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Abstract

We study robust subspace estimation in the streaming and distributed settings.
Given a set of n data points {a;}"_, in R? and an integer k, we wish to find a lin-
ear subspace S of dimension & for which ), M (dist(.S, a;)) is minimized, where
dist(S, ) := minyeg ||z — y||,. and M(-) is some loss function. When M is the
identity function, S gives a subspace that is more robust to outliers than that pro-
vided by the truncated SVD. Though the problem is NP-hard, it is approximable
within a (1 + €) factor in polynomial time when & and € are constant. We give the
first sublinear approximation algorithm for this problem in the turnstile streaming
and arbitrary partition distributed models, achieving the same time guarantees as
in the offline case. Our algorithm is the first based entirely on oblivious dimension-
ality reduction, and significantly simplifies prior methods for this problem, which
held in neither the streaming nor distributed models.

1 Introduction

A fundamental problem in large-scale machine learning is that of subspace approximation. Given
a set of n data points {a;}?_, in R? and an integer k, we wish to find a linear subspace S of
dimension £ for which ), M (dist(S, a;)) is minimized, where dist(S,z) := minyeg ||z — yl|5,
and M (-) is some loss function. When M (-) = (+)?, this is the well-studied least squares subspace
approximation problem. The minimizer in this case can be computed exactly by computing the
truncated SVD of the data matrix.

Otherwise M is often chosen from ()P for some p > 0, or from a class of functions called M-
estimators, with the goal of providing a more robust estimate than least squares in the face of outliers.
Indeed, for p < 2, since one is not squaring the distances to the subspace, one is placing less
emphasis on outliers and therefore capturing more of the remaining data points. For example, when
M is the identity function, we are finding a subspace so as to minimize the sum of distances to it,
which could arguably be more natural than finding a subspace so as to minimize the sum of squared
distances. We can write this problem in the following form:

. . L A AX).
Juin, > dist(S,a;) Xr%lkZII( il

where A is the matrix in which the i-th row is the vector a;. This is the form of robust subspace

approximation that we study in this work. We will be interested in the approximate version of the
problem for which the goal is to output a k-dimensional subspace S’ for which with high probability,

D dist(S'a;) < (14€) Y dist(S, a;) (1)

The particular form with M equal to the identity was introduced to the machine learning commu-
nity by Ding et al. [10], though these authors employed heuristic solutions. The series of work in
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[71,[15] and [8, 12, 20, 5] shows that if M (-) = |- |P for p # 2, there is no algorithm that out-
puts a (1 + 1/ poly(d)) approximation to this problem unless P = NP. However, [5] also show
that for any p there is an algorithm that runs in O(nnz(A) + (n + d) poly(k/e) + exp(poly(k/e))
time and outputs a k-dimensional subspace whose cost is within a (1 + €) factor of the opti-
mal solution cost. This provides a considerable computational savings since in most applica-
tions k < d < n. Their work builds upon techniques developed in [13] and [11] which give
O (nd - poly(k/e) + exp ((k/€)°®)) time algorithms for the p > 1 case. These in turn build
on the weak coreset construction of [9]. In other related work [6] give algorithms for performing
regression with a variety of M -estimator loss functions.

Our Contributions. We give the first sketching-based solution to this problem. Namely, we show
it suffices to compute Z - A, where Z is a poly(log(nd)ke™!) x n random matrix with entries
chosen obliviously to the entries of A. The matrix Z is a block matrix with blocks consisting of
independent Gaussian entries, while other blocks consist of independent Cauchy random variables,
and yet other blocks are sparse matrices with non-zero entries in {—1, 1}. Previously such sketching-
based solutions were known only for M (-) = (-)2. Prior algorithms [8, 12, 20, 5] also could not be
implemented as single-shot sketching algorithms since they require first making a pass over the data
to obtain a crude approximation, and then using (often adaptive) sampling methods in future passes
to refine to a (1 4 €)-approximation. Our sketching-based algorithm, achieving O(nnz(A) + (n +
d) poly(log(nd)k/e) +exp(poly(ke~!)) time, matches the running time of previous algorithms and
has considerable benefits as described below.

Streaming Model. Since Z is linear and oblivious, one can maintain Z- A in the presence of insertions
and deletions to the entries of A. Indeed, given the update A, ; < A, ; + A for some A € R,
we simply update the j-th column ZA; in our sketch to ZA; + A - Z - e;, where e; is the i-th
standard unit vector. Also, the entries of Z can be represented with limited independence, and
so Z can be stored with a short random seed. Consequently, we obtain the first algorithm with
d poly(log(nd)ke=') memory for this problem in the standard turnstile data stream model [19].
In this model, A € R"*4 ig initially the zero matrix, and we receive a stream of updates to A
where the i-th update is of the form (x;,y;, ¢;), which means that A,, ,, should be incremented
by c;. We are allowed one pass over the stream, and should output a rank-k matrix X’ which is a
(1 + €) approximation to the robust subspace estimation problem, namely >, [[(A — AX");. ||, <
(14 e)miny rank & »_; ||(A — AX);.||5 . The space complexity of the algorithm is the total number
of words required to store this information during the stream. Here, each word is O(log(nd)) bits.
Our algorithm achieves d poly(log(nd)ke~!) memory, and so only logarithmically depends on 7.
This is comparable to the memory of streaming algorithms when M () = (-)? [3, 14], which is the
only prior case for which streaming algorithms were known.

Distributed Model. Since our algorithm maintains Z - A for an oblivious linear sketch Z, it is
parallelizable, and can be used to solve the problem in the distributed setting in which there are s
machines holding A', A%, ..., A% respectively, and A = ;_, A’. This is called the arbitrary par-
tition model [17]. In this model, we can solve the problem in one round with s-d poly(log(nd)ke ')
communication by having each machine agree upon (a short seed describing) Z, and sending Z A’
to a central coordinator who computes and runs our algorithm on Z - A = Y, ZA". The arbitrary
partition model is stronger than the so-called row partition model, in which the points (rows of A)
are partitioned across machines. For example, if each machine corresponds to a shop, the rows of A
correspond to customers, the columns of A correspond to items, and Af:) 4 indicates how many times
customer c¢ purchased item d at shop 4, then the row partition model requires customers to make pur-
chases at a single shop. In contrast, in the arbitrary partition model, customers can purchase items
at multiple shops.

2 Notation and Terminology

For a matrix A, let A;, denote the -th row of A, and A, ; denote the j-th column of A.



Definition 2.1 (|[-[5 1. [[ll1 o5 1l 15 Illmea,1s Il 7). For a matrix A € R™*™, let:

1Al = E [ Al 1Al = 14Ty, = E :“A*j||2
i j
1Al = /D 1Aslz 1Al =D 14w, 1Al mea 1 = D 144l mea
i i j

where |||| ,.q denotes the function that takes the median of absolute values.
Definition 2.2 (X*, A*). Let:

A* = min ||A-AX]|,, X" =argmin ||A - AX||,,
X rank k ’ X rank k ’
Definition 2.3 ((«, 3)-coreset). For a matrix A € R™? and a target rank k, W is an (a, B)-
coreset if its row space is an o-dimensional subspace of R® that contains a [3-approximation to X *.
Formally:
argmin ||[A — AXW]||, , < A"
X rank k ’
Definition 2.4 (Count-Sketch Matrix). A random matrix S € R"* is a Count-Sketch matrix if it
is constructed via the following procedure. For each of the t columns S.;, we first independently

choose a uniformly random row h(i) € {1,2,...,r}. Then, we choose a uniformly random element
of {—1,1} denoted o (i). We set Sy(;y,;, = o(i) and set S;; = 0 for all j # i.

For the applications of Count-Sketch matrices in this paper, it suffices to use O(1)-wise instead
of full independence for the hash and sign functions. Thus these can be stored in O(1) space,
and multiplication S A can be computed in nnz(A) time. For more background on such sketching
matrices, we refer the reader to the monograph [22].

We also use the following notation: [n] denotes the set {1,2,3,---n}. [E] denotes the indicator
function for event E. nnz(A) denotes the number of non-zero entries of A. A~ denotes the pseu-
doinverse of A. 7 denotes the identity matrix.

3 Algorithm Overview

At a high level we follow the framework put forth in [5] which gives the first input sparsity time
algorithm for the robust subspace approximation problem. In their work Clarkson and Woodruff first
find a crude (poly(k), K)-coreset for the problem. They then use a non-adaptive implementation
of a residual sampling technique from [9] to improve the approximation quality but increase the
dimension, yielding a (K poly(k), 1 + €)-coreset. From here they further use dimension reducing
sketches to reduce to an instance with parameters that depend only polynomially on k/e. Finally
they pay a cost exponential only in poly(k/e) to solve the small problem via a black box algorithm
of [2].

There are several major obstacles to directly porting this technique to the streaming setting. For
one, the construction of the crude approximation subspace uses leverage score sampling matrices
which are non-oblivious and thus not usable in 1-pass turnstile model algorithms. We circumvent
this difficulty in Section 4.1 by showing that if 7" is a sparse poly(k) x n matrix of Cauchy random
variables, the row span of T'A contains a rank-k matrix which is a log(d) poly(k) approximation to
the best rank-k matrix under the [|-|, ; norm.

Second, the residual sampling step requires sampling rows of A with respect to probabilities propor-
tional to their distance to the crude approximation (in our case T'A). This is challenging because
one does not know T'A until the end of the stream, much less the distances of rows of A to T A.
We handle this in Section 4.2 using a row-sampling data structure of [18] developed for regression,
which for a matrix B maintains a sketch H B in a stream from which one can extract samples of rows
of B according to probabilities given by their norms. By linearity, it suffices to maintain H A and
T A in parallel in the stream, and apply the sample extraction procedure to HA - (Z — Pr4), where
Pra = (TA)T(TA(TA)T)"'T A is the projection onto the rowspace of T'A. Unfortunately, the
extraction procedure only returns noisy perturbations of the original rows which majorly invalidates
the analysis in [5] of the residual sampling. In Section 4.2 we give an analysis of non-adaptive noisy



residual sampling which we name BOOTSTRAPCORESET. This gives a procedure for transforming
our poly(k)-dimensional space containing a poly(k)log(d) approximation into a poly (k) log(d)-
dimensional space containing a 3/2 factor approximation.

Third, requiring the initial crude approximation to be oblivious yields a coarser log(d) poly (k) initial
approximation than the constant factor approximation of [5]. Thus the dimension of the subspace
after residual sampling is poly(k)log(d). Applying dimension reduction techniques reduces the
problem to an instance with poly (k) rows and log(d) poly (k) columns. Here the black box algo-
rithm of [2] would take time dP°Y(¥) which is no longer fixed parameter tractable as desired. Our
key insight is that finding the best rank-k matrix under the Frobenius norm, which can be done effi-
ciently, is a v/log d(log log d) poly (k) approximation to the ||||21 norm minimizer. From here we
can repeat the residual sampling argument which this time yields a small instance with poly (k) rows
by +/log d(loglog d) poly(k/e) columns. Sublogarithmic in d makes all the difference and now enu-
merating can be done in time (n + d) poly(k/€¢) + exp(poly(k/e). All this is done in parallel in a
single pass of the stream.

Lastly, the sketching techniques applied after the residual sampling are not oblivious in [5]. We
instead use an obvlious median based embedding in Section 5.1, and show that we can still use the

black box algorithm of [2] to find the minimizer under the ||-[| .4 ; norm in Section 5.2.

We present our results as two algorithms for the robust subspace approximation problem. The first
runs in fully polynomial time but gives a coarse approximation guarantee, which corresponds to
stopping before repeating the residual sampling a second time. The second algorithm captures the
entire procedure, and uses the first as a subroutine.

Algorithm 1 COARSEAPPROX

Input: A € R"*? as a stream

Output: X € R?*9 such that || A — AX|ly, < Vlogd(loglogd) poly(k)A*

T e RroW(k)xn «_ Sparse Cauchy matrix // as in Thm. 4.1

C, € Rro(k)xn «_ Sparse Cauchy matrix // as in Thm. 4.4

Sy € Rlegdpoly(k)xd . Count Sketch composed with Gaussian // as in Thm. 4.3
Ry € RPoly(R)xd « Count Sketch matrix // as in Thm. 4.3

G, € Rlogdpoly(k)xlogd-poly(k) «_ Gaussian matrix // as in Thm. 4.4

Compute 7' A online

Compute C1 A online

UT € Rlogdpoly(k)xd  BooTSTRAPCORESET(A, T A,1/2) // as in Alg. 3

X € Reely(k)xlogdpoly(k) ¢ areminy oo [|C1 (A — ARTXUT)STGL ||, // as in Fact 4.2
return RT XUT

RIS A

,_
e

Theorem 3.1 (Coarse Approximation in Polynomial Time). Given a matrix A € R"*¢, Algorithm
1 with constant probability computes a rank k matrix X € R such that:

|A— AX]|,, < /logd(loglogd) - poly(k) - [[A — AX™||,
that runs in time O(nnz(A))+d poly(klog(nd)). Furthermore, it can be implemented as a one-pass
streaming algorithm with space O (d poly(klog(nd))) and time per update O(poly (log(nd)k)).
Proof Sketch We show the following are true in subsequent sections:

1. The row span of T'A is a (poly(k), log d - poly(k))-coreset for A (Section 4.1) with proba-
bility 24/25.
2. BOOTSTRAPCORESET(A,T'A,1/2) is a (logd - poly(k), 3/2)-coreset with probability
49/50 (Section 4.2).
3. 1If: .
X = argmin |C1ASTG1 — C1AR] XU STG1 ||
X rank k
then with probability 47 /50:

HA - ARIXU{HQ . < poly(k)+/logdloglogd - A*



(Sections 4.3 and 4.4, with e = 1/2).

By a union bound, with probability 88/100 all the statements above hold, and the theorem is proved.
BOOTSTRAPCORESET requires d poly(klog(nd)) space and time. Left matrix multiplications by
Sparse Cauchy matrices T'A and C1 A can be done in O(nnz(A)) time (see Section J of [21] for a
full description of Sparse Cauchy matrices). Computing remaining matrix products and X requires
time d poly(k log d). O

Algorithm 2 (1 + €)-APPROX

Input: A € R"*9 as a stream
Output: X € R such that A — AX ||, < (14 €)A*

X € Rroly(k)xlogdpoly(k) . COARSEAPPROX(A) // as in Thm. 3.1

Cy € RVIegdlloglogd) poly(k/€)xn «_ Cauchy matrix // as in Thm. 5.1

Sy € RVIogd(loglogd)-poly(k/€)xd . Count Sketch composed with Gaussian // as in Thm. 4.3

Ry € RrPoly(k/e)xd o Count Sketch matrix // as in Thm. 4.3

G, € RV1ogd(loglog d)-poly(k/e) xv1og d(loglog d)-poly(k/€) . Gaussian matrix // as in Thm. 5.1

Compute AR online

Compute ASJ online

Let V € Rloegdpoly(k)xk pe such that X = WVT is the rank-k decomposition of X

UJ € Rrely(k/e)viogdloglogdxd « BooTSTRAPCORESET(A, VTUT, €) // as in Alg. 3, U; as

computed during COARSEAPPROX in line 1.

10: X' € Rpolv(k/e)xpoly(k/OVEdloslogd o aromin, | [Cy(A— ARIXUT)SIG||
// as in Thm, 5.2

11: return RIX'U'T

R RN ELN

med,1

Theorem 3.2 ((1 + €)-Approximation). Given a matrix A € R"*%, Algorithm 2 with constant
probability computes a rank k matrix X € R4* such that:

A - AXH2)1 <(I+elA- AX*||2,1

that runs in time

O(nnz(A)) + (n + d) poly (klog(”d)) + exp <poly (i))

€

Furthermore, it can be implemented as a one-pass streaming algorithm with space

(0] <d poly (M)) and time per update O(poly(log(nd)k/e)).
Proof Sketch We show the following are true in subsequent sections:

1. If V is such that X = WV, then VT is a (poly(k), poly(k)+/log d log log d)-coreset with
probability 88/100 (Theorem 3.1).

2. BOOTSTRAPCORESET(A, VTUT,€¢') is a (poly(k/€')v/Iogdloglogd, (1 + €))-coreset
with probability 49/50 (Reusing Section 4.2).
3. 1If: .
X' + argmin ||Co(A — ARI XUJ)S] Gs|
X

med,1

then with probability 19/20:
HA - AR;X/UQTH2 < a+Oo()ar
(Reusing Section 4.3 and Section 5.1).
4. A black box algorithm of [2] computes X’ to within (1 + O(€’)) (Section 5.2).

By a union bound, with probability 81/100 all the statements above hold. Setting ¢’ appropriately
small as a function of e, the theorem is proved.



COARSEAPPROX and BOOTSTRAPCORESET together require dpoly(klog(nd)/€) space and
O(nnz(A)) + dpoly(klog(nd)/e) time. Right multiplication by the sketching matrices ASJ and

ARJ can be done in time nnz(A). Computing remaining matrix products and X' requires time
(n+d) poly(log(d)k/e)+exp(poly(k/e€)) (See end of Section 5.2 for details on this last bound). [

We give further proofs and details of these theorems in subsequent sections. Refer to the full version
of the paper for complete proofs.

4 Coarse Approximation

4.1 Initial Coreset Construction

We construct a (poly(k), log d - poly(k))-coreset which will serve as our starting point.

Theorem 4.1. If T € RPOY(R) X" j5 4 Sparse Cauchy matrix, then the row space of T A contains a
k dimensional subspace with corresponding projection matrix X' such that with probability 24/25:

A= AX'|l,, <logd - poly(k) min [|A—AX],, =logd-poly(k) A"

In order to deal with the awkward [-[|, ; norm, here and several times elsewhere we make use of a
well known theorem due to Dvoretzky to convert it into an entrywise 1-norm.
Fact 4.1 (Dvoretzky’s Theorem (Special Case), Section 3.3 of [16]). There exists an appropriately

dlog(1/e)

scaled Gaussian Matrix G € R such that wh.p. the following holds for all y € R%
simultaneously

lyTGlly € (L+€) [lyTll,

Thus the rowspace of T'A with T as in Theorem 4.1 above is a (poly(k), log d - poly(k))-coreset for
A.

4.2 Bootstrapping a Coreset

Given a poor coreset () for A, we now show how to leverage known results about residual sampling
from [9] and [5] to obtain a better coreset of slightly larger dimension.

Algorithm 3 BOOTSTRAPCORESET
Input: A € R™*?, Q € R**? (q, B)-coreset, € € (0, 1)
Output: U € R(@+8poly(k/)xd (o 1 Bpoly(k/e), (1 + €))-coresets
1: Compute H A online // as in Lem. 4.2.2

2: P « Bpoly(k/e) samples of rows of A(Z — Q) according to P(HA(Z — Q)) // as in Lem.
4.2.2

3: UT « Orthonormal basis for RowSpan ( [ jQD } )

4: return UT

Theorem 4.2. Given Q, an («, 8)-coreset for A, with probability 49/50 BOOTSTRAPCORESET
returns an («a + B poly(k/€), (1 + €))-coreset for A. Furthermore BOOTSTRAPCORESET runs in
space and time O(d poly(8log(nd)k/e)), with poly(Blog(nd)k/e€) time per update in the stream-
ing setting.

Proof. Consider the following idealized noisy sampling process that samples rows of a matrix B.
Bl
18121

[Eill, < vIBill,, where we fix the parameter v = {555. Supposing we had such a process
P*(B), we can prove the following lemma.

Sample a row B; of B with probability

and add an arbitrary noise vector E; such that

Lemma 4.2.1. Suppose Q is an («, 8)-coreset for A, and P is a noisy subset of rows of the residual
A(Z — Q) of size S(poly k/e) each sampled according to P*(A(Z — Q)). Then with probability



99/100, RowSpan(Q) U RowSpan(P) is an (a + Bpoly(k/e€)) dimensional subspace containing
a k-dimensional subspace with corresponding projection matrix X' such that:

A= AX"]l,, < (14 €A

It remains to show that we can sample from P* in a stream.

Lemma 4.2.2. Let B € R"*¢ be a matrix, and let §,v € (0,1) be given. Also let s be a given
integer. Then there is an oblivious sketching matrix H € RPOW(/(0V) X qnd q sampling process
P, such that P(H B) returns a collection of s' = O(s) distinct row indices iy, ...,iy € [n] and
approximations Bij = By, + E;, with ||Ej,||2 < v - ||By||2 for j = 1,...,s. With probability
1 — & over the choice of H, the probability an index i appears in the sampled set {i1, ... iy} is at

least the probability that i appears in a set of s samples without replacement from the distribution

I B1,«l2 | Bn,«l2
IBllz,x > """ (IBll2,1

nnz(B)+d-poly(s/(dv)) time, and can be implemented in the streaming model with d-poly(s/(dv))
bits of space.

). Furthermore the multiplication H B and sampling process P can be done in

Setting b = log(nd), § = 1/100,y = v = Toorp and s = Bpoly(k/e), it follows that P contains

Bpoly(k/e) samples from P*(A(Z — Q)) with probability 99/100. By Lemma 4.2.1 and a union
bound, the projection matrix of RowSpan(Q) U RowSpan(P) is an (« + 8 poly(k/e), (1 + €))-
coreset for A with probability 49/50. BOOTSTRAPCORESET takes total time O(nnz(4)) +
O(dpoly(Blog(nd)k/e)) and space O(d poly(5log(nd)k/e)). O

Note that in our main algorithm we cannot compute the projection A(Z — @) until the after the
stream is finished. Fortunately, since H is oblivious, we can right multiply H A by (Z — Q) once Q
is available, and only then perform the sampling procedure P.

4.3 Right Dimension Reduction
We show how to reduce the right dimension of our problem. This result is used in both Algorithm 1
and Algorithm 2.

Theorem 4.3. If UT is an («, B)-coreset, S € RPY(k/)xd js 4 CountSketch matrix composed

with a matrix of i.i.d. Gaussians, and R € R¥PY(¥ /) s g CountSketch matrix, then with proba-
bility 49/50, if X' = argminy ||AST — ARTXUTST||, | then:

|4~ ARTX'UT]ly, < (1+0(0) min, |4~ AXUT],

4.4 Left Dimension Reduction

We show how to reduce the left dimension of our problem. Together with results from Section 4.3,
this preserves the solution to X* to within a coarse /log dloglog d - poly (k/e) factor.

Theorem 4.4. Suppose the matrices S1, Ry and U, are as in Algorithm 1. If C; € RPeW(k/e)xn ¢
a Sparse Cauchy matrix, and G, € Rlegdpoly(k/e)xlogdpoly(k/€) is 4 matrix of appropriately scaled
i.i.d. Gaussians (as in Fact 4.1), and

X = argmin ||C1 ASTG, — CLART XU STG1 | &
X rank k

then with probability 24/25: HASlT — ARIXUTST H < Iogdloglog d - poly(k/e) - A*
2,1

The rank constrained Frobenius norm minimization problem above has a closed form solution.

Fact 4.2. For a matrix M, let UMEMV]\I[ be the SVD of M. Then:

argmin |Y — ZXWHF =7 [UzU}YVWVJ/]kwi
X rank k



5 (1+ ¢)-Approximation
5.1 Left Dimension Reduction

The following median based embedding allows us to reduce the left dimension of our problem.
Together with results from Section 4.3, this preserves the solution to X* to within a (1 + O(e))
factor.

Theorem 5.1. Suppose Ss, Ry and Us are as in Algorithm 2. If Cy € RY1osdloglogdpoly(k/€)xn ;¢
a Cauchy matrix, and Gy € RV10gdloglogdpoly(k/c)xvlogdloglogdpoly(k/€) js ¢ matrix of appropri-
ately scaled i.i.d. Gaussians (as in Fact 4.1), and:

X' = argmin ||CoAS]Gy — Co ARI XUJT SIG,||
X rank k

then with probability 99/100:

med,1

| 4362 — ARIXUISIGS|| < (1+6) min |ASIGs — ARIXUSSIGall,,

Proof. The following fact is known:

Fact 5.1 (Lemma F.1 from [1]). Let L be a t dimensional subspace of R®. Let C' € R™** be a
matrix with m = O (e%t log f) and i.i.d. standard Cauchy entries. With probability 99/100, for all
x € L we have

(=) flzlly < [|C[|peq < (1+€) [zl

The theorem statement is simply the lemma applied to L = ColSpan ([AST | ARI]). O

5.2 Solving Small Instances

Given problems of the form X = argmin y 5 ||Y — ZX W |,eq 1> We leverage an algorithm for
checking the feasibility of a system of polynomial inequalities as a black box.

Lemma 5.1. [2] Given a set K = {(1,---,08s} of polynomials of degree d in k variables
with coefficients in R, the problem of deciding whether there exist X1,--- Xy € R for which
Bi(X1, -, Xy) > 0 foralli € [s] can be solved deterministically with (sd)°*) arithmetic op-
erations over R.

Theorem 5.2. Fix any e € (0,1) and k € [0, min(my, my)). Let Y € R™™ 7 € R"™ and
W e Rm2xm" pe any matrices. Let C € R™ *™ be a matrix of i.i.d. Cauchy random variables, and
G € Rm">*m" poly(1/9) pe g matrix of scaled i.i.d. Gaussian random variables. Then conditioned

on C satisfying Fact 5.1 for the adjoined matrix [Y, Z]| and G satisfying the condition of Fact 4.1, a
rank-k projection matrix X can be found that minimizes ||C(Y — ZXW)G|| cq.1 up to a (1 + €)-

factor in time poly (m/m/’ [€)C(mk)+(m"+m") poly(1/€) \where m, = max(my, ms).

We remark that if, as we do in our algorithm, we set the all the parameters m, m’ and m” to
be loglog dv/logd - poly(k/e), we can write the runtime of this step (Line 9 of Algorithm 2) as
(n+d) poly(k/e)+exp(poly(k/e))). If poly(k/e) < v/logd/(loglog d)?, then this step is captured
in the (n + d) poly(k/e) term. Otherwise this step is captured in the exp(poly(k/e)) term.

6 Experiments

In this section we empirically demonstrate the effectiveness of COARSEAPPROX compared to the
truncated SVD. We experiment on synthetic and real world data sets. Since the algorithm is random-
ized, we run it 20 times and take the best performing run. For a fair comparison, we use an input
sparsity time approximate SVD as in [4].

For the synthetic data, we use two example matrices all of dimension 1000 x 100. In Figure 1a we
use a Rank-3 matrix with additional large outlier noise. First we sample U random 100 x 3 matrix
and V random 3 x 10 matrix. Then we create a random sparse matrix W with each entry nonzero
with probability 0.9999 and then scaled by a uniform random variable between 0 and 10000 - n. We
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Figure 1: Comparison of Algorithm 1 on synthetic and real world examples.

use 10 - UV + W. In Figure 1b we create a simple Rank-2 matrix with a large outlier. The first row
is n followed by all zeros. All subsequent rows are 0 followed by all ones.

While the approximation guarantee of COARSEAPPROX is weak, we find that it performs well
against the SVD baseline in practice on our examples, namely when the data has large outliers
rows. The second example in particular serves as a good demonstration of the robustness of the
(2,1)-norm to outliers in comparison to the Frobenius norm. When k = 1, the truncated SVD which
is the Frobenius norm minimizer recovers the first row of large magnitude, whereas our algorithm
recovers the subsequent rows. Note that both our algorithm and the SVD recover the matrix exactly
when k is greater than or equal to rank.

We have additionally compared our algorithm against the SVD on two real world datasets from
the UCI Machine Learning Repository: Glass is a 214 x 9 matrix representing attributes of glass
samples, and E.Coli is a 336 x 7 matrix representing attributes of various proteins. For this
set of experiments, we use a heuristic extension of our algorithm that performs well in prac-
tice. After running COARSEAPPROX, we iterate solving Y; = miny ||[CASTG — Y Z;_41||1,1 and
Zy = ming ||CASTG — Y, Z||1,1 (via Iteratively Reweighted Least Squares for speed). Finally we
output the rank k Frobenius minimizer constrained to RowSpace(Y;Z;). In Figure 1c we consis-
tently outperform the SVD by between 5% and 15% for nearly all &, and nearly match the SVD
otherwise. In Figure 1d we are worse than the SVD by no more than 5% for k = 1 to 4, and beat the
SVD by up to 50% for k = 5 and 6. We have additionally implemented a greedy column selection
algorithm which performs worse than the SVD on all of our datasets.
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