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ABSTRACT
We consider the problem of performing linear regression over a
stream of d-dimensional examples, and show that any algorithm
that uses a subquadratic amount of memory exhibits a slower rate
of convergence than can be achieved without memory constraints.
Specifically, consider a sequence of labeled examples (a1,b1), (a2,b2) . . . ,
with ai drawn independently from a d-dimensional isotropic Gauss-
ian, and where bi = ⟨ai ,x⟩ + ηi , for a fixed x ∈ Rd with ∥x ∥2 = 1
and with independent noise ηi drawn uniformly from the interval
[−2−d/5, 2−d/5]. We show that any algorithm with at most d2/4
bits of memory requires at least Ω(d log log 1

ϵ ) samples to approx-
imate x to ℓ2 error ϵ with probability of success at least 2/3, for
ϵ sufficiently small as a function of d . In contrast, for such ϵ , x
can be recovered to error ϵ with probability 1 − o(1) with memory
O
(
d2 log(1/ϵ)

)
using d examples. This represents the first nontriv-

ial lower bounds for regression with super-linear memory, and may
open the door for strong memory/sample tradeoffs for continuous
optimization.
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chine learning theory.
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1 INTRODUCTION
What are the implications of memory constraints on the ability
to efficiently learn or optimize? As has been revealed in a recent
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series of striking results [1–7], for a broad class of natural learning
problems over the Boolean hypercube and other finite fields, there
is a sharp threshold for the amount of memory required to learn
with a polynomial amount of data.

This line of work was sparked by Raz’ breakthrough result [1],
which considered the problem of learning a parity: given access to
a stream of labeled examples, (a1,b1), . . . , where each ai ∈ {0, 1}d
is drawn uniformly at random from the d-dimensional hypercube
and bi = ⟨ai ,x⟩ mod 2 for some fixed vector x , Raz showed that
any algorithm with o(n2) memory would require an exponential
number of examples to learn x (with any significant success proba-
bility). Of course, given a quadratic amount of memory, x can be
efficiently computed by taking the first O(n) examples and solv-
ing the corresponding linear system over F2. Subsequent work
extended this result to a broad class of discrete learning problems,
including [2, 5, 6] which generalized the results to a class of Boolean
learning problems that satisfy a certain combinatorial condition, [4]
which extended the techniques to the problems of learning sparse
parities (parities involving o(d) coordinates) which implies hard-
ness of several other natural Boolean learning problems including
learning small juntas, small decision trees, and small DNF formulae,
and the works [3] and [7] whcih strengthened the approach of [2]
to yield tight tradeoffs for a larger class of learning problems over
finite fields, including homogeneousm-variate polynomials over
F2.

For continuous, real-valued optimization and learning problems,
much less is known about memory/sample tradeoffs. This is in
spite of fact that the problem of learning a linear regression—the
real-valued analog of learning parities—lies at the core of machine
learning and is a prototypical convex optimization problem. Indeed,
one of the original motivations for the conjecture that learning
a parity required either a quadratic memory or exponential time,
originally stated in [8], was the question of the memory/sample
tradeoffs for linear regression.

This question of the memory/sample tradeoffs for linear re-
gression is also extremely important from a practical perspective.
Gradient-based ‘first-order’ methods are the workhorse of modern
machine learning, in contrast to ‘second-order’ methods. This is
explained by the efficiency benefit conferred by the linear mem-
ory footprint of first-order methods as opposed to the quadratic
memory requirements of second-order methods. For large-scale
learning problems, this reduction in memory usage of first-order
methods more than compensates for the increase in the number
of iterations or datapoints processed. If methods with compara-
ble memory usage to first-order methods (or at least significantly
subquadratic) were capable of achieving similar convergence rates
to second-order methods, that could have far-reaching practical
implications.
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The question of the memory/sample tradeoffs for linear regres-
sion is also a natural and largely unexplored frontier of continuous
optimization research. There is classic line of research which has
proven information theoretic lower bounds on continuous optimiza-
tion [9–11] in a restricted oracle model where the input real-valued
function can only be queried via black box queries to an oracle that
returns local information about the function, e.g. function values,
gradients, etc. Given only mild regularity assumptions on a func-
tion, e.g. Lipschitz continuity, smoothness, convexity, etc., proving
tight bounds on the number of queries to an oracle needed to ap-
proximately minimize a function is well-studied and has been a
driving force behind the development of modern optimization the-
ory. While there is some work studying the effect of parallelism on
these lower bounds [12–14], we are unaware of previous work prov-
ing gaps between the query complexity of optimization problems
under differing memory constraints.

In this work, we provide the first nontrivial memory/sample
tradeoffs for linear regression which apply in the regime where
the available memory is significantly larger than what would be
required to store each datapoint to high precision.

Theorem1.Consider a sequence of labeled examples (a1,b1), (a2,b2) . . . ,
with ai drawn independently from a d-dimensional isotropic Gauss-
ian with an identity covariance matrix, and where bi = ⟨ai ,x⟩ + ηi ,
for a fixed x ∈ Rd with ∥x ∥2 = 1 and with independent noise ηi
drawn uniformly from the interval [−2−d/5, 2−d/5]. Let ϵ = 1/dr
for any r ≤ O(d/logd). Then any algorithm with at most d2/4 bits
of memory requires at least Ω(d log r ) samples to approximate x to
ℓ2 error ϵ with probability of success at least 2/3. In particular, for
ϵ ≤ 1/dΩ(logd ), this implies that any algorithm with d2/4 bits of
memory requires at least Ω(d log log 1

ϵ ) samples to approximate x to
error ϵ with probability of success at least 2/3.

For comparison, note that for ϵ ∈ [2−Θ(d ), 1/d], the trivial algo-
rithm recoversx to error ϵ with probability 1−o(1) usingO

(
d2 log(1/ϵ)

)
bits of memory and d examples.1

1.1 Further Directions
Our result establishes the existence of a sharp gap in sample com-
plexities for regression with bounded memory. Nevertheless, this
still leaves a significant margin between our lower bounds on
the convergence rate of bounded memory algorithms, and those
achieved by the best known first-order methods which use memory
O(d log(1/ϵ)). For example, randomized Kaczmarz [15] can be easily
shown to compute a point x̃ such that ∥x − x̃ ∥2 ≤ ϵ with constant
probability usingO(d log(1/ϵ)) samples and memoryO(d log(1/ϵ)).
This is the best known sample complexity for achieving error ϵ
given this amount of memory, though our lower bound leaves open
the question of whether it is optimal.

Beyond tightening our result, it is also worth considering the
analogous regression question in the setting where the datapoints
are drawn from an ill-conditioned distribution. Both in practice, and
theory, first-order methods suffer a convergence rate that degrades

1This follows from the fact that the condition number of the system with d examples is
at most 1/poly(d )with high probability, and hence we can solve the system to accuracy
ϵ by doing all computations with O (log(d/ϵ )) = O (log(1/ϵ )) bits of precision, for
ϵ ≤ 1/d .

with the condition number. Over the past decade there has been
extensive research on providing iterative methods which use sub-
quadratic space and seek better dependencies on the eigenvalues
of the covariance of the distribution of a. Though there have been
several improvements to randomized Kaczmarz and variants of SGD
in recent years [16–24] the number of samples required by these
methods all depend polynomially on some measure of eigenvalue
range or conditioning of the underlying covariance matrix. This
is in sharp contrast to second-order methods which can simply
store Θ(d) samples and invert an associated matrix to compute
an ϵ accurate solution with Ω(d2 log(dκ/ϵ)) memory where κ is a
condition number measure of the matrix.
Conjecture. For any κ bounded by a polynomial of d , there exists
a distribution Dκ over d-dimensional Gaussian distributions whose
covariance has condition number κ, such that for G ← Dκ , given a
sequence of examples (ai ,bi ) with ai drawn from G and bi = ⟨ai ,x⟩,
any algorithm that recovers the unit vector x to small constant ℓ2
error with constant probability either requires Ω(d2) bits of memory,
or d · poly(κ) examples.

The work of this paper may be a first step towards proving the
above conjecture. We hope this paper will inspire efforts to estab-
lish strong memory/query complexity trade-offs for continuous
optimization more broadly.

In a different direction, it may be worth considering the extent to
which results of the form of Theorem 1 apply beyond the stochastic
streaming setting. Rather than considering a stream of independent
examples, one could consider the analogous questions in a cell-
probe setting: suppose there is a set of O(d) examples stored in
read-only memory, and one is charged according to the number of
times each example is ‘downloaded’ into working memory. What
are the tradeoffs between the amount of working memory, error of
the recovered linear regression, and number of ‘downloads’? This
setting closely corresponds to the data pipeline employed in many
large scale learning settings, and any strong results in this setting
would be extremely interesting.

It is worth noting that, even in the setting of learning parities,
the stochasticity of the examples is essential to the exponential
sample complexity of memory-constrained algorithms. Analogous
results are not true in the above cell-probe model. For example,
given O(n) examples stored in read-only memory, there exists a
successful learning algorithm for the parity problem with O(n)
working memory that uses poly(n) runtime and cell-probes [25]
(though, to the best of our knowledge, it is not known if there
is a successful learning algorithm for the real-valued regression
problemwhich usesO(n)working memory andpoly(n) cell-probes).
Still, establishing any nontrivial gap between memory-constrained
and unconstrained learning (for either the real-valued regression or
parity problems) in the cell-probe setting would be exciting, though
may be quite difficult.

1.2 Related Work
A number of recent works have examined learning problems such
as sparse linear regression [26] and detecting correlations [27, 28]
under information constraints such as limited memory or commu-
nication constraints. These results usually develop information-
theoretic inequalities [8, 28, 29] to show that unless a set of parties
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exchange a minimum amount of information, they cannot solve
the learning problem—with the memory bound following as a con-
sequence of the communication lower bound. At a high level, the
idea is to show that if the learning problem requires distinguish-
ing between a set of k distributions, and if the distributions are
sufficiently uncorrelated, then at least Ω(k) bits of communication
are needed to solve the learning problem. While initial results only
obtained lower bounds for settings where the memory budget is
less than the size of each data point, the recent work Dagan and
Shamir [28] circumvented this barrier and showed strong lower
bounds for detecting correlations for natural distributions under
information constraints.

Many of these information theoretic tools seem to break down
for learning problems such as parity learning where communica-
tion lower bounds do not directly give meaningful memory bounds.
Hence these settings require explicitly taking into account the mem-
ory constraint of the algorithm; the recent line of work discussed in
the introduction, starting with Raz [1] achieves sharp lower bounds
for memory-bounded learning by directly analyzing the structure of
width-bounded branching programs for these problems [2–7]. Our
work directly builds on the analysis framework developed in [2],
and extended in [3] and [7], with the crucial difference that the ge-
ometry of the continuous space corresponding to linear regression
lacks many of the combinatorial properties that are leveraged in
the analysis of these prior works.

There is also a large literature on memory lower bounds for
streaming algorithms (for e.g. [30, 31]), although these are mostly
for non-learning problems and assume that the input stream is
constructed in an adversarial fashion.

On the optimization side, there is a long history of proving in-
formation theoretic lower bounds on optimization methods. These
results typically show that given a type of restricted local oracle
to access the input, i.e. an oracle which only returns information
about values, gradients, higher derivatives, separation oracles, etc.,
lower bounds can be formally proven on the number of queries
needed to approximately minimize the function. Such results date
back early work of [9] on the oracle complexity of optimization and
there are too many results to do a complete review (see Nesterov
[10], Bubeck [11] for more recent surveys). Key results in this broad
area of research include, tight oracle bounds known for computing
approximate minimizer of smooth convex functions given a gradi-
ent oracle [9–11] even when randomization is allowed [32], tight
oracle bounds known for computing approximate minimizer of
Lipschitz convex function given by a subgradient oracle [9, 10, 33],
and even tight oracle bounds for computing critical points, that is
points of small gradient, for smooth non-convex functions given by
a gradient oracle [34–38]. There has also been extensive research
on the oracle complexity of stochastic optimization [9, 39–42] and
work on the tradeoff between oracle complexity and parallelism for
nonsmooth optimization with a subgradient oracle [12–14]. How-
ever, to the best of the authors knowledge the problem of memory /
query complexity tradeoffs for real-valued continuous optimization
has been largely unexplored.

2 SETUP AND PROOF OVERVIEW
In this section, we provide an overview of our proof approach.
We begin by describing the notation and formalism we will use in

analyzing the branching program representing a memory-bounded
learning algorithm.

2.1 Branching Programs for Learning
We model the learner by a branching program B. A branching
program is a general non-uniform model for space bounded com-
putation. The branching program hasm layers, corresponding to
m time steps, with each layer having at mostw vertices, wherew
denotes the width of B. Each vertex of B corresponds to a memory
state, and a branching program with width w corresponds to an
algorithm with memory usage log2w . A vertex with no outgoing
edges is called a leaf, and all vertices in the last layer are leaves
(though there may be additional leaves). Each non-leaf vertex v
has an associated transition function fv : Rd × R → [w], repre-
senting the mapping from an example (a,b) to a vertex in the next
layer. Without loss of generality, we may assume that these transi-
tion functions are deterministic, as randomization cannot improve
the probability of success.2 To be consistent with the literature on
branching programs, we will refer to this transition function as
a series of ‘edges’ indexed by the (infinite number of) potential
examples (a,b). Finally, each leaf vertex, v , of the branching pro-
gram is labeled by a label, x̃(v), representing the output value that
the corresponding algorithm would produce on the sequence of
examples that led to vertex v .

We define the success probability of the branching program
B for a specified accuracy parameter ϵ to be the probability that
∥x̃ − x ∥2 ≤ ϵ , where x̃ is the vector returned by B, and the probabil-
ity is with respect to the randomness in the sequence of examples
and choice of the true x .

2.2 Setup
We consider branching programs whose goal is to learn some true
x ∈ Rd with ∥x ∥2 = 1 to ℓ2 error ϵ , in the setting where x is drawn
uniformly at random from the d dimensional unit sphere. At every
time step, a d-dimensional vector a is sampled from N (0, Id ), and
the branching program is given a and the (noisy) inner product b =
aT x + η, where the noise η is sampled fromU [−δ ,δ ] for δ = 2−d/5.
The addition of this noise facilitates the analysis, and we could have
equivalently assumed that the true inner product aT x is discretized
according to some exponentially small discretization error δ . Note
that as long as the goal is to estimate x up to accuracy ϵ ≥ 2−γd for
a small constant γ , the small uniform noise or discretization does
not create any information theoretic obstacles.

2.3 Proof Overview
Our proof follows and builds on the recent analytic framework for
showing time-space lower bounds developed in Raz [2], and further
extended in Beame et al. [3] and Garg et al. [7]. The analysis in our
case is complicated by the fact that the gap in the sample complexity

2This can be easily seen by noting that any branching program with randomized
transitions can be converted to a deterministic one by iteratively derandomizing each
vertex by replacing its randomized transition function with the deterministic one that
select the transition that maximizes the probability of success (breaking ties arbitrarily),
where the probability is taken over the randomization in the subsequent examples and
whatever randomization remains in the transition functions corresponding to other
vertices.
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of first order and second order methods for regression on well-
conditioned matrices is not very large, and depends on the desired
error ϵ . To capture this dependence of the sample complexity on ϵ ,
we divide the branching program into multiple stages, where a stage
is a group of consecutive layers of the branching program. Each
stage will intuitively correspond to the branching program reducing
the ℓ2 error of the estimate of x by a factor of two. We will argue
that each of these stages cannot be too short if the algorithm has
small memory. We now sketch the proof, describing the high-level
framework of Raz [2] and how we adapt it to our setup.

As in Raz [2], we define a truncated computation path T which
follows the computation path of the branching program B, but may
stop before reaching a leaf vertex. The conditions under which T
stops before reaching a leaf vertex will depend on the stage of the
branching programwhich T is in. For any vertexv in the branching
program, let Px |v be the posterior distribution of x conditioned on
being atv . Wewill quantify the progress made by a vertexv towards
learning x by the ℓ2 norm ∥Px |v ∥2 of the posterior distribution
Px |v of v , note that a large norm indicates a concentrated posterior
with an accurate estimate of x . The truncated path T stops at any
significant vertex s where ∥Px |s ∥2 is larger than some threshold,
where the threshold is chosen as a function of the stage of the
branching program being analyzed. Intuitively, if ∥Px |s ∥2 is larger
than a given threshold, then T has more information about x then
we expect it to have at that stage. Most of the effort in Raz [2] and in
our work goes into ensuring that the probability of any significant
vertex is small enough that the probability of T stopping due to
reaching a significant vertex is small.

We now sketch the argument for showing that the probability
of reaching a significant vertex, s, is small, for any stage Bt of the
branching program B. Let Li denote the set of all vertices in the ith
layer of the t-th stage Bt . The following potential function tracks
the progress which the i-th layer of Bt has made towards a fixed
significant vertex s in Bt ,

Zi =
∑
v ∈Li

Pr(v) · ⟨Px |v ,Px |s ⟩d/2.

We claim that ifZi is small and the significant vertex s lies in the
i-th layer of Bt , then the probability of s must also be small. This
follows because we define significant vertices as those for which
∥Px |s ∥2 is large, and if s is in the ith layer thenZi ≥ Pr(s) · ∥Px |s ∥d2 .
Hence our goal will be to show thatZi is small. Note that raising
to the power of d/2 in our expression forZi allows us to show that
the probability of significant vertices is small enough that we can
do a union bound over all vertices in the branching program, and
d/2 is the largest power to which we can raise while keeping the
contribution of the low probability events small.

We prove thatZi is small via an induction argument. We first
show that Z0 must be small, as the previous stage Bt−1 of the
branching program could not have made too much progress. We
next show thatZi+1 cannot be much larger thanZi . To show this,
we introduce another potential which tracks how much progress
any edge e of the branching program has made towards s . Let
Px |e be the posterior distribution of x conditioned on the event of
traversing edge e in the branching program. Let Γi denote the set
of all edges from the (i − 1)-th layer to the i-th layer of the t-th
stage Bt of the branching program, and let p(e) be the p.d.f. of the

distribution over edges evaluted at edge e . For any i , we define the
potential,

Z′i =

∫
e ∈Γi

p(e) · ⟨Px |e ,Px |s ⟩
d/2 de .

A straightforward convexity argument shows that Zi+1 ≤ Z′i .
Hence the main challenge is showing that Z′i cannot be much
larger thanZi . This is where our analysis differs significantly from
Raz [2] (this is also where Beame et al. [3] and Garg et al. [7] differ
the most from Raz [2]). In these previous works which concern
learning over finite fields, the learning problem is viewed as a
certain matrix, and properties of this matrix are used to show that
Z′i cannot be much larger thanZi . It is worth noting that in these
settings, it is possible to argue that the example in the next time step
looks almost random to the branching program if it does not have
significant knowledge about the answer, and then use this to show
that the branching program cannot make too much progress when
it gets an example. In our case though, first-order methods which
require only linear memory can learn x up to non-negligible error
with only linear sample complexity, hence the examples do not have
as much randomness. Also, as we work over continuous spaces we
lack the combinatorial properties that enables the analysis in the
previous works to go through, and need to develop different tools.

We now sketch our argument for showing that Z′i cannot be
much larger thanZi . For intuition, we first describe the argument
as it would pertain to the branching program corresponding to
the linear memory, first-order method for regression. At a high
level, by the end of the t-th stage of this branching program, the
algorithm has learned x up to error roughly ϵt = 1/2t , and the
posterior Px |v of a vertex v in this stage roughly corresponds to a
spherical Gaussian with standard deviation ϵt in every direction.
A target significant vertex, s , in the t-th stage will have posterior
Px |s roughly corresponding to another spherical Gaussian, but with
standard deviation ϵt /2 in every direction. This significant vertex
represents a memory state that has learned significantly more than
is expected of a vertex in this stage, and we will show that the
probability of reaching such a vertex is small. As every example
(a,b) has some small uniform noise η ∼ U [−δ ,δ ] added to b, if
the branching program is initially at vertex v and then gets the
example (a,b), the posterior Px |v is updated by restricting it to
the thin slice of the spherical Gaussian where aT x = [b − δ ,b + δ ].
We need to argue that this slicing does not significantly increase
the inner product with the posterior Px |s corresponding to the
smaller, target Gaussian. This holds, provided the target Gaussian
does not have significantly higher probability mass in the slice to
which we are restricting. This is easy to analyze in this special
setting where the posteriors are spherical Gaussians, by simply
analyzing the projections of the two Gaussians along a random
direction a. In our actual proof, to bound the rate of progress via
this argument, we cannot assume that the posteriors have such
a nice form. Nevertheless, we show a concentration result that
guarantees that, for any distribution with sufficiently small ℓ2 norm,
the projections can not behave too much worse than projections of
spherical Gaussians with the corresponding ℓ2 norms.

To sketch the argument more formally, we need to define some
notation. We define f̃ as the point-wise product of the distributions

893



Memory-Sample Tradeoffs for Linear Regression with Small Error STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Px |v and Px |s , with suitable normalization. Hence for any x ′ on
the d dimensional unit sphere,

f̃ (x ′) =
Px |v (x

′) · Px |s (x
′)∫

z Px |v (z) · Px |s (z) dz
.

Let Iδ (b) be the interval [b − δ ,b + δ ]. For any distribution f and
fixed a, define Gf ,a (Iδ (b)) = Ex ′∼f

[
1(aT x ′ ∈ Iδ (b))

]
. Note that

for a vertex v with posterior distribution Px |v , GPx |v ,a (Iδ (b)) is
the probability mass on vectors x ′ which are consistent with the
example (a,b), up to the noise level δ . With some technical work,
we can approximately relate ⟨Px |v ,Px |s ⟩ and ⟨Px |e ,Px |s ⟩ for an
edge e labelled by (a,b) as follows,

⟨Px |e ,Px |s ⟩ ≈ ⟨Px |v ,Px |s ⟩ ·
G f̃ ,a (Iδ (b))

GPx |v ,a (Iδ (b))
.

Intuitively, the above relation says that the progress that the trun-
cated path T makes towards some target distribution f̃ after receiv-
ing example (a,b) depends on the ratio of the probability mass of f̃
which is consistent with (a,b), and that of Px |v which is consistent
with (a,b). Hence in order to bound Ee [⟨Px |e ,Px |s ⟩d/2] in terms
of ⟨Px |v ,Px |s ⟩d/2, our goal will be to upper bound

E
a,b

[
G f̃ ,a (Iδ (b))

GPx |v ,a (Iδ (b))

]d/2
.

Note that as b = aT x + η where x ∼ Px |v , we can show that exam-
ples (a,b) where GPx |v ,a (Iδ (b)) is too small have small probability.
Hence we can lower bound the denominator by making the trun-
cated path T stop ifGPx |v ,a (Iδ (b)) is too small, while still ensuring
that the probability of T stopping due to this reason is small.

It is more complicated to upper bound Ea,b [G f̃ ,a (Iδ (b))
d/2].

Note that G f̃ ,a (Iδ (b)) is the probability mass of the distribution f̃

which lies in the interval Iδ (b) when f̃ is projected onto a random
direction a. The linear projection of a high-dimensional distribution
onto a random direction is a well-studied topic, and it is known
that under mild conditions on f̃ such as bounded second moments,
its projection onto a random direction is approximately Gaussian
[43–45] or a mixture of Gaussians [46] with high probability. How-
ever, these results typically only give an additive O(1/

√
d) error

guarantee for the difference between the probability mass of f̃ on
any interval I and that of an appropriate Gaussian on that interval
(and this is tight given only second moment constraints). Note that
in our case the intervals Iδ (b) have exponentially small width δ , and
we care about the multiplicative approximation error, hence these
O(1/
√
d) additive error guarantees are not strong enough. We show

that we can obtain stronger guarantees in our case by ensuring
that ∥ f̃ ∥2 is small, which we guarantee by appropriate conditions
on the truncated path T . With a bound on ∥ f̃ ∥2, we prove the
following concentration result for projections of high-dimensional
distributions onto a random direction—
Lemma 1. Let f̃ be a distribution over the d dimensional sphere,

with ∥ f̃ ∥2 ≤
(100/ϵ )d

Cd
for some ϵ ≤ 1. For an absolute constantC and

fixed b,

E
a

[
G f̃ ,a (Iδ (b))

d/2
]
≤ (Cϵ−20δ )d/2.

Finally, note that the above bound is for a fixed b, but if the
branching program knows x to a small error then it also knows the
inner product b for any a to a small error, hence the distribution
of b is itself highly dependent on a. To get around this, we prove a
version of the above lemma where b is obtained by first sampling
x from Px |v and then adding noise η to aT x . These concentration
bounds may be useful beyond this work, and it may be interesting to
further develop our understanding of properties of the projection of
high-dimensional distributions with small ℓ2 norm onto a random
direction.

3 NOTATION
Let Sd be the set of all vectors on the d-dimensional unit sphere,
andUd be the uniform distribution over Sd . HenceUd (x) = 1/Cd
for all x ∈ Sd , for some Cd which depends on d .

Let Ev denote the event that the truncated path reaches a vertex
v . For any random variable Z we denote the distribution of Z by
PZ . We denote the probability of any vertex v in the branching
program by Pr(v). As the edges e of the branching program are
indexed by real valued (a,b), for any edge e we denote the p.d.f. of
the distribution over all edges of the branching program evaluated
at the edge e by p(e). Let the sample at the ith time step be (ai ,bi ).
Recall that the distribution of ai is N (0, Id ), and we will denote
its p.d.f. at a vector a by p(a). Similarly, we denote the p.d.f. of b
conditioned on being at vertexv and seeing example a as p(b |a,Ev ).
For any function f from Sd → R, we denote by ∥ f ∥2 the ℓ2 norm
of f with respect to the uniform distributionUd over Sd ,

∥ f ∥2 =
(
E

x∼Ud
[f (x)2]

)1/2
.

Recall that in the previous section we defined Gf ,a (Iδ (b)) =

Ex ′∼f

[
1(aT x ′ ∈ Iδ (b))

]
for any distribution f , where Iδ (b) is the

interval [b − δ ,b + δ ]. For notational convenience, we will subse-
quently denote GPx |v ,a (Iδ (b)) for a vertex v by Gv,a (Iδ (b)).

4 PROOF OF THEOREM 1
In this section, we formally define the stages of the branching
program and the truncated computation path T , and then provide
a proof for Theorem 1.

Stages of the Branching Program. We partition the branching pro-
gram B into T stages {Bt : 0 ≤ t ≤ T }, for some T which depends
on the desired accuracy ϵ . The tth stage Bt continues formt time
steps, wheremt = ⌈

c0d
logd+t ⌉ and c0 is an absolute constant to be

determined later. We define the stages inductively. The first stage
B0 consists of all vertices up until and including them0-th layer
of the branching program B. The t-th stage Bt consists of (mt + 1)
layers beginning with and including the last layer of the previous
stage Bt−1.

Truncated Path. We define the truncated path T corresponding to
the branching program B. The truncated path T follows the same
path as B, except that it sometimes stops before reaching a leaf
vertex. The conditions under which the truncated path stops before
reaching a leaf vertex will be different depending on the stage t .
Define ϵt = 2−t . Intuitively, ϵt determines the accuracy to which
B could know x in the t-th stage. In the t-th stage Bt of B, the

894



STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Vatsal Sharan, Aaron Sidford, and Gregory Valiant

truncated path stops at a non-leaf vertex v for any of the following
three reasons—

(1) If v is a significant vertex, where ∥Px |v ∥2 >
(2/ϵt )d
Cd

.
(2) If x belongs to the set of vectors Sig(v) which have non-

trivial probability mass under Px |v (x), defined as Sig(v) ={
x ′ : Px |v (x ′) >

(4/ϵt )2d
Cd

}
.

(3) If the branching program is about to traverse a bad edge.
The set Bad(v) of bad edges for the vertex v is defined as
the set of edges (a,b) for which either i) ∥a∥2 ≥ 2

√
d , or ii)

Gv,a (Iδ (b)) ≤ 2δ/d3.
If the truncated path T does not stop at a non-leaf vertex, then

it follows the same path as the computation path of the branching
program B. Lemma 2 proved in Section 5 shows that the probability
of the truncated path stopping at a non-leaf vertex is small.

Lemma 2. If the number of samplesm ≤ d1.25 and the width of the
branching programw ≤ 2d2/4, then the probability of T stopping at
a non-leaf vertex is at most 1/(2d).

To prove Lemma 2, we show that the probability of the truncated
path stopping at a non-leaf vertex due to each of the three above
reasons is small. Most of the effort goes into proving that the prob-
ability of stopping due to the first reason, reaching a significant
vertex, is small. This is proved in Section 6. Using Lemma 2, we are
now ready to prove our main theorem.

Theorem 1. Let B be a branching program to find x̃ : ∥x − x̃ ∥2 ≤
ϵ , where ϵ = 1/dr for some r ≤ O(d/logd). For a small absolute
constant c , if B has length at most cd log r and width at most 2d2/4,
then the success probability of B is at most 1/d .

Proof. We partition the branching program into T stages and
consider the truncated path T . We first bound the number of stages
T required to do the partition ifm ≤ cd log r . We claim that T ≤
(r/40) logd . As the t-th stage consists of ⌈ c0d

logd+t ⌉ steps, the number
of steps inT = (r/40) logd stages can be lower bounded as follows,

(r/40) logd∑
t=1

⌈
c0d

logd + t

⌉
≥ c0d

(r/40) logd∑
t=logd

1
logd + t

≥
c0d
2

(r/40) logd∑
t=logd

1
t

≥
c0d
2 log

( r logd
40 logd

)
≥

c0d log r
100 .

Hence taking c = c0/100, the number of stages T in cd log r steps
is at most (r/40) logd . Note that if T does not stop before reaching
a leaf, then it follows the same path as the branching program B.
By Lemma 2, the probability that T stops before reaching a leaf is
at most 1/(2d). Hence we now only need to bound the probability
that a non-significant leaf v of T outputs x̃ such that ∥x − x̃ ∥2 ≤ ϵ .
However, for a non-significant leaf v we know that ∥Px |v ∥2 ≤
(2/ϵT )d
Cd

. Further, the following lemma (proved in Section 7) shows
that this condition implies that the probability of v outputting an ϵ
accurate answer is small.

Lemma 3. Let f be a distribution over the d dimensional sphere Sd ,

with ∥ f ∥2 ≤
(2/ϵ )d
Cd

for some ϵ ≤ 0.01. Then for any x ∈ Sd ,

Pr
x∼f

[
x : ∥x − x̃ ∥2 ≤ ϵ40

]
≤ 2−d/2.

Now for T = (r/40) logd , ϵT = 1/dr/40. Hence by Lemma 3, the
probability that a non-significant leafv outputting an 1/dr accurate
answer is at most 2−d/2. By a union bound over the probability
of the truncated path stopping before a non-leaf vertex and the
probability of a non-significant leaf outputting a valid answer, the
probability of B outputting an 1/dr accurate answer is at most 1/d .

5 PROBABILITY OF THE TRUNCATED PATH
STOPPING EARLY

In this section, we show that the probability the truncated path T
stop sat a non-leaf vertex is small. Lemma 4 shows that probability
of T stopping because of the first reason (reaching a significant
vertex) is small. Most of the remainder of the paper will be devoted
to proving Lemma 4.

Lemma 4. If the total number of stages T ≤ d1.25 and the width
of the branching program w ≤ 2d2/4, then the probability that T
reaches a significant vertex in any stage is at most 2−d .

Lemma 5 and Lemma 6 show that the probability of the truncated
path T stopping due to reasons (2) and (3) respectively is small.

Lemma 5. If v is not a significant vertex of B, then

Pr[x ∈ Sig(v)|Ev ] ≤ 2−2d .

Proof. Assume v is in the t-th stage in the branching program.
Since v is not a significant vertex,

E
x ′∼Px |v

[Px |v (x
′)] =

∫
x ′∈Sd

Px |v (x
′)2dx ′ = Cd E

x ′∼Ud
[Px |v (x

′)2]

≤
(2/ϵt )2d

Cd
.

Hence by Markov’s inequality,

Pr
x ′∼Px |v

[
Px |v (x

′) >
(4/ϵt )2d

Cd

]
≤ 2−2d .

Since conditioned on Ev , the distribution of x is Px |v , we get,

Pr[x ∈ Sig(v)|Ev ] = Pr
x ′∼Px |v

[
Px |v (x

′) >
(4/ϵt )2d

Cd

]
≤ 2−2d .

Lemma 6. Pr(ai+1,bi+1)[(ai+1,bi+1) ∈ Bad(v)] ≤ 5/d2.5.

Proof. As a ∼ N (0, I ), by standard concentration bounds for χ2
random variables, Pr[∥a∥2 ≥ 2

√
d] ≤ e−d/10. Conditioned on

∥a∥2 ≤ 2
√
d , |aT x | ≤ 2

√
d . As b is generated by adding noise

drawn uniformly at random from [−δ ,δ ] to the true inner product
aT x , p(b |a,Ev ) = (2δ )−1Gv,a (Iδ (b)), where we use our notation
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Gv,a (Iδ (b)) = Ex ′∼Px |v [1(a
T x ′ ∈ Iδ (b))]. Let u(b) be the p.d.f. of

the uniform distribution on b with support [−2
√
d, 2
√
d]. Note that,∫

b ∈R

p(b |a,Ev )1
(
p(b |a,Ev ) ≤ 4u(b)/d2.5

)
db ≤ 4

∫
b ∈R

u(b)

d2.5
db

≤
4

d2.5
.

Therefore as u(b) = 1/(4
√
d) and Gv,a (Iδ (b)) = 2δp(b |a,Ev ),∫

b ∈R

p(b |a,Ev )1
(
Gv,a (Iδ (b)) ≤ 2δ/d3

)
db ≤

4
d2.5
.

By a union bound, it follows that Pr(ai+1,bi+1)[(ai+1,bi+1) ∈ Bad(v)] ≤
5/d2.5.

Using these results and a union bound over allm ≤ d1.5 time
steps, we can show that the probability of T stopping at a non-leaf
vertex is small—

Lemma 2. If the number of samplesm ≤ d1.25 and the width of the
branching programw ≤ 2d2/4, then the probability of T stopping at
a non-leaf vertex is at most 1/(2d).

Proof. By Lemma 4, the probability that T reaches a significant
vertex and hence stops due to the first reason is at most 2−d . If T
does not reach a significant vertex, then by Lemma 5, the probability
of stopping due to the second reason at any non-significant vertex
is at most 2−2d . Taking a union bound over all them ≤ d1.25 steps,
the probability of stopping due to the second reason is at most 2−d .
By Lemma 6, the probability of getting a bad sample (a,b) at any
time step and hence stopping due to the third reason is at most
5/d2.5. Taking a union bound over them ≤ d1.25 time steps, the
probability of stopping due to the third reason at any time step is
at most 5/d1.25. Hence the overall probability of the truncated path
T stopping at a non-leaf vertex is at most 1/(2d).

6 BOUNDING THE PROBABILITY OF
SIGNIFICANT VERTICES

In this section, we bound the probability of the truncated path T
reaching a significant vertex in the t-th stage, for any t . We begin
by first finding an expression for the posterior distribution Px |e of
x conditioned on traversing an edge e , and then upper bound the
norm of a significant vertex s in the t-th stage Bt of B.

Relating Px |v and Px |e , and bounding ∥Px |s ∥2. We relate Px |v and
Px |e . Recall that Iδ (b) is the interval [b − δ ,b + δ ]. We claim that,

Lemma 7. For any e labeled by (a,b), such that p(e) > 0,

Px |e (x
′) =

{
Px |v (x

′)/ce if x ′ < Sig(v) and aT x ′ ∈ Iδ (b)
0 if x ′ ∈ Sig(v) or aT x ′ < Iδ (b)

where ce ≥ δ/d3.

Proof. Let e be an edge labeled by (a,b), such that p(e) > 0. Since
p(e) > 0, the vertex v is not significant, as otherwise T stops on v .
Also, as p(e) > 0, e < Bad(v), as otherwise T never traverses edge
e .

If T reaches v it traverses the edge e if and only if: x < Sig(v)
(as otherwise T stops on v) and the next sample received is (a,b).

Also, note that b = aT x +η, where the noise η is uniform on [−δ ,δ ].
Hence the set of x ′ which are consistent with the example (a,b)
are those where aT x ′ ∈ Iδ (b). Therefore for any x ′ ∈ Sd ,

Px |e (x
′) =

{
Px |v (x

′)/ce if x ′ < Sig(v) and aT x ′ ∈ Iδ (b)
0 if x ′ ∈ Sig(v) or aT x ′ < Iδ (b)

where ce is a normalization factor, given by

ce =

∫
x ′:x ′<Sig(v)∧aT x ∈Iδ (b)

Px |v (x
′) dx ′

= Pr
x
[(x < Sig(v) ∧ aT x ∈ Iδ (b)|Ev )].

Since v is not significant, by Lemma 5,

Pr
x
[x ∈ Sig(v)|Ev ] ≤ 2−2d .

Also, since (a,b) < Bad(v),

Pr
x
[aT x < Iδ (b)|Ev ] ≤ 1 − 2δ/d3.

Hence by a union bound and using the fact that δ ≥ 2−d/5,

ce ≥ 1 − (1 − 2δ/d3 + 2−2d ) ≥ δ/d3.

We now show that ∥Px |s ∥2 cannot be too large. To show this,
we first use the previous lemma to show that ∥Px |e ∥2 cannot be
too large for any edge e such that the p(e) > 0.

Lemma 8. For any edge e in the t-th stage Bt of the branching

program such that p(e) > 0, ∥Px |e ∥2 ≤
(d3/δ )(2/ϵt )d

Cd
.

We next use Lemma 8 to bound ∥Px |s ∥2.

Lemma 9. For any significant vertex s in the t-th stage Bt of the

branching program, ∥Px |s ∥2 ≤
(d3/δ )(2/ϵt )d

Cd
.

The proof relies on the fact that the posterior distribution Px |v
of any vertex v is a convex combination of the posterior distribu-
tions Px |e of the incoming edges of v , and then by using Jensen’s
inequality and the bound on ∥Px |e ∥2 from Lemma 8.

Similarity to a Target Distribution. To show that the probability
of T reaching a significant vertex is small, we will argue that the
posterior of x on seeing a new example is not significantly similar
to the target posterior distribution of a significant vertex. We use
the inner product of two distributions to measure their similarity,
and define it as follows. For two functions f ,д : Sd → R+, define
the inner product

⟨f ,д⟩ = E
z∈Sd
[f (z)д(z)].

Note that for a significant vertex s in the t-th stage,

⟨Px |s ,Px |s ⟩ = ∥Px |s ∥
2
2 >
(2/ϵt )2d

C2
d

. (1)

We now bound the inner product of Px |s with all states v0 in the
first layer of the t-th stage Bt of B.
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Lemma 10. For all states v0 with Pr(v0) > 0 in the first layer of the
t-th stage Bt of B,

⟨Px |v0 ,Px |s ⟩ ≤
(d3/δ )(

√
2/ϵt )2d

C2
d

.

Proof. We claim that ∥Px |v0 ∥2 ≤
(d3/δ )(1/ϵt )d

Cd
for all states v0

in the first layer of Bt . Consider the (t − 1)-th stage Bt−1 of the
branching program B. The truncated path T stops at any significant
vertex, and recall that a significant vertex for the (t − 1)th stage is
defined as a vertex s where

∥Px |s ∥2 >
(2/ϵt−1)d

Cd
.

Hence for all non-significant vertices v in the (t − 1)-th stage Bt−1
of B,

∥Px |v ∥2 ≤
(2/ϵt−1)d

Cd
.

Also, by Lemma 9 for all significant vertices s in Bt−1,

∥Px |s ∥2 ≤
(d3/δ )(2/ϵt−1)d

Cd
.

Hence for all vertices v in Bt−1 with Pr(v) > 0,

∥Px |v ∥2 ≤
(d3/δ )(2/ϵt−1)d

Cd
.

Note that ϵt−1 = 2ϵt , hence ∥Px |v0 ∥2 ≤
(d3/δ )(1/ϵt )d

Cd
for all states

v0 ∈ L0 with Pr(v0) > 0, as L0 is also the last layer of Bt−1. Now by
using Cauchy Schwartz,

⟨Px |v0 ,Px |s ⟩ ≤
(d3/δ )(

√
2/ϵt )2d

C2
d

.

Note that the inner product of Px |s with itself is larger than the
inner product of Px |s with Px |v for v in the first layer by a factor
of about 2Θ(d ), and in the next section we will argue that this inner
product cannot increase too quickly in a small number of time steps,
via a suitable potential function.

6.1 Progress Towards Target Distribution
In this section, we bound how much progress T can make towards
a significant vertex s in the t-th stage Bt of B. For notational con-
venience, we will reindex all the layers in the t-th stage Bt so that
the first layer in Bt is labelled as L0.

Let Li denote the set of all vertices in the ith layer of the t-th
stage Bt , with Pr(v) > 0. Let Γi denote the set of all edges from
the (i − 1)th layer to the ith layer of Bt . For i ∈ {0, . . . ,mt } and
β = 1/2, let

Zi =
∑
v ∈Li

Pr(v) · ⟨Px |v ,Px |s ⟩βd . (2)

For i ∈ {0, . . . ,mt }, let

Z′i =

∫
e ∈Γi

p(e) · ⟨Px |e ,Px |s ⟩
βd de . (3)

Note that by Lemma 10,

Z0 ≤
(
(d3/δ )(

√
2/ϵt )2d

C2
d

)βd
. (4)

The goal of the next three Lemmas is to bound how muchZi can
increase at every step. Lemma 11 does most of the heavy-lifting, and
shows that for a fixed vertexv , the contribution to the potentialZ′i
fromv’s outgoing edges is not much larger thanv’s contribution to
Zi . Lemma 13 uses Lemma 11 to show thatZ′i is not much larger
thanZ. Finally, Lemma 14 shows thatZi+1 ≤ Zi by a convexity
argument.

Lemma 11. Consider the t-th stage Bt of B, and let s be a significant
vertex in Bt . For every vertex v of Bt such that Pr(v) > 0,∫
e ∈Γout (v)

p(e)

Pr(v) · ⟨Px |e ,Px |s ⟩
βd de

≤ ⟨Px |v ,Px |s ⟩
βd · (C ′ϵ−20t d3)βd +

(d3(1/ϵt )2d
δC2

d

)βd
,

where C ′ is an absolute constant.

Proof. If v is a significant vertex or if v is a leaf of the branching
program, then Γout (v) is the empty set and hence the claim is
trivially true. Hence we will assume that v is not a significant
vertex or a leaf.

Define P : Sd → R+ as follows. For any x ′ ∈ Sd ,

P(x ′) =

{
0 if x ′ ∈ Sig(v)
Px |v (x

′) if x ′ < Sig(v).

Note that by the definition of Sig(v), for any x ′ ∈ Sd ,

P(x ′) ≤
(4/ϵt )2d

Cd
. (5)

Define f : Sd → R+ as follows. For any x ′ ∈ Sd ,

f (x ′) = P(x ′) · Px |s (x
′).

By Lemma 9 and Eq. (5),

∥ f ∥2 ≤ ∥P ∥∞∥Px |s ∥2 ≤
d3(4/ϵt )3d

δC2
d

. (6)

By Lemma 7, for any edge e ∈ Γout (v) labeled by (a,b) and for any
x ′ ∈ Sd ,

Px |e (x
′) =

{
0 if aT x ′ < Iδ (b)
P(x ′) · c−1e if aT x ′ ∈ Iδ (b)

where ce ≥ δ/d3. Hence for any edge e ∈ Γout (v) labeled by (a,b)
and any x ′ ∈ Sd we can write,

Px |e (x
′)Px |s (x

′) =

{
0 if aT x ′ < Iδ (b)
f (x ′) · c−1e if aT x ′ ∈ Iδ (b).

Let

F =

∫
x ′∈Sd

f (x ′) dx ′.
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Recall that for uniform distributionUd on Sd ,Ud (x) = 1/Cd for
all x ∈ Sd . Hence we can write,

⟨Px |e ,Px |s ⟩ = E
x ′∼Sd

[Px |e (x
′) · Px |s (x

′)]

= (ceCd )
−1

∫
{x ′:aT x ′∈Iδ (b)}

f (x ′) dx ′. (7)

We will now bound ⟨Px |e ,Px |s ⟩ by considering two separate cases:

Case 1: F ≤ (1/ϵt )2d/Cd . In this case, we bound∫
{x ′:aT x ′∈Iδ (b)}

f (x ′) dx ′ ≤

∫
{x ′∈Sd }

f (x ′) dx ′ = F .

As c−1e ≤ d3/δ , using Eq. (7),

⟨Px |e ,Px |s ⟩ ≤
d3(1/ϵt )2d

δC2
d

.

Note that for an edge e labeled by (a,b),
p(e)

Pr(v) ≤ p(a)p(b |a,Ev ),

where the equality may not be true as the branching program could
stop at v if e ∈ Bad(v). Hence

∫
e ∈Γout (v)

p(e)
Pr(v) de ≤ 1 and Lemma

11 follows in this case.

Case 2: F > (1/ϵt )2d/Cd . We rewrite ⟨Px |e ,Px |s ⟩ as follows,

⟨Px |e ,Px |s ⟩ = F/Cd · c
−1
e

∫
{x ′:aT x ′∈Iδ (b)}

f (x ′)/F dx ′. (8)

For everyx ′ ∈ Sd , we define f̃ (x ′) = f (x ′)/F . Note that
∫
x ′ f̃ dx ′ =

1 and hence f ′ is a distribution over Sd . Also, we can bound ∥ f̃ ∥2
as follows,

∥ f̃ ∥2 ≤ ∥ f ∥2/F ≤
d3(64/ϵt )d

δCd
≤
(100/ϵt )d

Cd
,

where we use the fact that δ ≥ 2−d/5 and Eq. (6) to bound ∥ f ∥2. By
the definitions of P and f ,

F/Cd = E
x ′∈RSd

[f (x ′)] = ⟨P ,Px |s ⟩ ≤ ⟨Px |v ,Px |s ⟩. (9)

By using Eqs. (8) and (9), we can write,∫
e ∈Γout (v)

p(e)

Pr(v) ⟨Px |e ,Px |s ⟩
βd de

≤

∫
e ∈Γout (v)

p(e)

Pr(v)

(
F/Cd · c

−1
e

∫
{x ′:aT x ′∈Iδ (b)}

f̃ (x ′) dx ′
)βd

de

= (F/Cd )
βdc
−βd
e

∫
e ∈Γout (v)

p(e)

Pr(v)

( ∫
{x ′:aT x ′∈Iδ (b)}

f̃ (x ′) dx ′
)βd

de

≤ ⟨Px |v ,Px |s ⟩
βdc
−βd
e

·

∫
e ∈Γout (v)

p(e)

Pr(v)

( ∫
{x ′:aT x ′∈Iδ (b)}

f̃ (x ′) dx ′
)βd

de .

Recall that for an edge e labeled by (a,b), p(e)
Pr(v) ≤ p(a)p(b |a,Ev ).

Using our notation Ex ′∼f̃ [1(a
T x ′ ∈ Iδ (b))] = G f̃ ,a (Iδ (b)), we can

write, ∫
e ∈Γout (v)

p(e)

Pr(v) ⟨Px |e ,Px |s ⟩
βd de

≤ ⟨Px |v ,Px |s ⟩
βdc
−βd
e

·

∫
a∈Rd

∫
b ∈R

p(a) p(b |a,Ev ) G f̃ ,a (Iδ (b))
βd db da.

Let η be a random variable uniform on [−δ ,δ ], and u(η) denote
its distribution. Note that p(b |a,Ev ) is the distribution of aT x ′ +
η, where x ′ is sampled from Px |v and noise η is added to aT x ′.
Therefore,∫

e ∈Γout (v)

p(e)

Pr(v) ⟨Px |e ,Px |s ⟩
βd de ≤ ⟨Px |v ,Px |s ⟩

βdc
−βd
e ·

∫
a∈Rd

∫
x ′∈Sd

∫
η∈R

p(a) Px |v (x
′) u(η) G f̃ ,a (Iδ (a

T x ′ + η))βd dη dx ′ da

= ⟨Px |v ,Px |s ⟩
βdc
−βd
e E

η
E

x ′∼Px |v
E
a

[
G f̃ ,a (Iδ (a

T x ′ + η))βd
]
.

We now use Lemma 12 to bound the expectation.

Lemma 12. Let f be a distribution over the d dimensional sphere,

with ∥ f ∥2 ≤
(100/ϵ )d

Cd
for some ϵ ≤ 1. Let x0 be any vector on the

d dimensional unit sphere, and η0 be some constant. Then for any
ℓ ≤ d/2 and a universal constant C ,

E
a

[
Gf ,a (Iδ (a

T x0 + η0))
ℓ
]
≤ (2(C/ϵ)20δ )ℓ .

By Lemma 12, if β ≤ 1/2, then Ea
[
G f̃ ,a (Iδ (a

T x ′ + η))βd
]
≤

(2(C/ϵt )−20δ ))βd for any x ′ and η. Let C ′ = 2C20. Therefore,∫
e ∈Γout (v)

p(e)

Pr(v) ⟨Px |e ,Px |s ⟩
βd de

≤ ⟨Px |v ,Px |s ⟩
βdc
−βd
e (C ′ϵ−20t δ )βd .

As ce ≥ δ/d3, therefore,∫
e ∈Γout (v)

p(e)

Pr(v) ⟨Px |e ,Px |s ⟩
βd de ≤ ⟨Px |v ,Px |s ⟩

βd (C ′ϵ−20t d3)βd .

Using Lemma 11, we can show thatZ′i cannot be much larger
thanZi−1.

Lemma 13. Consider the t-th stage Bt of B, and let s be a significant
vertex in Bt . Consider the potential functions defined in Eqs. (2) and
(3) which track progress towards s . Then for every i ∈ {1, · · · ,mt },

Z′i ≤ Zi−1 · (C
′ϵ−20t d3)βd +

(d3(1/ϵt )d
δC2

d

)βd
.
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Proof. Using Lemma 11,

Z′i =

∫
e ∈Γi

p(e) · ⟨Px |e ,Px |s ⟩
βd de

=
∑

v ∈Li−1

Pr(v) ·
∫

e ∈Γout (v)

p(e)

Pr(v) ⟨Px |e ,Px |s ⟩
βd de

≤
∑

v ∈Li−1

Pr(v) ·
(
⟨Px |v ,Px |s ⟩

βd · (C ′ϵ−20d3)βd

+
(d3(1/ϵt )2d

δC2
d

)βd )
≤ Zi−1(C

′ϵ−20d3)βd +
∑

v ∈Li−1

Pr(v)
(d3(1/ϵt )2d

δC2
d

)βd
≤ Zi−1(C

′ϵ−20d3)βd +
(d3(1/ϵt )2d

δC2
d

)βd
.

We now show thatZi is upper bounded byZ′i . The proof follows
by a convexity argument and is similar to the proof of Lemma 9.

Lemma 14. For every i ∈ {1, · · · ,mt },

Zi ≤ Z
′
i .

We now use the previous two results to bound the potentialZi
for any layer i in the stage Bt .

Lemma 15. If the length of the t-th stagemt = ⌈
c0d

logd+t ⌉ for suffi-
ciently small constant c0, then for every i ∈ {1, · · · ,mt },

Zi ≤
(d3/δ )βd (1/ϵt )2βd

221.25βd2

C2
d

.

Proof. By Lemma 13 and 14,

Zi ≤ Zi−1 · (C
′ϵ−20t d3)βd +

(d3(1/ϵt )2d
δC2

d

)βd
.

As (C ′ϵ−20t d3)βd > 1, Zi is monotonically increasing and hence

Zi ≥
(
d3(1/ϵt )2d

δC2
d

)βd
for all i > 0. Therefore we can write,

Zi ≤ Zi−1(1 + (C ′ϵ−20t d3)βd ) ≤ Zi−1 · (2C ′ϵ−20t d3)βd .

By Eq. (4),Z0 ≤
(
(d3/δ )(

√
2/ϵt )2d

C2
d

)βd
. Hence for every i ∈ {1, · · · ,mt },

Zi ≤
(
(d3/δ )(

√
2/ϵt )2d

C2
d

)βd
· (2C ′ϵ−20t d3)βdm .

Note that for sufficiently small c0 and using the fact that ϵt = 2−t ,
mt = ⌈

c0d
logd+t ⌉ = ⌈

c0d
log(d/ϵt ) ⌉ ≤

d
4 log(2C ′ϵ−20t d3)

. Therefore,

Zi ≤
(
(d3/δ )(

√
2/ϵt )2d

C2
d

)βd
· 2βd

2/4

=
(d3/δ )βd (1/ϵt )2βd

221.25βd2

C2
d

.

Lemma 4. If the total number of stages T ≤ d1.25 and the width
of the branching program w ≤ 2d2/4, then the probability that T
reaches a significant vertex in any stage is at most 2−d .

Proof. Consider a significant vertex s in the t-th stage Bt of B.
Assume that s is in the ith layer of Bt . Then by Eq. (1),

Zi ≥ Pr(s) · ⟨Px |s ,Px |s ⟩βd ≥ Pr(s) · (2/ϵt )
2βd2

C2
d

.

But by Lemma 15,

Zi ≤
(d3/δ )βd (1/ϵt )2βd

221.25βd2

C2
d

.

Therefore,

Pr(s) ≤ (d3/δ )βd2−0.75βd
2
.

By a union bound over the at most d2 · 20.5βd2 vertices in any stage
of the branching program and using the fact that δ ≥ 2−d/5, the
probability that T reaches a significant vertex in the t-th stage is
at most (d5/δ )βd2−βd2/4 ≤ 2−βd2/20 ≤ 2−2d . By taking a union
bound over T ≤ d1.25 stages, the probability that T reaches a
significant vertex in any stage is at most 2−d .

7 CONCENTRATION THEOREM FOR
PROJECTIONS OF DISTRIBUTIONS

In this section, we prove our concentration theorem for projections
of high-dimensional distributions onto a random direction.

Lemma 12. Let f be a distribution over the d dimensional sphere,

with ∥ f ∥2 ≤
(100/ϵ )d

Cd
for some ϵ ≤ 1. Let x0 be any vector on the

d dimensional unit sphere, and η0 be some constant. Then for any
ℓ ≤ d/2 and a universal constant C ,

E
a

[
Gf ,a (Iδ (a

T x0 + η0))
ℓ
]
≤ (2(C/ϵ)20δ )ℓ .

Proof. All expectations over {xi , i ∈ [ℓ]} in this proof will be with
xi sampled from the distribution f . Recall from our definition,

E
a

[
Gf ,a (Iδ (a

T x0 + η0))
ℓ
]

= E
a

[
Πℓ
i=1 Exi

[1Iδ (aT x0+η0)(a
T xi )]

]
As the distribution of a is a Gaussian and the distribution of the
projection of a Gaussian along a fixed direction is well-understood,
we will first interchange the order of a and xi in the expectation.
We can write,

E
a

[
Gf ,a (Iδ (a

T x0 + η0))
ℓ
]

= E
{xi ,i ∈[ℓ]}

[
E
a

[
Πℓ
i=11Iδ (aT x0+η0)(a

T xi )
] ]
.

We will write the vectors {xi : 0 ≤ i ≤ ℓ} in terms of a suitable
orthogonal basis which will facilitate the analysis of the projection
of a onto xi . For all 0 ≤ i ≤ ℓ, let xi = ui +vi , where ui lies in the
span of {x j : j < i} and vi is orthogonal to the span of {x j : j < i}.
Note that because a ∼ N (0, I ), the components of a along any
orthogonal basis of Rd are independent N (0, 1) random variables.
Hence the components {va,0, . . . ,va, ℓ} of a along the orthogonal
directions {v0, . . . ,vℓ} are independent N (0, 1) random variables.
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Note that aT xi is independent of {va, j : j > i}, as xi is orthogonal
to {vj : j > i}. Let aT x0 + η0 = b0. Using this independence, we
can rewrite the expectation as follows,

E
{xi ,i ∈[ℓ]}

[
E
a

[
Πℓ
i=11Iδ (b0)(a

T xi )
] ]

= E
{xi ,i ∈[ℓ]}

E
va,0

[
E

va,1

[
1Iδ (b0)(a

T x1) Eva,2

[
1Iδ (b0)(a

T x2) . . .

E
va, ℓ

[
1Iδ (b0)(a

T xℓ)
] ]
. . .

]
.

We will now upper bound Eva,i
[
1Iδ (b)(a

T xi )
]
for any value of

{va, j : j < i}. Note that for a fixed value of the components vi and
ui of xi , va,iTvi is a Gaussian with mean 0 and standard deviation
∥vi ∥2 and is independent of aTui as ui and vi are orthogonal. Also,
note that for any value of aTui the probability that aT xi lies within
the interval Iδ (b) = [b − δ ,b + δ ] equals the probability mass of the
distribution of va,iTvi in the interval Iδ (b − aTui ) = [b − aTui −
δ ,b − aTui + δ ]. As the distribution of va,iTvi is Gaussian with
mean 0, the probability mass in any interval Iδ (b − aTui ) is upper
bounded by the probability mass in the interval Iδ (0) = [−δ ,δ ]
centered at 0. Further, because the probability mass of a Gaussian
with standard deviation σ in the interval Iδ (0) = [−δ ,δ ] is at most
max{δ/σ , 1} and the distribution of va,iTvi is a Gaussian with
standard deviation ∥vi ∥2, the probability mass in the interval Iδ (0)
is at most max{δ/∥vi ∥2, 1} ≤ δ max{1/∥vi ∥2, 1/δ }. Hence we can
simplify the expectation as,

E
{xi ,i ∈[ℓ]}

[
E
a

[
Πℓ
i=11Iδ (b0)(a

T xi )
] ]

≤ δ ℓ E
{xi ,i ∈[ℓ]}

[ 1
Πℓ
i=1min{∥vi ∥2,δ }

]
.

Therefore our goal now is to lower bound the component vi of
xi which is orthogonal to the vectors {x j , j < i}. This is where
we will use our upper bound on ∥ f̃ ∥2. Intuitively, if f̃ is not too
large then f̃ is not a highly concentrated distribution and hence
random vectors drawn from f̃ will not be too close to each other.
We formalize this in Lemma 16 which shows that if ∥ f̃ ∥2 is not too
large, then the probability of ∥vi ∥2 being small is also small.

Lemma 16. Let f be a distribution over the d dimensional sphere,

with ∥ f ∥2 ≤
(100/ϵ )d

Cd
for some ϵ ≤ 1. Let {x0, . . . ,xi−1} be an

arbitrary set of i vectors for some i ≤ d/2, and xi be a vector sampled
from f . Let vi be the component of xi orthogonal to {x0, . . . ,xi−1}.
Then for a sufficiently large universal constant C ,

Pr[∥vi ∥2 ≤ (ϵ/C)20] ≤ (ϵ/2)d/2.

The result now follows with some computation. Let {Xi , i ∈ [ℓ]}
be independent random variables each of which take the value δ
with probability (ϵ/2)ℓ and (ϵ/C)20 otherwise. Note that E[1/Xi ] ≤
(1/δ )(ϵ/2)ℓ+(C/ϵ)20 ≤ (2(C/ϵ)20) for δ ≥ 2−d/5. Hence by Lemma
16,

E
{xi ,i ∈[ℓ]}

[ 1
Πℓ
i=1min{∥vi ∥2,δ }

]
≤ E
{Xi ,i ∈[ℓ]}

[ 1
Πℓ
i=1Xi

]
= Πℓ

i=1 E
[ 1
Xi

]
≤ (2(C/ϵ)20)ℓ .

Hence,

E
{xi ,i ∈[ℓ]}

[
E
a

[
Πℓ
i=11Iδ (b0)(a

T xi )
] ]
≤ (2(C/ϵ)20δ )ℓ .

We remark that the bound in Lemma 1 is tight up to the constant
C and the constant 20 in the exponent of ϵ . This follows from the
case where f̃ is the uniform distribution on all points x on the unit
sphere which are distance at most ϵ from a fixed point x0.

7.1 Proof of Lemma 16
We now prove Lemma 16. Lemma 3, which is used in the proof of
Theorem 1, is a corollary of Lemma 16 and follows by appropriately
rescaling the constants in the statement of Lemma 16.
Proof. We will first upper bound the probability that ∥vi ∥2 ≤
(ϵ/C)20 for any i ≤ d/2 if xi is drawn uniformly at random from the
unit sphere. As the Gaussian distribution is spherically symmetric,
we can assume without loss of generality that {x j : j < i} span the
first i basis directions. Sampling xi uniformly at random from the
unit sphere is equivalent to first sampling a vector x̃i whose each
coordinate is sampled independently from a N (0, 1/d) distribution,
and then setting xi = x̃i/∥x̃i ∥2. Using this formulation, let the
jth coordinate of x̃i be zj , where zj ∼ N (0, 1/d). We will first
show that with probability 1 − ϵd , ∥x̃i ∥2 ≤ 2

√
1/ϵ . This follows

from the following tail bound for χ2 random variables. Note that
r2 = d

∑d
j=1 z

2
j is the sum of d standard Gaussian random variable

and hence is a χ2 random variables with d degrees of freedom. We
use the following concentration inequality for a χ2 random variable
r with d degrees of freedom (Lemma 1 in [47]),

Pr[r2 − d ≥ 2
√
dt + 2t] ≤ e−t , ∀ t > 0.

Choosing t = d log(1/ϵ),

Pr[r2 − d ≥ 2d
√
log(1/ϵ) + 2d log(1/ϵ)] ≤ ϵd .

Using the fact that 4max(log(1/ϵ),
√
log(1/ϵ)) ≤ 3/ϵ for 0 ≤ ϵ ≤ 1,

Pr[r2 − d ≥ 3d/ϵ] ≤ ϵd . Hence ∥x̃i ∥2 ≤
√
1 + 3/ϵ ≤

√
4/ϵ with

failure probability ϵd .
We now claim that Pr[

∑d
j=i+1 z

2
i ≤ ϵ2/64] ≤ ϵd/4. Note that if∑d

j=i+1 z
2
i ≤ ϵ2/64, then by Markov’s inequality z2j ≤ ϵ2/(32(d −

i)) ≤ ϵ2/(16d) for at least half of the random variables {zj : j ∈
[i + 1,d]}. As zj is a N (0, 1/d) random variable, hence Pr[|zj | ≤
ϵ/(4
√
d)] ≤ ϵ/4. Hence the probability that z2j ≤ ϵ2/(4d) for at

least half of the random variables {zj : j ∈ [i + 1,d]} is at most the
probability that at least half of a set of (d − i) independent coins
land heads when all of them are flipped, given that each of them
has probability ϵ/4 of landing head. Let X j be the indicator random
variable denoting the event |zj | ≤ ϵ/(4

√
d), note that Pr[X j = 1] ≤

ϵ/4. Let X =
∑d
j=i+1 X j . Then by standard Chernoff bounds,

Pr[X ≥ (d − i)/2] ≤ exp{−(d − i)D(1/2 ∥ ϵ/4)}

where D(1/2 ∥ ϵ/4) is the relative entropy of 1/2 with respect to
ϵ/4. Note that D(1/2 ∥ ϵ/4) ≥ − ln(ϵ )2 and (d − i) ≥ d/2. Therefore,

Pr[X ≥ (d − i)/2] ≤ ϵd/4.
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Hence for any i ≤ d/2,
∑d
j=i+1 z

2
j ≥ ϵ2/64 with failure probability

ϵd/4. Note that ∥vi ∥22 =
∑d
j=i+1 z

2
j /∥x̃i ∥

2
2 , and we have shown that

∥x̃i ∥
2
2 ≤ 4/ϵ with failure probability ϵd . Therefore, by a union

bound, Pr[∥vi ∥2 ≤ ϵ1.5/16] ≤ ϵd/4 + ϵd ≤ 2ϵd/4. For any C ≥ 200
and ϵ ∈ (0, 1], this implies that Pr[∥vi ∥2 ≤ (ϵ/C)20] ≤ (ϵ/100)3d
when xi is drawn uniformly from the unit sphere. We next show
that this implies that Pr[∥vi ∥2 ≤ (ϵ/C)20] is also small when xi is
drawn uniformly from some distribution f such that ∥ f ∥2 is small.

Let X be the set of all xi on the unit sphere such that ∥vi ∥2 ≤
(ϵ/C)20. We have shown that for xi drawn uniformly from the unit
sphere, Pr[xi ∈ X] ≤ (ϵ/100)3d . Note that if X has probability p

under the distribution f , then ∥ f ∥2 ≥ p(100/ϵ )3d/2
Cd

. This is because

the uniform distribution on X has norm (100/ϵ )3d/2
Cd

. Therefore if

∥ f ∥2 ≤
(100/ϵ )d

Cd
, then p ≤ (ϵ/2)d/2.
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