regions
incrementally in two phases according to the live object occupancy.
(1) A partly stop-the-world cleanup phase. This phase occurs at
the end of each full GC cycle for reclaiming the old regions with-
out any live objects. It also selects the old regions that have fewer
live objects than 85% percentage as candidate old regions for fur-
ther collection. This phase totally leads to 4.5s full GC pause. (2)
A stop-the-world mixed collection phase. This phase aims to re-
claim the accumulated candidate old regions. Unlike non-iterative
applications where most (~95%) old regions are filled with non-
reclaimable long-lived accumulated records, iterative applications’
old regions are frequently allocated and reclaimed in each iteration.
Therefore, many old regions will not be completely empty and se-
lected as candidate old regions in previous cleanup phase. The
PageRank task’s GC log shows that the number of candidate old
regions reaches 1,296 in the 8th iteration and the total reclaimable
space of these regions achieves 7.34%. In this occasion, to keep the
reclaimable space at a low level (<5% by default), G1 launches a
mixed collection to reclaim both candidate old regions and young
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Figure 12: The memory usage and GC time comparison among PageRank-0.5 slowest tasks. ParallelGC tasks suffer from frequent and long full GC pauses
due to STW object marking and sweeping. CMS tasks suffer from consecutive concurrent sweeping, while G1 tasks suffer from long mixed collection pauses.

regions. This mixed collection is stop-the-world that leads to long
individual full GC pauses totaling 31s as shown in the triangle lines
in Figure . In contrast, as illustrated by the blue circles in Fig-
ure[12p, CMS sweeps unused objects concurrently with application
threads and therefore does not incur full GC pause time.

Implication: Concurrent marking/sweeping algorithms are more
efficient than stop-the-world or semi-concurrent ones for frequent
memory reclamation of a large number of data objects, as com-
monly observed in iterative applications that have long-lived accu-
mulated records to reclaim after each iteration.

S.  LESSONS AND INSIGHTS

To application developers: Our key insights are to reduce long-
lived accumulated records and humongous objects via memory-
aware design, and choose proper garbage collectors according to
the application features. (1) Finding 2 and 4 reveal that we should
reduce memory usage of long-lived accumulated objects such as
accumulated shuffled records. The solution is to use more memory-
efficient aggregate data structures like Compressed Buffer Tree |25],
or lower the space complexity of user-defined functions in data ag-
gregation operators. We can simultaneously increase the partition
number to reduce the shuffled records of each task. (2) Finding
9 reveals that we should avoid creating humongous objects such
as big arrays. The solution is to split the large object into small
objects or enlarge the region size of region-based collectors like
G1. (3) The applications with data aggregation operators such as
groupByKey() and reduceByKey() usually have long-lived accu-
mulated records to reclaim. Therefore, we can choose concurrent
collectors like CMS or G1 to reduce the time-consuming full GC
pause. (4) Finding 8 reveals that the CPU-intensive data operators
can be degraded by concurrent object marking/sweeping threads.
The solution is to allocate more CPU cores for each task to alleviate
the CPU contention between application threads and GC threads.

To researchers: Our findings reveal that the GC inefficiency is
caused by the mismatch between big data object features (types,
sizes, and lifecycles) and current GC algorithms. To minimize this
mismatch, our insight is to co-design garbage collectors and frame-
works’ memory management mechanism, through estimating data
objects’ sizes and leveraging the relatively fixed lifecycles of data
objects. In detail, we propose three new optimization methods.

(1) Reduce the GC frequency via prediction-based heap siz-
ing policy. Current heap sizing policies are history-based. That is,
the size of young/old generation is adjusted according to the histor-
ical GC statistics, such as average pause time and heap occupancy.
However, as Spark applications exhibit vastly different memory us-
age patterns among different data processing phases, history-based
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adjustment cannot effectively match the applications’ memory de-
mands. For example, the memory usage of GroupBy’s reduce tasks
grows up quickly at the beginning of the shuffle phase, drops down
at the time of shuffle spill, and then goes up again in merge out-
put phase. Our solution is to provide a prediction-based heap siz-
ing policy that adjusts the size of young/old generation based on
the predicted memory usage. Since Spark framework manages the
lifecycles of the shuffled/cached records, we can improve it by esti-
mating the runtime sizes of big data objects. For example in shuffle
phase, to estimate the total size of accumulated shuffled records,
the framework can perform online linear regression to quantify the
correlation between runtime memory usage in old space and cur-
rent processed number of shuffled records. Since the total number
of shuffled records is calculable, the framework can predict the fu-
ture memory usage of accumulated records. Thus, garbage collec-
tors can allocate proper old space to accommodate these long-lived
objects and determine the GC triggering threshold.

(2) Minimize the GC work via lifecycle-aware object marking
algorithm. Current object marking algorithms are traverse-based
that need to traverse the whole object graph to mark the live ob-
jects. This traversing is unnecessary and time-consuming for big
data applications with a large number of long-lived objects. Our
insight is to reduce this object traverse through explicitly labeling
the liveness of data objects. The concrete method is to let Spark
framework explicitly tell the garbage collectors which data objects
are long-lived shuffled/cached records and when they are unused.
Once the shuffled records are spilled onto disk or the cached data
are evacuated, the framework can signal the collector to perform
the garbage collection on these data objects. Therefore, the col-
lector can avoid periodically tracing these objects at each young/-
full GC. This method is similar to but more lightweight than the
lifetime-based memory management proposed in Deca |42], which
uses multiple self-defined data containers (byte arrays) to manage
the objects with different lifetimes. The key advantage of our pro-
posed approach is that it does not need to determine the number
of allocated data containers, merge the data objects into different
lifetimes, nor manually reclaim the objects.

(3) Minimize GC work in iterative applications via overriding-
based object sweeping algorithm. For iterative big data applica-
tions that have long-lived accumulated objects to reclaim in each
iteration, current object sweeping algorithm is time-consuming be-
cause it needs to figure out each unreachable object and reclaim
them one by one. However, data objects in iterative applications
exhibit fixed lifecycles and fixed size. The long-lived accumulated
records are allocated at the beginning of the iteration and can be
reclaimed after each iteration. The exact size of these records can
also be calculated after the first iteration, since iterative applica-



tions usually have similar memory usage pattern in each iteration.
Our insight is to provide an overriding-based object sweeping al-
gorithm using region-based reclamation. Unlike previous region-
based memory management mechanisms |33}|45] that still need to
explicitly track and sweep the data objects with different lifecycles,
our algorithm allocates a fixed contiguous large region to accom-
modate the long-lived accumulated records generated in each it-
eration. When these records become unused at the end of current
iteration, we do not reclaim these records one by one but treat the
whole region as an empty region. In the next iteration, the new
long-lived accumulated records are directly allocated in this region
through overriding the old records. Therefore, we do not need to
mark and sweep the old records in each iteration.

6. DISCUSSION

DataFrames vs. RDDs. Instead of RDDs, Spark SQL applica-
tions use DataFrames [29], whose intermediate data are managed
by an optimized memory manager named Tungsten [17]. We com-
pare the performance differences between DataFrames and RDDs
on GroupBy and Join. These additional experimental results are
available through our extended experimental report [13]. Our find-
ing is that the three collectors’ GC time drops from 1-41 min to
~3s and the individual full GC pause time of ParallelGC tasks
drops from ~10s to 0.3s. The reason is that Tungsten performs
SQL operations directly on binary data rather than Java objects.
In other words, Tungsten stores the shuffled records in a serialized
binary form and performs aggregation functions directly on the se-
rialized objects. As a result, the number of in-memory Java objects
is greatly reduced, which reduces the GC frequency and the object
marking/sweeping. However, Tungsten is currently only applicable
for specific SQL operators with some limitations. For example, it
requires the operated data types are fixed-width types such as Int,
Double, and Date. This technique can improve GC performance
when it is applicable for RDD-based Spark applications.

CPU/memory size variation may have effects on GC behaviors, so
we perform experiments on Join application with CPU and mem-
ory variation [[13]. (1) We double CPU cores of each task and find
that Parallel tasks’ average full GC pause drops ~36% due to more
parallel GC threads. However, Parallel tasks still suffer from ~10x
longer individual full GC pause than CMS/G1 tasks due to SWT
object marking/sweeping algorithm (as Finding 4). The computa-
tion time of CMS and Gl tasks drops ~30% due to alleviated CPU
contention with GC threads. However, CPU contention still exists
and their computation time is still 1.5x longer than Parallel tasks
(as Finding 8). (2) We lower 15% of the task’s memory size. We
find that Parallel tasks suffer from OOM errors due to the smallest
old space allocated by heap sizing policy (as Finding 2). CMS and
G1 tasks suffer from 1.4x more GC cycles due to higher memory
pressure and static GC triggering conditions (as Finding 7).

The generality of our findings. Our current findings are specific to
big data applications. Readers should interpret them under our ex-
perimental settings. However, if applications in other environments
have similar memory usage patterns, some findings may be appli-
cable. For example, Finding 2, 3, 4 may be applicable for other
applications that generate a large number of long-lived objects.

7. RELATED WORK

Performance studies on big data applications. Many researchers
have studied the performance of MapReduce and Spark applica-
tions |39}(38//46,|49//28]. They found the application performance
can be affected by configuration parameters |38], I/O mode |39],
data caching [26], straggler tasks [40l|27], scheduling [55], network
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traffic [34], checkpoint interval [48], etc. The study conducted by
Ousterhout et al. |46] found that many Spark applications are CPU-
bound. This supports the generality of Finding 8. Memory-related
studies |33}|35||51]] show that big data applications suffer from seri-
ous memory pressure, such as memory bloat, heavy GC overhead,
and even OOM errors. Bu ef al. |33] found the memory bloat is
caused by the large volume of data objects and the object metadata.
Xu et al. [52] found that improper data caching policy and cache
size can lead to performance degradation and GC overhead. Xu et
al. [51] found the OOM root causes are due to the improper mem-
ory configurations, data skew, and memory-consuming user code.
Our work leverages prior work but focuses on investigating the mis-
match between the memory usage patterns of big data applications
and current GC algorithms.

Framework memory management optimization. Researchers
have proposed memory configuration tuning strategies [52], region-
based or lifetime-based memory management [33]|37}/43|/45}|42]|
for improving memory utilization and GC optimization. MemTune
|52] dynamically adjusts the data cache size and cache policy based
on memory usage statistics. Bu et al. |33] proposed a region-based
memory manager to reduce the object overhead, through merging
small data objects into few large objects and manipulating them
at the binary level. Facade [45] proposes a compiler and runtime
system to bound the number of in-memory data objects, through
storing data in an off-heap region and manipulating the data with
control interfaces. Deca [42] proposes a lifetime-based memory
manager to reduce GC overhead, through analyzing the lifetimes
of the data objects in user-defined functions and grouping the ob-
jects with similar lifetimes into byte arrays.

Garbage collection optimization for big data applications. As
mentioned in the survey [31], researchers begin to optimize exist-
ing garbage collectors |53}|41}/50}|30, [36] or design new garbage
collectors |441|32] for big data applications. For example, Suo et al.
|50] proposed dynamic GC load balancing strategy to optimize the
concurrency of Parallel GC in multicore environment. NG2C |32]
extends G1 collector to reduce the time-consuming object copy be-
tween generations. Yak [44] divides the heap into a control space
for managing the objects in the control path and a data space for
managing the objects in the data path. The control space uses reg-
ular GC algorithms, while the data space uses region-based algo-
rithms to reduce GC overhead. Our proposed GC optimizations are
measurement-driven and can complement existing efforts.

8. CONCLUSION

Big data applications usually suffer from heavy GC overhead due
to the mismatches between high memory requirements of these ap-
plications and current GC algorithms. In this work, we perform an
in-depth study on three garbage collectors using four representative
Spark applications. Specially, we investigate unique memory usage
patterns of big data applications and GC inefficiencies in handling
these patterns. Our study reveals many interesting findings and im-
plications, as well as provides useful guidelines for application de-
velopers and insightful GC optimization strategies for designing
big-data-friendly garbage collectors.
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