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ABSTRACT

Graph neural networks (GNNs), consisting of a cascade of layers ap-

plying a graph convolution followed by a pointwise nonlinearity, have

become a powerful architecture to process signals supported on graphs.

Graph convolutions (and thus, GNNs), rely heavily on knowledge of the

graph for operation. However, in many practical cases the GSO is not

known and needs to be estimated, or might change from training time

to testing time. In this paper, we are set to study the effect that a change

in the underlying graph topology that supports the signal has on the out-

put of a GNN. We prove that graph convolutions with integral Lipschitz

filters lead to GNNs whose output change is bounded by the size of the

relative change in the topology. Furthermore, we leverage this result to

show that the main reason for the success of GNNs is that they are sta-

ble architectures capable of discriminating features on high eigenvalues,

which is a feat that cannot be achieved by linear graph filters (which are

either stable or discriminative, but cannot be both). Finally, we com-

ment on the use of this result to train GNNs with increased stability and

run experiments on movie recommendation systems.

Index Terms— graph neural networks, graph signal processing,

network data, stability, graph convolutions

1. INTRODUCTION

Networks such as power grids [1], transportation networks [2] or

weather sensor networks [3] generate data with an irregular structure

dictated by the topology of the network. This data can be modeled as

a graph signal by assigning each entry to a node in some underlying

given graph that describes the network [4]. The graph shift operator

(GSO) is a linear map between graph signals where the output value

at each node is a weighted average of the input values at neighboring

nodes. The GSO is thus any matrix that respects the sparsity of the

graph (adjacency [5], Laplacian matrix [6], etc.), and the output is said

to be a shifted version of the input.

The operation of graph convolution, defined as a linear combination

of shifted version of the signal, is used to compute the output of graph

filters in an efficient and decentralized fashion [7, 8]. Furthermore,

graph convolutions are used to build graph neural networks (GNNs), as

a cascade of layers each of which applies a graph convolution, followed

by a pointwise nonlinearity [9–11]. GNNs offer a nonlinear transfor-

mation of the input data that has achieved remarkable performance in

wireless networks [12], decentralized control of robot swarms [13] and

recommendation systems [14], among others [15,16]. Graph filters and

GNNs rely heavily on the knowledge of the GSO. But if we do not

know the graph and need to estimate it [17], or if the graph changes

with time [18], or if we want to train on one graph but test on another

(transfer learning) [19], then it is of utmost importance to characterize

how graph filters and GNNs react to changes in the underlying graph

support.
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In this paper, we start by considering GSOs that are permutations

of each other and prove that graph convolutions are unaffected by these

node relablings (permutation equivariance). Then, we prove that for

graph convolutions computed on two arbitrary GSOs, the output will

differ in a manner proportional to the relative distance between the

GSOs (stability to relative perturbations). These results show that there

is a trade-off between stability and discriminability for linear graph fil-

ters, but that this trade-off can be overcome by the use of pointwise

nonlinearities. This renders GNNs both stable and discriminative, a

feat that cannot be achieved by linear graph filters.

Stability results in graph neural networks have only been devel-

oped, so far, for graph scattering transforms, which involve carefully de-

signed, non-trainable filters [19–21]. In [20], stability to permutations is

studied, as well as to perturbations on the eigenvalues and eigenvectors

of the underlying graph support. In [21] graph perturbations are mea-

sured in terms of the diffusion distance, while in [19] different graph

wavelets are compared in their stability [22, 23].

In Sec. 2 we introduce the GSP framework, define graph convolu-

tions, and prove stability for linear graph filters. In Sec. 3 we prove

stability for GNNs and discuss how the conditions imposed on filters

determine a trade-off between discriminability and stability, which can

be overcome by the inclusion of pointwise nonlinearities. Finally, in

Sec. 4 we show how to train a GNN while controlling for its stability

and run experiments on a movie recommendation problem. Conclu-

sions are drawn in Sec. 5.

2. STABILITY OF GRAPH FILTERS

Let G = (V, E ,W) be a graph with a set of N nodes V , a set of edges

E ⊆ V × V and an edge weight function W : E → R+. This graph

acts as the underlying support for the available data x ∈ R
N . That is, x

is modeled as a graph signal where each entry [x]n = xn corresponds

to the data value assigned to node n [5, 6]. The data x is related to

the underlying graph support by means of a linear map between graph

signals S : RN → R
N that we denote a graph shift operator (GSO) [4].

The GSO is a linear operator S that updates the data value on each node

by a weighted average of the values at neighboring nodes, i.e. it shifts

the signal across the graph. Therefore, the GSO can be written as a

N ×N matrix that respects the sparsity of the graph, [S]ij = sij = 0
if i 6= j and (j, i) /∈ E , and the value of the output signal at node i is

[Sx]i =

N
∑

j=1

[S]ij [x]j =
∑

j∈Ni

sijxj (1)

where Ni = {j ∈ V : (j, i) ∈ E} is the set of neighboring nodes of

i, and the last equality follows from the sparsity pattern of matrix S.

Examples of GSO typically used in the literature include the adjacency

matrix [5], the Laplacian matrix [6] and the Markov matrix [24].

To process data x in a manner that takes into account the irregular

structure imposed by the underlying graph we need operations built on

(1). In this light, we define the graph convolution as a linear combina-

tion of shifted versions of the signal [7]

y =

K−1
∑

k=0

hkS
k
x = H(S)x (2)
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where h = [h0, . . . , hK−1] ∈ R
K is a set of K filter taps, each one

weighing the information located at the k-hop neighborhood. We say

that H(S) is a graph filter [7]. We note that (2) can be calculated by

means of K − 1 exchanges of information with the one-hop neighbor-

hood. Also, (2) boils down to regular convolution when modeling time

signals as being supported on a directed cycle, see [11] for details.

Graph filters exhibit the key property of permutation equivariance.

Define P = {P ∈ {0, 1}N×N : P1 = 1,PT1 = 1} the set of all

permutation matrices. We prove the following.

Theorem 1 (Permutation equivariance). Let S be the GSO of a graph

G and Ŝ = PTSP be the GSO of a permuted version of G. Likewise,

consider signals x and x̂ = PTx. Then,

H(Ŝ)x̂ = P
T
H(S)x. (3)

Proof. See [25, Appendix A].

Theorem 1 essentially states that a graph filter on a permuted graph,

applied to a correspondingly permuted signal, yields an output that is

a permuted version of the original output. The immediate consequence

of this theorem, is that graph filters are invariant to node relabelings.

We are ultimately interested in the effect that a more general per-

turbation of the GSO has on the output of a graph filter with fixed filter

taps. Given two GSOs S and Ŝ, consider the distance between filters

H(S) and H(Ŝ) to be

‖H(S)−H(Ŝ)‖P = min
P∈P

max
x:‖x‖=1

‖PT
H(S)x−H(PT

ŜP)PT
x‖.

(4)

We note that (4) is the operator norm, modulo permutations. We also

note that if Ŝ = PTSP, then ‖H(S) − H(Ŝ)‖P = 0 in virtue of

Thm. 1. To measure the size of the GSO perturbation, we denote by

E(S, Ŝ) = {E : PTSP = S+(ES+SE),P ∈ P} the set of relative

errror matrix and define the distance between S and Ŝ as

d(S, Ŝ) = min
E∈E(S,Ŝ)

‖E‖. (5)

In essence, given a set of filter taps h, we want to determine how much

‖H(S)−H(Ŝ)‖P changes in relation to d(S, Ŝ).
We can use a frequency analysis to separate the action of any given

filter on a signal into the effects of the specific filter taps and that of the

underlying graph support. Let S = VΛVH be the eigendecomposition

of the GSO, with V the eigenvector basis {vn}Nn=1 and Λ a diagonal

matrix containing the eigenvalues {λn}Nn=1. The graph Fourier trans-

form (GFT) x̃ of a signal x is computed as its projection onto the eigen-

vector basis of the GSO, x̃ = VHx [26]. Then, the GFT of the output

of a graph filter y = H(S)x becomes

ỹ = V
H
(

H(S)x
)

=

∞
∑

k=0

hkΛ
k
x̃ = h(Λ)x̃. (6)

where the function h : R → R is called the filter’s frequency response

h(λ) =

∞
∑

k=0

hkλ
k. (7)

We note that since h is an analytic function, its application to a ma-

trix is well defined. From (6) we see that the effect of the filter on the

ith frequency coefficient is given by ỹi = h(λi)x̃i. That is, the fre-

quency content of x at the ith eigenvalue, gets modified by h(λi). This

depends, on one hand, on the specific filter taps that determine the fre-

quency response h(λ) and, on the other hand, on the specific GSO under

consideration that instantiates the frequency response on its eigenvalue

λi. We thus note that the frequency response (7) is independent of the

specific graph support, and only depends on the filter taps h.

We can control the impact of changes in the GSO by carefully de-

signing the frequency response (7). In particular, we focus on filters that

are integral Lipschitz, see Fig. 1a.

Definition 1 (Integral Lipschitz filters). Given filter taps h and fre-

quency response h(λ) [cf. (7)], we say that the corresponding filter is

integral Lipschitz if it satisfies that |h(λ)| ≤ 1 and there exists a con-

stant C > 0 such that for all λ1, λ2 it holds that

∣

∣h(λ2)− h(λ1)
∣

∣ ≤ C
|λ2 − λ1|

|λ1 + λ2|/2
. (8)

Integral Lipschitz filters are those whose frequency response is Lips-

chitz with a constant that depends on the midpoint value of the interval.

Alternatively, see that filters that satisfy (8) also satisfy |λh′(λ)| ≤ C,

where h′ is the derivative of h. These are filters that can vary arbi-

trarily fast for λ ≈ 0, but have to be constant for λ → ∞. We also

note that this condition is reminiscent of the scale invariance of wavelet

transforms [27, Ch. 7] [22, 23].

For filters that are integral Lipschitz, we can prove the following

stability result.

Theorem 2 (Stability of graph filters). Let S and Ŝ be two GSOs such

that d(S, Ŝ) ≤ ε where the error matrix E ∈ E(S, Ŝ) has an eigende-

composition E = UMUH. Consider a given set of filter taps h of an

integral Lipschitz filter with constant C. Then,

∥

∥H(S)−H(Ŝ)
∥

∥

P
≤ 2C

(

1 + δ
√
N
)

ε+O(ε2) (9)

with δ := (‖U−V + 1)2 − 1 measuring the eigenvector basis misal-

ingment.

Proof. See [25, Appendix C].

Theorem 2 shows that the change at the output of a graph filter due to

changes in the underlying GSO is proportional to the distance between

those GSOs [cf. (5)]. The proportionality constant can be analyzed

in two separate parts. First, we have the integral Lipschitz constant C
which can be controlled by careful design of the frequency response

(filter taps). Second, (1 + δ
√
N) depends on the specific family of

perturbations and worsens as the graph grows larger. This second part

cannot be controlled and is dependent on the specific perturbations the

graph support will be subject to. However, we can impose a structural

constraint on the perturbation matrix E to obtain a constant that only

depends on C. See [25, Thm. 4] for details.

3. STABILITY OF GRAPH NEURAL NETWORKS

A graph neural network (GNN) is a nonlinear map Φ(S,x) that is ap-

plied to the input x and takes into account the underlying graph by

means of the GSO S. It consists of a cascade of L layers, each of them

applying a graph filter Hℓ(S) followed by a pointwise nonlinearity σℓ

(activation function)

xℓ = σℓ

(

Hℓ(S)xℓ−1

)

(10)

for ℓ = 1, . . . , L, where x0 = x the input signal, and Φ(S,x) = xL

the output of the last layer [9–11].

The use of graph filters (2) as Hℓ(S) means that GNNs inherit the

properties of permutation equivariance and stability to relative pertur-

bations from them.

Theorem 3 (Permutation equivariance of GNNs). Let S be the GSO

of a graph G and Ŝ = PTSP be the GSO of a permuted version of G.

Likewise, consider signals x and x̂ = PTx. Then,

Φ(Ŝ, x̂) = P
T
Φ(S,x). (11)

Proof. See [25, Appendix D].

Result in Thm. 3 follows through because the nonlinearities are point-

wise and therefore applied separately to each node, bearing no effect

on the permutation equivariance from graph filters. We note that there
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(a) Integral Lipschitz Filter

λ̂N−1λN−1 λ̂NλN

(b) High eigenvalue features

λ̂1λ1 λ̂iλi λ̂NλN

(c) Frequency mixing

Fig. 1. (a) Frequency response for an integral Lipschitz filter (in black), eigenvalues for S (in blue) and eigenvalues for Ŝ (in red). Note that larger

eigenvalues exhibit a larger change. (b) Separating energy located at λN−1 from that at λN requires filters with sharp transitions that are not integral

Lipschitz. Then, a change in eigenvalues renders these filters useless (they are not stable) (c) Applying a ReLU to a signal with all its energy located

at λN results in a signal with energy spread through the spectrum. Information on low eigenvalues can be discriminated in a stable fashion.

are local activation functions involving neighboring exchanges that also

preserve the permutation equivariance property [14].

For the stability result to hold, we need to use pointwise nonlineari-

ties that are normalized Lipschitz, i.e. Lipschitz functions with constant

equal to 1, |σℓ(b)− σℓ(a)| ≤ |b− a| for all b, a ∈ R, and for all ℓ. We

note that typically used activation functions like ReLU or tanh satisfy

this condition.

Theorem 4 (Stability of GNNs). Let S and Ŝ be two GSOs such that

d(S, Ŝ) ≤ ε where the error matrix E ∈ E(S, Ŝ) has an eigendecom-

position E = UMUH. Consider a GNN Φ with L layers where, in

each layer, σℓ is Lipschitz with constant 1 and the filter hℓ is integral

Lipschitz with constant Cℓ. Then,

∥

∥Φ(S, ·)−Φ(Ŝ, ·)
∥

∥

P
≤ 2C

(

1 + δ
√
N
)

Lε+O(ε2) (12)

with C = maxℓ{Cℓ} and δ := (‖U − V + 1)2 − 1 measuring the

eigenvector basis misalingment.

Proof. See [25, Appendix E].

Thm. 4 proves that GNNs are stable in the sense that, if the constitutive

filters are integral Lipschitz and the activation function is normalized

Lipschitz, then a change of ε in the GSOs causes a change proportional

to ε in the output of the GNNs. The proportionality constant has the

term C that depends on the filter design, and the term (1 + δ
√
N) that

depends on the specific perturbation under consideration. But it also

has a constant factor L that depends on the depth of the architecture.

Therefore, the deeper a GNN is the less stable it becomes. This is due to

how the errors propagate and amplify through subsequent applications

of graph filters.

We have proven that graph filters have the properties of permuta-

tion equivariance and stability to relative graph perturbations, and that

GNNs inherit these properties. We have also observed that the corre-

sponding graph filters have to be integral Lipschitz for stability to hold,

and that the integral Lipschitz constant controls the level of stability.

This observation helps explain why GNNs exhibit better performance

when dealing with signals with relevant high-eigenvalue frequency con-

tent. To see this, consider the following example.

Let S be the GSO of a given graph, and consider the perturbation Ŝ

to be an edge dilation

Ŝ = (1 + ε)S (13)

where all edges are increased proportionally by a factor of ε. Clearly,

E = (ε/2)I and d(S, Ŝ) = ‖E‖ ≤ ε. The eigenvalues are now λ̂n =
(1+ε)λn while the eigenvectors remain the same. We note that, even if

ε is very small, the change in eigenvalues could be large if λn is large,

see Fig. 1a.

To account for this variability in large eigenvalues (even for small

ε) we need to design the frequency response [cf. (7)] so as to absorb

these changes. Otherwise, the output of filtering [cf. (6)] could change

significantly (the values of h(λn) and h(λ̂n) could be very different),

making it unstable. The integral Lipschitz condition on filters, precisely

avoids this problem by forcing the frequency response to be flat for large

eigenvalues, see Fig. 1a.

The cost to pay for stability, however, is that integral Lipschitz fil-

ters are not able to discriminate information located at higher eigenval-

ues (Fig. 1b). In essence, linear filters are either stable or discrimina-

tive, but cannot be both. GNNs on the other hand, incorporate pointwise

nonlinearities at the output of the linear graph filter. This nonlinear op-

eration has a frequency mixing effect by which the energy of the signal

is spilled throughout the spectrum, see Fig. 1c. Then, the energy that

appears in smaller eigenvalues can be arbitrarily discriminated, provid-

ing GNNs a way to stably discriminate signals with large eigenvalue

content. Thus, GNNs are information processing architectures that are

both stable and selective.

Finally, we remark that the above proofs and analysis can be readily

extended to multi-feature signals (graph signal tensors) which assign a

vector of F features to each node, instead of a single scalar. Please,

refer to [25] for details on the multi-feature setting.

4. NUMERICAL EXPERIMENTS

Consider a given dataset of input-output pairs T = {(x,y)} where

x is a graph signal defined on a graph with GSO S. We want to

use a GNN as a nonlinear map between the input x and the output

y. We can thus use the given dataset to fit or train the neural net-

work by finding the filter taps hℓ that minimize some loss function

minhℓ

∑

(x,y)∈T L[Φ(S,x),y]. We note that, in the context of train-

ing, the permutation equivariance property of GNNs serves as a form of

data augmentation. More precisely, by exploiting the topological sym-

metries of the underlying graph, the GNN can learn how to process the

signal on all those parts of the graph that are topologically symmetric

by seeing a sample in only one of them.

By minimizing the loss function, we obtain a given set of filter taps

that are a good fit for the data at hand. However, the resulting frequency

responses might not have a good stability constant. To overcome this,

we add a penalty to the loss function in order to control the value of the

stability constant

{hℓ} = argmin
hℓ

∑

(x,y)∈T

L
[

Φ(S,x),y
]

+ µ max
λ∈[λa,λb]

|λh′(λ)|. (14)

We note that the bounds of the interval [λa, λb] have to be set before

training begins. One option is to set it to the eigenvalue interval of

the given GSO (this would demand an eigendecomposition, albeit only

once before training begins). Alternatively, we can exploit well-known

bounds relating the eigenvalues with the topology of the graph [28,29].

Furthermore, we note that the computation of the derivative h′(λ) is

straightforward, since it is also a polynomial with the same filter taps

hℓ that we are optimizing over. Finally, we remark that, by tweaking

the penalty value µ we adjust the trade-off between better performance

and more stability. If µ is too big, then the training would tend to set all

filter taps to 0, which is the trivial but perfectly stable solution.
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Fig. 2. (a) RMSE degradation (in percentage) when the architectures are trained to predict the rating of the movie Star Wars, but are tested on 5 other

movies. We see that, except for the case of Liar, Liar, the RMSE degradation is below 20% with the more stable architecture having a degradation

below 15%. (b) RMSE degradation when testing on GSOs Ŝ that have been synthetically perturbed within a relative distance of ε. The more stable

architecture exhibits a smaller RMSE degradation. (c) RMSE degradation when testing the architectures on different GSOs obtained by changing

the training/test ratio. When we have a ratio similar to that on which the architecture was trained, the RMSE degradation is lower.

In what follows, we consider the problem of movie recommen-

dation systems [30]. We are given a dataset of user ratings for some

movies, and we want to learn how a user would rate a specific movie

given their previous ratings and all other users in the dataset. To do this,

we build a graph where each node is a movie, and the edges are based

on the Pearson correlation coefficient obtained from the pool of users

that have rated any given pair of movies. See [30, Sec. II] for details on

the construction of this graph. We then prune this graph keeping only

the 10 nearest neighbors, we make it undirected by keeping the average

edge weight and we adopt the resulting adjacency matrix as the GSO

S. Additionally, we model each user in the dataset as a graph signal

x, where the value [x]n = xn at node n is the rating that the user has

given to movie n. The ratings are integers between 1 and 5, and if no

rating was given, then we assign xn = 0 to said node.

We consider the MovieLens-100k [31] dataset, that consists of

100, 000 ratings given by 943 users to 1, 582 movies. Following the

above described model, this implies a dataset of 943 graph signals

defined over a graph with 1, 582 nodes. We focus on learning the rating

that any given user would give to a specific movie (node n) based on the

ratings given to other movies (the graph signal x) and the relationship

with other users that have similar taste (given by the graph support S).

We consider all users that have rated the specific movie (have nonzero

value [x]n = xn > 0), take the rating xn as the label y associated to

the signal x and then zero-out the nth entry [x]n = 0 (to render the

rating unknown). Specifically, we choose to estimate the rating at the

movie Star Wars given that is the one with the largest number of ratings.

We use 90% of the resulting dataset for training and 10% for testing

(no samples in the test set are included when estimating the graph).

The map between the graph signal x (ratings for some of the

movies) and the target y = xn (rating for the specific movie) is

parametrized by a single-layer GNN with F1 = 64 output features,

using graph filters with K1 = 5 filter taps, followed by a ReLU non-

linearity. Since the output of this GNN x1 is another graph signal, we

focus particularly on the value of the 64 features at the node n of inter-

est. We further learn a readout layer consisting of a linear combination

of the resulting 64 features at node n so that the final output is a single

scalar predicting the rating given at said node. We note that all opera-

tions involved are local. First, a graph convolutional layer involving the

application of the graph filter bank that demands K1−1 = 4 exchanges

with the one-hop neighborhood, and then a readout layer consisting of

a linear transformation of the 64 resulting features at the single node of

interest (i.e. no involvement of values at any other node in this readout

layer).

We train this GNN by minimizing the loss function (14), where L
is a smooth L1 loss. We consider two different training cases leading to

two different models. The first one in which there is no penalty (µ =
0) and the second one where we set µ = 0.5. We use the ADAM

optimizer [32] with learning rate 0.005 and forgetting factors β1 = 0.9
and β2 = 0.999. We train for 40 epochs using batches of size 5. In all

subsequent experiments, we report averages over 10 different dataset

split realizations (the split is selected at random) and the corresponding

standard deviation.

For the first experiment, we train the GNNs to estimate the rating

of the movie Star Wars both with no penalty (µ = 0) and with stabil-

ity penalty (µ = 0.5). At test time, we obtain an RMSE of 0.8640
(±0.1674) for the No Penalty GNN, and 0.8655 (±0.1655) for the

Penalty GNN. We then proceed to test these already trained GNNs on

estimating the rating at some other movies, as shown on Fig. 2a. We see

that, except for the case of the movie Liar, liar, the RMSE degradation

for estimating the rating of a movie the GNN was not trained for is be-

low 20%. Moreover, in all cases, the more stable GNN (the one trained

with the penalty) exhibits a degradation below 15% and always better

than the No Penalty GNN.

For the second experiment, we introduce a synthetic relative per-

turbation to the GSO S by randomly generating a GSO Ŝ such that

d(S, Ŝ) ≤ ε [cf. (5)]. We then test on Ŝ the GNNs trained on S for

estimating the rating at node n and compare the RMSE with that ob-

tained when testing on S. The results illustrated in Fig. 2b show that

the Penalty GNN is more stable than the No Penalty one, and that the

gap in RMSE difference increases as the perturbation increases.

Finally, we consider perturbations arising from the randomness in

choosing the training/test set split. Since we use the resulting training

set to create S, a change in the training set selection results in a dif-

ferent Ŝ. In Fig. 2c we show the RMSE difference between testing on

the trained 0.9/0.1 partition and testing on other partitions. Again, we

observe that the Penalty GNN is more stable.

5. CONCLUSIONS

In this work we discussed the stability properties of graph filters and

GNNs. We proved that both are permutation equivariant and are stable

to relative perturbations of the underlying graph support. We observed

that a condition for stability is that graph filters need to have a flat fre-

quency response at large eigenvalues. We then argued that this prevents

graph filters to be able to discriminate features located on these eigen-

values, and that this is a fundamental limitation of graph filters, which

can thus be either stable or selective, but not both. GNNs, on the other

hand, use the frequency mixing effect of nonlinearities to spread the

information content throughout the eigenvalue spectrum, especially on

lower eigenvalues where it can be separated in a stable fashion. Thus,

GNNs are information processing architectures that are both discrim-

inative and stable. The improved performance of GNNs over graph

filters thus becomes more marked when processing signals where the

relevant information content is in high frequencies. Finally, we run ex-

periments on a movie recommendation problem, where we show that

more stable architectures exhibit a better performance when tested on

different conditions than the ones they were trained on.



6. REFERENCES

[1] D. Owerko, F. Gama, and A. Ribeiro, “Predicting power outages

using graph neural networks,” in 2018 IEEE Global Conf. Signal

and Inform. Process., Anaheim, CA, 26-29 Nov. 2018, pp. 743–

747, IEEE.

[2] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional

recurrent neural network: Data-driven traffic forecasting,” in 6th

Int. Conf. Learning Representations, Vancouver, BC, 30 Apr.-3

May 2018, pp. 1–16, Assoc. Comput. Linguistics.

[3] E. Isufi, A. Loukas, N. Perraudin, and G. Leus, “Forecasting time

series with varma recursions on graphs,” IEEE Trans. Signal Pro-

cess., vol. 67, no. 18, pp. 4870–4885, Sep. 2019.

[4] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Van-
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