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Abstract

Neural networks with a large number of units ad-

mit a mean-field description, which has recently

served as a theoretical explanation for the favor-

able training properties of “overparameterized”

models. In this regime, gradient descent obeys a

deterministic partial differential equation (PDE)

that converges to a globally optimal solution for

networks with a single hidden layer under appro-

priate assumptions. In this work, we propose a

non-local mass transport dynamics that leads to a

modified PDE with the same minimizer. We im-

plement this non-local dynamics as a stochastic

neuronal birth-death process and we prove that it

accelerates the rate of convergence in the mean-

field limit. We subsequently realize this PDE with

two classes of numerical schemes that converge to

the mean-field equation, each of which can easily

be implemented for neural networks with finite

numbers of units. We illustrate our algorithms

with two models to provide intuition for the mech-

anism through which convergence is accelerated.

1. Introduction

As a consequence of the universal approximation theorems,

sufficiently wide single layer neural networks are expres-

sive enough to accurately represent a broad class of func-

tions (Cybenko, 1989; Barron, 1993; Park & Sandberg,

1991). The existence of a neural network function arbi-

trarily close to a given target function, however, is not a

guarantee that any particular optimization procedure can

identify the optimal parameters. Recently, using mathe-

matical tools from optimal transport theory and interacting

particle systems, it was shown that gradient descent (Rot-

skoff & Vanden-Eijnden, 2018; Mei et al., 2018; Sirignano

& Spiliopoulos, 2018; Chizat & Bach, 2018b) and stochas-
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tic gradient descent converge asymptotically to the target

function in the large data limit.

This analysis relies on taking a “mean-field” limit in which

the number of units n tends to infinity. In this setting, gradi-

ent descent optimization dynamics is described by a partial

differential equation (PDE), corresponding to a Wasserstein

gradient flow on a convex energy functional. This PDE

provides a powerful conceptual framework for analyzing

the properties of neural networks evolving under gradient

descent dynamics. In addition, the analysis of this Wasser-

stein gradient flow motivates the interesting possibility of

altering the dynamics to accelerate convergence.

In this work, we propose a dynamical scheme involving

a birth/death process over the units of the neural network.

It can be defined on systems of interacting (e.g., neural

network optimization) or non-interacting particles, and in

the mean-field limit it amounts to an unbalanced transport

(Chizat et al., 2018) in which mass can be locally ‘tele-

transported’ with finite cost. We prove that the resulting

modified transport equation converges to the global min-

imum of the loss in both interacting and non-interacting

regimes (under appropriate assumptions), and we provide

an explicit rate of convergence in the latter case for the

mean-field limit. Interestingly—and unlike the gradient

flow—the only fixed point of the dynamics is the global

minimum of the loss function. We study the fluctuations of

finite particle dynamics around this mean-field convergent

solution, showing that they are of the same order throughout

the dynamics and therefore providing algorithmic guaran-

tees directly applicable to finite single-layer neural network

optimization. Finally, we derive algorithms that converge

to the birth-death PDEs and verify numerically that these

schemes accelerate convergence even for finite numbers of

parameters.

Summarily, we describe:

Global convergence and monotonicity of the energy

with birth-death dynamics — We propose in Section 3

a modification of the original gradient flow that can be

interpreted as a birth-death process with the ability to per-

form non-local mass transport in the equation governing the

parameter distribution. We prove that the scheme we in-

troduce guarantee global convergence and increase the rate

of contraction of the energy compared to gradient descent
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and stochastic gradient descent for fixed µ. We also derive

asymptotic rates of convergence (Section 4).

Analysis of fluctuations and self-quenching — The birth-

death dynamics introduces additional fluctuations that are

not present in gradient descent dynamics. In Section 5 we

calculate these fluctuations using tools from the theory of

measure-valued Markov processes. We show that these fluc-

tuations, for n sufficiently large, are of order O(n−1/2) and

“self-quenching” in the sense that they diminish in magni-

tude as the quality as the optimization dynamics approaches

the optimum.

Algorithms for realizing the birth-death schemes — In

Section 6 we detail numerical schemes (and provide im-

plementations in PyTorch) of the birth-death schemes de-

scribed below. In the particular case of neural networks,

the computational cost of implementing our procedure is

minimal because no additional gradient computations are

required. We demonstrate the efficacy of these algorithms

on simple, illustrative examples in Section 7.

2. Related Work

Non-local update rules appear in various areas of machine

learning and optimization. Derivative-free optimization

(Rios & Sahinidis, 2013) offers a general framework for

optimizing complex non-convex functions using non-local

search heuristics. Some notable examples include Parti-

cle Swarm Optimization (Kennedy, 2011) and Evolution-

ary Strategies, such as the Covariance Matrix Adaptation

method (Hansen, 2006). These approaches have found some

renewed interest in the optimization of neural networks in

the context of Reinforcement Learning (Salimans et al.,

2017; Such et al., 2017) and hyperparameter optimization

(Jaderberg et al., 2017).

Our setup of non-interacting potentials is closely related to

the so-called Estimation of Distribution Algorithms (Baluja

& Caruana, 1995; Larrañaga & Lozano, 2001), which de-

fine update rules for a probability distribution over a search

space by querying the values of a given function to be opti-

mized. In particular, Information Geometric Optimization

Algorithms (Ollivier et al., 2017) study the dynamics of

parametric densities using ordinary differential equations,

focusing on invariance properties. In contrast, our focus

in on the combination of transport (gradient-based) and

birth/death dynamics.

Dropout (Srivastava et al., 2014) is a regularization tech-

nique popularized by the AlexNet CNN (Krizhevsky et al.,

2012) reminiscent of a birth/death process, but we note that

its mechanism is very different: rather than killing a neu-

ron and replacing it by a new one with some rate, Dropout

momentarily masks neurons, which become active again at

the same position; in other words, Dropout implements a

purely local transport scheme, as opposed to our non-local

dynamics.

Finally, closest to our motivation is (Wei et al., 2018), who,

building on the recent body of works that leverage optimal

transport techniques to study optimization in the large pa-

rameter limit (Rotskoff & Vanden-Eijnden, 2018; Chizat

& Bach, 2018b; Mei et al., 2018; Sirignano & Spiliopou-

los, 2018), proposed a modification of the dynamics that

replaced traditional stochastic noise by a resampling of a

fraction of neurons from a base, fixed measure. Our model

has significant differences to this scheme, namely we show

that the dynamics preserves the same global minimizers and

accelerates the rate of convergence. Finally, our interpre-

tation of the modified dynamics in terms of a generalized

gradient flow is related to the unbalanced optimal transport

setups of (Kondratyev et al., 2016; Liero et al., 2018; Chizat

et al., 2018). Our analysis of the resulting dynamics in

terms of proximal operators was also studied in (Gallouët &

Monsaingeon, 2017) in the context of unbalanced transport.

3. Mean-field PDE and Birth-death Dynamics

3.1. Mean-Field Limit and Liouville dynamics

Gradient descent propagates the parameters locally in pro-

portion to the gradient of the objective function. In some

cases, an optimization algorithm can benefit from nonlo-

cal dynamics, for example, by allowing new units to ap-

pear at favorable values and existing units to be removed

if they diminish the quality of the representation. In or-

der to exploit a nonlocal dynamical scheme, it is useful to

interpret the units as a system of n particles, θi ∈ D, a k-

dimensional differentiable manifold, which for i = 1, . . . , n
evolve on a landscape determined by the objective function

ℓ(θ1, . . . ,θn). Here we will focus on situations where the

objective function may involve interactions between pairs

of units:

ℓ(θ1, . . . ,θn) =

n
∑

i=1

F (θi) +
1

2n

n
∑

i,j=1

K(θi,θj) (1)

where F : D → R is a single particle energy function and

K : D × D → R is a symmetric semi-positive definite

interaction kernel. Interestingly, optimizing neural networks

with the mean-squared loss function fits precisely this frame-

work (Rotskoff & Vanden-Eijnden, 2018; Mei et al., 2018;

Chizat & Bach, 2018b). Consider a supervised learning

problem using a neural network with nonlinearity ϕ. If we

write the neural network as

fn(x;θ1, . . . ,θn) =
1

n

n
∑

i=1

ϕ(x,θi) (2)

and expand the loss function,

ℓ(θ1, . . . ,θn) =
1
2Ey,x |y − fn(x;θ1, . . . ,θn)|2 , (3)
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we see that, up to an irrelevant constant depending only on

the data distribution, we arrive at (1) with

F (θ) = −Ey,x

[

yϕ(x,θ)
]

, (4)

and,

K(θ,θ′) = Ex

[

ϕ(x,θ)ϕ(x,θ′)
]

. (5)

We also consider non-interacting objective functions in

which K = 0 in (1). Optimization problems that fit this

framework include resource allocation tasks in which, e.g.,

weak performers are eliminated, Evolution Strategies, and

Information Geometric Optimization (Ollivier et al., 2017).

In the case of gradient descent dynamics, the evolution of

the particles θi is governed for i = 1, . . . , n by

θ̇i = −∇θi
ℓ(θ1, . . . ,θn). (6)

To analyze the dynamics of this particle system, we consider

the “mean-field” limit n→∞. As the number of particles

becomes large, the empirical distribution of particles

µ
(n)
t (dθ) =

1

n

n
∑

j=1

δθj(t)(dθ) (7)

leads to a deterministic partial differential equation at first

order (Rotskoff & Vanden-Eijnden, 2018; Mei et al., 2018;

Chizat & Bach, 2018b; Sirignano & Spiliopoulos, 2018),

∂tµt = ∇ · (µt∇V ) , (8)

where µt is the weak limit of µn
t and µ0 is some distribution

from which the initial particle positions θi(0) are drawn

independently. The potential V : D → R is specified by the

objective function ℓ as

V (θ, [µ]) = F (θ) +

∫

D

K(θ,θ′)µ(dθ′). (9)

and (8) should be interpreted in the weak sense, i.e., we

require ∀φ ∈ C∞
c (D)

∂t

∫

D

φ(θ)µt(dθ) = −
∫

D

∇φ(θ) · ∇V (θ, [µt])µt(dθ),

(10)

where C∞
c (D) denotes the space of smooth functions with

compact support on D.

Because V is the gradient with respect to µ of an energy

functional E [µ],

E [µ] =
∫

D

F (θ)µ(dθ) + 1
2

∫

D×D

K(θ,θ′)µ(dθ)µ(dθ′),

(11)

the nonlinear Liouville equation (8) is the Wasserstein gra-

dient flow with respect to the energy functional E [µ]. Local

minima of V (where ∇V = 0) are clearly fixed points of

this gradient flow, but these fixed points may not always

be minimizers of the energy when suppµ ⊂ D. When the

initial distribution of units has full support, neural networks

evolving with gradient descent avoid these spurious fixed

points under appropriate assumptions about their nonlinear-

ity (Chizat & Bach, 2018b; Rotskoff & Vanden-Eijnden,

2018; Mei et al., 2018).

3.2. Birth-Death augmented Dynamics

Here we consider a more general dynamical scheme that in-

volves nonlocal transport of particle mass. As we shall see in

Section 4, this dynamics avoids spurious fixed points and lo-

cal minima, and converges asymptotically to the global min-

imum. Consider the following modification of the Wasser-

stein gradient flow above:

∂tµt = ∇ · (µt∇V )− αV µt (α > 0). (12)

The additional term −αV µt is a birth/death term that modi-

fies the mass of µ. If V is positive, this mass will decrease,

corresponding to the removal or “death” of units. If V is

negative, this mass will increase, which can be implemented

as duplication or “cloning” of units. For a finite number of

units, this dynamics could lead to changes in the architec-

ture of the network. In many applications it is preferable

to fix the total population, achieved by simply adding a

conservation term to the dynamics,

∂tµt = ∇ · (µt∇V )− αV µt + αV̄ µt, (13)

where V̄ ≡
∫

D
V dµt. This equation (like (12)) should in

general be interpreted in the weak sense. Here we will focus

on solutions of (13) for the initial condition µ0 ∈ M(D),
the space of probability measures on D, that satisfy

∫

D

φ(θ)µt(dθ) = C−1(t)

∫

D

φ(θt)e
−α

∫
t

0
V (θs,[µs])dsµ0(dθ)

(14)

where φ : D → R is any bounded differentiable function

with bounded gradient, C(t) is given by

C(t) = e−α
∫

t

0
V̄ [µs]ds ≡

∫

D

e−α
∫

t

0
V (θs,[µs])dsµ0(dθ),

(15)

and θt satisfies θ̇t = −∇V (θt, [µt]) with θ0 = θ. For-

mula (14) can be formally established by solving (13) by

the method of characteristics (Appendix C). In the non-

interacting case, since V (θ, [µt]) = F (θ), (14) is explicit

and well-posed under appropriate assumptions on F (see

Assumption C.1 below). In the interacting case, (14) is im-

plicit since the right hand side depends on µt. Following

Chizat & Bach (Chizat & Bach, 2018b), we know that under

appropriate assumptions on F and K (see Assumption 4.2

below), solutions to (14) exist for all t > 0 for appropriate

initial µ0 that are compactly supported in D. Here we will
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assume global existence of solutions to this equation for µ0

such that suppµ0 = D with D open: if µ0 decays suffi-

ciently fast at infinity, this assumption is supported by the

alternative derivation of (12) based on a proximal gradient

formulation given in Appendix B.

Note that solutions of (12) that satisfy (14) are probability

measures since they are positive by definition and we can

set φ = 1 in (14) to deduce that µt(D) = 1. We can also

show that the birth-death terms improve the rate of energy

decay, as stated in the following proposition:

Proposition 3.1. Let µt be a solution of (13) for the initial

condition µ0 ∈M(D) that satisfies (14) for all t ≥ 0. Then,

µt(D) = 1 for all t ≥ 0, and E(t) = E [µ(t)] satisfies

Ė(t) =−
∫

D

|∇V (θ, [µt])|2µt(dθ)

− α

∫

D

(

V (θ, [µt])− V̄ [µt]
)2

µt(dθ) ≤ 0.

(16)

Proof: (16) can be formally obtained by testing (13)

against V (θ, [µt]) and using the chain rule to deduce that

dE [µt]/dt =
∫

D
V (θ, [µt])∂tµt(dθ). To complete the

proof, we need to show that this testing is legitimate and the

terms at the right hand side of (16) are well-defined; this is

done in Appendix E by differentiating C(t). �

The birth-death term thus contributes to increase the rate

of decay of the energy at all times. A natural question is

whether such improved energy decay can lead to global

convergence of the dynamics to the global minimum of

the energy. As it turns out, the answer is yes: the fixed

points of the birth-death PDEs (12) and (13) are the global

minimizers of the energy E [µ], as we prove in Section 4.

How to implement a particle dynamics consistent with (13)

is discussed in Sections 5 and 6.

We also note that there are several ways in which we can

modify (13) to certain advantages: this is discussed in Ap-

pendix A.

4. Convergence of Transport Dynamics with

Birth-death

Here, we compare the solutions of the original PDE (8)

with those of the PDE (13) with birth-death. We restrict

ourselves to situations where F and K in (11) are such that

E [µ] is bounded from below. Our main technical contribu-

tions are results about convergence towards global energy

minimizer as well as convergence rates as the dynamics

approaches these minimizers. We consider in this section

the interacting case and describe the easier non-interacting

case in Appendix C.

Under gradient descent dynamics, global convergence can

be established with appropriate assumptions on the initial-

ization and architecture of the neural network. (Mei et al.,

2018) establishes global convergence and provides a rate for

neural networks with bounded activation functions evolv-

ing under stochastic gradient descent. Similar results were

obtained in (Chizat & Bach, 2018b; Rotskoff & Vanden-

Eijnden, 2018), in which it is proven that gradient descent

converges to the globally optimal solution for neural net-

works with particular homogeneity conditions on the ac-

tivation functions and regularizers. Closely related to the

present work, (Wei et al., 2018) provides a convergence rate

for a “perturbed” gradient flow in which uniform noise is

added to the PDE (8). It should be emphasized that, unlike

our formulation, the addition of uniform noise changes the

fixed point of the PDE and convergence to only an approxi-

mate global solution can be obtained in that setting.

Let us now consider the interacting case, when V is given

by (9) with K 6= 0. We make

Assumption 4.1. The set D is a k-dimensional differen-

tiable manifold which is either closed (i.e. compact, with

no boundaries), or open (i.e. with no closed subset), or the

Cartesian product of a closed and an open manifold.

Assumption 4.2. The kernel K is symmetric, positive semi-

definite, and twice differentiable in its arguments, K ∈
C2(D × D); F ∈ C2(D); and F and K are such that

the energy is bounded from below, i.e. ∃m ∈ R such that

∀µ ∈M(D) : E [µ] ≥ m.

This technical assumption typically holds for neural net-

works. Assumption 4.2 guarantees that the quadratic energy

E [µ] in (11) has a (unique) minimum value. While we can-

not guarantee in general that this minimum is reached only

by minimizers, below we will work under the assumption

that minimizers exist. These are solutions in M(D) of

following Euler-Lagrange equations:

{

V (θ, [µ∗]) = V̄ [µ∗] ∀θ ∈ suppµ∗

V (θ, [µ∗]) ≥ V̄ [µ∗] ∀θ ∈ D.
(17)

where V̄ [µ] ≡
∫

D
V (θ, [µ])µ(dθ). These equations are

well-known (Serfaty, 2015): we recall their derivation in

Appendix D.

Minimizers of the energy should not be confused with fixed

points of the dynamics. In particular, a well-known issue

with the PDE (8) is that it potentially has many more fixed

points than E [µ] has minimizers: Indeed, rather than (17),

these fixed points only need to satisfy

∇V (θ, [µ]) = 0 ∀θ ∈ suppµ. (18)

It is therefore remarkable that, if we pick an initial condition

µ0 for the birth-death PDE (13) that has full support, the

solution to this equation converges to a global minimizer of

E [µ]:
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Theorem 4.3 (Global Convergence to Global Minimizers:

Interacting Case). Let µt denote the solution of (13) that

satisfies (14) for the initial condition µ0 with suppµ0 = D.

If µt ⇀ µ∗ as t → ∞ for some probability measure µ∗ ∈
M(D), then under Assumptions 4.1 and 4.2 µ∗ is a global

minimizer of E [µ].

This theorem is proven in Appendix E. Note that the theo-

rem holds under the assumption that µt converges to a fixed

point µ∗, which we cannot guarantee a priori but should

be true for a wide class of F and K and initial conditions

µ0 satisfying properties like E [µ0],∞—for more details on

these conditions see the proof in Appendix E. One aspect of

this proof is based on the evolution equation (16) for E [µt].
Since dE [µt]/dt ≤ 0 and since E [µt] is bounded from below

by Assumption 4.2, by the bounded convergence theorem,

the evolution must stop eventually. By assumption, this

involves µt converging weakly towards some µ∗. This hap-

pens when both integrals in (16) are zero, i.e. µ∗ must

satisfy the first equation in (17) as well as (18). What re-

mains to be shown is that µ∗ must also satisfy the second

equation in (17), which we check in Appendix E.

Regarding the rate of convergence, we have the following

result:

Theorem 4.4 (Asymptotic Convergence Rate: Interacting

Case). Under the same conditions as in Theorem 4.3, ∃C >
0 and tC > 0 such that E(t) = E [µt]−E [µ∗] ≥ 0 satisfies

E(t) ≤ Ct−1 if t ≥ tC (19)

The proof of this theorem is given in Appendix F where we

show that

lim
t→∞

tE(t) ≤ C ∈ (0,∞]. (20)

5. From Mean-field to Particle Dynamics with

Birth-Death

In practice the number of units n is finite, so we must verify

that we can implement dynamics at finite particle numbers

that is consistent with the PDEs with birth-death terms in-

troduced in Sec. 3 in the mean-field limit n→∞. We must

also ensure that the fluctuations arising from the discrete par-

ticles do not pose a problem for the optimization dynamics.

In this section, we carry out this program in the context of

the PDE (13). Analogous calculations can be performed in

the case of (2). These results rely on the theory of measure-

valued Markov processes (Dawson, 2006), and are detailed

in Appendix G.

The dynamics of the particles {θi(t)}ni=1 is specified by a

Markov process defined as follows: the birth-death part of

the evolution is realized by equipping each particle θi with

an independent exponential clock with (signed) rate

Ṽ (θi) = F (θi) +
1

n

n
∑

j=1

K(θi,θj)

− 1

n

n
∑

j=1

(

F (θj) +
1

n

n
∑

k=1

K(θj ,θk)

) (21)

such that:

1. If Ṽ (θi(t)) > 0, the particle θi is duplicated with in-

stantaneous rate αṼ (θi(t)), and a particle θj chosen at

random in the stack is killed to preserve the population

size.

2. If Ṽ (θi(t)) < 0, the particle θi is killed with instan-

taneous rate α|Ṽ (θi(t))|, and a particle θj chosen at

random in the stack is duplicated to preserve the popu-

lation size.

Between these birth events the particles evolve by the GD

flow (6).

Due to the interchangeability of the particles, the evolution

of their empirical distribution µ
(n)
t defined in (7) is also

Markovian: it is referred to in the probability literature as a

measured-valued Markov process (Dawson, 2006). We can

write down the generator of this process, which specifies

the evolution of the expectation of functionals of µ
(n)
t , and

analyze its behavior as n → ∞. These calculations are

performed in Appendix G, and they lead to:

Proposition 5.1 (Law of Large Numbers). Let the empirical

distribution of the initial position of the particles be µ
(n)
0 =

n−1
∑n

i=1 δθi(0) and assume that µ
(n)
0 ⇀ µ0 as n → ∞.

Then, for all for t ∈ [0,∞), µ
(n)
t = n−1

∑n
i=1 δθi(t) ⇀ µt

in law as n → ∞, where µt satisfies (13) with the initial

condition µt=0 = µ0.

This statement verifies that, to leading order, the large parti-

cle limit recovers the mean-field PDE (13).

While the limit gives rise to the birth-death term of the

PDE as expected, we can also quantify the scale and asymp-

totic behavior of the higher order fluctuations at finite n.

This computation ensures that finite n fluctuations do not

overcome the convergence expected from the mean-field

analysis. To do so, we we introduce the discrepancy distri-

bution defined by the difference, scaled by
√
n, between the

empirical distribution and its mean-field limit

ω
(n)
t ≡

√
n
(

µ
(n)
t − µt

)

(22)

where µ
(n)
t is the empirical distribution defined in (7) and

µt is limit satisfying (1). We can then analyze the generator

of the joint process (µt, ω
(n)
t ) and deduce the following

proposition:
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Proposition 5.2 (Central Limit Theorem). In the limit as

n→∞, we have

ω
(n)
t ⇀ ωt in law (23)

where ωt is Gaussian random distribution with zero mean

and whose covariance satisfies a linear equation with a

source term proportional to α|Ṽ (θ, [µt])|µt, see (117) in

Appendix G.

The key consequence of this proposition is that it specifies

the scale of the fluctuations of µ
(n)
t above its mean field

limit µt. First it shows that these fluctuations are on a scale

O(
√

α/n). This is why α should be kept O(1) relative to n.

While it may appear that increasing α accelerates the rate

of convergence at mean-field level, the fluctuations would

grow and the n → ∞ and α → ∞ limit do not commute.

Second, the relation between the scale of the noise and

the magnitude of |Ṽ |µt has an important consequence for

the convergence of the dynamics: because |Ṽ |µt → 0 as

t→∞, the fluctuations are “self-quenching” in the sense

that their amplitude diminishes and eventually vanishes as

µt → µ∗. In particular, for both the interacting and non-

interacting cases, the only stable fixed point of the equation

for the covariance of ωt is zero.

6. Algorithms

Numerical schemes that converge to the PDEs presented

in Sec. 3 are both straightforward to design and easy to

implement. In absence of the GD part of the dynamics, we

could use Kinetic Monte Carlo (also called the Gillespie al-

gorithm) to simulate birth-death without time-discretization

error. However, in the large parameter regime, this would be

computationally expensive: every particle has its own expo-

nential clock, and the time between successive birth-death

events scales like 1/n. Because we must time-discretize the

GD flow, we carry out the birth-death dynamics using the

same time-discretization.

Denote by {θi}ni=1 the current configuration of n particles

in the interacting potential ℓ in (1). To update the state of

these particles, we first consider the effect of the GD flow

alone, using a time-discretized approximation of this flow

with step of size ∆t > 0. With the forward Euler scheme,

this amounts to updating the particle positions as

θi ← θi −∇F (θi)∆t− 1

n

n
∑

j=1

∇K(θi,θj)∆t (24)

While this type of update is standard in machine learning,

more accurate integration schemes could be used.

To implement the birth-death part of the dynamics, we cal-

culate the probability of survival of the particles assuming

that their position was fixed at the current values {θi}ni=1

using the empirical value Ṽ (θi) given in (21) for the rate

V − V̄ . If Ṽ (θi) > 0 the probability that particle θi be

killed in the time interval of size ∆t is

1− exp(Ṽ (θi)∆t) (25)

Similarly, the probability that it is duplicated in that time

interval if Ṽ (θi) < 0 is

1− exp(|Ṽ (θi)|∆t) (26)

Particles are killed and duplicated in a loop according to

this rule. Since
∑n

i=1 Ṽ (θi) = 0 by construction, this

operation preserves the number of particles on average. To

enforce strict population control, we add an additional loop

that guarantees the total population remains fixed after the

dynamics above. The details are given in Algorithm 1.

The corresponding particle system is a discretized version,

both in particle number and time, of the PDE (13) and it

converges to this equation as n → ∞ and ∆t → 0. The

error we make at finite n is analyzed in Sec. 5; the error

we make at finite ∆t can be deduced from standard results

about time discretization of differential equations: with the

Euler scheme used above, this error scales as O(∆t).

Algorithm 1 Parameter birth-death dynamics consistent

with (13)

∆t, initial {θi}ni=1 given

ǫ = ǫtol, the tolerance

while ǫ ≥ ǫtol do

for i = 1 : n do

set θi ← θi−∇F (θi)∆t− 1
n

∑n
j=1∇K(θi,θj)∆t

calculate Ṽ (θi) = F (θi)+n−1
∑n

j=1 K(θi,θj)−
n−1

∑n
j=1

(

F (θj) + n−1
∑n

k=1 K(θj ,θk)
)

if Ṽ (θi) > 0 then

kill θi w/ prob 1− exp(−αṼ (θi)∆t)
else if if Ṽ (θi) < 0 then

duplicate θi w/ prob 1− exp(−α|Ṽ (θi)|∆t)
end if

end for

N1: total number of particles after the loop

if N1 > N then

kill N1 −N randomly selected particles

else if if N1 < N then

duplicate N −N1 randomly selected particles

end if

end while

In the case of neural network parameter optimization, the

birth-death algorithm does not incur any significant com-

putational cost beyond regular stochastic gradient descent.

Denoting the parameters θi = (ci, zi) and writing the neu-

ral network function as

fn(x; {ci, zi}ni=1) =
1

n

n
∑

i=1

ciφ(x, zi), (27)
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the potential V (θi) = F (θi) + n−1
∑n

j=1 K(θi,θj) is

given by V (θi) = ciV̂ (zi) where

V̂ (zi) =

∫

Ω

φ(x, zi) (fn(x; {ci, zi}ni=1)− f(x)) ν(dx)

(28)

Note that V̂ is the gradient of the loss with respect to the

linear coefficient vector ∂ciV = V̂ (zi). Because we do not

typically have access to the exact loss function, the integrals

required to compute V̂ are estimated using a finite number

of data points. Using a batch of P points in an update

leads to an estimate V̂P of V̂ , which is used to determine

the rate of killing/duplication. In this particular case, the

only change to Algorithm 1 is that the computation of Ṽ is

replaced with ciV̂P (zi)− n−1
∑n

j=1 cj V̂P (zj) with

V̂P (zi) =
1

P

P
∑

p=1

φ(xp, zi) (fn(xp; {ci, zi}ni=1)− f(xp))

(29)

where the “batch” is {xp}Pp=1. Since this quantity is com-

puted in the SGD update, the only additional computation is

the sum of VP over the n particles. The cost of the algorithm

is O(nP ) at every iteration.

For neural networks of the form given in Eq. (27) a partic-

ularly simple modification of Algorithm 1 enables particle

creation from a prior distribution. The algorithm proceeds

through the initial birth-death loop as in Algorithm 1. At the

end of the initial loop, if the total population has decreased,

then additional particle are sampled with configurations

(c, z) distributed according to the prior distribution

µb(dc, dz) = δ0(dc)ρ̄(z)dz (30)

so that a reinjected particle makes no contribution to the

energy. Finally, one can alternatively implement the same

dynamics using the proximal interpretation of unbalanced

transport. This is discussed in Appendix B.1.

7. Numerical Experiments

7.1. Mixture of Gaussians

We take as an illustrative example a mixture of Gaussians

in dimension d,

f(x) =
1

m

m
∑

i=1

c̄i
(2πσ2

i )
d/2

e−|x−z̄i|
2/(2σ2

i ), (31)

which we approximate as a neural network with Gaussian

nonlinearities with fixed standard deviation σ < mini σi,

fn(x; {ci, zi}) =
1

n

n
∑

i=1

ci
(2πσ2)d/2n

e−|x−zi|
2/(2σ2).

(32)

This is a useful test of our results because we can do ex-

act gradient descent dynamics on the mean-squared loss

function:

ℓ({ci, zi}) =
1

2

∫

Rd

|f(x)− fn(x; {ci, zi})|2 dx (33)

Because all the integrals are Gaussian, this loss can be com-

puted analytically, and so can Ṽ and its gradient.

In Fig. 6, we show convergence to the energy minimizer for

a mixture of three Gaussians (details and source code are

provided in the SM). The non-local mass transport dynamics

dramatically accelerates convergence towards the minimizer.

While gradient descent eventually converges in this setting—

there is no metastability—the dynamics are particularly slow

as the mass concentrates near the minimum and maxima of

the target function. However, with the birth-death dynamics,

this mass readily appears at those locations. The advantage

of the birth-death dynamics with a reinjection distribution

µb is highlighted by choosing an unfavorable initialization

in which the particle mass is concentrated around y = −2.
In this case, both GD and GD with birth-death (12) do

not converge on the timescale of the dynamics. With the

reinjection distribution, new mass is created near y = 2 and

convergence is achieved.

7.2. Student-Teacher ReLU Network

In many optimization problems, it is not possible to evaluate

Ṽ exactly. Instead, typically Ṽ is estimated as a sample

mean over a batch of data. We consider a student-teacher

set-up similar to (Chizat & Bach, 2018a) in which we use

single hidden layer ReLU networks to approximate a net-

work of the same type with fewer neurons. We use as

the target function a ReLU network with 50-d input and

10 hidden units. We approximate the teacher with neural

networks with n = 50 neurons (see SM). The networks

are trained with stochastic gradient descent (SGD) and the

mini-batch estimate of the gradient of output layer, which is

computed at each step of SGD, is used to compute Ṽ , which

determines the rate of birth-death. In experiments with the

reinjection distribution, we use (30) with Gaussian ρ̄.

As shown in Fig. 2, we find that the birth-death dynamics

accelerates convergence to the teacher network. We em-

phasize that because the birth-death dynamics is stochastic

at finite particle numbers, the fluctuations associated with

the process could be unfavorable in some cases. In such

situations, it is useful to reduce α as a function of time. On

the other hand, in some cases we have observed much more

dramatic accelerations from the birth-death dynamics.

8. Conclusions

The success of gradient descent requires good coverage of

the parameter space so that local updates can reach the min-
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Figure 1. Top left: Convergence of the gradient descent dynamics without birth-death, with birth-death, and using a reinjection distribution.

Top right: For appropriate initialization, the three dynamical schemes all converge to the target function. Bottom left: For bad initialization

(narrow Gaussian distributed around y=-2), GD and GD+birth-death do not converge on this timescale. Interestingly, with the reinjection

via distribution µb, convergence to the global minimum is rapidly achieved. Bottom right: The configuration of the particles in θ = (y, c).
Only with the reinjection distribution does mass exist near y = 2.
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Figure 2. The batch loss as a function of training time for the

student-teacher ReLU network described in Sec. 7.2. The birth-

death dynamics accelerates convergence, both with and without

the reinjection distribution.

ima of the loss function quickly. Our approach liberates

the parameters from a purely local dynamics and allows

rapid reallocation to values at which they can best reduce

the approximation error. At the mean-field level, our dy-

namics amount to a form of unbalanced transport, that we

implement at finite-particle level using a birth/death process.

These new dynamics provably converge to the minimiz-

ers of the loss function for a general class of minimization

problems.Remarkably, for interacting systems with we can

guarantee global convergence for sufficiently regular initial

conditions. We have also computed the asymptotic rate of

convergence with birth-death dynamics.

These theoretical results translate into significant reductions

in convergence time for our illustrative examples. Impor-

tantly, the schemes we have described are straightforward

to implement and come with little computational overhead.

Extending this type of dynamics to deep neural network ar-

chitectures could accelerate the slow dynamics at the initial

layers often observed in practice. Hyperparameter selec-

tion strategies based on evolutionary algorithms (Such et al.,

2017) provide another interesting potential application of

our approach.

While we have characterized the basic behavior of opti-

mization under the birth-death dynamics, many theoretical

questions remain. First, we did not address generalization;

understanding the role of the additional birth-death term

in controlling the generalization gap is an important fu-

ture question, in particular relating it to the “lazy-training”

regime of (Chizat & Bach, 2018a). Next, we need to as-

sume the existence of weak solutions via (14) with an initial

measure µ0 that has full support, though it may be possible

to certify that the dynamics exist for all times if µ0 decays

sufficiently fast. In addition, more explicit calculations of

global convergence rates for the interacting case and also

tighter rates for the non-interacting case would be excit-

ing additions. The proper choice of µb is another question

worth exploring because, as highlighted in our simple exam-

ple, favorable reinjection distributions can rapidly overcome

slow dynamics. Finally, a mean-field perspective on deep

neural networks would enable us to translate some of the

guarantees here to deep architectures.
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