XRD: Scalable Messaging System with Cryptographic Privacy

Albert Kwon

David Lu

Srinivas Devadas

mir MIT PRIMES Mmir

Abstract

Even as end-to-end encrypted communication becomes
more popular, private messaging remains a challenging prob-
lem due to metadata leakages, such as who is communicat-
ing with whom. Most existing systems that hide commu-
nication metadata either (1) do not scale easily, (2) incur
significant overheads, or (3) provide weaker guarantees than
cryptographic privacy, such as differential privacy or heuris-
tic privacy. This paper presents XRD (short for Crossroads),
a metadata private messaging system that provides crypto-
graphic privacy, while scaling easily to support more users
by adding more servers. At a high level, XRD uses multiple
mix networks in parallel with several techniques, including
a novel technique we call aggregate hybrid shuffle. As a re-
sult, XRD can support 2 million users with 228 seconds of
latency with 100 servers. This is 13.3x and 4 x faster than
Atom and Pung, respectively, which are prior scalable mes-
saging systems with cryptographic privacy.

1 Introduction

Many Internet users today have turned to end-to-end en-
crypted communication like TLS [18] and Signal [40], to
protect the content of their communication in the face of
widespread surveillance. While these techniques are starting
to see wide adoption, they unfortunately do not protect the
metadata of communication, such as the timing, the size, and
the identities of the end-points. In scenarios where the meta-
data are sensitive (e.g., a government officer talking with a
journalist for whistleblowing), encryption alone is not suffi-
cient to protect users’ privacy.

Given its importance, there is a rich history of works
that aim to hide the communication metadata, starting with
mix networks (mix-nets) [10] and dining-cryptographers net-
works (DC-Nets) [11] in the 80s. Both works provide for-
mal privacy guarantees against global adversaries, which
has inspired many systems with strong security guaran-
tees [14, 55, 35, 53]. However, mix-nets and DC-nets re-
quire the users’ messages to be processed by either central-
ized servers or every user in the system, making them dif-
ficult to scale to millions of users. Systems that build on
them typically inherit the scalability limitation as well, with
overheads increasing (often superlinearly) with the number
of users or servers [14, 55, 35, 53]. For private communi-
cation systems, however, supporting a large user base is im-
perative to providing strong security; as aptly stated by prior
works, “anonymity loves company” [20, 49]. Intuitively, the
adversary’s goal of learning information about a user natu-
rally becomes harder as the number of users increases.

As such, many recent messaging systems have been tar-
geting scalability as well as formal security guarantees. Sys-
tems like Stadium [52] and Karaoke [37], for instance, use
differential privacy [22] to bound the information leakage
on the metadata. Though this has allowed the systems to
scale to more users with better performance, both systems
leak a small bounded amount of metadata for each message,
and thus have a notion of “privacy budget”. A user in these
systems then spends a small amount of privacy budget ev-
ery time she sends a sensitive message, and eventually is not
guaranteed strong privacy. Users with high volumes of com-
munication could quickly exhaust this budget, and there is no
clear mechanism to increase the privacy budget once it runs
out. Scalable systems that provide stronger cryptographic
privacy like Atom [34] or Pung [5], on the other hand, do
not have such a privacy budget. However, they rely heav-
ily on expensive cryptographic primitives such as public key
encryption and private information retrieval [3]. As a result,
they suffer from high latency, in the order of ten minutes or
longer for a few million users, which impedes their adoption.

This paper presents a point-to-point metadata private mes-
saging system called XRD that aims to marry the best aspects
of prior systems. Similar to several recent works [5, 34, 52],
XRD scales with the number of servers. At the same time,
the system cryptographically hides all communication meta-
data from an adversary who controls the entire network, a
constant fraction of the servers, and any number of users.
Consequently, it can support virtually unlimited amount of
communication without leaking privacy against such an ad-
versary. Moreover, XRD only uses cryptographic primitives
that are significantly faster than the ones used by prior works,
and can thus provide lower latency and higher throughput
than prior systems with cryptographic security.

A XRD deployment consists of many servers. These
servers are organized into many small chains, each of which
acts as a local mix-net. Before any communication, each user
creates a mailbox that is uniquely associated with her, akin
to an e-mail address. In order for two users Alice and Bob to
have a conversation in the system, they first pick a number
of chains using a specific algorithm that XRD provides. The
algorithm guarantees that every pair of users intersects at one
of the chains. Then, Alice and Bob send messages addressed
to their own mailboxes to all chosen chains, except to the
chain where their choices of chains align, where they send
their messages for each other. Once all users submit their
messages, each chain shuffles and decrypts the messages,
and forwards the shuffled messages to the appropriate mail-
boxes. Intuitively, XRD protects the communication meta-
data because (1) every pair of users is guaranteed to meet at

a chain which makes it equally likely for any pair of users to
be communicating, and (2) the mix-net chains hide whether
a user sent a message to another user or herself.

One of the main challenges of XRD is addressing active at-
tacks by malicious servers, where they tamper with some of
the users’ messages. This challenge is not new to our system,
and several prior works have employed expensive crypto-
graphic primitives like verifiable shuffle [14, 55, 35, 52, 34]
or incurred significant bandwidth overheads [34] to prevent
such attacks. In XRD, we instead propose a new technique
called aggregate hybrid shuffle that can verify the correctness
of shuffling more efficiently than traditional techniques.

XRD has two significant drawbacks compared to prior sys-
tems. First, with N servers, each user must send 0(\/N)
messages in order to ensure that every pair of users inter-
sects. Second, because each user sends 0(\/1V) messages,
the workload of each XRD server is O(M /+/N) for M users,
rather than O(M/N) like many prior scalable messaging sys-
tems [34, 52, 37]. Thus, prior systems could outperform
XRD in deployment scenarios with large numbers of servers
and users, since the cost of adding a single user is higher and
adding servers is not as beneficial in XRD.

Nevertheless, our evaluation suggests that XRD outper-
forms prior systems with cryptographic guarantees if there
are less than a few thousand servers in the network. XRD
can handle 2 million users (comparable to the number of
daily Tor users [1]) in 228 seconds with 100 servers. For
Atom [34] and Pung [5, 4], two prior scalable messaging
systems with cryptographic privacy, it would take over 50
minutes and 15 minutes, respectively. (These systems, how-
ever, can defend against stronger adversaries, as we detail in
§2 and §7.) Moreover, the performance gap grows with more
users, and we estimate that Atom and Pung require at least
1,000 servers in the network to achieve comparable latency
with 2 million or more users. While promising, we find that
XRD is not as fast as systems with weaker security guaran-
tees: Stadium [52] and Karaoke [37], for example, would
be 3x and 23 x faster than XRD, respectively, in the same
deployment scenario. In terms of user costs, we estimate
that 40 Kbps of bandwidth is sufficient for users in a XRD
network with 2,000 servers, and the bandwidth requirement
scales down to 1 Kbps with 100 servers.

In summary, we make the following contributions:

e Design and analyze XRD, a metadata private messaging
system that can scale by distributing the workload across
many servers while providing cryptographic privacy.

e Design a technique called aggregate hybrid shuffle that
can efficiently protect users’ privacy under active attacks.

e Implement and evaluate a prototype of XRD on a net-
work of commodity servers, and show that XRD outper-
forms existing cryptographically secure designs.

2 Related work

In this section, we discuss related work by categorizing
the prior systems primarily by their privacy properties, and
also discuss the scalability and performance of each system.

Systems with cryptographic privacy. Mix-nets [10] and
DC-Nets [11] are the earliest examples of works that provide
cryptographic (or even information theoretic) privacy guar-
antees against global adversaries. Unfortunately, they have
two major issues. First, they are weak against active attack-
ers: adversaries can deanonymize users in mix-nets by tam-
pering with messages, and can anonymously deny service in
DC-Nets. Second, they do not scale to large numbers of users
because all messages must be processed by either a small
number of servers or every user in the system. Many systems
that improved on the security of these systems against active
attacks [14, 55, 35, 53] suffer from similar scalability bottle-
necks. Riposte [13], a system that uses “private information
storage” to provide anonymous broadcast, also requires all
servers to handle a number of messages proportional to the
number of users, and thus faces similar scalability issues.

A recent system Atom [34] targets both scalability and
strong anonymity. Specifically, Atom can scale horizon-
tally, allowing it to scale to larger numbers of users simply
by adding more servers to the network. At the same time,
it provides sender anonymity [46] (i.e., no one, including
the recipients, learns who sent which message) against an
adversary that can compromise any fraction of the servers
and users. However, Atom employs expensive cryptography,
and requires the message to be routed through hundreds of
servers in series. Thus, Atom incurs high latency, in the or-
der of tens of minutes for a few million users.

Pung [5, 4] is a system that aims to provide metadata pri-
vate messaging between honest users with cryptographic pri-
vacy. This is a weaker notion of privacy than that of Atom,
as the recipients (who are assumed to be honest) learn the
senders of the messages. However, unlike most prior works,
Pung can provide private communication even if all servers
are malicious by using a cryptographic primitive called com-
putational private information retrieval (CPIR) [12, 3]. Its
powerful threat model comes unfortunately at the cost of per-
formance: Though Pung scales horizontally, the amount of
work required per user is proportional to the total number of
users, resulting in the total work growing superlinearly with
the number of users. Moreover, PIR is computationally ex-
pensive, resulting in throughput of only a few hundred or
thousand messages per minute per server.

Systems with differential privacy. Vuvuzela [53] and its
horizontally scalable siblings Stadium [52] and Karaoke [37]
aim to provide differentially private (rather than crypto-
graphically private) messaging. At a high level, they hide the
communication patterns of honest users by inserting dummy
messages that are indistinguishable from real messages, and
reason carefully about how much information is leaked at

each round. They then set the system parameters such that
they could support a number of sensitive messages; for in-
stance, Stadium and Karaoke target 10* and 10° messages,
respectively. Up to that number of messages, the systems al-
low users to provide a plausible cover story to “deny” their
actual actions. Specifically, the system ensures that the prob-
ability of Alice conversing with Bob from the adversary’s
perspective is within e® (typically, e® € [3,10]) of the prob-
ability of Alice conversing with any other user with only
a small failure probability & (typically, § = 0.0001). This
paradigm shift has allowed the systems to support larger
numbers of users with lower latency than prior works.

Unfortunately, systems with differential privacy suffer
from two drawbacks. First, the probability gap between two
events may be sufficient for strong adversaries to act on. For
instance, if Alice is ten times as likely to talk to Bob than
Charlie, the adversary may act assuming that Alice is talking
to Bob, despite the plausible deniability. Second, there is a
“privacy budget” (e.g., 10* to 10% messages), meaning that
a user can deny a limited number of messages with strong
guarantees. Moreover, for best possible security, users must
constantly send messages, and deny every message. For in-
stance, Alice may admit that she is not in any conversation
(thinking this information is not sensitive), but this could
have unintended consequences on the privacy of another user
who uses the cover story that she is talking with Alice. The
budget could then run out quickly if users want the strongest
privacy possible: If a user sends a message every minute, she
would run out of her budget in a few days or years with 10*
to 10® messages. Although the privacy guarantee weakens
gradually after the privacy budget is exhausted, it is unclear
how to raise the privacy levels once they have been lowered.

These shortcomings can particularly affect journalists and
their sources. Many journalists mention the importance of
long-term relationships with their sources for their journalis-
tic process [41, 43], and the difficulty of maintaining private
relationships with them. In a differentially private system,
if the journalist and the source are ten times as likely to be
talking as two other users, then the adversary might simply
assume the journalist and the source’s relationship. Further-
more, these relationships often last many years [43], which
could cause the privacy budget to run out. This may put the
journalist and the source in jeopardy.

Scalable systems with other privacy guarantees. The only
private communication system in wide-deployment today is
Tor [21]. Tor currently supports over 2 million daily users
using over 6,000 servers [1], and can scale to more users
easily by adding more servers. However, Tor does not pro-
vide privacy against an adversary that monitors significant
portions of the network, and is susceptible to traffic analy-
sis attacks [19, 30]. Its privacy guarantee weakens further if
the adversary can control some servers, and if the adversary
launches active attacks [29]. Similar to Tor, most free-route

mix-nets [44, 24, 49, 15, 39] (distributed mix-nets where
each messages is routed through a small subset of servers)
cannot provide strong privacy against powerful adversaries
due to traffic analysis and active attacks.

Loopix [47] is a recent iteration on free-route mix-nets,
and can provide fast asynchronous messaging. To do so, each
user interacts with a semi-trusted server (called “provider” in
the paper), and routes her messages through a small number
of servers (e.g., 3 servers). Each server inserts small amounts
of random delays before routing the messages. Loopix then
reasons about privacy using entropy. Unfortunately, the pri-
vacy guarantee of Loopix weakens quickly as the adversary
compromises more servers. Moreover, Loopix requires the
recipients to trust the provider to protect themselves.

3 System model and goals

XRD aims to achieve the best of all worlds by providing
cryptographic metadata privacy while scaling horizontally
without relying on expensive cryptographic primitives. In
this section, we present our threat model and system goals.

3.1 Threat model and assumptions

A deployment of XRD would consist of hundreds to thou-
sands of servers and a large number of users, in the order
of millions. Similar to several prior works on distributed
private communication systems [34, 52], XRD assumes an
adversary that can monitor the entire network, control a frac-
tion f of the servers, and control up to all but two honest
users. We assume, however, that there exists a public key
infrastructure that can be used to securely share public keys
of online servers and users with all participants at any given
time. These keys, for example, could be maintained by key
transparency schemes [36, 42, 51].

XRD does not hide the fact that users are using XRD.
Thus, for best possible security, users should stay online to
avoid intersection attacks [31, 16]. XRD also does not pro-
tect against large scale denial-of-service (DoS) attacks. It
can, however, recover from a small number of benign server
failures or disruptions from malicious users. In addition,
XRD provides privacy even under DoS, server churn, and
user churn (e.g., Alice goes offline unexpectedly without her
conversation partner knowing). We discuss the availability
properties further in §5 and §7.3.

Finally, XRD assumes that the users can agree to start talk-
ing at a certain time out-of-band. This could be done, for ex-
ample, via two users exchanging this information offline, or
by using systems like Alpenhorn [38] that can initiate con-
versations privately.

Cryptographic primitives. XRD assumes existence of a
group of prime order p with a generator g in which dis-
crete log is hard and the decisional Diffie-Hellman assump-
tion holds. We will write DH(g? b) = g to denote Diffie-
Hellman key exchange. In addition, XRD makes use of au-
thenticated encryption.

Authenticated encryption [6]: XRD relies on an authen-
ticated encryption scheme for confidentiality and integrity,
which consists of the following algorithms:

e ¢ + AEnc(s,nonce,m). Encrypt message m and authen-
ticate the ciphertext ¢ using a symmetric key s and a
nonce nonce. Typically, s is used to derive two other
keys for encryption and authentication.

e (b,m) < ADec(s,nonce,c). Check the integrity of and
decrypt ciphertext ¢ using the key s and a nonce nonce.
If the check fails, then » = 0 and m = L. Otherwise,
b =1 and m is the underlying plaintext.
In general, the adversary cannot generate a correctly authen-
ticated ciphertext without knowing the secret key used for
ADec. We use Encrypt-then-HMAC for authenticated en-
cryption, which has the additional property that the cipher-
text serves as a commitment to the underlying plaintext with
the secret key being the opening to the commitment [28].

3.2 Goals
XRD has three main goals.

Correctness. Informally, the system is correct if every hon-
est user successfully communicates with her conversation
partner after a successful execution of the system protocol.

Privacy. Similar to prior messaging systems [53, 5, 52,
37], XRD aims to provide relationship unobservability [46],
meaning that the adversary cannot learn anything about the
communication between two honest users. Informally, con-
sider any honest users Alice, Bob, and Charlie. The system
provides privacy if the adversary cannot distinguish whether
Alice is communicating with Bob, Charlie, or neither. XRD
only guarantees this property among the honest users, as ma-
licious conversation partners can trivially learn the metadata
of their communication. We provide a more formal defini-
tion in Appendix B. (This is a weaker privacy goal than that
of Atom [34], which aims for sender anonymity.)

Scalability. Similar to prior work [34], we require that the
system can handle more users with more servers. If the
number of messages processed by a server is C(M,N) for M
users and N servers, we require that C(M,N) — 0 as N — oo,
C(M,N) should approach zero polynomially in N so that
adding a server introduces significant performance benefits.

4 XRD overview

Figure 1 presents the overview of a XRD network. At a
high level, XRD consists of three different entities: users,
mix servers, and mailbox servers. Every user in XRD has
a unique mailbox associated with her, similar to an e-mail
address. The mailbox servers maintain the mailboxes, and
are only trusted for availability and not privacy.

To set up the network, XRD organizes the mix servers into
many chains of servers such that there exists at least one hon-
est server in each chain with overwhelming probability (i.e.,
an anytrust group [55]). Communication in XRD is carried

Mailboxes

Users Servers (mix-chains)
&)

(1) Users send
messages to and decrypt users’ messages to messages from
chosen mix-chains. messages. users’ mailboxes. mailboxes.

(2) Servers shuffle (3) Servers deliver (4) Users fetch

Figure 1: Overview of XRD operation.

out in discrete rounds. In each round, each user selects a
fixed set of £ chains, where the set is determined by the user’s
public key. She then sends a fixed size message to each of
the selected chains. (If the message is too small or large, then
the user pads the message or breaks it into multiple pieces.)
Each message contains a destination mailbox, and is onion-
encrypted for all servers in the chain.

Once all users submit their messages, each chain acts as a
local mix-net [10], decrypting and shuffling messages. Dur-
ing shuffling, each server also generates a short proof that
allows other servers to check that it behaved correctly. If the
proof does not verify, then the servers can identify who mis-
behaved. If all verification succeeds, then the last server in
each chain forwards the messages to the appropriate mailbox
servers. (The protocol for proving and verifying the shuffle
is described in §6.) Finally, the mailbox servers put the mes-
sages into the appropriate mailboxes, and each user down-
loads all messages in her mailbox at the end of a round.

The correctness and security of XRD is in large part due
to how each user selects the chains. As we will see in §5,
the users are required to follow a specific algorithm to se-
lect the chains. The algorithm guarantees that every pair of
users have at least one chain in common and the choices of
the chains are publicly computable. For example, every user
selecting the same chain will achieve this property, and thus
correctness and security. In XRD, we achieve this property
while distributing the load evenly.

Let us now consider two scenarios: (1) a user Alice is not
in a conversation with anyone, or (2) Alice is in a conver-
sation with another user Bob. In the first case, she sends a
dummy message encrypted for herself to each chain that will
come back to her own mailbox. We call these messages loop-
back messages. In the second case, Alice and Bob compute
each other’s choices of chains, and discover at which chain
they will intersect. If there are multiple such chains, they
break ties in a deterministic fashion. Then, Alice and Bob
send the messages encrypted for the other person, which we
call conversation messages, to their intersecting chain. They
also send loopback messages on all other chains.

Security properties. We now argue the security informally.
We present a more formal definition and arguments of pri-
vacy in Appendix B. Since both types of messages are en-

crypted for owners of mailboxes and the mix-net hides the
origin of a message, the adversary cannot tell if a message
going to Alice’s mailbox is a loopback message or a con-
versation message sent by a different user. This means that
the network pattern of all users is the same from the adver-
sary’s perspective: each user sends and receives exactly ¢
messages, each of which could be a loopback or a conversa-
tion message. As a result, the adversary cannot tell if a user
is in a conversation or not. Moreover, we choose the chains
such that every pair of users intersects at some chain (§5),
meaning the probability that Alice is talking to a particular
honest user is the same for all honest users. This hides the
conversation metadata.

The analysis above, however, only holds if the adversary
does not tamper with the messages. For instance, if the ad-
versary drops Alice’s message in a chain, then there are two
possible observable outcomes in this chain: Alice receives
(1) no message, meaning Alice is not in a conversation in
this chain, or (2) one message, meaning someone intersect-
ing with Alice at this chain is chatting with Alice. This in-
formation leakage breaks the security of XRD. We propose
a new protocol called aggregate hybrid shuffle (§6) that effi-
ciently defends against such an attack.

Scalability properties. Let n and N be the number of chains
and servers in the network, respectively. Each user must
send at least \/n messages to guarantee every pair of users
intersect. To see why, fix ¢, the number of chains a user
selects. Those chains must connect a user Alice to all M
users. Since the total number of messages sent by users is
M -/, each chain should handle MT£ messages if we distribute
the load evenly. We then need MT/ -{ > M because the left
hand side is the maximum number of users connected to the
chains that Alice chose. Thus, ¢ > y/n. In §5, we present
an approximation algorithm that uses £ ~ v/2n to ensure all
users intersect with each other while evenly distributing the
work. This means that each chain handles ~ @r’y messages,

and thus XRD scales with the number of chains. If we set
n =N and each server appears in k chains for k << VN,
which means C(M,N) = k‘[# — 0 polynomially as N — oo
(6§3.2). We show that k is logarithmic in N in §5.2.1.

5 XRD design

We now present the details of a XRD design that protects
against an adversary that does not launch active attacks. We
then describe modifications to this design that allows XRD
to protect against active attacks in §6.

5.1 Mailboxes and mailbox servers

Every user in XRD has a mailbox that is publicly associ-
ated with her. In our design, we use the public key of a user
as the identifier for the mailbox, though different public iden-
tifiers like e-mail addresses can work as well. The mailboxes
are maintained by the mailbox servers, with simple put and
get functionalities to add and fetch messages to a mailbox.

Algorithm 1 Mix server routing protocol

Server i is in chain x which contains k servers
with its mixing key pair (mpk; = g™k msk;).
In each round r, it receives a set of ciphertexts
{c! = (g"f'7AEnc(DH(mpkl-,xj)7r||x,c{+])}jE[M], either
from an upstream server if i # 1, or from the users if i = 1.
1. Decrypt and shuffle: Compute

¢/, = ADec(DH(g"/,msk;),r|[x,c]) for each j, and

randomly shuffle {c{+1 .

2a. Relay messages: If i < k, then send the shuffled {clfﬂ}
to server i+ 1.

2b. Forward messages to mailbox: If i = k, then each de-
crypted message is of the form (pk,, AEnc(s,r||x,m,)),
where pk, is the public key of a user u, s is a secret key,
and m,, is a message for the user. Send the message to
the mailbox server that manages mailbox pk,,.

5.2 Mix chains

XRD uses many parallel mix-nets to process the messages.
We now describe their formation and operations.

5.2.1 Forming mix chains

We require the existence of an honest server in every chain
to guarantee privacy. To ensure this property, we use public
randomness sources [7, 50] that are unbiased and publicly
available to randomly sample & servers to form a chain, sim-
ilar to prior works [34, 52]. We set k large enough such that
the probability that all servers are malicious is negligible.
Concretely, the probability that a chain of length k consists
only of malicious servers is fk . Then, if we have n chains in
total, the probability there exists a group of only malicious
servers is less than n- f* via a union bound. Finally, we can
upper bound this to be negligible. For example, if we want
this probability to be less than 27%* for f = 20%, then we
need k = 32 for n < 2000. This makes k depend logarithmi-
cally on N. In XRD, we set n = N for N servers, meaning
each server appears in k chains on average.

We “stagger” the position of a server in the chains to en-
sure maximal server utilization. For instance, if a server is
part of two chains, then it could be the first server in one
chain and the second server in the other chain. This opti-
mization has no impact on the security, as we only require
the existence of an honest server in each group. This helps
minimize the idle time of each server.

5.2.2 Processing user messages

After the chains form, each mix server i generates a mixing
key pair (mpk; = g™ki_ msk;), where msk; is a random value
in Z,. The public mixing keys {mpk;} are made available
to all participants in the network, along with the ordering of
the keys in each chain. Now, each chain behaves as a mix-
net [10]: users submit some messages onion-encrypted using
the mixing keys (§5.3), and the servers decrypt and shuffle
the messages in order. Algorithm 1 describes this protocol.

5.2.3 Server churn

Some servers may go offline in the middle of a round.
Though XRD does not provide additional fault tolerance
mechanisms, only the chains that contain failing servers are
affected. Furthermore, the failing chains do not affect the se-
curity since they do not disturb the operations of other chains
and the destination of the messages at the failing chain re-
mains hidden to the adversary. Thus, conversations that use
chains with no failing servers are unaffected. We analyze the
empirical effects of server failures in §7.3.

5.3 Users
We now describe how users operate in XRD.
5.3.1 Selecting chains

XRD needs to ensure that all users’ choices of chains in-
tersect at least once, and that the choices are publicly com-
putable. We present a scheme that achieves this property.
Upon joining the network, every user is placed into one of
£+ 1 groups such that each group contains roughly the same
number of users, and such that the group of any user is pub-
licly computable. This could be done, for example, by as-
signing each user to a pseudo-random group based on the
hash of the user’s public key. Every user in a group is con-
nected to the same ¢ servers specified as follows. Let C;
be the ordered set of chains that users in group i are con-
nected to. We start with C; = {1,...,/¢}, and build the other
sets inductively: For i =1,...,¢, group i+ 1 is connected
to Cir1 = {C1[i],C2[d), ..., Gi[i], Ci[€] + 1,...,Ci[€] + (£ — i)},
where C,[y] is the y" entry in C,.

By construction, every group is connected to every other
group: Group i is connected to group j via G;[j] for all i < j.
As a result, every user in group i is connected to all others
in the same group (they meet at all chains in C;), and is con-
nected to users in group j via chain G;[j].

To find the concrete value of £, let us consider Cy. The
last chain of Cy, which is the chain with the largest index, is
Cl=0r-yli= ZZTM This value should be as close as
possible to n, the number of chains, to maximize utilization.
Thus, £ = [v/2n+0.25 —0.5] ~ [v/2n]. Given that £ > \/n
(84), thisis a \@-approximation.

5.3.2 Sending messages

After choosing the ¢ mix chains, the users send one mes-
sage to each of the chosen chains as described in Algo-
rithm 2. At a high level, if Alice is not talking with anyone,
Alice generates ¢ loopback messages by encrypting dummy
messages (e.g., messages with all zeroes) using a secret key
known only to her, and submits them to the chosen chains.
If she is talking with another user Bob, then she first finds
where they intersect by computing the intersection of Bob’s
group and her group (§5.3.1). If there is more than one such
chain, then she breaks the tie by selecting the chain with the
smallest index. Alice then generates ¢/ — 1 loopback mes-
sages and one encrypted message using a secret key that Al-

Algorithm 2 User conversation protocol

Consider two users Alice and Bob with key pairs
(pky = g%4,ska) and (pkp = g%#,skg) who are connected
to sets of ¢ chains C4 and Cg (§5.3.1). The network consists
of chains 1,...,n, each with k servers. Alice and Bob pos-
sess the set of mixing keys for each chain. Alice performs
the following in round r.
la. Generate loopback messages: If Alice is not in a con-
versation, then Alice generates ¢ loopback messages:
my = (pky, AEnc(s},7||x,0)) for x € C4, where s} is a
chain-specific symmetric key known only to Alice.

1b. Generate conversation message: If Alice is in a
conversation with Bob, then she first computes the
shared key sip = DH(pkg,sks), and the symmet-
ric encryption key for Bob sg = KDF(sap,pkg,r)
where KDF is a secure key derivation function (e.g.,
HKDF [33]). Alice then generates the conversation mes-
sage: my,, = (pkg, AEnc(sp, r||x,msg)), where msg is
the plaintext message for Bob and x45 € C4 NCp is the
first chain in the intersection. She also generates £ — 1
loopback messages m, for x € C4,x # X4p.

2. Onion-encrypt messages: For each message m,, let
Ck+1 = My, and let {mpk;} be the mixing keys for chain
x € Cy. Fori =k to 1, generate a random value x; € Z,,
and compute ¢; = (g%, AEnc(DH(mpk;,x;),r||x,ci+1))-
Send ¢y to chain x.

3. Fetch messages: At the end of the round, fetch and

decrypt the messages in her mailbox, using ADec with
matching s} or sy = KDF(sag, pky,7).

ice and Bob shares. Finally, Alice sends the message for Bob
to the intersecting chain, and sends the loopback messages to
the other chains. Bob mirrors Alice’s actions.

5.3.3 User churn

Like servers, users might go offline in the middle of a
round, and XRD aims to provide privacy in such situations.
However, the protocol presented thus far does not achieve
this goal. If Alice and Bob are conversing and Alice goes of-
fline without Bob knowing, then Alice’s mailbox will receive
Bob’s message while Bob’s mailbox will get one fewer mes-
sage. Thus, by observing mailbox access counts and Alice’s
availability, the adversary can infer their communication.

To solve this issue, we require Alice to submit two sets of
messages in round r: the messages for the current round r,
and cover messages for round r+ 1. If Alice is not commu-
nicating with anyone, then the cover messages will be loop-
back messages. If Alice is communicating with another user,
then one of the cover messages will be a conversation mes-
sage indicating that Alice has gone offline.

If Alice goes offline in round 7, then the servers use the
cover messages submitted in T — 1 to carry out round 7. Now,
there are two possibilities. If Alice is not in a conversation,
then Alice’s cover loopback messages are routed in round 7,

and nothing needs to happen afterwards. If Alice is convers-
ing with Bob, then at the end of round 7, Bob will get the
message that Alice is offline via one of the cover messages.
Starting from round 7 + 1, Bob now sends loopback mes-
sages instead of conversation messages to hide the fact that
Bob was talking with Alice in previous rounds. This could be
used to end conversations as well. Malicious servers cannot
fool Bob into thinking Alice has gone offline by replacing
Alice’s messages with her cover messages because the hon-
est servers will ensure Alice’s real messages are accounted
for using our defenses described in §6.

6 Aggregate hybrid shuffle

Adpversarial servers can tamper with the messages to leak
privacy in XRD. For example, consider a mix-net chain
where the first server is malicious. This malicious server
can replace Alice’s message with a message directed at Al-
ice. Then, at the end of the mixing, the adversary will make
one of two observations. If Alice was talking to another user
Bob, Bob will receive one fewer message while Alice would
receive two messages. The adversary would then learn that
Alice was talking to Bob. If Alice is not talking to anyone on
the tampered chain, then Alice would receive one message,
revealing the lack of conversation on that chain.

Prior works [14, 55, 35, 52, 34] have used traditional ver-
ifiable shuffles [45, 25, 8, 27] to prevent these attacks. At a
high level, verifiable shuffles allow the servers in the chain
(one of which is honest) to verify the correctness of a shuffle
of another server; namely, that the plaintexts underlying the
outputs of a server is a valid permutation of the plaintexts
underlying the inputs. Unfortunately, these techniques are
computationally expensive, requiring many exponentiations.

In XRD, we make an observation that help us avoid tra-
ditional verifiable shuffles. For a meaningful tampering, the
adversary necessarily has to tamper with the messages be-
fore they are shuffled by the honest server. Otherwise, the
adversary does not learn the origins of messages. For exam-
ple, after dropping a message in a server downstream from
the honest server, the adversary might observe that Alice did
not receive a message. The adversary cannot tell, however,
whether the dropped message was sent by Alice or another
user, and does not learn anything about Alice’s communica-
tion pattern. (Intuitively, the adversarial downstream servers
do not add any privacy in any case.) In this section, we de-
scribe a new form of verifiable shuffle we call aggregate hy-
brid shuffle (AHS) that allows us to take advantage of this
fact. In particular, the protocol guarantees that the honest
server will receive and shuffle all honest users’ messages, or
the honest server will detect that someone upstream (mali-
cious servers or users) misbehaved. We will then describe
how the honest server can efficiently identify all malicious
participants who deviated from the protocol, without affect-
ing the privacy of honest users.

6.1 Key generation with AHS

When the chain is created, the servers generate three key
pairs: blinding, mixing, and inner key pairs. The inner
keys are per-round keys, and each server i generates its
own inner key pair (ipk; = g/, isk;). The other two keys
are long-term keys, and are generated in order starting with
the first server in the chain. Let bpky = g. Starting with
server 1, server i = 1,...,k generates (bpk; = bpk?fkl",bski)
and (mpk; = bpk™ msk;) in order. In other words, the base
of the public keys of the server i is bpk;_; = glla<ib%« The
public mixing key of the last server, for example, would be
mpk, = bpk?_sﬁ" = gmskilla<kbska Each server also has to
prove to all other servers that it knows the private keys that
match the public keys in zero-knowledge [9]. All public keys
are made available to all servers and users.

6.2 Sending messages with AHS

Once the servers generate the keys, user Alice can sub-
mit a message to a chain. To do so, Alice now employs a
double-enveloping technique to encrypt her message [26]:
she first onion-encrypts her message for all servers using
the inner keys, and then onion-encrypts the result with the
mixing keys. Let inner ciphertext be the result of the first
onion-encryption, and outer ciphertext be the final cipher-
text. The inner ciphertexts are encrypted using [];ipk; as
the public key, which allows users to onion-encrypt in “one-
shot™: i.e., e = (¢”,AEnc(DH(IT;ipk;,y),r,m)) in round r
with message m and a random y. Without y, one must know
all {isk;} to compute DH(TT;ipk;,y), which makes this a
“one-shot” onion-encryption. To generate the outer cipher-
text for chain x, Alice performs the following.

1. Generate her outer Diffie-Hellman key: a random x € Z,

and (g*,x).

2. Generate a NIZK that proves she knows x that matches
g* (using knowledge of discrete log proof [9]).

3. Let ¢x+1 = e, and let {mpk;} for i € [k] be the mixing
keys of the servers in the chain. For i =k to 1, compute
¢; = AEnc(DH(mpk;,x), r||x,cit1).

¢ = (g%, cy) is the final outer ciphertext. This is nearly iden-
tical to Algorithm 2, except that the user does not generate
a fresh pair of Diffie-Hellman keys for each layer of encryp-
tion. To submit the message, Alice sends ¢ and the NIZK to
all servers in the chain.

6.3 Mixing with AHS

Before mixing begins in round 7, the servers in chain x
have ¢/ = (X{ = g%, c; = AEnc(DH(mpky,x;),r||x,c3)) for
user j. The servers first verify all NIZKs the users submit,
and agree on the inputs for this round. This can be done,
for example, by sorting the users’ ciphertexts, hashing them
using a cryptographic hash function, and then comparing the
hashes. Then, starting with server 1, server i = 1,... k per-
form the following:

1. Decrypt and shuffle: Similar to Algorithm 1, de-
crypt each message. Each message is of the
form (Xl.j,c{ = AEnc(DH(mpk;,x;), rHX’Cerl) Thus,
(b/,cl,) = ADec(DH(X/, msk;),||x,c/). If any de-
cryption fails (i.e., b/ = 0 for some j), then mixing halts

and the server can start the blame protocol described in
§6.4. Randomly shuffle {c/, }.

2. Blind and shuffle: Blind the users’ Diffie-Hellman keys
{X/} using the blinding key: X/, = (X/)bski for each j.
Then, shuffle the keys using the same permutation as the
one used to shuffle the ciphertexts.

3. Generate zero- knowledge proof: Generate a proof that
(IT; X’)bSk’ =]_[j 7,1 by generating a NIZK that shows

logH (HJ z+1) logbpk, , bpk;(= bsk;). Send the
NIZK w1th the shuffled {X/ ,} to all other servers in the

chain. All other servers verlfy this proof using {X/ } they
received previously, {X +1} bpk;_;, and bpk;.

4. Forward messages: If i < k, then send the shuffled
{(Xl-‘rl’ 1+1)} to server i + 1.

When the last server finishes shuffling and no server reports
any errors during mixing, our protocol guarantees that the
honest server mixed all the honest users’ messages success-
fully. At this point, the servers reveal their private per-round
inner keys {isk;}. With this, the last server can decrypt the
inner ciphertexts to recover the users’ messages.

Analysis. We first argue correctness of AHS (i.e., every
message is successfully delivered if every participant fol-
lowed the protocol) by showing that the encryption and de-
cryption keys match at all layers. Consider the key user
J used to encrypt the message for server i and the Diffie-
Hellman key server i receives. User j encrypts the message
using the key DH(mpk;,x;) = gt mskilla<ibska | The Diffie-
gt Tla<ibska - The key
msk;x;[Ta<i bska’

Hellman key server i receives is X/ =
exchange then results in DH(X/, msk;) = g
which is the same as the one the user used.

The scheme protects against honest-but-curious adver-
saries (i.e., does not reveal anything about the permutation
used to shuffle the messages), as the inputs and outputs of
a server look random: If decisional Diffie-Hellman is hard,
then g*Pki is indistinguishable from a random value given
g* and g®*i for random x and bsk;. Thus, by observing {g*/ }
(input) and {g'®) bski i1 (output) of an honest server where 7
is arandom permutatlon, the adversary cannot learn anything
about the relationships between the inputs and outputs.

We now provide a high level analysis that the honest server
will always detect upstream servers tampering with honest
users’ messages. The detailed proof is in Appendix A. Let
server h be the honest server. First, since we only need to
consider upstream adversaries, we will simplify the problem,
and view all upstream malicious servers as one collective
server with private blinding key bsks = Y ;. bsk;. For the

adversary to successfully tamper, it must generate {X,f } such
that ([TX{)* = [TX/; otherwise it would fail the NIZK
verification in step 3 of §6.3. Let X7 # 0 be the set of honest
users whose messages were tampered. The adversary needs
to know the keys used for authenticated decryption to gen-
erate valid ciphertexts that differ from the users’ ciphertexts.
However, the adversary cannot compute ((g%)b%4)mskn for
J € X7 (the keys used for authenticated encryption), since x;
and msk;, are unknown random values and Diffie-Hellman
is hard. Thus, to tamper with messages undetected, the ad-
versary needs to change the users’ Diffie-Hellman keys (i.e.,
X/ # (X{)b%4 for j € Xr), such that it can compute the keys
used for authenticated decryption (i.e., (X,{ ymski for j € Xr).

In the beginning of a round, the adversary controlled
users have to prove their knowledge of discrete logs of
their Diffie-Hellman keys after seeing the honest users’
keys. The adversarial user are thus forced to generate
keys independently of the honest users’ input. Then,
the adversary’s goal is essentlally to find {X }iexy such
that (ITjex, X{)4 = [jex, X/, with (X{)>% £ X/, As-
sume the adversary is successful. Then, it could
compute (([Tjex;, X)bskaymskn — [Tjex, (X,{)”‘Skh, since it
knows (X])™*» for j € Xr (recall that these are the
keys used for authenticated decryption, which the adver-
sary must know). This means that the adversary com-
puted (([Tjex, X{)P%k4)mskn = gmsknbska-Liexr X only given
{8%} jex;» bska, and (gPk4)™: where {x;},cx, and msky,
are random values independent of bsk,. This breaks the
Diffie-Hellman assumption, and thus the adversary must not
be able to tamper with messages undetected.

6.4 Blame protocol

There are two ways an honest server can detect misbehav-
ior: a NIZK fails to verify or an authenticated decryption
fails. If a malicious user cannot generate a correct NIZK in
step 2 in §6.2 or if a malicious server misbehaves and cannot
generate a correct NIZK in step 3 in §6.3, then the misbe-
havior is detected and the adversary is immediately identi-
fied. In the case where a server finds some misauthenticated
ciphertexts, the server can start a blame protocol that allows
the server to identify who misbehaved. The protocol guaran-
tees that users are identified if and only if they purposefully
sent misauthenticated ciphertexts. In addition, the protocol
ensures that honest users remain private in all cases, even if
malicious servers try to falsely accuse honest users.

Once server A identifies an misauthenticated ciphertext, it
starts the blame protocol by revealing the problem ciphertext
(X, c}). Then, the servers execute the following:

1. Fori:h—l,.‘.
X/, (e, (X/)* =X/). Each server proves to all

, 1, the servers reveal Xij that matches

other servers it calculated X; J ', correctly by showing that
long(:+1) log,., (bpk;)(= bsk;) with a NIZK [9].

2. Fori=h—1,...,1, the servers reveal c{ that matches
/., (e., ¢/ = AEnc(DH(X/ ,msk;),r||x,c/, ;). Each
server proves it correctly decrypted the ciphertext by re-
vealing the key used for decryption k/ = (X/)™*i, and
showing that log, , (k) = logy,k, , (mpk;) with a NIZK.
The other servers can verify the correctness of the de-
cryption operation by checking the NIZKs and decrypt-
ing the ciphertext themselves.

3. All servers check that c{ revealed by the first server
matches the user submitted ciphertext (§6.2).

4. Similar to step 2, server A (the accusing server) reveals its
Diffie-Hellman exchanged key k; = (X;/)™*", and shows
thatlog, (kx) = logy,, , (mpky). All servers verify that

J _

ADec(ky, r||x, c}) fails.

If there are multiple problem ciphertexts, the blame proto-
col can be carried out in parallel for each ciphertext. Steps 1
and 2 can be done simultaneously as well. If the servers suc-
cessfully carry out the blame protocol, then they have identi-
fied actively malicious users. At this point, those ciphertexts
are removed from the set, and the upstream servers are re-
quired to repeat the AHS protocol; since the accusing servers
have already removed all bad ciphertexts, the servers just
have to repeat step 3 of §6.3 to show the keys were correctly
computed. If any of the above steps fail, then the servers
delete their private inner keys.

Analysis. The accusing server and the upstream servers are
required to reveal the exchanged key used to decrypt the ci-
phertexts, and the correctness of the key exchange is proven
through the two NIZKs in step 1 and step 2. All servers
can use the revealed keys to ensure that the submitted origi-
nal ciphertext decrypts to the problem ciphertext. Since the
outer ciphertext behaves as a commitment to all layers of en-
cryption (§3), the servers get a verifiable chain of decryption
starting with the outer ciphertext to the problem ciphertext
if a user submits misauthenticated ciphertext. Moreover, if
an honest user submits a correctly authenticated ciphertext,
she will never be accused successfully, since an honest user’s
ciphertext will authenticate at all layers. Thus, a user is iden-
tified if and only if she is malicious.

Importantly, the users’ privacy is protected even after a
false accusation. After a malicious server accuses an honest
user, the malicious server learns either the outer ciphertext (if
the server is upstream of server /) or the inner ciphertext (if
the server is downstream of server /) the user sent. In either
case, the message remains encrypted for the honest server, by
the mixing key in the former case or by the inner key in the
latter case. The blame protocol will fail when the malicious
server fails to prove that the honest user’s ciphertext is mis-
authenticated, and the ciphertext will never be decrypted. As
such, the adversary never learns the final destination of the
user’s message, and XRD protects the honest users’ privacy.

7 Implementation and evaluation

To evaluate XRD, we wrote a prototype in approximately
4,000 lines of Go. We used the NIST P-256 elliptic curve [2]
for our cryptographic group, and used AES with SHA-256-
based key derivation function [33] and HMAC [32] for our
authenticated encryption scheme. The servers communi-
cated using streaming gRPC over TLS. Our prototype as-
sumes that the servers’ and users’ public keys, and the public
randomness for creating the chains are provided by a higher
level functionality. Finally, we set the number of chains n
equal to the number of servers N (§5.2.1).

In this section, we investigate the cost of users and the per-
formance of XRD for different network configurations. For
majority of our experiments, we assumed f = 0.2 (i.e., 80%
of the servers are honest) unless indicated otherwise. We
used 256 byte messages, similar to evaluations of prior sys-
tems [53, 52, 5]; this is about the size of a standard SMS mes-
sage or a Tweet. We used c4.8xlarge instances on Amazon
EC2 for our experiments, which has 36 Intel Xeon E5-2666
CPUs with 60 GB of memory and 10 Gbps links.

We compare the results against four prior systems: Sta-
dium [52], Karaoke [37], Atom [34], and Pung [5, 4]. For
Stadium and Karaoke, we report the performance for ¢ = 10
and ¢f = 4, respectively, (meaning the probability of Alice
talking with Bob is within 10x and 4 x the probability of Al-
ice talking with any other user) and allow up to 108 rounds of
communication with strong security guarantees (§ < 107%),
which are the parameters the used for evaluation in their
papers. We show results for Pung with XPIR (used in the
original paper [5]) and with SealPIR (used in the follow-up
work [4]) when measuring user overheads, and only with
XPIR when measuring end-to-end latency. We do this be-
cause SealPIR significantly improves the client performance
and enables more efficient batch messaging, but introduces
extra server overheads in the case of one-to-one messaging.

As mentioned in §2, the four systems scale horizontally,
but offer different security properties. To summarize, Sta-
dium and Karaoke provide differential privacy guarantees
against the same adversary assumed by XRD. Thus, their
users can send a limited number of sensitive messages with
strong privacy, while XRD users can do so for unlimited mes-
sages. Atom provides cryptographic sender anonymity [46]
under the same threat model. Finally, Pung provides mes-
saging with cryptographic privacy against an adversary who
can compromise all servers rather than a fraction of servers.
To the best of our knowledge, we are not aware of any scal-
able private messaging systems that offer the same security
guarantee under a similar threat model to XRD.

7.1 User costs

We first characterize computation and bandwidth over-
heads of XRD users using a single core of a c4.8xlarge in-
stance. In order to ensure that every pair of users intersects,
each user sends /2N messages (§5.3.1). This means that

J[(f SESttaa R Pung (XPIR; 4M users) —e XRD
) T -= Pung (XPIR; 1M users) - Stadium _

—_ —- Pung (SealPIR) -
[a4]
2 03
<
3 02
2
s 0.1

0.0

0 250 500 750 1000 1250 1500 1750 2000
Number of servers

Figure 2: Required user bandwidth per round as a function
of number of servers in the network.

0.5

0.41
—_ XRD
< 0.3 - Pung (XPIR; 4M users)
(_>)‘ — Atom
a:) 0.21 —= Pung (XPIR; 1M users)
w® - Stadium
= 01 — Pung (SealPIR)

0.0

0 250 500 750 1000 1250 1500 1750 2000

Number of servers

Figure 3: Required user computation as a function of number
of servers with a single core. The computation could easily
be parallelized with more cores for XRD.

the overheads for users increase as we add more servers to
the network, as shown in Figure 2 and 3. This is a primary
weakness of XRD, since our horizontal scalability comes at
a higher cost for users. Still, the cost remains reasonable
even for large numbers of servers. With 2,000 servers, each
user must submit about 238 KB of data. For 1 minute rounds,
this translates to about 40 Kbps of bandwidth requirement. A
similar trend exists for computation overhead as well, though
it remains relatively small: it takes less than 0.5 seconds
with fewer than 2,000 servers in the network. Computa-
tion could also be easily parallelized with more cores, since
users can generate the messages for different chains inde-
pendently. The cover messages make up half of the client
overhead (§5.3.3).

User costs in prior works do not increase with the number
of servers. Still, Pung with XPIR incurs heavy user band-
width overheads due to the cost of PIR. With 1 million users,
Pung users transmit about 5.8 MB, which is about 25 x worse
than XRD when there are fewer than 2,000 servers. More-
over, per user cost of XPIR is proportional to the total num-
ber of users: the bandwidth cost increases to 11 MB of band-
width for 4 million users. The SealPIR variant, however, is
comparable to that of XRD, as the users can compress the
communication using cryptographic techniques. Stadium,
Karaoke, and Atom incur minimal user bandwidth cost, with
less than a kilobyte of bandwidth overhead (only Stadium is
shown Figure 2). Thus, for users with heavily limited re-
sources, prior works can be more desirable than XRD.

1600 4 o9 XRD

X Stadium

BB Karaoke
14001 /

1200 !

1000 927s 897s

8001

Latency (s)

600

4004

200 1

Number of users (millions)

Figure 4: End-to-end latency of XRD and prior systems with
varying numbers of users with 100 servers.

7.2 End-to-end latency

Experiment setup. To evaluate the end-to-end perfor-
mance, we created a testbed consisting of up to 200
c4.8xlarge instances. We ran the instances within the same
data center to avoid bandwidth costs, but added 40-100ms of
round trip latency between servers using the Linux tc com-
mand to simulate a more realistic distributed network. Our
evaluations consider all parts of the AHS protocol (§6), but
assume all users are following the protocol. We then evaluate
the blame protocol (§6.4) separately.

We used many c4.8xlarge instances to simulate millions
of users, and also used ten more c4.8xlarge instances to sim-
ulate the mailboxes. We generate all users’ messages before
the round starts, and measure the critical path of our system
by measuring the time between the last user submitting her
message and the last user downloading her message.

We estimate the latency of Pung with M users and N
servers by evaluating it on a single c4.8xlarge instance with
M/N users. This is the best possible latency Pung can
achieve because (1) Pung is embarrassingly parallel, so
evenly dividing users across all the servers should be ideal [5,
§7.3], and (2) we are ignoring the extra work needed for
coordination between the servers (e.g., for message replica-
tion). For Stadium, we report the latency when the length of
each mix chain is nine servers. For Karaoke, we report the
numbers reported in their paper.

We focus on the following questions in this section, and
compare against prior work:

e What is the end-to-end latency of XRD, and how does it
change with the number of users?

e How does XRD scale with more servers?

e What is the effect of f, the fraction of malicious servers,
on latency?

e How fast is the blame protocol?

Number of users. Figure 4 shows the end-to-end latency
of XRD and prior works with 100 servers. XRD was able
to handle 2 million users in 228 seconds, and the latency

5000 V..
6000 ¥ Atom —— Pung —@— XRD =X~ Stadium
4000 4
[ST
| BRRSEEE ZA
0000 e . ey
_____________ g
©
> 3001
2
g 2504
©
=200 1
1501 =o__
w01 Tl
X m e
so1 e LS
50 100 150 200

Number of servers

Figure 5: End-to-end latency of XRD for varying numbers
of servers with 2 million users. We show Pung and Atom on
a different time scale.

scales linearly with the number of users. This is 13.3x and
4x faster than Atom and Pung, and 3x and 22.8x worse
than Stadium and Karaoke for the same deployment sce-
nario. Though processing a single message in XRD is signif-
icantly faster than doing so in Stadium (since Stadium relies
on verifiable shuffle, while XRD uses AHS), the overall sys-
tem is still slower. This is because each XRD user submits
many messages. For example, each user submits 15 mes-
sages with 100 servers, which is almost equivalent to adding
15 users who each submit one message. Unfortunately, the
performance gap would grow with more servers due to each
user submitting more messages (the rate at which the gap
grows would be proportional to y/2N). While XRD can-
not provide the same performance as Stadium or Karaoke
with large numbers of users and servers, XRD can provide
stronger cryptographic privacy.

When compared to Pung, the speed-up increases further
with the number of users since the latency of Pung grows su-
perlinearly. This is because the server computation per user
increases with the number of users. With 4 million users, for
example, XRD is 8x faster. For Atom, the latency increases
linearly, but with higher slope. This is due to its heavy re-
liance on expensive public key cryptography and long routes
for the messages (over 300 servers).

Scalability. Figure 5 shows how the latency decreases with
the number of servers with 2 million users.! We experi-
mented with up to 200 servers, and observed the expected
scaling pattern: the latency of XRD reduces as /2/N with
N servers (§4). In contrast, prior works scale as 1/N, and
thus will outperform XRD with enough servers. Still, be-
cause XRD employs more efficient cryptography, XRD out-
performs Atom and Pung with less than 200 servers.

To estimate the performance of larger deployments, we
extrapolated our results to more servers. We estimate that
XRD can support 2 million users with 1,000 servers in about
84s, while Stadium can do so in about 8s. (At this point,

'We could not compare against Karaoke [37] since the implementation
is not yet available.

11

4001 e—@ xRD (2M users; 100 servers)
— 3507
<
> 3001
8 o5
L—v- 2501
200 1
Utl 072 Uj3 (J'-l
f (Fraction of malicious servers)
Figure 6: Latency of XRD for different values of f.
150 4
©—® XRD(100 servers; f = 0.2)
2100+
T
f=4
2
5 504

50000 80000 100000

Number of malicious users

5000 20000

Figure 7: Latency of blame protocol.

the latency between servers would be the dominating factor
for Stadium.) This gap increases with more users, as de-
scribed previously. For Atom and Pung, we estimate that
the latency would be comparable to XRD with about 3,000
servers and 1,000 servers in the network, respectively, for
2 million users. Pung would need more servers with more
users to catch up to XRD due to the superlinear increase in
latency with the number of users.

Impact of f. During setup, the system administrator should
make a conservative estimate of f to form the chains. Larger
f affects latency because it increases in the length of the
chains & (§5.2.1). Concretely, with n = 100, k must satisfy

100.fk < 27% Thus, k > W, which means that

the length of a chain (and the latency) grows as a function of
ﬁ. Figure 6 demonstrates this effect. The latency grows
slowly for f < 0.5. This function, however, grows rapidly
when f >> 0.5, and thus the latency would be significantly
worse when considering larger values of f.

Atom would experience the same effect since its mix
chains are created using the same strategy as XRD. Karaoke
also experiences similar increase in latency with f, as every
message must be routed through a number of servers propor-
tional to |@\ as well. Stadium would face more signifi-
cant increase in latency with f as its mix chains similarly get
longer with f, and the length of the chains has a superlinear
effect on the latency due to zero-knowledge proof verifica-
tion [52, §10.3]. The latency of Pung does not increase with
f since it already assumes f = 1.

Blame protocol. Malicious users could send misauthenti-
cated ciphertexts to trigger the blame protocol, and slow
down the system. Since malicious users’ messages are re-
moved as soon as servers find them, the users cause the most
slowdown when the misauthenticated ciphertexts are discov-
ered at the last server. The performance of the blame proto-

2038
20.71
£ 0.61
7 0.5

=X XRD (1000 servers)
V--¥ XRD (500 servers)
©—e@ XRD (100 servers) pras =

=
e
f
\§
\:
\:
\

on

0.3
0.2

Conversat

oo
=

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Server churn rate

Figure 8: Fraction of conversations that fail in a given round
due to server failures for different server churn rates.

col also depends on the number of malicious users. In Fig-
ure 7, we therefore show the latency of the blame protocol
as a function of the number of malicious users in a chain
of 32 servers when the last server detects misbehavior. The
blame protocol requires two discrete log equivalence proofs
and decryption per user for each layer of encryption (§6.4).

Concretely, if 5,000 users misbehave in a chain, the blame
protocol takes about 13 seconds. This cost increases linearly
with the number of users: if 100,000 users misbehave in
a chain (which corresponds to approximately a third of all
users being malicious with 100 servers and 2 million users
in the network), the protocol takes about 150 seconds. As a
result, the overall round would take 378 seconds, instead of
228 seconds, for 2 million users. Still, this is 8 X and 2.4 x
faster than Atom and Pung. In practice, the blame proto-
col could be faster since the honest server is likely to be not
the last server. For example, if the honest server is the 160
server, then the blame protocol would take half the time. The
overall round would then take around 303 seconds.

While this is a significant increase in latency, malicious
users are removed from the network once servers identify
them. To cause serious slowdowns across many rounds, the
adversary needs to constantly create new malicious users.
Then, by employing defenses against Sybil attacks (e.g., im-
posing a small cost for user registration such as proof-of-
work [23] or CAPTCHA [54]), we could limit the effective-
ness of an adversary.

Malicious users can have varying degree of impact in prior
systems. Pung and Karaoke are not affected by malicious
users, and Stadium has a blame protocol similar to XRD to
handle malicious users. Atom, however, is the significantly
affected: a single malicious user can launch a DoS attack in
the faster variant used for comparison in this paper [34, §4.4].
The slower variant of Atom that can handle adversarial users
is at least 4x slower [34, §6], meaning it would be at least
30x slower than XRD overall.

7.3 Availability

To estimate the effect of server churn on a XRD network,
we simulated deployment scenarios with 2 million users and
different numbers of servers. We assumed that all users were
in a conversation, and show the fraction of the users whose
conversation messages did not reach their partner in Fig-

12

ure 8. For example, if 1% of the servers fail in a given round
(comparable to server churn rate in Tor [1]), then we expect
about 27% of the conversations to experience failure, and
the end-points would have to resend their conversation mes-
sages. Unfortunately, the failure rate quickly increases with
the server churn rates, reaching 70% with 4% server fail-
ures, as more chains contain at least one failing server. Thus,
it would be easy for the adversary who controls a non-trivial
fraction of the servers to launch a denial-of-service attack.
Addressing this concern remains important future work.

When compared to Pung, the availability guarantees can
be significantly worse, assuming Pung replicates all users’
messages across all servers. In this case, the conversation
failure rate would be equal to the server churn rate with users
evenly distributed across all Pung servers, and the users con-
nected to the failing servers could be rerouted to other servers
to continue communication. Atom can tolerate any fraction y
of the servers failing using threshold cryptography [17], but
the latency grows with y. For example, to tolerate Y = 1%
servers failing, we estimate that Atom would be about 10%
slower [34, Appendix B]. Stadium and Karaoke, however,
are more affected by server churn. Stadium uses two lay-
ers of parallel mix-nets, and fully connects the chains across
the two layers. As a result, even one server failure would
cause the whole system to come to a halt. (Stadium does not
provide a fault recovery mechanism, and the security impli-
cations of continuing the protocol without the failing chains
are not analyzed [52].) Similarly, Karaoke uses layers of
interconnected mixing servers, and a single server failure re-
sults in the failure of the whole network.

8 Conclusion

XRD provides a unique design point in the space of meta-
data private communication systems by achieving crypto-
graphic privacy and horizontal scalability using efficient
cryptographic primitives. XRD organizes the servers into
multiple small chains that process messages in parallel, and
can scale easily with the number of servers by adding more
chains. We hide users’ communication patterns by ensuring
every user is equally likely to be talking to any other user, and
hiding the origins of users’ messages through mix-nets. We
then efficiently protect against active attacks using a novel
technique called aggregate hybrid shuffle. Our evaluation on
a network of 100 servers demonstrates that XRD can sup-
port 2 million users in 228 seconds, which is 13x and 4x
faster than Atom and Pung, two prior systems with crypto-
graphic privacy guarantees. Furthermore, XRD scales better
with more users than Atom and Pung.

Acknowledgement: This work was partially supported by
a National Science Foundation grant (1813087).

References

[1] Tor metrics portal. https://metrics.torproject.org.

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Mehmet Adalier. Efficient and secure elliptic curve
cryptography implementation of curve p-256. 2015.

Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse,
and Marc-Olivier Killijian. Xpir: Private information
retrieval for everyone. PETS, 2016(2):155-174, 2016.

Sebastian Angel, Hao Chen, Kim Laine, and Srinath
Setty. Pir with compressed queries and amortized query
processing. In 2018 IEEE Symposium on Security and
Privacy (SP), volume 00, pages 1011-1028.

Sebastian Angel and Srinath Setty. Unobservable
communication over fully untrusted infrastructure. In
OSDI, pages 551-569, GA, 2016. USENIX Associa-
tion.

Mihir Bellare, Phillip Rogaway, and David Wagner.
Eax: A conventional authenticated-encryption mode.
Cryptology ePrint Archive, Report 2003/069, 2003.
https://eprint.iacr.org/2003/069.

Joseph Bonneau, Jeremy Clark, and Steven Goldfeder.
On Bitcoin as a public randomness source. https:
//eprint.iacr.org/2015/1015.pdf, 2015.

Justin Brickell and Vitaly Shmatikov. Efficient
anonymity-preserving data collection. In KDD, pages
76-85, New York, NY, USA, 2006. ACM.

Jan Camenisch and Markus Stadler. Proof systems for
general statements about discrete logarithms. Technical
report, 1997.

David Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Communications of
the ACM, 24(2):84-90, February 1981.

David Chaum. The dining cryptographers prob-
lem: Unconditional sender and recipient untraceability.
Journal of Cryptology, 1(1):65-75, March 1988.

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and
Madhu Sudan. Private information retrieval. Journal
of the ACM, 45(6):965-981, November 1998.

Henry Corrigan-Gibbs, Dan Boneh, and David
Mazieres. Riposte: An anonymous messaging system
handling millions of users. In IEEE Symposium on Se-
curity and Privacy, pages 321-338, May 2015.

Henry Corrigan-Gibbs and Bryan Ford. Dissent: Ac-
countable anonymous group messaging. In CCS, pages
340-350, New York, NY, USA, 2010. ACM.

George Danezis, Roger Dingledine, David Hopwood,
and Nick Mathewson. Mixminion: Design of a type III
anonymous remailer protocol. In IEEE Symposium on
Security and Privacy, pages 2—15, 2003.

13

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

George Danezis and Andrei Serjantov. Statistical dis-
closure or intersection attacks on anonymity systems.
In Jessica Fridrich, editor, Information Hiding, pages
293-308, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

Alfredo De Santis, Yvo Desmedt, Yair Frankel, and
Moti Yung. How to share a function securely. In Pro-
ceedings of the Twenty-sixth Annual ACM Symposium
on Theory of Computing, STOC ’94, pages 522-533,
New York, NY, USA, 1994. ACM.

Tim Dierks and Eric Rescorla. The transport layer secu-
rity (tls) protocol version 1.2. RFC 5246, RFC Editor,
August 2008. http://www.rfc-editor.org/rfc/
rfcb246.txt.

Roger Dingledine. One cell is enough to break
tor’s anonymity. https://blog.torproject.
org/one-cell-enough-break-tors-anonymity,
February 2009.

Roger Dingledine and Nick Mathewson. Anonymity
loves company: Usability and the network effect.

Roger Dingledine, Nick Mathewson, and Paul Syver-
son. Tor: The Second-Generation Onion Router.
In USENIX Security Symposium, pages 303-320.
USENIX Association, August 2004.

Cynthia Dwork. Differential privacy. In Proceedings of
the 33rd International Conference on Automata, Lan-
guages and Programming - Volume Part I, ICALP’06,
pages 1-12, Berlin, Heidelberg, 2006. Springer-Verlag.

Cynthia Dwork and Moni Naor. Pricing via process-
ing or combatting junk mail. In Ernest F. Brickell,
editor, CRYPTO, pages 139-147, Berlin, Heidelberg,
1993. Springer Berlin Heidelberg.

Michael J. Freedman and Robert Morris. Tarzan: A
peer-to-peer anonymizing network layer. In CCS, CCS
’02, pages 193-206, New York, NY, USA, 2002. ACM.

Jun Furukawa and Kazue Sako. An efficient scheme
for proving a shuffle. In CRYPTO, pages 368-387.
Springer-Verlag, 2001.

Philippe Golle, Sheng Zhong, Dan Boneh, Markus
Jakobsson, and Ari Juels. Optimistic mixing for exit-
polls. In International Conference on the Theory and
Application of Cryptology and Information Security,
pages 451-465. Springer, 2002.

Jens Groth and Steve Lu. Verifiable shuffle of large size
ciphertexts. In PKC, pages 377-392, 2007.

https://eprint.iacr.org/2003/069
https://eprint.iacr.org/2015/1015.pdf
https://eprint.iacr.org/2015/1015.pdf
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
https://blog.torproject.org/one-cell-enough-break-tors-anonymity
https://blog.torproject.org/one-cell-enough-break-tors-anonymity

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Mes-
sage franking via committing authenticated encryp-
tion. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO, pages 66-97. Springer International Publish-
ing, 2017.

Amir Houmansadr and Nikita Borisov. The need
for flow fingerprints to link correlated network flows.
In Emiliano De Cristofaro and Matthew Wright, edi-
tors, Privacy Enhancing Technologies, pages 205224,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Aaron Johnson, Chris Wacek, Rob Jansen, Micah
Sherr, and Paul Syverson. Users get routed: Traffic
correlation on Tor by realistic adversaries. In CCS,
November 2013.

Dogan Kedogan, Dakshi Agrawal, and Stefan Penz.
Limits of anonymity in open environments. In Fabien
A. P. Petitcolas, editor, Information Hiding, pages 53—
69, Berlin, Heidelberg, 2003. Springer Berlin Heidel-
berg.

H. Krawczyk, M. Bellare, and R. Canetti. Hmac:
Keyed-hashing for message authentication. RFC 2104,
RFC Editor, February 1997.

H. Krawczyk and P. Eronen. Hmac-based extract-and-
expand key derivation function (hkdf). RFC 5869, RFC
Editor, May 2010.

Albert Kwon, Henry Corrigan-Gibbs, Srinivas De-
vadas, and Bryan Ford. Atom: Horizontally scaling
strong anonymity. In Proceedings of the 26th Sym-
posium on Operating Systems Principles, SOSP 17,
pages 406422, New York, NY, USA, 2017. ACM.

Albert Kwon, David Lazar, Srinivas Devadas, and
Bryan Ford. Riffle: An efficient communication sys-
tem with strong anonymity. In PETS, volume 2016,
pages 115-134, 2015.

Ben Laurie, Adam Langley, and Emilia Kasper. Certifi-
cate transparency. RFC 6962, RFC Editor, June 2013.

David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Fast and strong metadata privacy with low
noise. In OSDI, Carlsbad, CA, 2018. USENIX Associ-
ation.

David Lazar and Nickolai Zeldovich. Alpenhorn:
Bootstrapping secure communication without leaking
metadata. In OSDI, 2016.

Stevens Le Blond, David Choffnes, Wenxuan Zhou,
Peter Druschel, Hitesh Ballani, and Paul Francis. To-
wards efficient traffic-analysis resistant anonymity net-
works. In SIGCOMM, pages 303-314, New York, NY,
USA, 2013. ACM.

14

[40] Moxie Marlinspike and Trevor Perrin. Signal specifi-
cations. https://https://signal.org/docs/.

[41] Susan E. McGregor, Polina Charters, Tobin Holliday,
and Franziska Roesner. Investigating the computer se-
curity practices and needs of journalists. In USENIX
Security, pages 399-414, Washington, D.C., August
2015. USENIX Association.

[42] Marcela S. Melara, Aaron Blankstein, Joseph Bon-
neau, Edward W. Felten, and Michael J. Freedman.
CONIKS: Bringing key transparency to end users. In
24th USENIX Security Symposium (USENIX Security
15), pages 383-398, Washington, D.C., 2015. USENIX
Association.

[43] Steve Mills. Defining the delicate and often dif-
ficult relationship between reporters and sources.
https://www.propublica.org/article/

ask-propublica-illinois-reporters—and-sources-relat:
April 2018.

[44] Prateek Mittal and Nikita Borisov. Shadowwalker:
Peer-to-peer anonymous communication using redun-
dant structured topologies. In CCS, CCS °09, pages
161-172, New York, NY, USA, 2009. ACM.

[45] C. Andrew Neff. A verifiable secret shuffle and its ap-
plication to e-voting. In CCS, pages 116-125, New
York, NY, USA, 2001. ACM.

[46] Andreas Pfitzmann and Marit Hansen. A terminol-
ogy for talking about privacy by data minimization:
Anonymity, unlinkability, undetectability, unobserv-
ability, pseudonymity, and identity management. Au-
gust 2010.

[47] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Se-
bastian Meiser, and George Danezis. The loopix
anonymity system. In USENIX Security Symposium,
pages 1199-1216, Vancouver, BC, 2017. USENIX As-
sociation.

[48] David Pointcheval and Jacques Stern. Security proofs
for signature schemes. In Ueli Maurer, editor, EU-
ROCRYPT, pages 387-398, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[49] Michael K. Reiter and Aviel D. Rubin. Anonymous
web transactions with crowds. Communications of the
ACM, 42(2):32-48, February 1999.

[50] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Ko-
gias, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Michael J. Fischer, and Bryan Ford. Scalable bias-
resistant distributed randomness. In IEEE Symposium
on Security and Privacy, pages 444-460, May 2017.

https://https://signal.org/docs/
https://www.propublica.org/article/ask-propublica-illinois-reporters-and-sources-relationship
https://www.propublica.org/article/ask-propublica-illinois-reporters-and-sources-relationship

[51] Alin Tomescu and Srinivas Devadas. Catena: Efficient
non-equivocation via bitcoin. In 2017 IEEE Sympo-
sium on Security and Privacy (SP), pages 393409,
May 2017.

[52] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Za-
haria, and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. In SOSP, SOSP

17, pages 423440, New York, NY, USA, 2017. ACM.

Jelle Van Den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: Scalable private mes-
saging resistant to traffic analysis. In SOSP, pages 137—
152. ACM, 2015.

[53]

[54] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and
John Langford. Captcha: Using hard ai problems for
security. In Eli Biham, editor, EUROCRYPT, pages
294-311, Berlin, Heidelberg, 2003. Springer Berlin

Heidelberg.

[55] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Dissent in numbers: Mak-
ing strong anonymity scale. In OSDI, pages 179-182,

Hollywood, CA, 2012. USENIX Association.

A Security of aggregate hybrid shuffle

The adversary’s goal is to have an upstream server suc-
cessfully tamper with some messages without getting de-
tected by the honest server. To model this, we consider the
following security game between three parties: the client,
the adversary, and the verifier. All parties are given the total
number of users M. The client controls users in set Xy C [M]
(this models the honest users), and the adversary controls
users in set X4 = [M]\ Xy . In addition, the adversary controls
servers 1,...,h—1, and the verifier controls server 4 (i.e., the
honest server). To simplify the presentation, we assume the
adversary uses the identity permutation for all servers, but it
is easy to adapt this proof to any arbitrary permutation.

1. The adversary sends the client and the verifier the pub-
lic keys bpk; and mpk; and ipk; fori =1,...,h—1. It
also generates NIZKs to prove that it knows the val-
ues bsk; =logy,,. (bpk;) and msk; =logy,. (mpk;)
fori=1,...,h— 1, where bpky = g. It sends the pub-
lic keys and NIZKs to the verifier.

2. The verifier verifies the NIZKs.
then generates the key pairs (bpk, = bpk

The verifier

bsk,
i—ll’ bSkh>,

(mpk;, = bpki"lsi(", msky,), and (ipky,,isk;), and sends the
public keys to the client and the adversary.

3. The generates
{¢/ =(X{ =g%,c])}jex, using the protocol de-
scribed in §6.2. It also generates a NIZK that it knows x;
that corresponds to X{ for each j, and sends both {c¢/}
and the NIZKs to the adversary and the verifier.

client random {x;}jex,, and

15

4. The adversary generates its input messages
{¢/ =(X{,c])}jex, (not necessarily by following
the protocol in §6.2). It generates a NIZK that shows it
knows the discrete log of X{ and sends {¢/} jcx, and the
NIZKs to the client and the verifier.

5. The verifier verifies all NIZKs.

6. For i = 1,...,h— 1, the adversary sends the verifier
{X/.1} jcim)> and a NIZK that shows

M ' bsk; M '
(sz’j> = HXij+1
j=1 j=1

by proving that
Mo
IOgH’}{,X:’ 11X, = logy._, (bpk;) -
J=1 j=1

i
It also sends the ciphertexts {c] } to the verifier.

7. The verifier verifies all NIZKs, and checks that
ADec((X,f)mSkh?c;L/) =(1,-) forall j € [M].

The game halts if the verifier fails to verify any NIZKs or

authenticated decryption ever fails (i.e., returns (0,-)). The

adversary wins the game if the game does not halt and it has

successfully tampered with some messages. In other words,

the adversary wins if

. bsk,- .
(ML X)) =TI X7, foralli= 1, b= 1,

2. there exists Xr C Xy such that [X7| >0 and forall j € X7
one of the two properties is true: (1) (X7)[li<nbski £ X7/,
or (2) (X{)HK" bski — X}{ and ci =+ c;;/ (i.e., the adversary
tampered with some messages),

3. and ADec((X}{)mSk%c{l/) =(1,-) forall j € [M].

We will now show that if the adversary can win this
game, then it can also break Diffie-Hellman. Assume
the adversary won the game. Let bsks = [];.;bsk; be
the product of the private blinding key of the adver-
sary. If the adversary won, then the first condition im-
plies that ([T}L, X{)*** =TT}L, X;. Now, consider three
boolean predicates for j: ¢} 2 cil, x{)bska 2 Xj, and
KNOW((X;/)mskn), where KNOW(x) = 1 if the adversary
knows (or can compute) x, and 0 otherwise. There are eight
possible combinations of the predicates, and we consider
each combination for j € Xy. We indicate which combina-
tions are possible for the adversary to satisfy, given that all
authenticated decryptions were successful.

1cl # ey (x))bka £ X7, KNOW((X])™ski) = 0: M-
POSSIBLE. Since the adversary does not know the key
used to decrypt (i.e., (X,{ ymskn), it cannot generate a valid
ciphertext.

2. ¢l £l (x7)bka £ X, KNOW((X7)mskn) = 1: POSSI-
BLE. Since the adversary knows the key used to decrypt
it could generate a valid ciphertext.

3. ¢l £, (X)) = XJ, KNOW((X/)™kr) = 0: IM-

POSSIBLE. Same argument as case 1.

4. cl £l (xi)bka = X7, KNOW((X/)™ki) = 1: IM-
POSSIBLE. If possible, then the adversary can break
the Diffie-Hellman assumption. Namely, given only
Xi] = g%, bska, and (ngkA)mSkh for random x; and msk;,
and an independently generated bsky, it can compute
(X;))mskn = g*ibskamskn Tf this were possible, then given
g® and g” for random a and b, the adversary could gen-
erate an bsk,, compute (g”)°*4, and compute g#?Ps4,
It could then break the Diffie-Hellman assumption and
compute g% by raising g#?sk to bsk;l.

5. cf = cf » (X))" # X, KNOW/((X/)™*) = 0: IM-
POSSIBLE. If possible, then c;l authenticates under two
different keys (X{)b*4™ki and (X/)™kr. However, if
we model the underlying hash function of HMAC as a
random oracle, then the HMAC instantiated with a ran-
dom key is a random function. This implies that the
probability that the same ciphertext authenticates under
two different keys (i.e., collision of two random func-
tions) is negligible when using Encrypt-then-HMAC.

6. ¢l =cl', (X])Pa £ X/, KNOW((X/)™k1) = 1: POS-
SIBLE. Since the adversary knows and controls the key
used for decryption (in particular, the HMAC), it may be
able to find a key that is different from the key used to
encrypt that results in valid decryption.

7. ¢l =l (x))b% = X/, KNOW((X/)m*+) = 0: POS-
SIBLE. This corresponds to an untampered message.

8. ¢l = cl, (X{)ba = X/, KNOW((X])m) = 1
POSSIBLE. Same argument as case 4.

Thus, there are three possible combinations of predicates:
. o A ; ‘ A
(e 7 ¢ ()P0 # X, KNOW((X)™*) = 1), (cj, =
¢ s (X7)P 2 Xjl, KNOW((X)))mkn) = 1), and (¢}, = ¢;,,
(X{)bk = X!, KNOW/((X;/)™kn) = 0). The first two cases
correspond to X7 (tampered messages), and the second cor-

responds exactly to Xy \ X7 (untampered messages).
Similarly, consider j € X4. The adversary generates the

IM-

ciphertexts {ci/} for the verifier. Thus, the adversary must
know (X}{)mski, the key used to authenticate the ciphertext,
for j € Xu.

Now, we consider the product of the users’ Diffie-Hellman
keys. Because all NIZKs have to be verified, we have that

() (i)

16

Consider Xy = Xy \ Xr, i.e., the set of messages that did
not change. Then, we can divide both sides by the values
associated with Xy since (X{)?* = X for j € Xy

bSkA
[T x) ={ Il %),
JeEXTUXY JjeXTUXY

since X7 UXy = [M]\ Xy. We can rewrite this as

bsk4 bsk
(HXK) —([1 XZ)/(HX{') S
JEXT JEXTUXY JEXA

Based on our analysis of the possible predicates for X7
and X4, the adversary must know (X,{)ms"h for j € Xp UXy.

Moreover, the adversary knows logg(X'li) for j e X4 (it
was required to prove the knowledge in step 4 of the
game). Thus, the adversary can compute ((Xj)Pska)mskn

by computing ((ngkA)mSkh)]ogX(XlJ) for j € X4 (it knows
mpk;, = (gPka)mskn), As a result, it can compute

-\ mskj, -\ bsky mskj,

(™) (™)™
JEXTUX, jexy

This, however, is

)

JEXTUX)

/11

JEXa

bSkA
< I1 Xﬁ) / (HX{)
jeXrUxy jexy

mskj,

bSkA
[1xi :
JEXT

where the last step uses the equality from equation 1. This
means that given {X{ = g%}, bsky, and (g°*4)™k for un-
known random {x;} and msk, and bsk, that was generated
independently of {x;} and mskj, the adversary was able to
compute gPk4™MkiLjexr ¥ This essentially breaks Diffie-
Hellman.

In more detail, consider the following adversary Apy that
tries to break Diffie-Hellman. Apy is given g% and g’ for
random a and b, and is asked to compute g*’. To compute
this, Apy simulates the above game by simulating the clients
and the honest server. To do so, Apy chooses the blinding
keys {bsk;}, and sets mpk;, = ([T;g")? = (g”)>*4; i.e., the
private mixing key of the honest server is b. Then, it gener-
ates the inputs from the client by generating a random r; for
Jj € Xy and setting g = g**"j. It also generates the inputs
associated with each message. The adversary (a simulator)
can generate valid NIZKs of knowledge of discrete logs in
the random oracle model [48]. For the first layer of encryp-
tion (which is for the “honest server” whose secret key is

-~ bsky\ MK
(™)

msky,

the unknown b), generate random values for c{l, since cipher-
texts are indistinguishable from random values. For the other
layers of encryption, it can generate correctly authenticated
ciphertexts by using g%/, {bsk;};,<;, and {msk;};, without
knowing the value of a.

At the end of the game, the adversary can compute
ngkA‘b'o:-fEXT %) " as described previously. From this, the ad-
versary can compute the following:

bska b (Ljexy Xj) — bskab (Ljexy (atr)))

8 8

— ngkA'b'(‘XT|”+ZjEXT rj)

Since the adversary knows bsks and r; for j € Xr, it can
compute

g\XT\ab _ (gbskA-h-(\XT\a+Zj€XT "j)/(gb)bSkAZjeXT rj)bsk/;1)

From this, it can recover g“b, and break Diffie-Hellman.
Therefore, the adversary cannot win the above game if
Diffie-Hellman is hard, meaning that it could satisfy at most
two out of the three conditions to win the game. In turn, this
implies that the honest server will always catch an upstream
malicious server misbehaving.

B Security game and proof sketches

We define the security of our system using the following
security game played between a challenger and an adversary.
Both the challenger and the adversary are given the set of
users [M] = {1,2,...,M}, the set of servers [N], the fraction
f of servers the adversary can compromise, and the number
of chains n.

1. The adversary selects the set of malicious servers
A C [N] such that |As] < f- N, and the set of malicious
users A, C [M] such that |[A.| < M —2. The adversary
sends Ay and A, to the challenger. Let Hy = [M]\ Ay and
H, = [N]\ A, denote the set of honest servers and users.

2. The challenger computes the size of each chain k as a
function of f and n, as described in §5.2. Then, it cre-
ates n mix chains by repeatedly sampling k servers per
group at random. The challenger sends the chain config-
urations to the adversary.

3. The adversary and the challenger generate blinding keys,
mixing keys, and inner keys as described in §6.1 and Ap-
pendix A.

4. The adversary picks some honest users H; C H, such that
|H;| > 2. It generates sets of chains {C,} for x € H,
such that C, N Cy # 0 for all x,y € H;. For c € [n], let
U. = {x € H; : c € C}. For each chain c, it also gener-
ates the potential messages {ms, } for x,y € Uc where m§,

is the message that may be sent from user x to user y in

chain c. The adversary sends H;, {{mg,}}, and {C\} to

the challenger.

5. The challenger first verifies that every pair of C, and Cy
intersects at least once. If this is not the case, the game

17

halts. The challenger then performs the following for
each chain c € [n]. First, it creates conversation pairs for
each chain ¢ {(X;,Y;)c} C Uc x U, at random such that
every x € U, appears in exactly one of the pairs. In other
words, every user has a unique conversation partner per
chain. (If X; =Y;, then that user is talking with her-
self.) For each (x,y) € {(X;,Y;)}, the challenger onion-
encrypts the messages my, from x to y and mf, from y to
x with the keys of servers in chain c. Then, it uses the
protocol described in §6.2 to submit the ciphertexts and
the necessary NIZKs.

6. The adversary generates inputs to the chains for the users
in A, and sends them to the chains.

7. The challenger and the adversary take turns processing
the messages in each chain. Within a chain, they perform
the following fori =1,...,k:

(a) If server i € Hy, the challenger performs protocol de-
scribed in §6.3 to shuffle and decrypt the messages,
and also generate an AHS proof. The challenger then
sends the proof to the adversary, and the resulting
messages to the owner of server i+ 1.

(b) If server i € Ay, the adversary generates some mes-

sages along with an AHS proof. Then, sends the

AHS proof to the challenger, and sends the messages

to the owner of server i + 1.

The challenger verifies all AHS proofs.

8. The challenger and the adversary decrypt the final result
of the shuffle (i.e., the inner ciphertexts).

9. The challenger samples a random bit b < 0,1. If
b =0, then send the adversary {(X;,Y;).} for c € [n].
If b =1, then sample random conversation pairs
{(X].Y!)c} C Uc x U, for each chain with the same con-
straint as in step 5, and send the adversary the newly

sampled pairs.

10. The adversary makes a guess b’ for b.

The adversary wins the game if the game does not come to a
halt before the last step and b’ = b. The adversary need not
follow the protocol described in this paper. The advantage
of the adversary in this game is |Pr[b’ = b] — % . We say
that the system provides metadata private communication if
the advantage is negligible in the implicit security parameter.
Note that this game models a stronger version of XRD, which
allows users to communicate with multiple users on different
chains rather than only one user. We could change the game
slightly to force the challenger to send loopback messages in
step 5 to model having just one conversation.

Proof sketches. First, we argue that the adversary needs to
tamper with messages prior to the last honest server shuf-
fling, as stated in §6. To see why, consider an adversary that
only tampers with the messages after the last honest server.
The adversary can learn the recipients of all messages, but

not the senders. As a result, the adversary does not learn
anything about whether two users x,y € U, received mes-
sages because there exists a conversation pair (x,y)., or be-
cause there were two conversation pairs (x,x)c and (y,y)c.
This means that any set of conversation pairs is equally likely
to be sampled by the challenger from the adversary’s view,
meaning that the adversary does not gain any advantage.
Thus, we consider an adversary who tampers with messages
prior to the honest server processing the messages.

In this scenario, the adversary in step 7 must follow the
protocol (e.g., no tampering with the messages), as analyzed
in Appendix A. Given this restriction, we now argue that the
adversary does not learn anything after playing the security
game by describing how a simulator of an adversary could
simulate the whole game with only the public inputs and the
private values of the adversary.

The simulator can simulate step 3 by generating random
public keys. It can simulate step 5 by generating random
values in place of the ciphertexts that encrypt the users’ mes-
sages {{m,}}, since the ciphertexts are indistinguishable
from random. It then randomly matches a user in U. to
one of the generated random values for each chain ¢, and
sets the destination of each message as the matched user. It
onion-encrypts the final message using the randomly gener-
ated public keys and the adversary’s public keys. In step 7,
the adversary simulates the challenger by randomly permut-
ing the messages, and removing a layer of the encryption
from the messages. (It can remove a layer of encryption
since it knows all layers of onion-encryption.) Finally, it
could simulate the challenger’s last challenge by picking sets
of randomly generated conversation pairs, subject to the con-
straints in step 5. The distribution of the messages generated
and exchanged in the security game and in the simulator are
indistinguishable for a computationally limited adversary.

18

	Introduction
	Related work
	System model and goals
	Threat model and assumptions
	Goals

	XRD overview
	XRD design
	Mailboxes and mailbox servers
	Mix chains
	Forming mix chains
	Processing user messages
	Server churn

	Users
	Selecting chains
	Sending messages
	User churn

	Aggregate hybrid shuffle
	Key generation with AHS
	Sending messages with AHS
	Mixing with AHS
	Blame protocol

	Implementation and evaluation
	User costs
	End-to-end latency
	Availability

	Conclusion
	Security of aggregate hybrid shuffle
	Security game and proof sketches

