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Abstract

We present a theoretical and empirical study of the gradient dynamics of overparam-
eterized shallow ReLU networks with one-dimensional input, solving least-squares
interpolation. We show that the gradient dynamics of such networks are determined
by the gradient flow in a non-redundant parameterization of the network function.
We examine the principal qualitative features of this gradient flow. In particular, we
determine conditions for two learning regimes: kernel and adaptive, which depend
both on the relative magnitude of initialization of weights in different layers and
the asymptotic behavior of initialization coefficients in the limit of large network
widths. We show that learning in the kernel regime yields smooth interpolants,
minimizing curvature, and reduces to cubic splines for uniform initializations.
Learning in the adaptive regime favors instead linear splines, where knots cluster
adaptively at the sample points.

1 Introduction

An important open problem in the theoretical study of neural networks is to describe the dynamical
behavior of the parameters during training and, in particular, the influence of the dynamics on the
generalization error. To make progress on these issues, a number of studies have focused on a
tractable class of architectures, namely single hidden-layer neural networks. For a fixed number of
neurons, negative results establish that, even with random initialization, gradient descent may be
trapped in arbitrarily bad local minima [27, 31], which motivates an asymptotic analysis that studies
the optimization and generalization properties of these models as the number of neurons m grows.

Recently, several works [13, 2, 6, 12, 23] explain the success of gradient descent at optimizing the loss
in the so-called over-parameterized regime, i.e., for the number of neurons significantly higher than
the number of training samples. In parallel, another line of work also established global convergence
of gradient descent in the infinite-width limit using a seemingly different scaling [8, 26, 22, 29],
relying on tools from optimal transport and mean-field theory. In a remarkable effort, [7] captured
an essential difference between these two methodologies, stemming from their different scaling as
m ! 1: in one case, the neural network model asymptotically behaves as a kernel machine, with a
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kernel given by the linear approximation around its initialization [19], which in turn implies that as
over-parameterization increases, the first-layer parameters stay close to their initial value. In contrast,
the mean-field scaling offers a radically different picture, whereby parameters evolve in the limit
m ! 1 following a PDE based on a continuity equation.

Although both scaling regimes explain the success of gradient descent optimization on over-
parametrized networks, they paint a different picture when it comes to generalization. The generaliza-
tion properties in the kernel regime borrow from the well established theory of kernel regression in
Reproducing Kernel Hilbert Spaces (RKHS), which has been applied to kernels arising from neural
networks in [17, 14, 20, 24, 10], and provide a somehow underwhelming answer to the benefit of neu-
ral networks compared to kernel methods. However, in practice large neural networks do not exhibit
the traits of kernel/lazy learnings, since filter weights significantly deviate from their initialization
despite the over-parameterization. Also, empirically, active learning provides better generalization
than kernel learning [7], although the theoretical reasons for this are still poorly understood.

In order to progress in answering this important question, we consider a simplified setting, and
study wide, single-hidden layer ReLU networks defined with one-dimensional inputs. We show how
the kernel and active dynamics define fundamentally different function estimation models. For a
fixed number of neurons, the neural network may follow either of these dynamics, depending on
the initialization and the learning rates of the layers, and described by a simple condition on the
initial weights. Specifically, we show that kernel dynamics corresponds to interpolation with cubic
splines, whereas active dynamics yields adaptive linear splines, where neurons accumulate at the
discontinuities and yield piecewise linear approximations.

1.1 Further related work

Our work lies at the intersection between two lines of research: the works, described above, that
develop a theory for optimization and generalization for shallow neural networks, and the works
that attempt to shed light on these properties on low-dimensional inputs. In the latter category,
we mention [4] for their study of the abilities of ReLU networks to approximate low-dimensional
manifolds, and [32] for their empirical study of 3D surface reconstruction using precisely the intrinsic
bias of SGD in overparametrised ReLU networks. Another remarkable recent work is [11], where the
approximation power of deep ReLU networks is studied in the context of univariate functions. Our
analysis in the active regime (cf Section 3.1) is closely related to [21], in which the authors establish
convergence of gradient descent to piece-wise linear functions under initialisations sufficiently close
to zero. We provide an Eulerian perspective using Wasserstein gradient flows that simplifies the
analysis, and is consistent with their conclusions. The implicit bias of SGD dynamics appears in
several works, such as [30, 15], and, closest to our setup, in [28], where the authors observe a link
between gradient dynamics and linear splines. They do not however observe the connection with
cubic splines, although they observe experimentally that the function returned by a network is often
smooth and not piecewise linear. Finally, we mention the works that attempt to study the tesselation
of ReLU networks on the input space [16].

1.2 Main contributions

The goal of this paper is to describe the qualitative behavior of the dynamics or 1D shallow ReLU
networks. Our main contributions can be summarized as follows.

• We investigate the gradient dynamics of shallow 1D ReLU networks using a “canonical”
parameterization (Section 3.1). We use machinery from mean field theory to show that
the dynamics in this case are are completely determined by the evolution of the residuals.
Furthermore, neurons will always converge at certain samples points where the residual is
large and of opposite sign compared to neighboring samples. This means that the dynamics
in the reduced parameterization biases towards functions that are piecewise-linear.

• We observe that the dynamics in full parameters are related to the dynamics in canonical
parameters by a change of metric which depends only on the “lift” at initialization (i.e., on
which full parameters are associated with a given function). In particular, the change of
metric is expressible in terms of invariants �i associated with each neuron (Proposition 4).
When �i � 0 the dynamics in full parameters (locally) agree with the dynamics in reduced

2



parameters; when �i ⌧ 0, the dynamics in full parameters (locally) follow kernel dynamics,
in which only the outer layer weights change.

• We consider the idealized kernel dynamics in the limit of infinite neurons, and we show
that the RKHS norm of a function f corresponds to a weighted L2 norm of the second
derivative f 00, i.e., a form of linearized curvature. For appropriate initial distributions of
neurons, the solution to kernel learning is a smooth cubic spline (Theorem 5). This illustrates
the qualitative difference between the “reduced” and “kernel” regimes, which depend on
parameter lift at initialization. Arbitrary initializations will locally interpolate between these
two regimes, as can be seen using NTK kernel [19].

• Throughout our presentation, we also discuss the effect of a scaling parameter ↵(m) applied
the network function (where m is the number of neurons), which becomes important as the
number of neurons tends to infinity. As argued in [7], when ↵(m) = o(m), the variation of
each neuron will asymptotically go to zero (lazy regime), so our local analysis translates
into a global one.

2 Preliminaries

2.1 Problem Setup

The training of a two-layer ReLU neural network with m scalar inputs, a single scalar output, and
least-squares loss solves the following problem:

min
z

L(z) =
1

2

s
X

j=1

|fz(xj)� yj |
2

where fz(x) =
1

↵(m)

m
X

i=1

ci[aix� bi]+, z = (a 2 R
m, b 2 R

m, c 2 R
m).

(1)

Here, S = {(xi, yi) 2 R
2, i = 1, . . . , s} is a given set of s samples, z is a vector of parameters, and

↵(m) is a normalization factor that will be important as we consider the limit m ! 1.

We are interested in the minimisation of (1) performed by gradient descent over the parameters z,
evolving in a domain D = R

3m:

z
(k+1) = z

(k) � ⌘rzL(z
(k)) .

As ⌘ ! 0, this scheme may be analysed through its continuous-time counterpart, the gradient flow

z(0) = z0, z
0(t) = �rL(z(t)). (2)

While (2) describes the dynamics z(t) in the parameter space D, one is ultimately interested in the
learning trajectories of the function f

z(t) they represent. Let F := {f : R ! R} denote the space of

square-integrable scalar functions, and ' : D ! F the function-valued mapping '(z) := fz . Then,
by observing that L(z) = R('(z)), with R(f) = 1

2

P

js |f(xj)� yj |
2, the chain rule immediately

shows that the dynamics of g(t) := '(z(t)) = f
z(t) are described by

g(0) = fz0
, g0(t) = �r'(z(t))>r'(z(t))rR(g(t)) . (3)

The dynamics in function space are thus controlled by a time-varying tangent kernel Kt :=
r'(z(t))>r'(z(t)), that under appropriate assumptions on the parametrisation remains nearly
constant throughout the optimization [19, 7]. This kernel may be interpreted as a change of metric
resulting from a specific parametrisation of the functional space.

A simple, yet important, observation from (3) is that the evolution of the predicted function depends
on two essential aspects: the initialization and the parametrisation. In particular, the coefficients of
each neuron can be rescaled using a positive scale factor k > 0 according to (a, b, c) 7! (ak, bk, c/k).
Similarly, the normalization factor ↵(m) can be absorbed into ci for all i.

In order to study the impact of different choices of parametrisation and initialisation, as well as the
asymptotic behavior of (3) as m increases, we introduce the following canonical parameterization:

f̃w(x) =
1

m

m
X

i=1

rihx̃, d(✓i)i+, w = (r 2 R
m,θ 2 [0, 2⇡)m), x̃ = (x, 1). (4)

3



Figure 1: Left: Input samples (blue x’s) to which we fit a neural network fz(x) using the least
squares loss (1). Clearly, fz(x) is piecewise linear with the boundaries between pieces occurring
at (ei, fz(ei))

m
i=1 (green circles). Right: the neurons visualized as (ui, vi) in (6). Each particle

represents a neuron and the color indicates the sign of ✏i. The samples xj correspond to the lines
uxj + v = 0 in this space. These sample lines divide the space into the colored regions which
correspond to different activation patterns.

where d(✓i) = (cos ✓i, sin ✓i) 2 S1 and we chose ↵(m) = m. As shown in Section 3.1, this choice
of normalization, together with an initialisation where ri are sampled iid from a distribution with
O(1) variance, provides a well-defined limit of the dynamics as m ! 1, and provides a basis to
compare the other normalization and parametrisation choices.

2.2 Reparametrisation and Normalization

Thanks to the fact that the canonical parametrisation admits a well-defined limit, we can study the
effect of specific parametrisations and normalisations by expressing them as changes of variables

relative to w 7! f̃w. The mapping from the weights (a, b, c) to (r,θ) in the canonical parametrisation
is given by

π(ai, bi, ci) =

✓

m

↵(m)
ci

q

a2i + b2i , arctan(�bi/ai)

◆

= (ri, ✓i). (5)

This map satisfies f̃
π(z) = fz . We also define the loss with respect to this parameterization as

L̃(w) = L(z) where w = π(z). Section 3.2 explains how the Jacobian of π affects the dynamics
relative to the canonical dynamics. In particular, this illustrates the drastic effects of a choice of
normalisation ↵(m) = o(m).

Note that fz(x) (and thus f̃w(x)) are continuous piecewise linear functions in x. The knots of of these

functions are the points where the operand inside a ReLU activation changes sign: ei =
bi
ai
, ai 6=

0, i = 1, . . . ,m. See the left image in Figure 1 for an example of a function fz and its knots.

2.3 Visualizing the Network State

In this paper, we visualize the state of the network in two ways. First, we plot fz to visualize the
piecewise-linear function encoded by the network and its knots at given time (Figure 1, Left). We use

the alternative parameterization f̃w to visualize the reduced state of the network in R
2, by plotting a

neuron (ri, ✓i) as a particle with coordinates

(ui, vi) = (|ri| cos(✓i), |ri| sin(✓i)) (6)

and coloring each particle according to ✏i = sign(ri). Figure 1 (right) shows an example of this
visualization. In the standard parameterization, a neuron (ai, bi, ci) coincides with a point x if
bi
ai

= vi

ui
= x. Thus, in the visualization, a sample point xj corresponds to the line satisfying the

equation uxj + v = 0. These sample lines, divide the phase space into activation regions where a
neuron has a fixed activation pattern (the colored regions in the right image of Figure 1).
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3 Training Dynamics

Our goal is to solve (1) using the gradient flow (2) of the loss L(z)1. We begin in Section 3.1 by
investigating the dynamics in the canonical parametrisation:

w(0) = w0, w
0(t) = �rL̃(w(t)). (7)

While the relationship between flows (2) and (7) is nonlinear, we show in Section 3.2 that these are
related by a simple change of metric.

3.1 Dynamics in the Canonical Parameters

We now examine the qualitative behavior of the gradient flow using the canonical parameterization (4).
In this setting, when (ri, ✓i) are initialized i.i.d. from some base distribution µ0(r, ✓), the function

f̃w is well-defined pointwise as m ! 1 (by the law of large numbers). We optimize the loss over
both θ and r using the reduced gradient flow (7).

Using the initialization (ri, ✓i) ⇠ µ, and following the mean-field formulation of single-hidden
layer neural networks of [22, 8, 26], we express the function as an expectation with respect to the
probability measure µ over the cylinder D = R⇥ S1:

f̃w(x) =

Z

D

'(w;x)µ(m)(dw) , (8)

where '(w;x) := rihx̃, d(✓i)i+ and µ(m)(w) = 1
m

Pm
i=1 �wi

(w) is the empirical measure deter-
mined by the m particles wi, i = 1 . . .m. The least squares loss in this case becomes

L̃(w) =
1

2
kf̃w � yk2X (9)

= Cy �
1

m

m
X

i=1

h'wi
, yiX +

1

2m2

m
X

i,i0=1

h'wi
,'wi0

iX , (10)

where hf, giX :=
Ps

j=1 f(xj)g(xj) is the empirical dot-product. This loss may be interpreted as

the Hamiltonian of a system of m-interacting particles, under external field F and interaction kernel
K defined respectively by F (w) := h'w, yiX ,K(w,w0) := h'w,'w0iX . We may also express this
Hamiltonian in terms of the empirical measure, by abusing notation

L̃(µ(m)) = Cy �
Z

D

F (w)µ(m)(dw) +
1

2

ZZ

D2

K(w,w0)µ(m)(dw)µ(m)(dw0) .

A direct calculation shows that the gradient rwi
L̃(w) can be written as

m

2
rwi

L̃(w) = rwV (wi;µ
(m)) ,

where V is the potential function V (w;µ) := �F (w) +
R

D
K(w,w0)µ(dw0).

The gradient flow in the space of parameters w can now be interpreted in Eulerian terms as a gradient
flow in the space of measures over D, by using the notion of Wasserstein gradient flows [22, 8, 26].
Indeed, particles evolve in D by “feeling” a velocity field rV defined in D. This formalism allows us
now to describe the dynamics independently of the number of neurons m, by replacing the empirical

measure µ(m) by any generic probability measure µ in D. The evolution of a measure under a generic
time-varying vector field is given by the so-called continuity equation:2

@tµt = div(rV µt) . (11)

The global convergence of this PDE for interaction kernels arising from single-hidden layer neural
networks has been established under mild assumptions in [22, 8, 25]. Although the conditions for

1To be precise, we should replace the gradient rL(z) with the Clarke subdifferential ∂L(z) [9], since
L(z) is only piecewise smooth. At generic smooth points z, the subdifferential coincides with the gradient
∂L(z(t)) = {rL(z)}.

2Understood in the weak sense, i.e., ∂t

�R

D
φ(w)µt(dw)

�

= �
R

hrφ(w),rV (w;µt)iµt(dw), 8φ 2

C1

c (D) continuously differentiable and with compact support.
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global convergence hold in the mean field limit m ! 1, a propagation-of-chaos argument from
statistical mechanics gives Central Limit Theorems for the behavior of finite-particle systems as
fluctuations of order 1/

p
m around the mean-field solution; see [26, 25] for further details.

The dynamics in D are thus described by the velocity field rV (w;µt), which depends on the current
state of the system through the measure µt(w), describing the probability of encountering a particle
at position w at time t. We emphasize that equation (11) is valid for any measure, including the

empirical measure µ(m), and is therefore an exact model for the dynamics in both the finite-particle
and infinite-particle regime. Let us now describe its specific form in the case of the empirical loss
given above.

Assume without loss of generality that the data points xj 2 R, j  s satisfy xj  xj0 whenever
j < j0. Denote

Cj := {j0; j0  j} for j = 1 . . . s, Cs+j := {j0; j0 > j}, for j = 1 . . . s� 1 .

We observe that for each j, two angles ↵±
j = arctan(xj)± ⇡/2 partition the circle S1 into 2s� 1

regions Ak (visualized as the colored regions in Figure 1), which are in one-to-one correspondence
with the sets Ck, in the sense that

✓ 2 Ak () {j; hx̃j , d(✓)i � 0} = Ck .

We also denote by Bj the half-circle where hx̃j , ✓i � 0. Let t(✓) be the tangent vector of S1 at ✓ (so

t(✓) = d(✓)?) and w = (r, ✓), where we suppose ✓ 2 Ak. A straightforward calculation (presented
in Appendix B) shows that the angular and radial components of the velocity field rV (w;µt) are
given by

rθV (w;µt) = r

*

X

j2Ck

⇢j(t)x̃j , t(✓)

+

,

rrV (w;µt) =

*

X

j2Ck

⇢j(t)x̃j , d(✓)

+

,

(12)

where ⇢j(t) =
R

R⇥Bj
rhx̃j , ✓iµt(dr, d✓)� yj is the residual at point xj at time t. These expressions

show that the dynamics are entirely controlled by the s-dimensional vector of residuals ρ(t) =
(⇢1(t), . . . ⇢s(t)), and that the velocity field is piece-wise linear on each cylindrical region R⇥Ak

(e.g. Figure 9 in Appendix D). Under the assumptions that ensure global convergence of (11), we

have limt!1 L̃(µt) = 0, and therefore kρ(t)k ! 0. The oscillations of ρ(t) as it converges to zero
determine the relative orientation of the flow within each region. The exact dynamics for the vector
of residuals are given by the following proposition, proved in Appendix B:

Proposition 1. For each j,

⇢̇j(t) = �x̃>
j

X

k;Ak⇢Bj

Σk(t)

0

@

X

j02Ck

⇢j0(t)x̃j0

1

A , (13)

where

Σk(t) =

Z

R⇥Ak

�

r2t(✓) t(✓)> + d(✓) d(✓)>
�

µt(dr, d✓)

tracks the covariance of the measure along each cylindrical region.

Equation (13) defines a system of ODEs for the residuals ρ(t), but its coefficients are time-varying,
and behave roughly as quadratic terms in ρ(t) (since they are second-order moments of the measure
whereas the residuals are first-order moments). It may be possible to obtain asymptotic control of the
oscillations ρ(t) by applying Duhamel’s principle, but this is left for future work.

Now let w = (r, ✓) with ✓ at a boundary of two regions Ak, Ak+1. The velocity field is modified at
the transition by

rV (w)|Ak
�rV (w)|Ak+1

= ⇢j⇤(t)

✓

rhx̃j⇤, t(✓)i
hx̃j⇤, ✓i

◆

,

where j⇤ is such that hx̃j⇤, d(✓)i = 0, since ✓ is at the boundary of Ak. It follows that the only
discontinuity is in the angular direction, of magnitude |r⇢j⇤(t)|kx̃j⇤k. In particular, an interesting
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phenomenon arises when the angular components of rV (w)|Ak
and rV (w)|Ak+1

have opposite
signs, corresponding to an “attractor” or “repulsor” that attracts/repels particles along the direction

given by x̃j⇤ (See Figure 9 in Appendix D). Writing sk =
D

P

j2Ck
⇢j(t)x̃j , t(✓)

E

, we deduce from

(12) that this occurs when

|sk| < |⇢j⇤(t)|kx̃j⇤k and sign(sk) 6= sign(⇢j⇤(t)). (14)

We expand this condition in the following Lemma.

Lemma 2. A data point xk is an attractor/repulsor if and only if

k�1
X

i=1

⇢i⇢khx̃i, x̃ki > �⇢2kkx̃kk2, or

s
X

i=k+1

⇢i⇢khx̃i, x̃ki > �⇢2kkx̃kk2. (15)

In words, mass will concentrate towards input points where the residual is currently large and of
opposite sign from a weighted average of neighboring residuals. This is in stark contrast with the
kernel dynamics (Section 3.3), where there is no adaptation to the input data points. We point out that
this qualitative behavior has been established in [21] under appropriate initial conditions, sufficiently
close to zero, in line with our mean-field analysis.

Regularised Objective in Functional Space: The global convergence of (11) studied in [8] in-

cludes the case where the energy functional L̃ = R(
R

Φµ(dw)) is augmented with a regulariser

Γ(µ) =
R

�(w)µ(dw) sharing the same degree of homogeneity as Φ. If �(w) = |r| this corresponds

to the Total Variation norm of the signed Radon measure µ̃(w) =
R

µ(dr, w): Γ(µ) = kµ̃kTV. The
Wasserstein gradient flow on the resulting regularised objective

min
µ̃

L̃(µ̃) + �kµ̃kTV (16)

thus converges to global minimisers under appropriate initial conditions (which only apply in the
infinite width regime m = 1). The regularised dynamics are obtained by replacing rrV (w;µt) =
D

P

j2Ck
⇢j(t)x̃j , d(✓)

E

in (12) by

rrV (w;µt) =

*

X

j2Ck

⇢j(t)x̃j , d(✓)

+

+ �sign(r) .

In the case of scalar inputs, [28] recently characterised the solutions of (16) in functional space, as

min
f

L(f) + �

Z

|f 00(x)|dx , (17)

for vanishing boundary conditions. In Section 3.3 we will see that the kernel regime corresponds
to a very different prior, where the L1 norm on the second derivatives is replaced by a Hilbert L2

norm. The distinction between kernel and active regime in terms of L1 versus L2 norms was already
studied in [3].

3.2 Dynamics in the Full Parameters

The dynamics of gradient flow (2) are different from the dynamics of the gradient flow (7). For
the gradient flow in canonical parameters we have observed adaptive learning behavior under the
assumption of iid distribution of parameter initialization. The full set of parameters z = (a, b, c),
may exhibit both kernel and adaptive behavior depending on the initialization. To characterize this
behavior we rely on the following lemma:

Lemma 3. If z(t) = (a(t), b(t), c(t)) is a solution of the gradient flow (2), then the quantities

δ = (ci(t)
2 � ai(t)

2 � bi(t)
2)mi=1 (18)

remain constant for all t. In particular, given a reduced neuron (ri, ✓i), we can uniquely recover the
original neuron parameters (ai, bi, ci) from �i computed from the initialization.

7



� = �100 � = 0 � = 100

Figure 2: The value of � interpolates between different kinds of local trajectories of neurons. The

plots are in the coordinate frame (rL̃,rL̃?). Left: the neurons move radially towards and away
from the origin. Middle: the trajectories containing both radial and tangential components. Right: the

trajectories are parallel to the gradient rL̃.

Lemma 3 allows us to analyze how canonical parameters evolve under full gradient flow in (a, b, c).
Overall, the behavior is qualitatively the same, except it is in addition dependent on the relative scale
of redundant parameters.

Proposition 4. Let z(t) be a solution of the gradient flow (2) of L(z), and let δ = (�i) 2 R
m be

the vector of invariants (18), which depend only on the initialization z(0). If w(t) = (r(t),θ(t)) is
curve of canonical parameters corresponding to z(t), then we have that

ẇi(t) = Pi ·rwi
L̃(w), i = 1, . . . ,m, (19)

where

Pi =

"

m2

α(m)2 (a
2
i + b2i + c2i ) 0

0 1
a2
i
+b2

i

#

. (20)

With respect to rescaled differentials d⌧ = rd✓, corresponding to representing the flow locally in a
Cartesian system aligned with the radial direction (pointing away from z = 0) and its perpendicular,
the flow can be written as



dri
d⌧i

�

=

"

m2

α(m)2 (a
2
i + b2i + c2i ) 0

0 c2i

#

.



rriL̃(w)dt
rτiL̃(w)dt

�

, i = 1, . . . ,m, (21)

From these equations, one can see that if c2i ⌧ a2i + b2i for all i (i.e., �i ⌧ 0), then radial motion will
dominate. In other words, initializing the first layer with significantly larger values than the second
leads to kernel learning. On the other hand, if c2i � a2i + b2i , then a solution of the gradient flow (2)
will follow the same trajectory as for the reduced gradient flow (7). Also, if ↵(m) = o(m), the radial
component will dominate as m increases.

Figure 2 shows the trajectories corresponding to different values of �i for each neuron, with ↵(m) =
m.The extreme cases of � = �1 and � = +1 correspond to the “kernel” and “adaptive” regimes,
respectively. Note that as � increases, the neurons cluster at sample points, as explained in our
analysis of the reduced dynamics in Section 3.1, and in accordance to [21].

3.3 Kernel Dynamics

We now consider the dynamics in the special case where � ⌧ 0, and we consider m ! 1. To obtain
the kernel regime in this case, it is sufficient to consider a normalisation ↵(m) = o(m). In particular,
when ↵(m) = 1, as shown in the previous section, the parameters a and b remain mostly fixed and
the parameters c change throughout training, corresponding to the so-called random-features (RF)
kernel of Rahimi and Recht [24].

In the limit case where a and b are completely fixed to their initial values, if we choose c close to
the zero vector, then the least squares problem (1) solved using gradient flow, is equivalent to the
minimal-norm constraint problem solution:

minimize kck2
subject to fz(xi) = yi, i = 1, . . . , s.

(22)
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Given an initial distribution µ0 over the domain Da ⇥Db of parameters a and b, the random-feature
(RF) kernel associated with (22) is given by

KRF(x, x
0) =

Z

Da⇥Db

[xa� b]+ · [x0a� b]+µ0(da, db) . (23)

The solution of (22) can now be written in terms of this RF kernel using the representer theorem:

f̃z(x) =
s
X

j=1

↵jKRF(xj , x) , (24)

where ↵ is a vector of minimal RKHS norm that fulfills the interpolation constraints. Under appropri-
ate assumptions, the solution to (22) is a cubic spline, as shown by the following Theorem proved in
Appendix A.

Theorem 5. Assume the measure µ0 has finite second moment �2
µ0

:= E(a,b)⇠µ0
(a2 + b2) < 1. Let

µ0(a, b) = q(a)µa(b) be the decomposition in terms of marginal and conditional, and assume µa is
bounded for each a. Define ⌫(u) =

R

|a|µa(ab)dq(a). Then the solution (22) solves

min
f

kfk2RF :=

Z

Ω

|f 00(u)|2

⌫(u)
du s.t. f(xi) = yi , i = 1 . . . s , (25)

where Ω := supp(⌫). Moreover, if µ0 is such that µ0(a, b) = q(a)1(b 2 Ia), where Ia ⇢ R is an
arbitrary interval, then (22) will be a cubic spline.

Notice that the assumptions on µ0 to obtain an exact cubic spline kernel impose that if A,B is a
random vector distributed according to µ0, then B|A is uniform over an arbitrary interval IA that
can depend upon A. The proof illustrates that one may generalise the interval IA by any countable
union of intervals. In particular, independent uniform initialization yields cubic splines, but radial
distributions, such as A,B being jointly Gaussian, don’t. In that case, the kernel is expressed in terms
of trigonometric functions [7, 3]. In our setup this becomes

Kr
RF(x, x

0) =
C

4⇡

n

(⇡ � arctan(x0) + arctan(x))(xx0 + 1) + (26)

+

✓

x0

1 + (x0)2
� x

1 + x2

◆

(xx0 � 1) + (x+ x0)

✓

(x0)2

1 + (x0)2
� x2

1 + x2

◆

o

,

as verified in Appendix A.

The normalization choice ↵(m) =
p
m results in a different kernel, the Neural Tangent Kernel of

[19]. In this scaling regime, the linearization of the model becomes

KNTK(x, x
0) = rzfz(x)

>rzfz(x
0)

=
1

m

m
X

i=1

[aix� bi]+[aix
0 � bi]+ +

xx0 + 1

m

m
X

i=1

c2i1(aix� bi > 0) · 1(aix
0 � bi > 0)

m!1! KRF(x, x
0) + (xx0 + 1) · E(c2)

Z

1(ax > b) · 1(ax0 > b)µ0(da, db) . (27)

The extra term in KNTK captures lower-order regularity as shown in the following corollary

Corollary 6. Under the same assumptions as in Theorem 5, we have

kfk2NTK := inf

⇢Z

Ω

✓

|f 00
1 (u)|

2

⌫(u)
+ E(c2)

✓

|f 0
2(u)|

2

⌫(u)
+

|uf 0
3(u)� f3(u)|

2

u2⌫(u)

◆◆

du; f = f1 + f2 + f3

�

.

(28)
Additionally, if µ0 is such that µ0(a, b) = q(a)1(b 2 Ia), where Ia ⇢ R is an arbitrary interval, then
KNTK is also piece-wise cubic.

We remark that machine learning packages such as PyTorch use a uniform distribution for linear layer
parameter initialization by default. We verify that indeed, solutions to (1) converge to cubic splines
as m grows in Figure 4. We also point out that in Kernel Learning, early termination of gradient flow
acts as a regularizer favoring smooth, non-interpolatory solutions (see [19]).
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Uniform Initialization Gaussian Initialization

Figure 3: 1D slice of the plot of the different terms of the tangent kernel (28) for x = 0.5 with a
network consisting of m = 25000 neurons. The parameters a and are initialized from Uniform and
Gaussian distributions with 1p

m
scaling.

m = 102 m = 103 m = 104

Figure 4: A cubic spline with vanishing second derivative at its endpoints (blue line) is approximated
by a neural network (� = �100) while varying the number m of neurons.

The analysis and comparison of these kernels has recently been addressed in [5, 14] in the general
high-dimensional setting, by describing its spectral decay in terms of spherical harmonics. Our results
complement them in the particular one-dimensional setting thanks to the explicit functional form
of the resulting RKHS norms. Additionally, Savarese et al. [28] study the functional form of the
minimisation in the variation norm, leading to a penality of the form

R

|f 00(u)|du. We have instead

L2 norms (RKHS) in the kernel regime. The L2 norms do not provide any adaptivity as opposed to
the L1 norm [3]. An interesting question is to precisely describe the transition between these two
regimes as a function of the initialisation.

4 Numerical Experiments

For the numerical experiments, we follow gradient descent using the parameterization (1) with
↵(m) =

p
m, appropriately scaling the weights a, b, c to achieve different dynamical behavior. In

addition to those presented here, Section D presents additional numerical experiments

Cubic Splines. We show in Figure 4 that when �� ⌧ r2 (i.e.we are in the kernel regime), growing
the number of neurons grows causes the network function fz converges to a cubic spline. For this
experiment, we fit 10 points sampled from a square wave, and train only the parameters c (i.e.�i = 1).

Network Dynamics as a Function of �. We show in Figure 5 that as we vary �, the network
function goes from being smooth and non-adaptive in the kernel regime (� = �1, i.e.training only

10



� = �1 � = �1 � = 0 � = 1 � = 1
Figure 5: Comparison of fitting the network function to a sinusoid as � varies (10000 epochs).

the parameter c) to very adaptive (� = 1, i.e.training only the parameters a, b). Note how as � gets
large, clusters of knots emerge at the sample positions (collinear points in the uv diagrams).

5 Concluding Remarks

We have studied the implicit bias of gradient descent in the approximation of univariate functions
with single-hidden layer ReLU networks. Despite being an extremely simplified learning setup, it
provides a clear illustration that such implicit bias can be drastically different depending on how the
neural architecture is parameterized, normalized, or even initialized. Building up on recent theoretical
work that studies neural networks in the overparameterized regime, we show how the model can
behave either as a ‘classic’ cubic spline interpolation kernel, or as an adaptive interpolation method,
where neurons concentrate on sample points where the approximation most needs them. Moreover,
in the one-dimensional case, we complement existing works [29] to reveal a clear transition between
these two extreme training regimes, which roughly correspond to W 1,2 and W 2,2 Sobolev spaces
respectively.

Although in our univariate setup there is no clear advantage of one functional space over the other, our
full description of the dynamics may prove useful in the high-dimensional regime, where the curse of
dimensionality hurts Hilbert spaces defined by kernels [3]. We believe that the analysis of the PDE
resulting from the mean-field regime (where adaptation occurs) in the low-dimensional setting will be
useful to embark in the analysis of the high-dimensional counterpart. We note however that naively
extending our analysis to high-dimensions would result in an exponential increase in the number of
regions that define our piecewise linear flow, thus we anticipate new tools might be needed to carry it
over. Moreover, the interpretation of ReLU features in terms of Green’s functions (as first pointed out
in [29]) does not directly carry over to higher dimensions. Lastly, another important limitation of the
mean-field analysis is that it cannot be easily adapted to deeper neural network architectures, since
the neurons within the network are no longer exchangeable as in the many-particle system described
above.
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Appendix

A Spline Kernels

A.1 Proof of Theorem 5

Consider the factorization of µ0 in terms of the marginal with respect to a, q(a) and its conditional
µa(b): µ0(a, b) = q(a)µa(b). Observe that

KRF(x, x
0) =

Z

Da⇥Db

[ax� b]+ · [ax0 � b]+dµ0(a, b) (29)

=

Z

Da

Ka(x, x
0)dq(a) ,with

Ka(x, x
0) :=

Z

Ia

[ax� b]+[ax
0 � b]+dµa(b) .

We will argue that each Ka defines a RKHS Ha of twice-continuously differentiable functions with
appropriate boundary condition, and with norm kfka corresponding to a weighted squared second
derivative. We will then conclude by leveraging the fact that averages of positive definite kernels also
define an RKHS [1, 18].

We verify that for each a 6= 0 this kernel defines a natural spline. Let Ia = supp(µa) ✓ Db and

Ĩa = {u; au 2 Ia}. Let sa = inf{x 2 Ia}. For f 2 C2(Ia) with f 0 and f 00 in L2(Ia) such that

f(sa) = f 0(sa) = 0, let fa(x) := f(ax), x 2 Ĩa. Assume first that Ia is an interval (and thus Ĩa is

also an interval). By the Taylor integral remainder theorem, we have for x 2 Ĩa that

fa(x) = f(ax) =

Z ax

sa

(ax� u)f
00

(u)du =

Z

Ia

[ax� u]+
f

00

(u)

µa(u)
µa(u)du . (30)

This shows that ga = f
00

µa
is the kernel representation of fa corresponding to Ka. This kernel

defines an RKHS Ha over the space of C2 functions f supported in Ĩa with boundary conditions
f(sa/a) = f 0(sa/a) = 0. Moreover, its RKHS norm is by definition

kfak2Ka
=

Z

Ia

�

�

�

�

�

f
00

(u)

µa(u)

�

�

�

�

�

2

dµa(u) .

For general support Ia, consider the closure Ica := (inf Ia, sup Ia). Since Ia ✓ R is measurable

and the support of a continuous function, we can write it as Ia = [1
k=1I

(k)
a , where I

(k)
a are disjoint

intervals. We modify the boundary condition for f accordingly, as

f(sup I(k)a ) = f(inf I(k+1)
a ) and f 0(sup I(k)a ) = f 0(inf I(k+1)

a ) 8 k. (31)

We extend the representation (30) to Ica by first extending ga to R as

ḡa(u) =

(

f
00

(u)
µa(u)

u 2 Ia
0 otherwise.

We verify that for f in C2(Ica) satisfying the boundary conditions (31), ḡa satisfies

fa(x) =

Z

Ic
a

[ax� u]+ḡa(u)µa(u)du . (32)

Therefore, if h 2 C2(Ĩca), the change of variables h = fa for some f in C2(Ica) yields a kernel
representation

ĥa(u) =

(

h
00

(a�1u)
a2µa(u)

u 2 Ia
0 otherwise.

,
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and thus

khk2Ka
=

1

|a|

Z

Ĩa

|h
00

(u)|2

µ̄a(u)
du , (33)

where µ̄a(u) := µa(au). For f 2 C2(R), we can thus decompose it as f = f̃ + f̄ , where f̃ 2 Ha is

supported in Ĩca and satisfies the boundary conditions (31), and f̄ 00 ⌘ 0 in Ĩa. The projection of f

onto Ha is f̃ and

kPHa
fk2Ka

=
1

|a|

Z

Ĩa

�

�

�

�

�

f
00

(u)

µ̄a(u)

�

�

�

�

�

2

dµ̄a(u) . (34)

Let us now show that we can ‘integrate’ the collection of kernels Ka and define a resulting RKHS
HRF whose kernel is precisely KRF. For that purpose, we verify first that for all x,

Z

Da

Ka(x, x)dq(a) < 1 . (35)

Indeed, observe that
Z

Da

Ka(x, x)dq(a) =

Z

Da⇥Db

[ax� b]2+dµ0(a, b)

 2max(1, x2)

Z

(a2 + b2)µ0(da, db)  2max(1, x2)�2
µ0

< 1 ,

which proves (35). We can thus apply Theorem 3.1 from [18], which establishes that KRF defines an
RKHS

HRF =

⇢

f ; f =

Z

Da

fadq(a) ; fa 2 Ha

�

,

with norm

kfk2KRF
:= inf

⇢Z

Da

kfak2Ka
dq(a) ; f =

Z

Da

fadq(a)

�

,

which, from (34), gives

kfk2KRF
= inf

(

Z

Da

 

Z

Ĩa

|f
00

a (u)|
2

µ̄a(u)
du

!

dq(a)

|a|
; f =

Z

Da

fadq(a)

)

. (36)

Let us now show that (36) has an explicit form as a weighted curvature. Let Ω := [aĨa. From
f =

R

Da
fadq(a) we deduce that

8 u 2 Ω , f 00(u) =

Z

Da

f 00
a (u)dq(a) .

For each u 2 Ω, denote �(a) = f 00
a (u) for a 2 Bu := {a;u 2 Ĩa}, and ⌫(u) :=

R

Bu
|a|µ̄a(u)dq(a).

Since kfk2KRF
< 1 and f 00 2 C0(Ω), let us first argue that ⌫(u) = 0 necessarily implies that

f 00(u) = 0. Indeed, if ⌫(u) = 0, it follows that µ̄a(u) = 0 for all a, and since each f 00
a is also

continuous, from (36) we deduce that necessarily f 00
a (u) = 0 for all a, which implies that f 00(u) = 0.

Let us now assume that ⌫(u) > 0. The constrained minimisation problem

min
β(a)

Z

Bu

|�(a)|2
dq(a)

µ̄a(u)|a|
s.t f 00(u) =

Z

Bu

�(a)dq(a) (37)

has an associated Lagrangian

L(�,�) =

Z

Bu

|�(a)|2
dq(a)

µ̄a(u)|a|
+ �

✓

f 00(u)�
Z

Bu

�(a)dq(a)

◆

.

The first-order KKT optimality conditions directly give

�(a) =
|a|µ̄a(u)f

00(u)
R

Bu
|a0|µ̄a0(u)dq(a0)

, (38)
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resulting in a minimum of (37) at
|f 00(u)|2

⌫(u)
. (39)

Finally, we need to show that one can make these optimal choices for each u to define fa 2 Ha for

each a. From (38), f 00
a is defined for each u 2 Ĩa as f 00

a (u) = f 00(u)⌘a(u), where ⌘a(u) =
|a|µ̄a

ν(u)

is the normalised density satisfying
R

⌘a(u)dq(a) = 1 for all u. We verify that f 00⌘a is in L2(Ĩa)
thanks to the smoothness hypothesis of µ0. Indeed, by assumption, the normalised density ⌘a is
bounded for each a, supu ⌘a(u)  Ka, and thus

Z

Ĩa

|f 00
a (u)|

2du =

Z

Ĩa

|f 00(u)|2⌘a(u)
2du  K2

a

Z

Ω

|f 00(u)|2

⌫(u)2
du < 1 ,

since f 00 2 L2(Ω). We can therefore define fa on each Ĩa thanks the reproducing property

8 a, x 2 Ĩa , fa(x) =

Z

f 00
a (u)[x� u]+du .

Integrating over a yields
Z

Da

fa(x)dq(a) =

Z

Da

Z

f 00
a (u)[x� u]+(du)dq(a) =

Z ✓Z

f 00
a (u)dq(a)

◆

[x� u]+(du)

=

Z

f 00(u)[x� u]+du = f(x) ,

which proves that (fa)a is a feasible set to represent f in (36).

Finally, by applying the optimality conditions (37, 39) to each u 2 Ω one obtains

kfk2KRF
=

Z

Ω

|f 00(u)|2

⌫(u)
du

which concludes the proof of the first statement.

Finally, let us verify that in the specific case when µ0(a, b) = q(a)1(b 2 Ia) the kernel is piece-wise

cubic. Fix a 2 Da and suppose first that a > 0. Let Ia = [sa, Sa], and denote Ĩa = [sa/a, Sa/a]. A

direct calculation shows that when x0 2 Ĩa, Ka(x, x
0) is 0 when x < sa/a, cubic in x when x  x0,

and linear when x > x0. When x0 < sa/a, then Ka(·, x
0) ⌘ 0, and finally when x0 > Sa/a we

have that Ka(x, x
0) = 0 for x < sa/a, Ka(x, x

0) is cubic for x 2 Ĩa and linear for x > Sa/a. We
also verify that its first and second derivatives are continuous. In summary, the evaluation functions

Ka(·, x
0) are 0 for x < sa/a, a piece-wise cubic inside Ĩa, and linear for x > Sa/a. When a < 0 we

verify the same holds true by flipping the sense of inequalities. ⇤

A.2 Proof of Corollary 6

The proof follows closely the previous section.

Observe first that KNTK can be written as the sum of three kernels: KNTK = KRF+E(c2)(K1+K2),
with

K1(x, x
0) = Eµ0

[1(ax�b > 0)1(ax0�b > 0)] , K2(x, x
0) = xx0

Eµ0
[1(ax�b > 0)1(ax0�b > 0)] .

We will first assume that µ0 is concentrated at a = 1 and uniform b 2 (0, 1). We can then extend to
the general case by the previous proof. Observe that for f 2 C1([0, 1)) with f(0) = 0 the Taylor
integral remainder at order 1 now gives

f(x) =

Z 1

0

f 0(u)1(x� u > 0)du , x 2 (0, 1) .

It follows that f 0 is the kernel representation associated to K1(x, x
0).

Similarly,

xf(x) =

Z 1

0

f 0(u)x1(x� u > 0)du , x 2 (0, 1) ,
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which shows that f 0 is the kernel representation of g(x) = xf(x) corresponding to the kernel
K2(x, x

0). A change of variables then implies that

f 0 =
⇣ g

x

⌘0
=

xg0 � g

x2

is the contribution of K2 to the RKHS norm of KNTK. The proof is completed by repeating
the argument used in the proof of Theorem 5 that replaces the uniform measure in the interval
(a, b) 2 {1}⇥ (0, 1) by a smooth density µ0. We leave the derivation of an explicit form of the mixed
norm for future work. ⇤.

A.3 Radial Kernel

We verify by direct calculation that

Kr
RF(x, x

0) =

Z

Da⇥Db

[ax+ b]+ · [ax0 + b]+µ0(da, db) (40)

=
1

2⇡

Z arctan(x)+π

arctan(x0)

Z 1

0

r3(cos(⌘)x+ sin(⌘))(cos(⌘)x0 + sin(⌘))µ0(dr)d⌘

=
C

2⇡

Z arctan(x)+π

arctan(x0)

�

xx0 cos2(⌘) + sin2(⌘) + (x+ x0) cos(⌘) sin(⌘)
�

d⌘

=
C

2⇡



xx0
✓

⌘

2
+

sin(2⌘)

4

◆

+

✓

⌘

2
� sin(2⌘)

4

◆

+
(x+ x0)

2
sin2(⌘)

�arctan(x)+π

arctan(x0)

=
C

4⇡

n

(⇡ � arctan(x0) + arctan(x))(xx0 + 1) +

✓

x0

1 + (x0)2
� x

1 + x2

◆

(xx0 � 1) +

+(x+ x0)

✓

(x0)2

1 + (x0)2
� x2

1 + x2

◆

o

,

B Mean Field Computations

Making use of notation introduced in Section 3.1, we have that if w = (r̂, ✓), with ✓ 2 Ak, then

rθV (w;µt) = �rθF (w) +

Z

D

rθK(w,w0)µt(dw
0)

= �r̂

0

@

X

j2Ck

yjhx̃j , t(✓)i �
Z

D

r0
X

j2Ck

hx̃j , t(✓)ihx̃j , d(✓
0)i+µt(dr̂

0, d✓0)

1

A

= �r̂
X

j2Ck

hx̃j , t(✓)i
 

yj �
Z

R⇥Bj

r̂0hx̃j , d(✓
0)iµt(dr̂

0, d✓0)

!

= r̂

*

X

j2Ck

⇢j(t)x̃j , t(✓)

+

, (41)

where ⇢j(t) = fµt
(xj) � yj =

R

R⇥Bj
chx̃j , ✓iµt(dr̂, d✓) � yj is the residual at point xj at time t.

Similarly, the field in the direction of the charges is given by

rr̂V (w;µt) =

*

X

j2Ck

⇢j(t)x̃j , ✓

+

. (42)
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B.1 Proof of Proposition 1

We observe that for each j,

⇢̇j(t) = @tfµt
(xj) = @t

✓Z

D

'(w;xj)µt(dw)

◆

= �
Z

D

hrw'(w;xj),rV (w;µt)iµt(dw)

= �
Z

D

(rθ'(w;xj) ·rθV (w;µt) +rr'(w;xj) ·rrV (w;µt))µt(dw)

= �
X

k;Ak⇢Bj

Z

R⇥Ak

0

@r2x̃>
j (t(✓)t(✓)

>)(
X

j02Ck

⇢j0(t)x̃j0) + x̃>
j (✓✓

>)(
X

j02Ck

⇢j0(t)x̃j0)

1

Aµt(dw)

= �x̃>
j

X

k;Ak⇢Bj

Σk(t)(
X

j02Ck

⇢j0(t)x̃j0) , (43)

where

Σk(t) =

Z

R⇥Ak

�

r2t(✓) t(✓)> + ✓ ✓>
�

µt(dr, d✓)

tracks the covariance of the measure along each cylindrical region.

C Changing Metric in the Dynamics

Lemma 7. If z(t) = (a(t), b(t), c(t)) is a solution of the gradient flow (2), then the quantities

δ = (�i = ci(t)
2 � ai(t)

2 � bi(t)
2)mi=1 (44)

remain constant for all t. In particular, given a reduced neuron (ri, ✓i), we can uniquely recover the
original neuron (ai, bi, ci), since

c2i =
�i +

p

�2i + 4r2i
2

. (45)

Proof. The gradient equations of the loss L(z) can be written as

rai
L(z) = ci

s
X

j=1

1[aixj � bi � 0]xjrj ,

rbiL(z) = ci

s
X

j=1

1[aixj � bi � 0]rj ,

rciL(z) =
s
X

j=1

1[aixj � bi � 0](aixj � bi)rj .

(46)

From these expressions we see that

�̇i = 2ciċi � 2aiȧi � 2biḃi
= 2circiL(z)� 2airai

L(z)� 2birbiL(z)

= 0.

Using r2i = ci
p

a2i + b2i , we see that c2i �
r2i
c2
i

= �i implies c4i � �ic
2
i � r2 = 0, and thus (45).

Proposition 8. Let z(t) be a solution gradient flow (2) of L(z), and let δ = (�i) 2 R
m be the vector

of invariants (18), which depend only on the initialization z(0). If w(t) = (r(t),θ(t)) is curve of
reduced parameters corresponding to z(t), then we have that

ẇi(t) = Pi ·rwi
L̃(w), i = 1, . . . ,m,
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where

Pδi(ri) =

"

m2

α(m)2 (a
2
i + b2i + c2i ) 0

0 1
a2
i
+b2

i

#

=

2

4

m2

α(m)2

⇣

r2i
c(ri)2

+ c(ri)
2
⌘

0

0 c(ri)
2

r2
i

3

5 ,

and c(ri)
2 =

δi+
p

δ2
i
+4r2

i

2 .

Proof. The Jacobian of the mapping π from parameters to reduced parameters is given by

r(π)(ai, bi, ci) =

"

m
α(m)

cap
a2
i
+b2

i

m
α(m)

cbp
a2
i
+b2

i

m
α(m)

p

a2i + b2i

� b
a2
i
+b2

i

a
a2
i
+b2

i

0

#

, i = 1, . . . ,m.

This implies that the tangent kernel Pδi(ri) = r(π)>r(π) is as in (20). We emphasize that the
fact that this kernel can be written only as a function of w (and, in fact, only of r) relies in essential
manner on Lemma 3.

D Additional Numerical Experiments

In Figure 6, we plot the trajectories of neurons for � = ±1 over 10000 epochs. We see that, if
� = �1, the neurons move radially away from the origin and thus the knot positions do not change
(top row). In stark contrast, if � = 1, the neurons adapt to the input data, and the knots “stick” to
input samples (bottom row).

We remark in Figure 7 that the same initial function can yield extremely different results depending
on �.

We now show the effect of varying the number of neurons during training. In this example we
fit 20 samples from a sine wave using 20, 200, and 2000 neurons respectively. In PyTorch, the
default initializatioon is such that a, b U(�1, 1) and c U(�1/m, 1/m). Thus, as we scale down
the numberof neurons, the value of � grows, making the network function adapt more to the data.
Figure 8 shows the results of this experiment.

D.1 Visualizing Attractor Samples

We can visualize the vector field (@t(r̂, ✓) by considering the change of metric from w = (r̂, ✓) to
(u, v) with the map

⇡(u,v)(r̂, ✓) = (|r̂| cos ✓, |r̂| sin ✓) = (u, v).

Assuming we know the sign of r̂, the vector field



@tu
@tv

�

= D⇡(u,v)D⇡T
(u,v)



@tr
@t✓

�

(47)

Observing that D⇡(u,v)D⇡T
(u,v) = I , we have simply that



@tu
@tv

�

=



@tr
@t✓

�

Figure 9 shows a plot of this vector felt by a single particle in uv in the case where � = 1. In this
case, the partial derivative @tr remains unchanged. Furthermore, we remark that at the boundaries
of samples, the vector field can change directions, causing these samples to become “attractors” or
“repulsors” (see Lemma 2 in the main document).
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� = �1 � = 1

Figure 6: Evolution of 1000 neurons over 10000 epochs for � = ±1 while fitting 10 points sampled
from a square wave. Left: plotted network function after training. Middle: state of the network in uv
space after training. Right: training trajectories of 100 random neurons.
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Epoch 0
z = (a, b, c)

Epoch 104

z = (a, b, c)
Epoch 104

z = (103a, 103b, 10�3
c)

Figure 7: Left: A network (green) with an initial set of parameters initial parameters (a, b, c) is used
to approximate a given function (blue). Scaling the initial parameters (right) leads to a very different
fit (middle).
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Figure 8: The effect of varying the number of neurons m the top image uses 20 neurons, the middle
uses 200 and the bottom uses 2000. Observe that with fewer neurons, the function is adaptive to the
data since � gets larger.
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Figure 9: Top: The gradient field (21) felt by a particle. Note how the vectors change directions
at certain samples. These samples are “attractors” or “repulsors” where particles get stuck or get
pushed away from. Bottom Left: A plot of the network function for the gradient field in the top image.
Observe how there are clusters of neurons (blue circles) aligned with certain samples. Bottom Right:
A plot of the neurons in uv space. Observe how the red neurons cluster at “attractor” points in the top
image
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