
Kratos: Multi-User Multi-Device-Aware Access Control System
for the Smart Home

Amit Kumar Sikder1, Leonardo Babun1, Z. Berkay Celik2, Abbas Acar1, Hidayet Aksu1, Patrick
McDaniel3, Engin Kirda4, A. Selcuk Uluagac1

1Florida International University - {asikd003, lbabu002, aacar001, haksu, suluagac}@fiu.edu
2Purdue University - zcelik@purdue.edu

3Penn State University - mcdaniel@cse.psu.edu
4Northeastern University - ek@ccs.neu.edu

ABSTRACT

In a smart home system, multiple users have access to multiple de-
vices, typically through a dedicated app installed on a mobile device.
Traditional access control mechanisms consider one unique trusted
user that controls the access to the devices. However, multi-user
multi-device smart home settings pose fundamentally different
challenges to traditional single-user systems. For instance, in a
multi-user environment, users have conflicting, complex, and dy-
namically changing demands on multiple devices, which cannot
be handled by traditional access control techniques. To address
these challenges, in this paper, we introduce Kratos, a novel multi-
user and multi-device-aware access control mechanism that allows
smart home users to flexibly specify their access control demands.
Kratos has three main components: user interaction module, back-
end server, and policy manager. Users can specify their desired
access control settings using the interaction module which are
translated into access control policies in the backend server. The
policy manager analyzes these policies and initiates negotiation
between users to resolve conflicting demands and generates final
policies. We implemented Kratos and evaluated its performance
on real smart home deployments featuring multi-user scenarios
with a rich set of configurations (309 different policies including
213 demand conflicts and 24 restriction policies). These configura-
tions included five different threats associated with access control
mechanisms. Our extensive evaluations show that Kratos is very
effective in resolving conflicting access control demands with mini-
mal overhead, and robust against different attacks.

CCS CONCEPTS

• Security and privacy → Access control.
KEYWORDS

Smart Home Security, Access Control, Internet of Things.

ACM Reference Format:

Amit Kumar Sikder1, Leonardo Babun1, Z. Berkay Celik2, Abbas Acar1,
Hidayet Aksu1, Patrick McDaniel3, Engin Kirda4, A. Selcuk Uluagac1. 2020.
Kratos: Multi-User Multi-Device-Aware Access Control System for the
Smart Home. In 13th ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec ’20), July 8–10, 2020, Linz (Virtual Event), Aus-
tria. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3395351.
3399358

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in 13th ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec ’20), July 8–10, 2020,
Linz (Virtual Event), Austria, https://doi.org/10.1145/3395351.3399358.

1 INTRODUCTION

Cyberspace is expanding fast with the introduction of new smart
home technologies dedicated to make our homes automated and
smarter [28, 35]. This trend will only continue, and billions of
smart devices will dominate our everyday lives by the end of this
decade [27, 32]. The smart home systems (SHSs) allow multiple
devices to be connected to automate daily activities and increase
the overall efficiency of the home. Devices as simple as a light bulb
to ones as complicated as an entire AC system can be connected
and exposed to multiple users. The users then interact with the de-
vices through different smart home applications installed through
a mobile host app provided by the smart home vendors. Traditional
access control mechanisms proposed for personal devices such as
computers and smartphones primarily target single-user scenarios.
However, in a SHS, multiple users access the same smart device,
typically via a common controller app (e.g., SmartThings App),
which can cause conflicting device settings. For instance, a home-
owner may want to lock the smart door lock at midnight while a
temporary guest may want to access the lock after midnight. Also,
current smart home platforms do not allow the conflicting demands
of the users to be expressed explicitly. Finally, the current access
control mechanism in smart home platforms offer coarse-grained
solutions that might cause safety and security issues [2, 4, 16]. For
instance, smart home platforms often give automatic full access to
every user added to the SHS [25]. With full access, a new user can
easily add new unauthorized users, remove existing users, or recon-
figure the connected devices [10, 36]. This benign, yet undesired
action from the new user can lead to several safety issues [5, 20, 33].
In these real-life scenarios, current smart home platforms cannot
fulfill such complex, asymmetric, and conflicting demands of the
users as they can only handle primitive and broad controls with
static configurations.

In this paper, we introduce Kratos, a multi-user multi-device-
aware access control system designed for the SHSs. Kratos intro-
duces a formal policy language that allows users to define different
policies for smart home devices, specifying their needs. It also im-
plements a policy negotiation algorithm that automatically solves
and optimizes the conflicting policy requests frommultiple users by
leveraging user roles and priorities. Lastly, Kratos governs different
policies for different users, reviewing the results of the policy nego-
tiation and enforcing the negotiation results over the smart home
devices and apps. We implemented Kratos in a real a multi-user
multi-device SHS that include 17 different sensors and actuators.
We further evaluated Kratos performance on 219 different policies
including 146 demand conflicts and 33 restriction policies collected
from real-life smart home users. We also assessed the performance

ar
X

iv
:1

91
1.

10
18

6v
2

 [c
s.C

R
]

2
Ju

n
20

20

https://doi.org/10.1145/3395351.3399358
https://doi.org/10.1145/3395351.3399358
https://doi.org/10.1145/3395351.3399358

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Sikder et al.

of Kratos against five different threat models. Our extensive evalu-
ation shows that, Kratos can resolve demand conflicts and detect
different threats with 100% success rate in a multi-user multi-device
SHS with minimal overhead.
Contributions: Themain contributions of this work are as follows:
• We introduced Kratos, a multi-user multi-device-aware access
control system for SHS. Kratos provides a flexible policy-based
user controls to define user roles and understand users’ demands
on smart home, a formal policy language to express users’ desires,
and a policy negotiation mechanism to automatically resolve and
optimize conflicting demands and restrictions in a multi-user SHS.
• We implemented Kratos on a real SHS using 17 different smart
home devices and sensors. Further, we evaluated its performance
with 309 different policies provided by real users. Our evaluation
results show that Kratos effectively resolves conflicting demands
with minimal overhead.
• We tested Kratos against five different threats arising from in-
adequate access control system. Our evaluation shows that Kratos
can detect different threats with 100% success rate.

Organization: In section 2, we present the needs of access control
in SHS. In Section 3, we articulate the problem space and explain the
threat model. We detail the design of Kratos in Section 4. Section 5
articulates the implementation of Kratos in a real-life setting. In
Section 6, we evaluate the performance of Kratos. Finally, Section 8
discusses the related work and Section 9 concludes the paper.

2 MOTIVATION AND DEFINITIONS

2.1 Access Control Needs in a Smart Home

Access control in multi-user SHSs pose unique challenges in terms
of device sharing and conflict resolution. People sharing smart de-
vices in the same environment may have different needs and usage
patterns which can lead to conflict scenarios [39]. However, exist-
ing smart home platforms mostly offer binary control mode where
a user gets all the control or no control at all. For instance, Samsung
SmartThings provides full access to all the connected devices to a
user. Unfortunately, this all-inclusive access permits any authorized
users to control the smart devices which can lead to conflicting
demands, privacy violations, and undesired app installations [9]. To
protect smart devices from unauthorized app installation and device
settings, some smart home platforms (e.g., Apple HomeKit) offers
two device access options: remote access, and editing. In remote ac-
cess, a new user gets access only privilege to the connected devices.
In the editing option, a new user obtains permission for adding
or removing any app, device, or user in the system. Additionally,
some smart home devices (e.g., August smart lock, Kwikset Kevo
Smart Lock, etc.) offers temporary user access or guest access to
limit undesired access after an expiry time [18, 23]. These solutions,
however, are vendor- and device-specific, thus, are not ready and
applicable in a multi-device multi-user smart home system. In sum-
mary, existing access control mechanism in smart home technologies
fail to deliver the diverse and complex user demands in a multi-device
multi-user setting.

As conflicting scenarios in a multi-user SHS depend on users’
relationships, social norms, and personal preferences, it is impor-
tant to understand these dynamics before designing a fine-grained
access control system. For instance, parents may want to restrict
smart TV access for the kids, roommates may want privacy for

bedroom locks in a sharing apartment, or owner may want to give
temporary access to Airbnb guests. Hence, a fine-grained access
control system should address diverse needs of the users in a multi-
user multi-device smart home ecosystem. Several prior works have
focused on understanding the user preferences and needs by con-
ducting user studies among smart home users [13, 40, 41]. These
prior works have established the needs and design requirements of
access control systems in SHSs. He et al. conducted a user study
among 425 smart home users to understand how relationships
among the users affect the access control needs in a SHS [13]. In
a recent work, Zeng et al. developed an early prototype of access
control system and conduct a usability study among 8 households
to identify the access control needs in a real-life SHS [41]. These
user studies reported the following preferences and needs among
smart home users in terms of access control.

• Majority of the users expressed the need of a fine-grained access
control system in a SHSs.
• Users suggested role-based access control (RBAC) in a home
environment for limiting access to the devices and applications.
• In a shared environment, users agreed for per-device roles for
private rooms.
• For temporary users in a shared environment, users suggested
location-based and time-based access control.
• For conflicting scenarios, users expressed the need of automation
rules to resolve the conflicting demands and configure the devices
at an optimum operational value.

In our work, we consider the users’ needs and suggestions reported
in prior works to design a fine-grained access control system for
multi-user multi-device SHSs.

2.2 Terminology

We define several important terms that we use in this work.
Policy. We consider Policy as the group of requests made by the
users to control device usage in a multi-user smart environment.
Based on the nature of request, there are three types of policies.

(1) Demand Policy. We consider Demand Policy as the group of
requests made by a user that define the control rules for a specific
device or group of devices in the smart home system. Demand
policies can be general (i.e., created by the admin and applied to all
the users in the system) or specific to a certain user. If a demand
policy is general to all users, we define that as General Policy.
(2) Restriction Policy. We consider Restriction Policy as the set of
rules that govern the accessibility and level of control of a user or
group of users to a certain device or group or devices in the smart
home system. Restriction policies regulate (1) what devices the user
has access to, (2) the time frame in which the user is authorized to
use/control the device, and (3) the control setting limits.
(3) Location-based Policy We consider Location-based Policy as the
set of automation rules enforced by the user that are only applicable
if the user is connected in the system network. Location-specific
policies regulate (1) what devices the user has remote access to and
(2) the control setting limit if a specific user is not present in the
smart home network.

Priority. We call Priority as the importance level of a user that
may be used to create preferences for users of higher priority over
users with lower priority during new user addition, restriction, and

Kratos: Multi-User Multi-Device-Aware Access Control System for the Smart Home WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Figure 1: Sample smart home with multiple users attempt-

ing to control multiple devices with conflicting demands.

demand negotiation processes. In Section 4, we detail the different
priority levels considered in this work.
Conflict. For the purpose of this work, Conflict is defined as the
dispute process that is generated from two or more demand policies
that interfere or contradict based on the specific requests of the
policies. Based on the nature of the demand and restriction policies,
three types of conflict can occur.
(1) Hard conflict. A hard conflict occurs when demand policies of
a specific device enforced by two different users do not have any
overlapping device condition.
(2) Soft conflict. A soft conflict occurs when demand policies en-
forced by different users for a specific device have overlapping
device conditions.
(3) Restriction conflict. Restriction conflict occurs when the restric-
tion policy for a device is being disputed by the restricted user.
Device condition. We consider device condition as the set of rules
assigned to a device by the user to perform a specific task in a SHS.
For instance, if the user configures a smart light to switch on at
sunset, the specified time is considered as the device condition.

3 PROBLEM AND THREAT MODEL

We introduce the challenges of an access control mechanism and
articulate the threat model.

3.1 Problem Definition

We assume a SHS (S) similar to the one depicted in the Figure 1. In S,
four different users – Bob (father), Alice (mother), Kyle (child), and
Gary (guest) interact with the smart devices. Bob and Alice are the
owners and all four users control the devices via the controller app.
Here, the term access to the SHS refers to the ability of controlling
the devices, configuring the system (add/delete devices), and adding
new users. We assume the users perform the following conflicting
activities- (1) Bob and Alice configure the smart thermostat to
different overlapping values at the same time (soft conflict), (2)
Alice wants to limit access of smart lock after midnight while Gary
wants to have access (hard conflict), (3) Alice wants Kyle to have
access to the smart light only while Kyle is present and restrict
other devices (restriction conflict and location access). To address
these, we propose Kratos, a fine-grained access control system
for the smart home that allows users to resolve the conflicting
access control demands automatically, add new users, select specific
devices to share, limit the access to specific users, and prevent
undesired user access based on user location in the system.

3.2 Threat Model

Kratos considers undesired access control decisions that may arise
from existing coarse-grain solutions. For instance, a new user auto-
matically gets full access to the system (i.e., over privileged control)
which may lead to undesired device access. Also, Kratos considers
legitimate smart home users trying to change the system settings
without authorization (e.g., overriding existing system by installing
new apps) that may result in undesired device actions such as
installing unknown apps and overriding device conditions (i.e.,
privilege abuse), even deleting device owners from the system (i.e.,
privilege escalation). Furthermore, Kratos considers threats that
arise from inadequate, inaccurate, or careless access control to multi-
user multi-device smart home (i.e., transitive privilege). In fact,
access to a SHS granted to unknown parties by an authorized user
other than the owner may escalate to additional threats (i.e., unau-
thorized device access), that Kratos also considers as malicious
activity. Also, if a temporary guest is not timely removed from the
system by the authorized user, it may lead to malicious activities
such as sensitive information leakage.

We do not consider any unauthorized user access due to mali-
cious apps installed in the system. We also assume that the SHS
is not compromised, which means no malicious user is added au-
tomatically at the time of system installation as they are different
problems from the contributions of Kratos.

4 KRATOS DESIGN

In this section, we present the architecture of the Kratos and its
main components. Kratos is a comprehensive access control sys-
tem for multi-user SHS where users can express their conflicting
demands, desires, and restrictions through policies. Kratos allows
an authorized user to add new users and enforce different policies
to smart devices based on the needs of users and the environment.
Kratos considers all the enforced policies from authorized users and
includes a policy negotiation algorithm to optimize and solve con-
flicts among users. In designing the Kratos framework, we consider
the following design features and goals.
User-friendly Interface. An access control system should have a
user-friendly interface to add or remove users and assign policies
in the SHS. We integrate Kratos into the mobile app provided by
smart home vendors to provide a single user interface to manage
users and assign policies in the connected devices.
Diverse User Roles/Complex Relations. In a SHS, users have
different roles that an access control system needs to define. For ex-
ample, a user having a parent role should be able to express controls
on a user with a child role, while adults in the same priority class
should be able to negotiate the access control rules automatically.
To address this design feature, Kratos introduces user priority in
the system to define user roles.
Conflict Resolution. As discussed earlier, diverse needs in device
usage result in conflicts among users in a shared SHS. The main
challenge of an access control system in a SHS is to resolve these
conflicts in a justified way. In addition, users in a multi-user SHS
should agreewith the outcome of conflict resolution provided by the
access control system. Kratos uses a novel policy negotiation sys-
tem to automatically optimize and resolve the conflicting demands
among users and institute a generalized usage policy reflecting the
needs of all the users.

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Sikder et al.

Figure 2: Architecture of Kratos system.

Policy Expiration. In a SHS, temporary access for different smart
devices might be needed for guests or occasional users. To auto-
mate the temporary access, Kratos offers policy expiration time
for specific users. Kratos automatically deletes the devices access
and the user from the system after the expiration period to avoid
undesired access in the system.
Location-based Access. SHSs offer remote access and users can
control the devices within the smart home. Kratos uses the location
of the users to trigger a device policy to limit device usage and
meet diverse needs of the users. For example, the parents may want
to restrict remote access of the kids for specific devices. Kratos
only allows users to access location-restricted devices if he/she is
connected to the home network.
Expressive Control. In a SHS, a user should be able to express
the desired device settings easily. An access control system should
provide a simple method to the users to express their diverse needs.
Kratos introduces a unified policy language that covers different
control parameters (e.g., role, environmental, time, device, location-
specific expressions) in a SHS to understand the users’ needs and
control the devices accordingly.
Unified Policy Enforcement. All user commands [3] to the de-
vices should go through an access control enforcement layer to pro-
vide fine-grained access control in SHS. Kratos uses an execution
module that checks all enforced policies before executing a user
command in the SHS.

Figure 2 shows the architecture of the Kratos system. Kratos in-
cludes threemainmodules: (1) user interactionmodule, (2) back-end
module, and (3) policy manager. First, the user interaction module
provides a user interface to add new users and assign priorities
based on the user’s role. This module also collects user-defined
device policies for smart home devices. These device policies and
priority assignment data are forwarded to the back-end module
via the smart home hub. back-end module captures these data and
creates user priority and device policy list for the users. Lastly,
the policy manager module gathers user priorities and device poli-
cies from the generated lists and triggers policy generation and
negotiation process. The following subsections details each mod-
ule in Kratos and explains how policy generation and negotiation
processes are initiated by Kratos.

4.1 User Interaction Module

The user interaction module collects priority assignment data and
device policies from the users. It includes two sub-modules: priority
assignment and policy input .
Priority Assignment Module. The priority assignment module
operates as a user interface to add new users and assign priorities.
Kratos introduces a formal format to specify new users, illustrated
as follows: Ua = [Aid , Nid , P , D, T], where, Aid is the unique ID
of the commanding user, Nid is the new user ID that is added in the
system, P is the priority level of the new user, D is the permission
to add or remove devices from the system, and T is the validity

@U1: Alice
U2– restrict smart thermostat between 60-70 degrees.
U3– restrict access to smart coffee maker.
U3– allow access to smart bulb at the child room if U4 is home.
U4– allow access to smart bulb at the guest room.
U4– restrict access to smart lock at the home door from 12:00 AM to 6:00

AM.
@U2: Bob
U1– restrict smart thermostat between 75-80 degrees.
U3– allow access to smart bulb in the child’s room between 7:00 PM and

7:00 AM
U4– allow access to smart lock at the guest room and the home door
@U3: Kyle
U1– desires to access smart bulb at the child room
U1– desires to access coffee maker
@U4: Gary
U1– desires to access smart lock at the guest room and the home door at 3

AM
U1– desires to access the smart bulb in guest room

Figure 3: An example demand and restriction requirements

of users in Figure 1.

time of the new user in the system. The user priority level is used
in the policy generation module to resolve conflicting demands.
For adding a new user and assigning priorities, we consider the
following rules to avoid conflicts in the priority assignment.
• Each user has an authority to add new users and assign a priority.
• The Owner of the SHSwill have the highest priority in the system.
• Priority in the system is depicted with a numerical value. The
lower the priority of a user, the higher is the level of priority. For
example, the owner of the hub has the priority of “0”.
• Each user can only assign the same or higher value of the priority
to a new user, e.g., a user with a priority of “1” can only assign
priority of “1” or higher to a new user.
• If two existing users add the same new user with a different
priority level, the user with a higher priority level gets the privilege
to add the new user.
• If two existing users with the same priority level assigned differ-
ent priority levels to a new user, the system notifies the existing
users to fix a priority level of the new user.
• Each user can assign permissions for adding or removing devices
to a new user if the commanding user has the same permission.

The priority assignment of Kratos can also be configured to
define the roles of the users. For example, the SHS in Figure 1, Alice
and Bob (parents) can be assigned to priority 0, Gary (guest) can be
assigned to priority 2, and Kyle (child) can be assigned to priority 3.
We use this priority list to explain the functions of Kratos through-
out the paper. In Kratos, administrator or homeowner obtains the
privilege to define the priority-role mappings in the system. Kratos
also allows the users to add temporary users by specifying validity
time (T) of a user in the system. After the specified validity time,
Kratos removes the user from the system automatically preventing
any unauthorized access from a temporary guest.
Policy Input Module and Access Policy Language. Policy in-
put module provides an interface to the users for assigning policies
in smart home devices. All the authorized users can choose any in-
stalled device and create a device policy using this module. To define
the device policies, Kratos introduces a formal access control policy
language for the SHS to express complex user preferences (e.g.,
users’ demands, desires, and restrictions) by utilizing an existing
open-source smart home ecosystem (e.g., Samsung SmartThings).
Each user defines a policy about their preferences for each smart
device and any restriction over others’ accesses in the SHS. For
instance, sample policies for the smart home of four users shown in
Figure 1, where each user defines her requirements for other users
in a smart home with the thermostat, bulbs, lock, and coffee maker,
are shown in Figure 3. The criteria defined by the users are used
throughout this sub-section to construct their policies.

Kratos: Multi-User Multi-Device-Aware Access Control System for the Smart Home WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

@U1 restrict :: : thermostat1 : temperature < [60 − 70] ;
restrict :: U3 : coffeemaker : ;

location :: U3 : bulb3 : location ∈ [Home];
demand :: U4 : bulb4 : ;

restrict :: U4 : lock1 : time < [6 : 00am − 9 : 00pm];
@U2 restrict :: : thermostat1 : temperature < [75 − 80] ;

demand :: U3 : bulb3 : time ∈ [7 : 00pm − 7 : 00am];
demand :: U4 : lock1 , lock4 : ;

... ...

Figure 4: Sample policy clauses to partially implement de-

mands and restrictions shown in Figure 3.

Policy Structure. Kratos represents the policies as collections of
clauses. The clauses allow each user to declare an independent
policy for their demands and other users. The clauses have the
following structure: ⟨users⟩ : ⟨devices⟩ : ⟨conditions⟩ : ⟨actions⟩.
The first part of the policy is users, which includes the information of
both policy assigner and assignee. The second part, devices, specifies
the device or a list of devices included in this statement. Kratos
uses device ID assigned by the SHS to distinguish device-specific
policies in a multi-device environment. The third part, conditions,
is a list of device conditions defining different control parameters
(time-based operation, values, etc.) based on the capabilities of
the smart devices. For instance, a user may define a condition
where only a pre-defined range of commands or only a certain
time-window is matched. The final part of the policy is ⟨action⟩
which states the clause type, demand, restrict, or location. We note
that the Kratos’s policy language allows users to define multiple
clauses. For instance, a user may restrict a distinct subset of smart
home devices for different conditions and different users. A sample
policy scenario is illustrated in Figure 4.

4.2 Back-end Module

The user interaction module collects the user credentials and device
policies generated using the access policy language. It then forwards
them to the back-end module where these data are stored and
formatted for policy generation and negotiation. The back-end
module has two functionalities: (1) generating user priority list, and
(2) generating device policy list.
User Priority List. The back-end module collects the credential
arrays and creates a database for authorized users and their assigned
priorities. All the credential arrays are checked with the priority
assignment rules (explained in Section 4.1) and sorted as valid and
invalid priority assignments. For each invalid priority assignment,
the back-end module notifies the users who initiated the priority
assignment. The back-end module also checks the validity of the
users added in the user priority list based on the specified time in
the credential arrays. The back-end module automatically removes
user with expired validity and updates the user priority table.
Device Policy List. The back-end module accumulates all the poli-
cies assigned by the users and creates a database based on the device
ID. As explained in Section 4.1, the access policy language assigns
a device ID to determine the intended policy for each device. This
list is updated each time a user generates a new policy.

4.3 Policy Manager Module

The policy manager module collects the user priority list and device
policy list from the back-end module and compares different user

policies. This module consists of two sub-modules (policy negotia-
tion module and policy generation module) to initiate the policy
negotiation and generation processes.
Policy Negotiation Module and Negotiation Algorithm. The
policy negotiation module compares all the user-defined policies
and detects different types of conflicts based on user priorities and
demands. Similar to traditional RBAC, Kratos uses assigned user
roles and priorities to understand the user needs in a smart home
hierarchy. However, a smart home environment needs a more fine-
grained approach than RBAC to address the conflicting scenarios
based on users’ relationship, social norms, and personal preferences.
To address these diverse needs, Kratos uses an automatic policy
negotiation module to resolve conflicts in multi-user smart home
environment. The policy negotiation module identifies types of
conflicts based on user roles and priorities, categorizes the conflicts
based on implemented policies, automatically decides whether a
policy should be executed or not, starts a negotiation method be-
tween conflicting users using notification methods, and chooses an
optimum operating point for both users upon mutual agreement.
For policy negotiation, Kratos considers two essential research
questions: (1) How does Kratos handle the policy conflicts between
users with the same and different priority levels?, and (2) How does
Kratos handle restriction policies without affecting smart home
operations?, In the following, we address these questions.

The policy negotiation algorithm of Kratos processes all the
policies and computes the negotiated results by modeling the users’
authorities (classes, roles) in a multi-layer list. User authorities are
split into ordered classes. Class 0 has the highest priority, and a
higher class number means a lower priority. Each class may include
a list of users (or roles as roles are just a set of users). Users at the
same priority class shares the same priority. Kratos considers three
types of conflicts (hard, soft, and restriction conflicts) between user
policies after users are classified into authorities.

When two different policies include clauses of the same user’s
access for the same device, there can be an interference between
those clauses. Any such possible interference is further checked
to disclose the potential conflicts. In this, hard conflicts can hap-
pen when two interfering clauses dictate different actions for some
overlapping cases or dictate the same action for never overlapping
cased. In other words, when policies have no possible way of coop-
eration or compromising, Kratos detects a hard conflict. However,
if the same action exists with some common overlap while opposite
actions never occur together, such interference is a soft conflict.
Moreover, hard and soft conflicts are further categorized as Priority
Conflicts or Competition Conflicts based on the priority of policy
owners. When the conflict happens between users’ policies who
have different priority classes, Kratos defines a hard or soft priority
conflict. However, if the users have the same priority, hard or soft
competition conflicts happens. For hard priority conflicts, Kratos
enforces the policy defined by the user with higher priority. In
hard competition conflicts, Kratos initiates a negotiation process
between the users with an average operational condition calculated
from both policies. If the users mutually agree with an average
operational condition, Kratos creates a new policy for the targeted
device. In case of no mutual operation condition, Kratos notifies
the higher priority user/admin to resolve the dispute with a com-
mon policy. In the case of both soft priority and soft competition
conflicts, the result of the negotiation process of Kratos is a new

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Sikder et al.

clause with common set of conditions. If any interference is caused
by the nature of action requested in two different policies, Kratos
detects a restriction conflict in the system. By incorporating these
with hard, soft, and restriction conflicts, Kratos overall implements
five distinct conflict types (details in Appendix A and B).
Policy Generation Module. The goal of the policy generation
module is to construct valid policies that reflect the demands and
restrictions of all authorized users based on the device policies gen-
erated in the user interaction module. The generated policies are
passed to the back-end module and stored in a database. Thereafter,
these policies are enforced in smart devices. The negotiated poli-
cies computed by the policy negotiation algorithm are converted
into enforceable access control rules. The negotiated policy clause,
Ψ = {P ,U ,D,C,A}, has a 5-tuple format and is indeed well suited
for existing attribute-based access control (ABAC) systems. Thus,
Kratos uses an ABAC-like enforcement for the final generated
rules. Here, the policy, B, is the set of {action, subject, resource,
constraints} tuples for a negotiated device policy. An example of
mapping a sample policy to ABAC rule through a transformation
function can be illustrated as follows:

ABAC(Ψi) B {B | action (B) = Ai ∧ subject (B) = Ui

∧ resources (B) = Di

∧ constraints(B) = TCi }
(1)

where TC B {c | c satisfies the same conditions of C in mapped
attributes into ABAC policy. Here, ABAC(Ψi) holds a direct trans-
lation of actions, subjects, resources, and constraints. We develop
an ABAC-like rule generator that enforces the rules in a control
device. The generator is integrated into the hub device as a unified
enforcement point.

4.4 Policy Execution Module

Policy execution module enforces the final policies generated from
the policy negotiation process. Smart home devices can be con-
trolled through a mobile phone controller app or by installing
different device-specific apps in the system (e.g., Samsung Smart-
Things). Policy execution process appends the generated policies in
the smartphone controller app or the installed smart home apps. To
append the policies, Kratos adds conditional statements to the app
source code to enforce the policies. When a user tries to change
the state of the device, the app asks the policy execution module to
check in the policy table generated by a policy generator. If an ac-
ceptable condition is matched, the policy execution engine returns
the policy to the app and creates a binary decision (true for the
accepted policy and false for the restricted policy) in the conditional
branches. Based on the decision enforced by the policy execution
engine, the user command in a smart home app is executed.

5 KRATOS IMPLEMENTATION

We implemented Kratos in Samsung SmartThings platform which
has the largest market share in consumer IoT, supports highest num-
ber of off-the-shelf smart home devices, and open-source apps [11].
Implementation and Data Collection. We setup a SHS to test
the effectiveness of Kratos. We used Samsung SmartThings hub
and connected multiple smart devices and sensors to the hub. The
complete list of devices in our SHS is provided in Appendix C. The
setup included four different types of devices: smart light, smart
lock, smart thermostat, and smart camera, which are some of the
most common smart home devices used in SHSs [34]. We also used

(a) User Management (b) Policy Management

Figure 5: User interfaces of Kratos.

three different types of sensors: motion, temperature, and contact
sensors to provide autonomous control. Further, we collected data
from 43 different smart home users. We selected the participants by
conducting an institution-wide open call for participation and flyers
for community outreach. We obtained the necessary Institutional
Review Board approval for collecting data from real-life smart home
users. While selecting participants for our study, we considered
several features: (1) owns more than one smart home devices, (2)
shares smart home environment with multiple users (e.g., parents,
partners, friends, or housemates), (3) diverse user roles (working
adults, housewives, young adults, student, etc.), and (4) beginner
level knowledge on using smart home devices. The participants
were grouped into 14 different groups and asked to choose their
roles in a SHS. First, we recorded different conflicting scenarios
experienced by the users and asked them to use Kratos to assign
device policies. We investigated several multi-user scenarios for
the policy generation and negotiation processes as detailed below:
Scenario 1: Multiple policies for the same device.We selected common
devices (e.g., smart thermostat) and enforced different policies set
by multiple users. Users assigned demand and restriction policies
in the system for the same device. We collected 44 sets of policies
(a set of policy includes at least two policies from multiple users)
which included 13 hard, 17 soft, and 8 restriction conflicts.
Scenario 2: Multiple policies for different devices.We used multiple
devices from the same device category (e.g., smart light, smart lock,
smart thermostat) to enforce different policies over the same type of
devices. Here, we collected 48 sets of policies from 43 users which
resulted in 15 hard, 22 soft, and five restriction conflicts.
Scenario 3: Multiple apps for the same device. In the SHS, we allowed
users to install different apps to control the same device (e.g., smart
light). For example, multiple users can configure a smart light with
both motion and door sensors using different apps. We chose three
different smart light apps available in SmartThings marketplace
(light control with motion sensor, door sensor, and luminance level,
respectively) and asked the users to install preferable apps and
assign device policies accordingly. Here, we collected 35 sets of
policies including 8 hard, 18 soft, and five restriction conflicts.
Scenario 4: Single app for multiple devices.We considered an individ-
ual app controlling multiple same types of devices in the SHS. We
chose a single light controlling app to control four different lights
and asked users to enforce device policies in different devices using

Kratos: Multi-User Multi-Device-Aware Access Control System for the Smart Home WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

one single app. We collected 32 sets of policies in this scenario
which includes 12 hard, 15 soft, and 3 restriction conflicts.
Scenario 5: Temporary users in the system.We considered a tempo-
rary user is added in the system and trying to access a smart light
and smart lock after the access is expired for that specific user. We
collected 30 sets of policies in this scenario.
Scenario 6: Location-based access in the system. In the location-based
access control, we allowed multiple users to set location-based
policies for a smart thermostat. Here, users are allowed to define
both location-based restriction and demand policies. We collected
30 sets of policies in this scenario.
Malicious scenarios. We also implemented five real-life threats
in our SHS to generate malicious data and further evaluate the
effectiveness of Kratos (more details in Section 6) . For Threat-1
(Over privileged controls), we asked the users to add restriction
clauses to the smart thermostat and asked the restricted users to
change the temperature. For Threat-2 (Privilege abuse), we asked
a newly added user with lower priority to install a new app in
the smart home and trigger a smart camera. Threat-3 (Privilege
escalation) is presented by a scenario where a new user changed
the lock code of a smart lock and removed the smart lock from
the environment. For Threat-4 (Unauthorized access), we added
a temporary authorized user with limited priority and asked the
users to control a smart thermostat outside their accepted time
range. For Threat-5 (Transitive privilege), we asked the user with
lower priority to add a new user with higher priority in the system.
User Interface. We built a SmartThings app that represents the
user interaction module described in Section 4. This app has two
modules: user management and policy management. The user man-
agement module allows users to add new users and assign priorities.
We define five different roles and priority levels in Kratos (i.e., fa-
ther/owner - priority 0, mother/owner - priority 0, adult - priority 1,
guest - priority 2, child - priority 3). These roles and priorities can be
assigned by the smart home owner or by authorized users with the
same or higher priority to the one being assigned. Upon created a
new role/priority, the information is sent and stored in the backend
server. In the policy management module, users select devices and
create new policies. Kratos provides options to add either general
device policies (intended for all existing users) or policies that apply
only to specific users. Kratos allows users to use different device
conditions (operation-based, time-based, value-based, etc.) to define
the policies. As our implementation environment had devices that
only allows time-based and value-based conditions, we classified
the policies in three different possible categories: (1) time-based de-
vice policy, (2) value-based device policy, and (3) time-value-based
policy. The policies for different devices in our implementation
can be represented by a device policy array: Device Policy, P =
{U , D, C1, C2, R}.
• User ID (U): The first element of the policy array is to identify the
policy assignee. We utilized the user email as a personal identifier
in our implementation.
• Device ID (D): SmartThings assigns a unique device ID for each
installed device which was used for the devices and policies.
• Time conditions (C1): Users could assign a start time and an end
time for any device action in the policies. For example, a smart light
can be accessed from sunset to sunrise only.
• Value conditions (C2): Users could assign a maximum and min-
imum value to specify an acceptable range to control a device

functionality. For example, a user can set the operational range of
a thermostat from 68◦F to 70◦F.
• Restricted User (R):High-priority Users could define the restriction
policy for a specific lower-priority user by adding the user ID to
the restricted user’s list. Users could also assign general policies
(Section 2.2) for the devices by assigning ’0’ in this field.

Figure 5 shows the user interface of Kratos. We implemented
Kratos as a customized smart app in Samsung SmartThings plat-
form. We built the Kratos app in Groovy platform and installed
the app using SmartThings web interface. As Samsung allows each
users to install customized apps in same smart environment using
the web interface, Kratos app can be easily installed in each user’s
controller device in multi-user smart environment. Each user can
use official SmartThings app in the controller device to use Kratos
app to asign new users and device policies. The information of new
users and device policies are forwarded to the policy generator via
the backend server for generating final device policies.
Policy Enforcement. The final step during implementation is to
enforce the generated policies by Kratos. We utilized 10 different
official SmartThings apps that control 17 different devices and
installed them in the SHS.We installed all the apps and observed the
user-specific policies generated in the policy generationmodule.We
modified these apps to connect with the backend server and capture
the generated policies from the policy generator. These policies
were appended to the conditional statements inside the app to
execute the policies. A sample modified app is given in Appendix D
to illustrate the steps to enforce policies in a SmartThings app.

6 PERFORMANCE EVALUATION

We evaluate Kratos by focusing on the following research questions:
RQ1 How effective is Kratos in enforcing access control in multi-

user scenarioswhile handling different threatmodels? (Sec 6.1)
RQ2 What is the overhead introduced by Kratos on the normal

operations of the SHS? (Sec. 6.2)

6.1 Effectiveness

In this sub-section, we present the experimental results of Kratos
while enforcing access control in different multi-user smart home
scenarios and threat models. We first considered a use case scenario
to explain the results of Kratos in different smart home operations.
Then, we considered six different utilization scenarios (explained
in Section 5) to evaluate the effectiveness of Kratos.

To understand the performance of Kratos, we assume two users
Alice and Bob using the same smart thermostat and assigning differ-
ent policies according to their needs. This usage scenario may lead
to conflicts in which case Kratos uses policy negotiation module to
solve the conflicts. For instance, let us assume Alice and Bob has
the same priority level which is 2 and assign temperature range
60-70 and 75-80 respectively. Kratos considers this as a hard com-
petition conflict and starts the negotiation process with average
range 67-75. If Alice and Bob both agree with the range, Kratos
generates a new policy for the thermostat with the temperature
range 67-75 and enforces this in the device. On the other hand, if
Alice and Bob cannot agree, Kratos notifies a higher level user/ad-
min to resolve this conflict by assigning a new policy for the device.
We also consider a temporary user scenario in evaluating Kratos
where Alice (priority-1) adds a temporary user Gary (priority-4) in
the system for 2 days. After the validity period (2 days), Gary tries

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Sikder et al.

Conflict type Policy example Kratos outcome

Hard priority
conflict

Alice (priority-1) and Bob (priority-2) set up
the temperature range 60-70 and 75-80 re-
spectively in the smart thermostat.

As Alice has higher priority,Kratos sets
the thermostat to 60-70 and notifies the
users with the decision

Soft priority
conflict

Alice (priority-1) and Bob (priority-2) set up
the temperature range 60-70 and 65-75 re-
spectively in the smart thermostat.

• As Alice has the higher priority,
Kratos sets the thermostat to 60-70 and
notifies Alice with common range (65-
70).
• If Alice agrees with common range,
Kratos sets the temperature range 65-
70.

Hard
competition
conflict

Alice (priority-2) and Bob (priority-2) set up
the temperature range 60-70 and 75-80 re-
spectively in the smart thermostat.

• Kratos starts the negotiation with
average range (67-75) and upon mutual
agreement from the users set the range.
• If the users fail to agree, Kratos no-
tifies higher level user/admin to decide
the policies.

Soft
competition
conflict

Alice (priority-2) and Bob (priority-2) set up
the temperature range 60-70 and 65-75 re-
spectively in the smart thermostat.

Kratos sets the temperature range 65-
70 and notifies the users with updated
policy.

Restriction
conflict

Alice (priority-1) set the temperature range
60-70 and restrict Bob (priority-2) to change
the thermostat. Bob sets the temperature
range 75-80.

Kratos sets the temperature range 60-
70 and notifies Bob regarding restriction.

Temporary
access

Alice (priority-1) added Gary (priority- 4) as
a temporary user for 2 days. After 2 days,
Gary tries to unlock the smart lock.

Kratos automatically detects the ex-
pired validity for smart home access and
deletes Gary from authorized user list to
prevent any undesired access.

Location-
based
access

Alice (priority-1) set up the temperature
range 70-72 and restrict Kyle (priority-3)
from using the smart thermostat remotely.
Kyle sets the temperature range 74-76.

• If Kyle is not in the home network,
Kratos disregard Kyle’s access policy.
• Kratos checks the location of both
Kyle and Alice. If only Kyle is home,
Kratos sets the temperature range 74-
76. If both Kyle and Alice are home,
Kratos sets the temperature range 70-
72.

Table 1: Different usage scenarios and outcomes of Kratos.

to access the smart home devices. However, Kratos automatically
detects any expired validity of the users in the system and restricts
the temporary users to access the system. Table 1 summarizes the
outcome of Kratos in different usage scenarios. Table 2 also shows
the summary of policy conflicts and negotiations between smart
home users in different multi-user scenarios explained in Section 5.
In Scenario-1, Kratos successfully negotiated 44 sets of policies col-
lected from 43 users and executed the generated policies in the SHS.
Average policy generation time including the policy negotiation
was 0.68 seconds. In Scenario-2, Kratos evaluated 48 sets of policies
in total with an average policy generation time of 1.2 seconds. In
Scenario-3 and 4, Kratos manages 35 and 32 sets of policies with
an average generation time of 0.86 and 0.48 seconds respectively.
In Scenario-5, Kratos successfully manages 20 sets of policies and
automatically detects unauthorized access for expired temporary
access. For location-based access in Scenario-6, Kratos successfully
manages 30 sets of policies and provides location-based acess to
multiple users. Kratos also successfully resolves all the conflicts
generated in different scenarios. In summary, Kratos successfully
resolved the policy conflicts and created optimized final policies
that could be executed within different smart home apps.

We also evaluated the effectiveness of Kratos in preventing
different threats in the SHS. We considered five different threats
presented in Section 5. We collected data from fifty malicious occur-
rences in total to evaluate Kratos against these threats. Table 3 sum-
marizes the performance of Kratos in identifying different threats.
In each of these scenarios, Kratos detected the policy violation with
100% accuracy and effectively notified the smart homeowner/policy
assigner via push notifications. For Threat-1, Kratos achieves the
lowest average detection and notification time 0.25 and 0.4 seconds
respectively. To identify Threat-2 and 3, Kratos takes 0.4 and 0.47

Usage

Scenario

No. of

policies

No. of hard

conflicts

No. of soft

conflicts

Restriction

policies

No conflicts

Average

time (s)

Success

rate (s)

Scenario-1 44 13 17 8 6 0.68 100%

Scenario-2 48 15 22 5 6 1.2 100%

Scenario-3 35 8 18 5 4 0.86 100%

Scenario-4 32 12 15 3 2 0.48 100%

Scenario-5 30 - 12 6 12 0.2 100%

Scenario-6 30 10 8 8 4 0.32 100%

Table 2: Kratos’s performance in different scenarios.

seconds on average with average notification time 0.6 seconds. For
Threat-4 and 5, the average detection time is 0.35 and 0.28 seconds,
respectively. In summary, Kratos can detect different threats with
100% accuracy and notify users with minimum delay.

Threat

model

No. of

occurances

Success

rate

Average Detection

time (s)

Average Notification

time (s)

Threat-1 10 100% 0.25 0.4
Threat-2 10 100% 0.4 0.6
Threat-3 10 100% 0.47 0.6
Threat-4 10 100% 0.35 0.52
Threat-5 10 100% 0.28 0.45
Table 3: Performance of Kratos against different threats.

6.2 Performance Overhead

We considered the following research questions to measure the
performance overhead of Kratos:
RQ3 What is the impact of Kratos in normal operations of the

SHS? (Table 4)
RQ4 What is the impact of Kratos in executing a user command

in the SHS via the smart home apps? (Table 5)
RQ5 How does the impact of Kratos change with different pa-

rameters in the SHS? (Figure 6)
For different multi-user scenarios, we considered four different
scenarios as explained in Section 5.
Latency Introduced by Kratos. Kratos considers three differ-
ent types of conflicts (hard conflicts, soft conflicts, and restriction
policy) during policy generation and negotiation based on user pri-
orities and policy types. These policy generation and negotiation
processes normally introduce latency in the normal operations of
a SHS and the smart apps to analyze given policies and solving
conflicts. Table 4 illustrates the delay introduced by Kratos while
handling the policy conflicts and negotiations. We note that the
average negotiation time increases with the number of policies for
all types of policy conflicts. For hard conflicts, the average nego-
tiation time is 0.403 seconds for ten policies, which increases to
1.21 seconds for 30 policies. Because the hard conflicts require all
the conflicted users to interact with the system to resolve the con-
flicts, it takes more time than soft conflict and restriction policies.
For soft conflicts, the average negotiation time is 0.27 seconds for
ten policies which increases to 0.73 seconds for 30 policies. For
the restriction policies, the latency is introduced only when a low-
priority user tries to assign policies to high-priority users. In this
case, average negotiation times vary from 0.102 seconds to 0.25
seconds from 10 to 30 policies.

Conflict types No. of Policies Average negotiation time (s)

Hard conflict
10 0.403
20 0.715
30 1.21

Soft conflict
10 0.27
20 0.53
30 0.73

Restriction Policy
10 0.102
20 0.117
30 0.25

Table 4: Overhead of Kratos in handling policy negotiations.

Impact of Kratos on Executing User Commands. As the poli-
cies in Kratos are enforced in the smart apps installed via the
controller device (e.g., smartphone and smart tablet), it introduces
overhead in the controller devices while installing the apps and
executing users’ command. Table 5 depicts the impact of Kratos
on executing user commands based on generated policy. Here, we

Kratos: Multi-User Multi-Device-Aware Access Control System for the Smart Home WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

0 20 40 60
Number of Policies

0

50

100

150

200

250

300

Ti
m

e
(m

s)

Delay:
Min = 0 ms
Max = 280 ms

No. of Policies:
Min = 0
Max = 60

(a)

5 10 15 20 25 30
Number of Conflicts

100

150

200

250

300

350

400

Ti
m

e
(m

s)

Delay:
Min = 123 ms
Max = 368 ms

No. of Conflicts:
Min = 5
Max = 30

(b)

1 2 3 4 5 6
Number of Users

100

150

200

250

300

350

Ti
m

e
(m

s)

Delay:
Min = 108 ms
Max = 310 ms

No. of Users:
Min = 1
Max = 6

(c)

0 5 10 15
Number of Devices

0

50

100

150

200

Ti
m

e
(m

s)

Delay:
Min = 0 ms
Max = 198 ms

No. of Devices:
Min = 0
Max = 16

(d)

Figure 6: Impact of different evaluation parameters on Kratos’s performance: (a) number of policies, (b) number of conflicts,

(c) number of users, and (d) number of devices.

used eight different apps to measure the performance overhead
of Kratos. We also considered three types of constraints on the
policies: time constraint, value constraint, and both time and value
constraints. Time constraint refers to the specific time range for
the desired action of a smart device (e.g., turning on lights at sun-
set) while value constraint refers to the specific range of inputs
to a smart device (e.g., the temperature of the smart thermostat).
With no policy enforced on a device, the average time to install
an app and execute user command is 1.3 seconds with 1.75% and
1.6% of CPU and RAM utilization, respectively. For time constraints
and value constraints, the average time is 1.72 and 1.46 seconds,
respectively. Average CPU and RAM utilization are almost similar
for both time and value constraints (2.1-2.2% and 2.25-2.6%, respec-
tively). For both time and value constraints, the average execution
time increases to 1.92 seconds. The CPU and RAM utilization also
increases to 2.5% and 2.82%, respectively. Considering the CPU and
RAM available in modern smartphones and tablets, the overhead
introduced by Kratos can be considered negligible [29–31].

Type of policy Avg. time (s) Avg. CPU usage Avg. RAM usage

No policy 1.3 1.75% 1.6%
Time constraint 1.72 2.2% 2.6%
Value constraint 1.46 2.1% 2.25%

Time and Value constraint 1.92 2.5% 2.82%

Table 5: Overhead of Kratos in policy executions.

Impact of Different Parameters on Performance Overhead.

Kratos considers different parameters in SHSs to define and ex-
ecute device policies reflecting diverse user demands. Here, we
observed the performance overhead of Kratos by changing various
parameters. As policy generation and negotiation are executed at
the backend server, Kratos does not pose any performance over-
head to computational parameters (CPU and RAM utilization). The
only noticeable change is observed in delay imposed by Kratos in
the normal operation of the SHS. In Figure 6, the delay introduced
by Kratos is shown based on the number of policies, conflicts, users,
and devices. One can notice from Figure 6a, the delay introduced
by Kratos increases with the number of policies generated by the
users. Kratos introduces 90 ms delay in the SHS for five policies
to execute a user command which increases to 280 ms delay for 60
policies. The delay increases linearly with the number of conflicts
and users in the system (Figure 6b and Figure 6c). The highest
delay to execute a user command is 368 ms, which occurs when
the system includes 30 different policy conflicts. Kratos also takes
310 ms to execute a command with six different users presents in
the system. This delay is the result of the overhead introduced by
notifying different users about executing the command. For the
number of devices, the delay introduced by Kratos becomes steady
after adding 12 different devices in the SHS (Figure 6d).

7 BENEFITS AND FUTURE WORK

7.1 Benefits of Kratos

Consider a user, Bob, who defines himself as a technology savvy
and enthusiastic entrepreneur homeowner. Bos’s house is set with
devices such as smart lock, thermostat, and fire alarm. Bob’s is the
head of a family of three members, including his wife Alice, and his
teenager son Matt. Finally, Bob offers high-quality vacation rentals
to Airbnb users.
EfficientConflictResolution.With several devices shared among
all household members (including the Airbnb tenant), Bob feels
that there is an immediate need for some control mechanism that
defines how all the smart devices are being set up and managed
among the different users. However, despite trying devices and
smart apps from different platforms (e.g., Samsung SmartThings,
Google Home, etc.), Bob cannot find a feasible and user-friendly
solution that consider the needs of the different users (e.g., Bob and
Alice’s priority is to keep the thermostat temperature as high as
possible while Matt’s idea is to have cooler temperature). Kratos
offers a fine-grained access control mechanism for the SHS that
allows Bob to provide access control based on the users’ needs,
demands, and priorities.
Multi-users/Multi-devices. As mentioned before, Bob’s setup
comprises several devices with different levels of usability based on
their impact on the quality of life of users and their contribution to
the general security of the household. Additionally, users may have
different levels of access based on Bob’s and the household’s best
interests. Based on these scenarios, Bob expects an smart home
access control system capable of managing multi-user and multi-
device environments. Kratos realizes and offers an access control
system where the administrator (i.e., Bob) can assign priority levels
to the different devices and users. This allows control mechanisms
to consider the importance of the various devices, but also the needs
of the users based on admin’s pre-defined priorities.
Suitability for Complex User Demands. Users’ demands can be
very complex at times. For instance, in addition to the demands and
interests of Bob, Alice, and Matt, new access control policies can be
generated in case Bob decides to give some control to his Airbnb
tenant Ed. Adding new users and devices to an already configured
SHS increase the complexity due to new conflicts between users and
device policies. To solve these issues, Kratos can actively analyze
and solve policy conflicts through negotiations in an optimized
fashion based on the different user and device priorities.
Inherent Security. Bob has certain rules to protect his smart home
ecosystem. First, security-related devices (e.g., smart lock) have the
highest priority. Second, he would like to have strict and unique
control over these devices, so no other user can change their settings
or expected behaviors. Finally, users with the lowest priority (e.g.,

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Sikder et al.

Prior

Work

Domain

Multi-user

Multi-device

environment

A.C.

Threat

Model

User

Interface

Conflict

resolution

Overhead

analysis

A. C.

Language

xShare [17] Smartphone
DiffUser [21] Smartphone
Capability-based A. C. [12] IoT network
Situation-based A. C. [26] Smart home
Expat [38] Smart home
Zeng et al. [41] Smart home
Kratos Smart home

Table 6: Comparison between Kratos and other access con-

trol mechanisms (A.C. stands for Access Control).

Ed) should not be able to add new devices, change SHS settings, etc.
Our framework was designed to provide inherent security based
on the specific user’s needs. Specifically, Kratos offers the means
to provide complex control and demands through comprehensive
policy negotiation and conflict resolution.

7.2 Future Work

User andUsability Study. To understand the users’ access control
needs in a smart home environment, we will conduct a detailed user
study considering user characterization, device sage patterns, smart
home configuration references, and user preferences Also, as Kratos
is a user-centric access control solution, usability of Kratos should
be tested in a real-life smart home environment. We will conduct a
usability study among smart home users to test Kratos based on
different parameters such as user interface, acceptability of use,
availability, user friendliness, notification system, and effectiveness.
We will also develop tutorials and detailed user guides to assist the
participants (both experienced and inexperienced users) to properly
evaluate the usability of Kratos in the real-life smart home.

8 RELATED WORK

Rather than providing fine-grained user access control, most of
the prior works emphasize on limiting malicious activities via con-
trolling app access [7, 8]. Moreover, several works focus on device
access control and authentication on an IoT network for single-user
scenarios [1, 6, 14, 22, 24]. In a recent work, He et al. present a
detailed smart home user study that portrays users’ concerns of
fine-grained access control in multi-user smart environments [13].
Here, authors conducted the user study among 425 smart home
users and outlines access control needs based on users preferences,
social norms, andmutual relationships. Zeng et al. discuss their find-
ings related to security and privacy concerns among smart home
users [39]. Authors selected 15 smart home users and outlined their
security and privacy concerns and summarizes users’ actions in
security-affected scenarios. In both works, smart home users raise
their concerns regarding the need of access control mechanism in
SHS. In addition, these studies also summarize design specifications
to reflect users’ needs in an access control mechanism. Matthews et
al., also points out relevant issues with smart home users that share
the same devices and accounts [19]. However, no explicit solution
for multi-user access is proposed in any of these works.

In other works, researchers explore different access control
strategies when multiple users share a single IoT device. Liu et
al. suggested a user access framework for the mobile phone ecosys-
tem called xShare, which provides policy enforcement on file level
accesses [17]. Ni et al. presented DiffUser, a user access control
model for the Android environment based on access privileges [21],
which is only effective for a single device. Tyagi et al. discussed
several design specification needed for multi-party access control
in a shared environment [37]. Aside from these works, there are few

prior works proposing access control systems for multi-user multi-
device SHS. Gusmeroli et al. suggested a capability-based access
control for users in a multi-device environment [12]. However, this
system is not flexible enough to express the real needs of the users.
Jang et al. presented a set of design specification for access control
mechanism based on different use scenarios of multi-user SHS [15].
Schuster et al. proposed a situation-based access control in the SHS
which considers different environmental parameters [26]. Here, the
authors considered state of the device along with the location of the
users to determine a valid access request. However, this work does
not solve the conflicting demands of multiple users. Yahyazadeh et
al. presented Expat, a policy language to define policies based on
user demands [38]. In a recent work, Zeng et al. built an access con-
trol prototype with different access control options for smart home
users [41]. Here, the authors considered four different access con-
trol mechanisms and assessed in a month-long user study among
seven households to understand the users’ needs and improve the
design. Although authors built a proof-of-concept framework to
perform a detailed user study and outlined the access control needs
in smart home, they did not implement the framework in real-life
systems and did not consider user conflicts while operating in a
multi-user smart environment.
Differences from existing works. Kratos was built upon consid-
ering prior user studies [13, 41]. Kratos presents an access control
system designed for multi-device multi-user smart home systems
that provides a fine-grained access control to the users considering
(1) easy new user addition with priority levels, (2) device restric-
tions for specific users, (3) automatic policy negotiation for conflicts,
(4) easy policy assignment for multiple users, (5) different threats
arising from over-privileged users, (6) Real-life implementation in
smart home platform, (7) Effectiveness evaluation with real-life
users, and (8) minimum overhead in real-life deployment. Table 6
summarizes the differences of Kratos from other existing solutions.

9 CONCLUSION

In smart home systems, multiple users have access to multiple de-
vices simultaneously. In these settings, users may want to control
and configure the devices with different preferences which give rise
to complex and conflicting demands. In this paper, we proposed
Kratos, an access control system that addresses the diverse and
conflicting demands of different users in a shared multi-user smart
home system. Kratos implements a priority-based policy negotia-
tion technique to resolve conflicting user demands in a shared smart
home system. We implemented Kratos on real settings with mul-
tiple users and evaluated its performance via real devices. Kratos
successfully covers the users’ needs, and our extensive evaluations
showed that Kratos is effective in resolving the conflicting requests
and enforcing the policies without significant overhead. Also, we
tested Kratos against five different threats and found that Kratos
effectively identifies the threats with high accuracy.

10 ACKNOWLEDGMENT

This work is partially supported by the US National Science Foun-
dation (Awards: NSF-CAREER-CNS-1453647, NSF-1663051, NSF-
1705135), US Office of Naval Research grant Cyberphysical Sys-
tems, and Cyber Florida’s Capacity Building Program. The views
expressed are those of the authors only, not of the funding agencies.

Kratos: Multi-User Multi-Device-Aware Access Control System for the Smart Home WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

REFERENCES

[1] Ioannis Agadakos, Per Hallgren, Dimitrios Damopoulos, Andrei Sabelfeld, and
Georgios Portokalidis. 2016. Location-enhanced Authentication Using the IoT:
Because You Cannot Be in Two Places at Once. In Proceedings of the 32Nd Annual
Conference on Computer Security Applications. ACM.

[2] Leonardo Babun, Amit Kumar Sikder, Abbas Acar, and A Selcuk Uluagac. 2018.
IoTDots: A Digital Forensics Framework for Smart Environments. arXiv preprint
arXiv:1809.00745 (2018).

[3] Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,
Patrick McDaniel, and A. Selcuk Uluagac. 2018. Sensitive Information Tracking
in Commodity IoT. In 27th USENIX Security Symposium. Baltimore, MD.

[4] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated IoT
Safety and Security Analysis. In USENIX Annual Technical Conference (USENIX
ATC).

[5] Z. B. Celik, P. McDaniel, G. Tan, L. Babun, and A. S. Uluagac. 2019. Verifying
Internet of Things Safety and Security in Physical Spaces. IEEE Security Privacy
17, 5 (Sep. 2019), 30–37. https://doi.org/10.1109/MSEC.2019.2911511

[6] S. Cirani, M. Picone, P. Gonizzi, L. Veltri, and G. Ferrari. 2015. IoT-OAS: An OAuth-
Based Authorization Service Architecture for Secure Services in IoT Scenarios.
IEEE Sensors Journal 15, 2 (Feb 2015), 1224–1234.

[7] Soteris Demetriou, Nan Zhang, Yeonjoon Lee, XiaoFeng Wang, Carl A Gunter,
Xiaoyong Zhou, and Michael Grace. 2017. HanGuard: SDN-driven protection of
smart home WiFi devices from malicious mobile apps. In Proceedings of the 10th
ACM Conference on Security and Privacy in Wireless and Mobile Networks.

[8] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. 2016. Flowfence: Practical data protection for emerging
iot application frameworks. In 25th {USENIX} Security Symposium.

[9] Christine Geeng and Franziska Roesner. 2019. Who’s In Control? Interactions In
Multi-User Smart Homes. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. 1–13.

[10] Chaowen Guan, Aziz Mohaisen, Zhi Sun, Lu Su, Kui Ren, and Yaling Yang. 2017.
When smart tv meets crn: Privacy-preserving fine-grained spectrum access. In
2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).
IEEE, 1105–1115.

[11] Rachel Gunter. 2017. Making Sense of Samsung’s SmartThings Initiative.
(2017). https://marketrealist.com/2017/12/making-sense-samsungs-smartthings-
initiative

[12] Sergio Gusmeroli, Salvatore Piccione, and Domenico Rotondi. 2013. A capability-
based security approach to manage access control in the Internet of Things.
Mathematical and Computer Modelling 58, 5 (2013), 1189 – 1205.

[13] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Ear-
lence Fernandes, and Blase Ur. 2018. Rethinking Access Control and Authentica-
tion for the Home Internet of Things (IoT). In 27th USENIX Security Symposium.
Baltimore, MD.

[14] Maia Jacobs, Henriette Cramer, and Louise Barkhuus. 2016. Caring About Shar-
ing: Couples’ Practices in Single User Device Access. In Proceedings of the 19th
International Conference on Supporting Group Work. ACM.

[15] William Jang, Adil Chhabra, and Aarathi Prasad. 2017. Enabling Multi-user
Controls in Smart Home Devices. In Proceedings of the Workshop on Internet of
Things Security and Privacy. ACM.

[16] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
Z Morley Mao, Atul Prakash, and Shanghai JiaoTong Unviersity. 2017. ContexIoT:
Towards providing contextual integrity to appified IoT platforms. In Proceedings
of The Network and Distributed System Security Symposium.

[17] Yunxin Liu, Ahmad Rahmati, Yuanhe Huang, Hyukjae Jang, Lin Zhong, Yong-
guang Zhang, and Shensheng Zhang. 2009. xShare: supporting impromptu
sharing of mobile phones. In Proceedings of the 7th international conference on
Mobile systems, applications, and services. ACM.

[18] August Smart Lock. 2018. How August Smart Lock Works? (2018). https:
//august.com/pages/how-it-works

[19] Tara Matthews, Kerwell Liao, Anna Turner, Marianne Berkovich, Robert Reeder,
and Sunny Consolvo. 2016. "She’ll Just Grab Any Device That’s Closer": A Study
of Everyday Device & Account Sharing in Households. In Proceedings of the CHI
Conference on Human Factors in Computing Systems. ACM.

[20] AKM Iqtidar Newaz, Amit Kumar Sikder, Mohammad Ashiqur Rahman, and
A Selcuk Uluagac. 2019. Healthguard: A machine learning-based security frame-
work for smart healthcare systems. In 2019 Sixth International Conference on
Social Networks Analysis, Management and Security (SNAMS). IEEE, 389–396.

[21] Xudong Ni, Zhimin Yang, Xiaole Bai, Adam C Champion, and Dong Xuan. 2009.
DiffUser: Differentiated user access control on smartphones. In 6th International
Conference on Mobile Adhoc and Sensor Systems. IEEE.

[22] Sarah Rajtmajer, Anna Squicciarini, Jose M Such, Justin Semonsen, and Andrew
Belmonte. 2017. An Ultimatum Game Model for the Evolution of Privacy in
Jointly Managed Content. In International Conference on Decision and Game
Theory for Security. Springer, 112–130.

[23] RemoteLock. 2018. Smart Locks by RemoteLock. (2018). https://www.remotelock.
com/smart-locks

[24] H. Ren, Y. Song, S. Yang, and F. Situ. 2016. Secure smart home: A voiceprint
and internet based authentication system for remote accessing. In 2016 11th
International Conference on Computer Science Education (ICCSE). 247–251.

[25] Samsung. 2018. How do I share my Location and manage users in SmartThings
Classic? (2018). https://tinyurl.com/y86unolb

[26] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Situational Access Control
in the Internet of Things. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 1056–1073.

[27] Nicholas Shields. 2017. THEUS SMARTHOMEMARKETREPORT: Systems, apps,
and devices leading to home automation. http://www.businessinsider.com/the-
us-smart-home-market-report-systems-apps-and-devices-leading-to-home-
automation-2017-4. (2017). [Online; accessed 9-November-2017].

[28] Amit Kumar Sikder, Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, Kemal Akkaya,
and Mauro Conti. 2018. IoT-enabled smart lighting systems for smart cities. In
2018 IEEE 8th Annual Computing and Communication Workshop and Conference
(CCWC). IEEE, 639–645.

[29] Amit Kumar Sikder, Hidayet Aksu, and A. Selcuk Uluagac. 2017. 6thSense: A
Context-aware Sensor-based Attack Detector for Smart Devices. In 26th USENIX
Security Symposium. Vancouver, BC.

[30] Amit Kumar Sikder, Hidayet Aksu, and A Selcuk Uluagac. 2019. A Context-
aware Framework for Detecting Sensor-based Threats on Smart Devices. IEEE
Transactions on Mobile Computing (2019).

[31] Amit Kumar Sikder, Hidayet Aksu, and A Selcuk Uluagac. 2019. Context-aware
intrusion detection method for smart devices with sensors. (Sept. 17 2019). US
Patent 10,417,413.

[32] Amit Kumar Sikder, Leonardo Babun, Hidayet Aksu, and A Selcuk Uluagac.
2019. Aegis: a context-aware security framework for smart home systems. In
Proceedings of the 35th Annual Computer Security Applications Conference. 28–41.

[33] Amit Kumar Sikder, Giuseppe Petracca, Hidayet Aksu, Trent Jaeger, and A Selcuk
Uluagac. 2018. A survey on sensor-based threats to internet-of-things (iot) devices
and applications. arXiv preprint arXiv:1802.02041 (2018).

[34] Statista. 2017. Ownership of smart home technology products in the
United States in 2017 (in million households/units in use), by category.
(2017). https://www.statista.com/statistics/757684/smart-home-technology-
product-ownership-in-the-us-by-category/

[35] Trefis Team. 2017. Why Smart Home Devices Are A Strong Growth Opportunity
For Best Buy. (2017). https://www.forbes.com/sites/greatspeculations/2017/
07/05/why-smart-home-devices-are-a-strong-growth-opportunity-for-best-
buy/2bbe77114984

[36] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, Xianzheng
Guo, and Patrick Tague. 2017. SmartAuth: User-Centered Authorization for the
Internet of Things. In 26th USENIX Security Symposium. Vancouver, BC.

[37] Alpana Tyagi, Anna Squicciarini, Sarah Rajtmajer, and Christopher Griffin. 2016.
An in-depth study of peer influence on collective decision making for multi-
party access control. In 17th International Conference on Information Reuse and
Integration (IRI). IEEE, 305–314.

[38] Moosa Yahyazadeh, Proyash Podder, Endadul Hoque, and Omar Chowdhury.
2019. Expat: Expectation-based Policy Analysis and Enforcement for Appified
Smart-Home Platforms. In Proceedings of the 24th ACM Symposium on Access
Control Models and Technologies. 61–72.

[39] Eric Zeng, Shrirang Mare, and Franziska Roesner. 2017. End User Security and
Privacy Concerns with Smart Homes. In Thirteenth Symposium on Usable Privacy
and Security (SOUPS 2017). Santa Clara, CA.

[40] Eric Zeng, Shrirang Mare, and Franziska Roesner. 2017. End User Security and
Privacy Concerns with Smart Homes. In Thirteenth Symposium on Usable Privacy
and Security (SOUPS 2017). Santa Clara, CA.

[41] Eric Zeng and Franziska Roesner. 2019. Understanding and Improving Security
and Privacy in Multi-User Smart Homes: A Design Exploration and In-Home
User Study. In 28th {USENIX} Security Symposium.

A POLICY NEGOTIATION ALGORITHM

During policy negotiation, each policy clause is compiled into a
quintuple, Ψ = {P ,U ,D,C,A}, where P is the policy assigner (that
shows who states this clause),U is the assignee (about whom this
statement is), D is the targeted smart device, C is a set of condi-
tions over D andU , and configurable environmental attributes, and
finallyA ∈ {demand, restrict} is the action requested by this state-
ment when the set of conditions are satisfied. Kratos implements
an algorithm to solve the policy conflicts represented as follows:

inter f ere(Ψi , Ψj) ← Ui = Uj ∧ Di = D j (1)
hard_conf l ict (Ψi , Ψj) ← inter f ere(Ψi , Ψj) ∧ (
(Ai , Aj ∧ ∀c ∈ Ci ∩ Cj : Θ(V(c, Ci), V(c, Cj)))

∨(Ai = Aj ∧ ∃c ∈ Ci ∩ Cj : ¬Θ(V(c, Ci), V(c, Cj))))
(2)

sof t_conf l ict (Ψi , Ψj) ← inter f ere(Ψi , Ψj) ∧ (
(Ai = Aj ∧ ∀c ∈ Ci ∩ Cj : Θ(V(c, Ci), V(c, Cj)))
∨(Ai , Aj ∧ ∃c ∈ Ci ∩ Cj : V(c, Ci) , V(c, Cj)))

(3)

https://doi.org/10.1109/MSEC.2019.2911511
https://marketrealist.com/2017/12/making-sense-samsungs-smartthings-initiative
https://marketrealist.com/2017/12/making-sense-samsungs-smartthings-initiative
https://august.com/pages/how-it-works
https://august.com/pages/how-it-works
https://www.remotelock.com/smart-locks
https://www.remotelock.com/smart-locks
https://tinyurl.com/y86unolb
http://www.businessinsider.com/the-us-smart-home-market-report-systems-apps-and-devices-leading-to-home-automation-2017-4
http://www.businessinsider.com/the-us-smart-home-market-report-systems-apps-and-devices-leading-to-home-automation-2017-4
http://www.businessinsider.com/the-us-smart-home-market-report-systems-apps-and-devices-leading-to-home-automation-2017-4
https://www.statista.com/statistics/757684/smart-home-technology-product-ownership-in-the-us-by-category/
https://www.statista.com/statistics/757684/smart-home-technology-product-ownership-in-the-us-by-category/
https://www.forbes.com/sites/greatspeculations/2017/07/05/why-smart-home-devices-are-a-strong-growth-opportunity-for-best-buy/2bbe77114984
https://www.forbes.com/sites/greatspeculations/2017/07/05/why-smart-home-devices-are-a-strong-growth-opportunity-for-best-buy/2bbe77114984
https://www.forbes.com/sites/greatspeculations/2017/07/05/why-smart-home-devices-are-a-strong-growth-opportunity-for-best-buy/2bbe77114984

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Sikder et al.

HPC(Ψi , Ψj) ← hard_conf l ict (Ψi , Ψj) ∧ Ξ(Pi) , Ξ(Pj) (4)
SPC(Ψi , Ψj) ← sof t_conf l ict (Ψi , Ψj) ∧ Ξ(Pi) , Ξ(Pj) (5)
HCC(Ψi , Ψj) ← hard_conf l ict (Ψi , Ψj) ∧ Ξ(Pi) = Ξ(Pj) (6)
SCC(Ψi , Ψj) ← sof t_conf l ict (Ψi , Ψj) ∧ Ξ(Pi) = Ξ(Pj) (7)

RC(Ψi , ψj) ← Restr ict ion_conf l ict (Ψi , ψj) ∧ Ξ(Pi) > Ξ(Pj)
∧Ai = r estr ict

(8)

where Ψi ,Ψj is the evaluated pair of policies, and V(c,C) is the
value function that returns the value of conditional c in the set C ,
Θ(x ,y) checks the overlap between the provided (x ,y) tuple and
Ξ(u) returns the priority of user u as the value of user’s assigned
priority class.

B POLICY NEGOTIATION PROCESS

The negotiation N between two given policy clauses (Ψi ,Ψj) can
be formally expressed and computed by Equation 9.

N(Ψi , Ψj) =



{
Ψi if Ξ(Pi) > Ξ(Pj)
Ψj otherwise

, if HPC(Ψi , Ψj){
{Pi ∪ Pj , Ui , Di , Ci ∪Cj , Ai } if Ai = Aj
{Pi ∪ Pj , Ui , Di , Ci ∪ ¬Cj , Ai } otherwise

, if SPC(Ψi , Ψj){
major ity_vote(Ψi , Ψj) if binary(Di)
arbitrate(Ψi , Ψj) otherwise

, if HCC(Ψi , Ψj){
{Pi ∪ Pj , Ui , Di , Ci ∪Cj , Ai } if Ai = Aj
{Pi ∪ Pj , Ui , Di , Ci ∪ ¬Cj , Ai } otherwise

, if SCC(Ψi , Ψj)

(9)

In the case of a hard priority conflict (HPC), (e.g., mother vs.
child with contradicting clauses) Kratos prioritizes the clause of
the user with the higher priority (e.g., mother). For hard competition
conflict (HCC), both users with overlapping conditions are notified
and Kratos offers a common operating condition to both. This
common condition is enforced as a policy to the device upon users’
agreement. On the other hand, in the case of both soft priority (SPC)
and soft competition conflicts (SCC), the result of the negotiation is
a new clause with common set of conditions. For restriction conflict,
both restricted user and policy assigner are notified and if the policy
satisfies conditions in Equation 9, the restriction policy is enforced
in the device.

C DEVICES USED DURING EVALUATION

We present a detailed list of devices used during the implementation
and evaluation of Kratos in Table 1.

Device Type Model Quantity

Smart Home Hub Samsung SamrtThings Hub 1
Smart Light Philips Hue Light Bulb 4
Smart Lock Yale B1L Lock with Z-Wave Push

Button Deadbolt
1

Smart Camera Arlo by NETGEAR Security System 1
Smart Thermostat Ecobee 4 Smart Thermostat 1
Motion Sensor Fibaro FGMS-001 ZW5 Motion Sen-

sor with Z-Wave Plus Multisensor
6

Temperature Sensor Fibaro FGMS-001 ZW5 Motion Sen-
sor with Z-Wave Plus Multisensor

1

Door Sensor Samsung Multipurpose Sensor 2
Table 1: Devices and sensors used in our smart home setup

to evaluate Kratos.

D KRATOS-ENABLED SMARTTHINGS APP

We provide an example of Kratos-enabled SmartThings App.
Listing 1: Policy enforced at install-time

1 definition(
2 name: "Big Turn ON modified",
3 namespace: "smartthings",
4 author: "Anonymous",
5 description: "Turn your lights on when the SmartApp is tapped.",
6 category: "Convenience",

7 iconUrl: "https://s3.amazonaws.com/smartapp-icons/Meta/light_outlet.png",
8 iconX2Url: "https://s3.amazonaws.com/smartappicons/Meta/light@2x.png"
9)
10 import groovy.time.∗
11 preferences {
12 section("When I touch the app, turn on...") {
13 input "switches", "capability.switch", multiple: false
14 input name: "email", type: "email", title: "Email", description: "Enter

Email Address", required: true, displayDuringSetup: true}}
15 def installed()
16 { atomicState.SmartLightTimes = [:]
17 atomicState.SmartLightAdmins = [:]
18 atomicState.SmartLightUsers = [:]
19 atomicState.SmartLightDevID = [:]
20 atomicState.SmartLightTimeStart = [:]
21 atomicState.SmartLightTimeEnd = [:]
22
23 log.debug "${new Date()}"
24 getSmartLightJsonData()
25
26 def item = atomicState.SmartLightUsers.indexOf(email)
27 if (item>=0){
28 int index = atomicState.SmartLightUsers.indexOf(email)
29 def between = timeBetween (atomicState.SmartLightTimeStart[index],

atomicState.SmartLightTimeEnd[index])
30 if (between == true){
31 subscribe(location, changedLocationMode)
32 subscribe(app, appTouch)
33 log.info app.getAccountId()}}
34 }
35 def updated()
36 { atomicState.SmartLightTimes = [:]
37 atomicState.SmartLightAdmins = [:]
38 atomicState.SmartLightUsers = [:]
39 atomicState.SmartLightDevID = [:]
40 atomicState.SmartLightTimeStart = [:]
41 atomicState.SmartLightTimeEnd = [:]
42 getSmartLightJsonData()
43
44 def item = atomicState.SmartLightUsers.indexOf(email)
45 if (item>=0){
46 int index = atomicState.SmartLightUsers.indexOf(email)
47 def between = timeBetween (atomicState.SmartLightTimeStart[index],

atomicState.SmartLightTimeEnd[index])
48 if (between == true){
49 unsubscribe()
50 subscribe(location, changedLocationMode)
51 subscribe(app, appTouch)}}
52 }
53 def changedLocationMode(evt) {
54 log.debug "changedLocationMode: $evt"
55 switches?.on()}
56 def appTouch(evt) {
57 log.debug "appTouch: $evt"
58 switches?.on()}
59 def getSmartLightJsonData(){
60 def listTimes = []
61 def listAdmins = []
62 def listUsers = []
63 def listIDs = []
64 def listTimeStarts = []
65 def listTimeEnds = []
66 def params = [uri: "https://mywebserver/xxxyyyzzz/2/public/values?alt=json

",]
67 try {
68 httpGet(params) { resp −>
69 for (object in resp.data.feed.entry){
70 listTimes.add (object.gsx$time.$t)
71 listAdmins.add (object.gsx$adminemail.$t)
72 listUsers.add (object.gsx$restricteduseremail.$t)
73 listIDs.add (object.gsx$deviceid.$t)
74 listTimeStarts.add (object.gsx$timerangestart.$t)
75 listTimeEnds.add (object.gsx$timerangeend.$t)
76 }
77 atomicState.SmartLightTimes = (listTimes)
78 atomicState.SmartLightAdmins = (listAdmins)
79 atomicState.SmartLightUsers = (listUsers)
80 atomicState.SmartLightDevID = (listIDs)
81 atomicState.SmartLightTimeStart = (listTimeStarts)
82 atomicState.SmartLightTimeEnd = (listTimeEnds)}
83 } catch (e) {
84 log.error "something went wrong: $e"}
85 }
86
87 def timeBetween(String start, String end){
88 long timeDiff
89 def now = new Date()
90 def timeStart = Date.parse("yyy-MM-dd'T'HH:mm:ss","${start}".replace("

.000-0400",""))
91 def timeEnd = Date.parse("yyy-MM-dd'T'HH:mm:ss","${end}".replace("

.000-0400",""))
92 long unxNow = now.getTime()
93 long unxEnd = timeEnd.getTime()
94 long unxStart = timeStart.getTime()
95 if (unxNow >= unxStart && unxNow <= unxEnd)
96 return true
97 else
98 return false
99 }

	Abstract
	1 Introduction
	2 Motivation and Definitions
	2.1 Access Control Needs in a Smart Home
	2.2 Terminology

	3 Problem and Threat Model
	3.1 Problem Definition
	3.2 Threat Model

	4 KRATOS Design
	4.1 User Interaction Module
	4.2 Back-end Module
	4.3 Policy Manager Module
	4.4 Policy Execution Module

	5 KRATOS Implementation
	6 Performance Evaluation
	6.1 Effectiveness
	6.2 Performance Overhead

	7 Benefits and Future Work
	7.1 Benefits of Kratos
	7.2 Future Work

	8 Related Work
	9 Conclusion
	10 Acknowledgment
	References
	A Policy Negotiation Algorithm
	B Policy Negotiation Process
	C Devices Used During Evaluation
	D KRATOS-enabled SmartThings App

