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Abstract

All-pairs set similarity is a widely used data mining task, even for large and high-dimensional
datasets. Traditionally, similarity search has focused on discovering very similar pairs, for which
a variety of efficient algorithms are known. However, recent work highlights the importance of
finding pairs of sets with relatively small intersection sizes. For example, in a recommender
system, two users may be alike even though their interests only overlap on a small percentage of
items. In such systems, some dimensions are often highly skewed because they are very popular.
Together these two properties render previous approaches infeasible for large input sizes. To
address this problem, we present a new distributed algorithm, LSF-Join, for approximate all-
pairs set similarity. The core of our algorithm is a randomized selection procedure based on
Locality Sensitive Filtering. Our method deviates from prior approximate algorithms, which are
based on Locality Sensitive Hashing. Theoretically, we show that LSF-Join efficiently finds most
close pairs, even for small similarity thresholds and for skewed input sets. We prove guarantees
on the communication, work, and maximum load of LSF-Join, and we also experimentally
demonstrate its accuracy on multiple graphs.

1 Introduction

Similarity search is a widely used primitive in data mining applications, and all-pairs similarity in
particular is a common data mining operation [1, 7, 21, 34]. Motivated by recommender systems and
social networks, we design algorithms for computing all-pairs set similarity (a.k.a., a set similarity
join). In particular, we consider the similarity of nodes in terms of a bipartite graph. We wish
to determine similar pairs of nodes from one side of the graph. For each node v on the right,
we consider its neighborhood I'(v) on the left. Equivalently, we can think of I'(v) as a set of the
neighbors of v in the graph. Using this representation, many graph-based similarity problems can
be formulated as finding pairs of nodes with significantly overlapping neighborhoods. We focus on
the cosine similarity between pairs I'(v) and I'(u) represented as high-dimensional vectors.
Although set similarity search has received a lot of attention in the literature, there are three
aspects of modern systems that have not been adequately addressed yet. Concretely, we aim to
develop algorithms that come with provable guarantees and that handle the following three criteria:
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1. Distributed and Scalable. The algorithm should work well in a distributed environment
like MapReduce, and should scale to large graphs using a large number of processors.

2. Low Similarity. The algorithm should output most pairs of sets with relatively low normal-
ized set similarity, such as a setting of cosine similarity 7 taking values 0.1 < 7 < 0.5.

3. Extreme Skew. The algorithm should provably work well even when the dimensions (degrees
on the left) are highly irregular and skewed.

The motivation for these criteria comes from recommender systems and social networks. For
the first criteria, we consider graphs with a large number of vertices. For the second, we wish to
find pairs of nodes that are semantically similar without having a large cosine value. This situation
is common in collaborative filtering and user similarity [27], where two users may be alike even
though they overlap on a small number of items (e.g., songs, movies, or citations). Figure 1 depicts
the close pair histogram of a real graph, where most similar pairs have low cosine similarity. For
the third criteria, skewness has come to recent attention as an important property [5, 23, 36],
and it can be thought of as power-law type behavior for degrees on the left. In contrast, most
other prior work assumes that the graph has uniformly small degrees on the left [22, 27, 28]. This
smoothness assumption is reasonable in settings when the graph is curated by manual actions
(e.g., Twitter follow graph). However, this is too restrictive in some settings, such as a graph of
documents and entities, where entities can legitimately have high degrees, and throwing away these
entities may remove a substantial source of information. Another illustration of this phenomenon
can be observed even on human-curated graphs, e.g., the Twitter follow graph, where computing
similarities among consumers (instead of producers, as in [27]) runs into a similar issue.

Previous work fails to handle all three of the above criteria. When finding low similarity items
(e.g., cosine similarity < 0.5), standard techniques like Locality-Sensitive Hashing [16, 29, 36] are no
longer effective (because the number of hashing iterations is too large). Recently, there have been
several proposals for addressing this, and the closest one to ours is the wedge-sampling algorithm
from [27]. However, the approach in [27] has one severe shortcoming: it requires that each dimension
has a relatively low frequency (i.e., the bipartite graph has small left degrees).

In this work, we address this gap by presenting a new distributed algorithm LSF-Join for
approximate all-pairs similarity that can scale to large graphs with high skewness. As a main
contribution, we provide theoretical guarantees on our algorithm, showing that it achieves very
high accuracy. We also provide guarantees on the communication, work, and maximum load in a
distributed environment with a very large number of processors.

Our approach uses Locality Sensitive Filtering (LSF) [11]. This is a variant of the ideas used
for Locality Sensitive Hashing (LSH). The main difference between LSF and LSH is that the LSF
constructs a single group of surviving elements based on a hash function (for each iteration). In
contrast, LSH constructs a whole hash table, each time, for a large number of iterations. While the
hashing and sampling ideas are similar, the benefit of LSF is in its computation and communication
costs. Specifically, our LSF scheme will have the property that if an element v survives in &’ out of
k total hash functions, then the computation scales with k¥’ and not k. For low similarity elements,
k' is usually substantially smaller than k, resulting in a lower overall cost (for example &’ will be
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Figure 1: Histogram of the similar pairs at varying cosine similarity thresholds 7 for a citation
network. The majority of pairs are concentrated at cosine similarity 7 ~ 0.1.

sublinear, while k is linear, in the input size). We also provide an efficient way to execute this
filtering step on a per-node basis.

Our LSF procedure can also be a viewed as a pre-processing step before applying any all-pairs
similarity algorithm (even one needing a smaller problem size and a graph without skew). The
reason is that the survival procedure outputs a number of smaller subsets of the original dataset,
each with a different, smaller set of dimensions, along with a guarantee that no dimension has a
high degree. The procedure also ensures that similar pairs are preserved with high probability.
Then, after performing this filtering, we may use other steps to improve the computation time. For
example, applying a hashing technique may reduce the effective dimensionality without affecting
the similarity structure.

Problem Set-up

The input consists of a bipartite graph G with a set of M vertices on the left and N vertices on
the right. We denote that graph as G = (U, V, E), and we refer to U as the set of dimensions, and
to V as the set of nodes. Given a parameter 7 > 0, we want to output all similar pairs of nodes

(v,v") from V such that
P(v) NI
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This problem also encapsulates other objectives, such as finding top-k results per node. Note that

we could equivalently identify each node v with the set of its neighbors I'(v) C U, and hence, this
problem is the same as the set similarity join problem with input {I'(v) | v € V'} and threshold 7
for cosine similarity. We describe our algorithm in a MapReduce-like framework, and we analyze
it in the massively parallel computation model [8, 19], which captures the theoretical properties of
MapReduce-inspired models (e.g., [26, 18]). We have p processors, in a shared-nothing distributed
environment. The input data starts arbitrarily partitioned among the processors. Associated to
each node v on the right is a vector I'(v) € {0,1} which is an indicator vector for the |I'(v)]
neighbors of v on the left. We would like to achieve the twin properties of load-balanced servers
and low communication cost.



Our Contributions

The main contribution of our work is a new randomized, distributed algorithm, LSF-Join, which
provably finds almost all pairs of sets with cosine similarity above a given threshold 7. Our algorithm
will satisfy all three of the criteria mentioned above (scalability, low similarity, and skewness). A
key component of LSF-Join is a new randomized LSF scheme, which we call the survival procedure.
The goal of this procedure is to find subsets of the dataset that are likely to contain similar pairs.
In other words, it acts as a filtering step. Our LSF procedure comes with many favorable empirical
and theoretical properties. First, we can execute it in nearly-linear time, which allows it to scale
to very large datasets. Second, we exhibit an efficient way to implement it in a distributed setting
with a large number of processors, using only a single round of communication for the whole
LSF-Join algorithm. Third, the survival procedure leads to sub-quadratic local work, even when
the dimensions are highly skewed and the similarity threshold is relatively low. To achieve these
properties, we demonstrate how to implement the filtering using efficient, pairwise independent
hash functions, and we show that even in this setting, the algorithm has good provable guarantees
on the accuracy and running time. We also present a number of theoretical optimizations that
better illuminate the behavior of the algorithm on datasets with different structural properties.
Finally, we empirically validate our results by testing LSF-Join on multiple graphs.

Related Work

Many filtering-based similarity join algorithms provide exact algorithms and rely on heuristics to
improve the running time [4, 6, 15, 22, 30, 32, 33, 34]. We primarily review prior work that is
relevant to our setting and provides theoretical guarantees.

One related work uses LSF for set similarity search and join on skewed data [23]. Their data
dependent method leads to a sequential algorithm based on the frequency of dimensions, improving
a prior LSF-based algorithm [11]. Unfortunately, it seems impossible to adapt their method to the
one-round distributed setting. Another relevant result is the wedge-sampling approach in [27]. They
provide a distributed algorithm for low-similarity joins on large graphs. However, their algorithm
assumes that the dataset is not skewed.

In the massively-parallel computation model [8, 9], multi-round algorithms have been developed
that build off of LSH for approximate similarity joins, achieving output-optimal guarantees on the
maximum load [17, 24]. However, it can be prohibitively expensive to use multiple rounds in
modern shared-nothing clusters with a huge number of processors. In particular, the previous
work achieves good guarantees only when the number of nodes N and number of processors p
satisfy N > p!*¢ for a constant ¢ > 0. We focus on one-round algorithms, and we allow the
possibility of p = ©(N), which may be common in very large computing environments. Algorithms
using LSH work well when 7 is large enough, such as 0.6 < 7 < 1.0. However, for smaller 7,
LSH-based distributed algorithms require too much computation and/or communication due to
the large number of repetitions [12, 31, 27, 35]. Prior work has also studied finding extremely close
pairs [2, 1, 10] or finding pairs of sets with constant-size intersection [14]. These results do not
apply to our setting because we aim to find pairs of large-cardinality sets with cosine similarity 7



in the range 0.1 <7 < 0.5, and we allow for the intersection size to be large in magnitude.
Finally, there are also conditional lower bounds showing that provably sub-quadratic time al-
gorithms for all pairs set similarity (even approximate) may not exist in general [3, 25].

2 The LSF-Join Algorithm

We start with a high-level overview of our set similarity join algorithm, LSF-Join, which is based on
a novel and effective LSF scheme. Let G = (U, V, E) be the input graph with |U| = M dimensions
on the left, and |V| = N nodes on the right. For convenience, we refer to the vertices V' and their
indices [N] interchangeably, where we use [IV] to denote the set {1,2,..., N}.

The LSF-Join algorithm uses &k independent repetitions of our filtering scheme (where k ~ N
achieves the best tradeoff). In the i-th repetition we create a set S; C [N] of survivors of the set
[N] of vertices on the right. We will define the LSF procedure shortly, which will determine the
subsets {Si}le in a data-independent fashion. During the communication phase, the survival sets
will be distributed in their entirety across the processors. In particular, if there are p processors,
then each processor will handle roughly k/p different repetitions. During the local computation, the
processors will locally compute all similar pairs in S; for i € [k] and output these pairs in aggregate
(in a distributed fashion). As part of the theoretical analysis, we show that the size of each S; is
concentrated around its mean, and therefore, our algorithm has balanced load across the processors.
To achieve high recall of similar pairs, we will need to execute the LSF-Join algorithm O(log N)
times independently, so that the failure probability will be polynomially small. Fortunately, this
only increases the communication and computation by a O(log N) factor. We execute the iterations
in parallel, and LSF-Join requires only one round of communication.

2.1 Constructing the Survival Sets 5;

We now describe our LSF scheme, which boils down to describing how to construct the .S; survival
sets. We have two main parameters of interest: « € (0,1/2] denotes the survival probability of a
single dimension (on the left), and &k denotes the number of repetitions. The simplest way to describe
our LSF survival procedure goes via uniform random sampling. We refer to this straightforward
scheme as the Naive-Filter method, and we describe it first. Then, we explain how to improve
this method by using a pairwise independent filtering scheme, which will be much more efficient
in practice. We refer to the improved LSF scheme as the Fast-Filter method. Later, we also show
that Fast-Filter enjoys many of the same theoretical guarantees of Naive-Filter, with much lower
computational cost.

Naive-Filter. For the naive version of our filtering scheme, consider a repetition number i € [k].
We choose a uniformly random set U; C U of vertices on left by choosing each node v € U to be in
U; with probability « independently. Then, we filter vertices v on the right depending on whether
their neighborhood is completely contained in U; or not (that is, whether I'(v) C U; or not). The
i-th survival set S; will be the set of vertices v € V such that I'(v) C U;. We repeat this process
independently for each i = 1,2,...,k, to derive k filtered sets of vertices Si,...,S;. Notice that



for each i, the probability that v survives in S; is exactly a/"®| where |I'(v)| is the number of
neighbors of v on the left.

The intuition behind using this filtering method for set similarity search is that similar pairs
are relatively likely to survive in the same set. Indeed, the chance that both v and v" survive in
S; is equal to alm@UT() When the cosine similarity is large, we must have that [I'(v) NT'(v')] is
large and also that |I'(v) UT'(v')| is much smaller than |T'(v)| + |T'(v’)]. In other words, v and v’
are more likely to survive together if they are similar, and less likely if they are very different. For
example, consider the case where d = |I'(v)| = [['(v')] is a large constant. Then, pairs with cosine
similarity at least 7 will survive together with probability a(2~7)4. At the other extreme, disjoint
pairs only survive together with probability o?¢.

The main drawback of the Naive-Filter method is that it takes too much time to determine all
indices ¢ such that v € S;. Consider the set of v’s neighbors I'(v). We need to determine whether
I'(v) C U; for every i € [k]. Hence, it requires at least O(a|I'(v)|k) work to compute the indices
where v survives, that is, the set {i : v € S;}. We will need to set & > N, and hence, the work of
Naive-Filter is linear in NV or worse for each node v. To improve upon this, our Fast-Filter method
will have work proportional to |{i : v € S;}|, and we show that this is often considerably smaller
than k.

2.2 The Fast-Filter Method

The key idea behind our fast filtering method is to develop a pairwise independent filtering scheme
that approximates the uniform sampling of the survival sets. We then devise a way to efficiently
compute the survival sets on a per-node basis, by using fast matrix operations. More precisely, for
each node v on the right, Fast-Filter will determine the indices I,, C [k] of survival sets in which v
survives (that is, we have I, = {i : v € S;}). We develop a way to compute I, independent for each
vertex v by using Gaussian elimination on binary matrices. The Fast-Filter method only requires
a small amount of shared randomness between the processors.

To describe the Fast-Filter method, it will be convenient to assume that logs(1/«) and log, k are
both integers. We now explain the pairwise independent filtering scheme. For each node u € U on
the left, we sample a random log,(1/«) X logy k binary matrix A}, and a log, 1/a-length bit-string
b),. We identify each of the k repetitions ¢ € [k] with binary vectors in the log,(k)-dimensional
vector space over GF'(2), the finite field with two elements. In other words, we use the binary
representation of ¢ to associate ¢ with a length log, k bit-string, and we perform matrix and vector
operations modulo two. We abuse notation and use ¢ for both the integer and the bit-string, where
context will distinguish the two.

To determine whether a node v € [IN] survives in S;, we perform the following operation. We
first stack the matrices A}, on top of each other for each of v’s neighbors u € T'(v). This forms a
IT(v)| - logy(1/cx) x logy k matrix AY. We also stack the vectors b, on top of each other, forming
a length |T'(v)| - logy(1/) bit-string b¥. Finally, we define S; by setting v € S; if and only if
A% + b = 0, where 0 denotes the all-zeros vector. We say that v survives the i-th repetition if
AV +b" =0. Then I, = {i : v € S;} is the set of indices I, C [k] in which v survives.

In a one-round distributed setting, the processors can effectively pre-compute the submatrices



Algorithm 1 Efficient LSF for a Single Node

1: function FAST-FILTER( G, v, o, k)

2 Compute A" and b¥ using the shared random seed
3 Determine the solution space of AV + b% =0

4: Let I, < {i: AYi + b’ =0}

5 return Return [, /] I, ={i:v €S}
6: end function

Algorithm 2 Approximate Cosine Similarity Join

1: Repeat the following procedure O(log N) times in parallel:
2: function LSF-JoIN( G = (U,V,E), 7, «, k)
3: For each vertex v € V do in parallel:

4 FAST-FILTER(G, v, a, k) to determine sets containing v
5 Partition the sets Si,...,S) across processors

6: Locally compute all pairs in each S; with similarity > 7
7 Output all close pairs in a distributed fashion

8: end function

A’ and the subvectors b), using a shared seed. In particular, these may be computed on the fly, as
opposed to stored up front, by using a shared random seed and by using an efficient hash function
to compute the elements of A/, and b), only when processing v such that u € I'(v). By doing so,
the processors will use the same values of A], and b), as one another, leading to consistent survival
sets, without incurring any extra rounds of communication.

To gain intuition about this filtering procedure, let d = |T'(v)| denote the number of v’s neigh-
bors. Node v will survive in S; if ¢ satisfies A¥4 + 0¥ = 0. This consists of d - logy(1/a) linear
equations that ¢ must satisfy. As the matrix AY and the vector bV are chosen uniformly at random,
it is easy to check that v survives in S; with probability af@l = o4 and hence, their expected

sizes satisfy
E[|Si]] = N  and  E[L]] = o’

over a random AY and b".

Theoretically, the main appeal of Fast-Filter is that it is pairwise independent in the following
sense. For any two distinct repetitions ¢ and 4/, the bit-strings for ¢ and 4’ differ in at least one
bit. Therefore, we see that AVi + b¥ = 0 is satisfied or not independently of AYi’ + b¥ = 0, over
the random choice of AY and b”. While this is only true for pairs of repetitions, this level of
independence will suffice for our theoretical analysis. Furthermore, we show that we can determine
the survival sets containing v in time proportional to the number |I,| of such sets, which is often
much less than the total number k of possible sets.

We now explain how to efficiently compute the survival sets on a per-node basis. For a fixed
node v € [N], the Fast-Filter method determines the repetitions ¢ that v survives in, or in other
words, the set I, = {i : v € S;}. This is equivalent to finding all length log, (k) bit-strings i that
are solutions to A4 4+ bV = 0. The processor can form AY and b" in O(d) time, where d = |I'(v)|,



assuming the unit cost RAM model on words of O(logy(XN)) bits. Then, we can use Gaussian
elimination over bit-strings to very quickly find all i € [k] that satisfy AYi+ b” = 0. To understand
the complexity of this, first note that A” has logy k columns. Moreover, without loss of generality,
we see that A” has at most logy k rows, as otherwise there exists no solution. Therefore, Gaussian
elimination takes O(log® k) time to write AV in upper triangular form (and correspondingly rewrite
b”) so that all solutions to A%i = b* can be enumerated in time proportional to the number of
solutions to this equation. The expected total work is

O(Nlog® k + o®kN).

This can be parallelized for each node v independently.

We prove guarantees about Fast-Filter in Theorem 2. The pseudo-code for Fast-Filter appears
as Algorithm 1. The main difference between the two filtering methods is how the random survival
sets are chosen. For the sake of this discussion, we set Kk = N, which is reasonable in practice, and
we continue to let d = |T'(v)|. In the Fast-Filter method, we use a random linear map over GF(2)
with enough independent randomness to decide for each repetition, whether or not a node survives
not. By using Gaussian elimination, we are able to compute I, = {i : v € S;} in time proportional
to |I,| < N. In particular, the amount of work for v is O(log® N + a®N) in expectation, because
E[|I,]] = N when k = N.

The pseudo-code for LSF-Join appears as Algorithm 2. We assume that the vertices v start par-
titioned arbitrarily across p processors. For each vertex v in parallel, we use Fast-Filter determine
the indices I,, of the sets in which v survives. As detailed above, we can do so consistently by using
a shared random seed for Fast-Filter. During the communication phase, we randomly distribute the
sets S1,..., Sk across p processors, so that each processor handles k/p sets in expectation. Then,
during local computation, we compare all pairs in S; for each ¢ € [k] in parallel. We use O(log N)
independent iterations of the algorithm in parallel to find all close pairs with high probability (e.g.,
recall close to one). Finally, we output all pairs with cosine similarity at least 7 in a distributed
fashion.

One way of processing each S; set is to compare all pairs in this set. Specifically, for all pairs of
nodes v,v’ € S;, explicitly compute |I'(v) NT'(v')| and check if it is at least 74/|T'(v)] - |T'(v")]. One
can assume the lists I'(v) and T'(v") are sorted arrays of d’ integers, where d' = max{|T'(v)|, |T'(v")|}.
Thus, one can compute |I'(u) NT'(v)| by merging these sorted lists in O(d') time, assuming words
of length O(logy(N)) can be manipulated in constant time in the unit cost RAM model.

Letting d; be the maximum of |I'(v)| over v € S;, the time to locally compare all pairs in set S;
is O(]S;|*d;). We can also bound the average amount of work across p processors to handle all sets

S1,...,Sk. This can be bounded by
b k
O Sil%-di-— ).
(siat)

i=1

We call this the brute-force all-pairs algorithm.



2.2.1 Setting the Parameters

Let d denote the average degree on the right in the input graph. Ideally, these parameters should
satisfy

a2 g =2, (1)

or in other words, a = (2/k)Y (2774 where 2 could be replaced with a larger constant for improved
recall. If it is possible to approximately satisfy (1) with log,(1/a) being an integer, then running
O(log N) independent iterations of the algorithm with these parameters will work very well. For
example, this is the case when (1/2)? = 1/N¢ for constant ¢ ~ 1. However, for large average degree
d, the parameter a may exceed 1/2. To approximate o > 1/2, we can subsample the matrices AY
and vectors b” to increase the effective collision probability. More precisely, consider d = |I'(v)].
If we wish to survive in a repetition with probability a?, then we can solve for d* in the equality
a? = (1/2)%, and we subsample the d rows in AV and ¥ down to d*. This effectively constructs
survival sets S; as in Naive-Filter with « probability of each neighbor surviving. In the theoretical
results, we will assume that o and k satisfy (1). In the experiments, we either set « to be 1/2,
or we use the matrix subsampling approach; we also vary the number of independent iterations to
improve recall (where we use 5 to denote the number of iterations).

3 Theoretical Guarantees

We assume on the graph G = (U,V, E) is right-regular with nodes in V' having degree d for
simplicity. In practice, we can repeat the algorithm for different small ranges of d. First, notice
that

1 d

Now consider two nodes u,v € [N]. Then both u and v are in S; if and only if the following
event occurs. Let A" be the matrix obtained by stacking A" on top of AV, and b"™" be the vector
obtained by stacking " on top of b’. Note that for each w € I'(u) N I'(v), the rows of A,, occur
twice in A*"Y and the coordinates of b,, occur twice in b*¥. Thus, it suffices to retain only one copy
of A, and b, in A™? for each w € I'(u) NI'(v), and by doing so we reduce the number of rows of
A™? and entries of b*" to at most |I'(u) UT'(v)| - dlogy 1/a. Consequently,

Prlu € S; and v € S;] = Pr[A"Vi 4 b = 0] = /T @WVTO) (3)

Notice that on one extreme if T'(u) and T'(v) are disjoint, then (3) evaluates to a??. On the other
hand, if |['(x) NT'(v)| > 7 - d, then |T'(u) UT(v)| < (2 — 7)d, and then (3) evaluates to o2~7),

The discrepancy in (2) and (3) is exactly what we exploit in our LSF scheme; namely, we use
the fact that similar pairs are more likely to survive together in a repetition than dissimilar pairs.
We first justify the setting of o in (1).



Lemma 1. Let u,v be such that |I'(u) NI'(v)| > 7d. The expected number of repetitions i for which
both uw € S; and v € S; is at least 2.

Proof. As shown in (3), the probability both u and v survive in a single repetition is T @I @) >
a774 and therefore the expected number of repetitions for which both w € S; and v € S; is at
least k- a(~7)4 which by (1) is at least 2. O

Lemma 2. The expected load per processor is a®Nk/p, and the expected total communication is
d
a’kN.

Proof. There are k repetitions, each concerning one S; survival set. Each node v € [N] survives
in S; with probability a? independently. The expected size of S; is E|S;| = a?N. Each processor
handles k/N repetitions, leading to a’Nk/p expected load. The total communication is Zle 1S3,
which has expectation a®kN. O

Lemma 3. Using brute-force all-pairs locally, the expected work per machine is (a?N)%k/p.

Proof. Each repetition has expected size a?N, leading to work a??N?2. Each processor handles k/p
repetitions, implying o?* N2k /p work per processor in expectation. O

Combining the lemmas and plugging in « gives us the following.

Theorem 1. Setting a = (2/k)"/(2=79) the survival procedure has total communication is
O(Nklfl/@fT))

and local work
O(N2k1—2/(2—7')/p>

m expectation.

As an example, we compare to hash-join when p = N, which has total communication N3/2

2—T1

and local work N. We set k = N2-27, and by Theorem 1, the expected total communication
is Nk—7/(2-27) — N3/2_ The local work per processor is Nk~7/2-7) = N172=27  Since 7 > 0,
the work is always sublinear, thus improving over hash-join while using the same amount of total

communication. As we will see in the theorem below, it is crucial that we use the family of pairwise
independent hash functions above for generating our randomness.

Theorem 2. The expected total time the nodes in [N] need to generate the S; is
O(Nlog® k + kN + |E)),

and the expected total time and communication that the nodes in [N] need to send the sets I'(v) for

each v € S; for each i is
O(Nlog®k + a%kN - dlog N + |E|).

10



Proof. Each node u € [N] needs to figure out the repetitions ¢ that it survives in. It can form
A" and b" in O(d) time assuming the unit cost RAM model on word of O(log,(IN)) bits. Note
u then needs to figure out which i € [N] satisfy A" -i 4 b* = 0. To do so, in can just solve this
equation using Gaussian elimination. Note that A* has at most log, k rows, and has logy k columns.
Therefore Gaussian elimination takes at most O(log® k) time to write A" in upper triangular form
and corresponding b" so that all solutions to the equation A%x = b* can be enumerated in time
proportional to the number of solutions to this equation. Thus, the expected time per processor
is O(log® N + a?N), where we have used (2) to bound the expected number of repetitions that u

survives in by k- a?. Thus, the total expected time to form all of the S;, for i = 1,2,...,k, is
O(Nlog® k +a%kN). Note that O(a?kN -dlog N) is the total expected amount of communication.
O

While correct in expectation, since the randomness uses across the repetitions is not indepen-
dent, namely, we use the same matrices A,, and vectors b, for each node w € [M], it is important
to show that the variance of the number of repetitions i for which both v € S; and v € S; is small.
This enables one to show the probability there is at least one repetition ¢ for which both v and v
survive is a large enough constant, which can be amplified to any larger constant by independently

repeating a constant number of times.

Lemma 4. Let u,v be such that |I'(u) N T(v)| > 7d. With probability at least 1/2, there is a
repetition 1 with both w € S; and v € S;.

Proof. Let X; be an indicator random variable which is 1 if u and v survive the i-th repetition, and
is 0 otherwise. Let X = Zle X, be the number of repetitions for which both v and v survive. By
Lemma 1, E[X] > 2. It is well-known that the hash function family f(z) = Az + b mod 2, where
A and b range over all possible binary matrices and vectors, respectively, is a pairwise independent
family. It follows that X1, X, ..., X} are pairwise independent random variables, and consequently
Var[X] = Zle Var[X;]. As X; € {0,1}, we have Var[X;] < E[X;], and hence, Var[X| < E[X].
By Chebyshev’s inequality,

Var[X 1
<

_ ]
Pr[X =0] < Pr [|X—E[X]|2E[X]} < ®xp S EE S

DN | =

O]

Efficiently Amplifying Recall. At this point, we have shown that one iteration of LSF-Join will
find a constant fraction of close pairs. To amplify the recall, we run 8 = O(log V) copies of LSF-Join
in parallel. We emphasize that this is a more efficient way to achieve a high probability result, better
than simply increasing the number of repetitions k in a single LSF-Join execution. Intuitively, this is
because the repetitions are only guaranteed to be pairwise independent. Theoretically, O(log(1/4))
independent copies leads to a failure probability of 1 — § by a Chernoff bound. But, if we only
increased the number of repetitions, then by Chebyshev’s inequality, we would need to use O(k/4)
repetitions for the same success probability 1 — d. The latter requires O(1/d) times the amount
of communication/computation, while the former is only a O(log(1/§)) factor. Setting § = 1/N3
leads to a failure probability of 1 — 1/N after taking a union bound over the O(N?) possible pairs.
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4 Optimizations

In this section, we present several extensions of the LSF-Join algorithm and analysis, such as
considering the number of close pairs, using hashing to reduce dimensionality, combining LSF-Join
with hash-join, and lowering the communication cost when the similarity graph is a matching.

4.1 Processing Time as a Function of the Profile

While Theorem 1 gives us a worst-case tradeoff between computation and communication, we can
better understand this tradeoff by parameterizing the total amount of work of the servers by a
data-dependent quantity ®, introduced below, which may give a better overall running time in
certain cases.

Supposing that k& > p, the processors receive multiple sets to process. We choose a random
hash function H : [k] — [p] so that processor j receives all sets S; for which H(i) = j. When k > p,
each processor handles k/p sets S; in expectation.

The processor handling the set S; receives S; together with the neighborhood I'(u) for each
u € S;, and is responsible for outputting all pairs u,v € S; for which |I'(u) N I'(v)| > 7d.

To bound the total amount of computation, we introduce a data-dependent quantity ®. Note
that the S; are independent and identically distributed, so we can fix a particular i. We define the
profile ® of a dataset as follows:

d=N-alt Y alreurel
u#vE[N]

Lemma 5. E[|S;|] = N - a? and E[|S;|?] < ®.

Proof. Let |S;| = >, Xy, where X, is an indicator that node w survives repetition i. Then
1S;| = >, Xu, and so E[|Si|]] = N - o by (2). For the second moment,

E[Si?] = Y EX.X,] <D EXZ + ) E[X,X,].
u,v u UFEV

Plugging o/'™T®) from (3) for E[X,X,] and using the definition of ® proves the lemma. O
We are interested in bounding the overall time for all nodes in [p] to process the sets S;.

Theorem 3. The total work of the nodes in [p] to process the sets Si,...,Sk, assuming that we
use the brute-force all-pairs algorithm is O(dk®). The average work per processor is O(%Cb).

Proof. After receiving the S;, the total time for all processors to execute their brute-force all-pairs
algorithm is O(dk®), which allows for outputting the similar pairs. The theorem follows. O

4.2 Hashing to Speed Up Processing

Recall that the processor responsible for finding all similar pairs in S; receives the set I'(u) of
neighbors of each node u € S;. In the case when the neighborhoods are all of comparable size,
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sat size d, we can think of I'(u) as a vector x, € {0, 1} with exactly d ones in it; here Yy, is the
characteristic vector of the neighbors of u. We can first hash the vector x, down to s = d/(z7)
dimensions, for a parameter z > 0. To do this, we use the CountMin map [13], which can be viewed

}#XM with a single non-zero per column, and this non-zero is chosen

as a random matrix S € {0, 1
uniformly at random and independently for each of the M columns of S. We replace x, with S x,,.
If an entry of S- x,, is larger than 1, we replace it with 1, and let the resulting vector be denoted ~,,
which is in {0,1}®. Note that we can compute all of the 7, for a given repetition i using O(|S;|d)
time, assuming arithmetic operations on O(log M) bit words can be performed in constant time.
While (xu, Xxv) = |T'(u) NT'(v)| for two nodes u, v € [N], it could be that (vy,,v,) # |I'(u) NT'(v)].

We now quantify this.

Lemma 6. For any two nodes u,v € [N], it holds that with probability at least 1 —2/z,

|<’7u»'Yv> - <Xu»Xv>| < d7/2~

Proof. Note that (yy,v,) < |I'(u) NT'(v)] since each node w € I'(u) NT'(v) is hashed to a bucket by
CountMin, which will be a coordinate that is set to 1 in both y(u) and ~(v). Also the probability
that w hashes to a bucket containing a w € I'(u) NI'(v) with @ # w is at most d/(d/(z7)) = =z,
and the expected number of w with this property is at most dz7. By a Markov bound, the number
of such w is at most d7/2 with probability at least 1 — 2/z, as desired. t

By the previous lemma we can replace the original dimension-M vectors x, with the potentially
much smaller dimension-d/(z7)-vectors v, with a small price in accuracy and success probability.

4.3 Combining LSF-Join with Hash-Join

The LSH-based approach of Hu et. al [17] suggests (in our framework) an alternate strategy of
sub-partitioning the survival sets, using a hash-join to distribute the brute-force all-pairs algorithm.
Here we analyze this combined approach and plot the tradeoffs. We show that this strategy does
not provide any benefit in the communication vs. computation tradeoff, perhaps surprisingly.

The combined strategy, using p processors, starts by using k = p© repetitions for a parameter
¢ < 1, and this is followed by a hash join on each survival set. More precisely, we first construct k
sets S1,..., 5k using the Fast-Filter survival procedure. Then, for each set S;, we will process all

1=¢ machines. This can be implemented in one round, because all

pairs in S; x S; using p/k =p
we need to do is estimate the size of each set S; approximately, that is, |S;| ~ a?N. Then, we can
implement the hash-join in a distributed fashion.

We first review the guarantees of the standard hash-join.

Lemma 7. For N wvectors and p machines, a hash-join has expected total communication N./p
and expected N2 /p work per machine.

We use this bound to compute the communication and work, when using a hash-join to process

each survival set.
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Figure 2: For 7 = 0.1 and p = N, a comparison of LSF-Join and the combined approach of using
hash-join to distribute the brute-force all-pairs. We plot the exponent of NV for the different settings
of k = N°€ repetitions for 0 < ¢ < 2.

cl=7) 1-—¢

Theorem 4. The combined approach has expected total communication N 5= p 2 and expected

N2/p1+ﬁ work per processor.

Proof. When k = N°¢ we have that o = kﬁ, and hence, we have |S;| = a/N = Np_ﬁ

in expectation. We use Lemma 7 to analyze the hash-join for each of the p¢ groups of p!=¢

processors. Each group handles N’ = Np 2-7 inputs, and therefore the communication of the
__¢ 1—c

group is N’ - p'/27¢/2_ which is Nt 2-7p 2 . Multiplying by N€, the exponent of N becomes

c c(l—1)

14877
2—T + 2—7 "’

14+c—

which gives the claimed communication bound. For the per processor work, we have that this is
the claimed bound:

(N/)Q/pl—c — N2p71+0722%7_ _ N2p71,2077'7_ '
O

Figure 2 demonstrates that the combination approach is never better than the original LSF-Join
approach. For a comparison, we consider p = N processors, and hence, the number of repetitions
will be kK = N€¢ for 0 < ¢ < 2. Then, when ¢ > 1, the survival procedure has expected total
communication N 1+C(2%:), and it has expected N 17375 work per processor. And, when ¢ < 1
we have that the combined approach has expected total communication N %_ﬁ, and it has
expected N 17375 work per processor. Notice that ¢ = 1 corresponds to standard LSF-Join, and
¢ = 0 corresponds to using a hash-join on the whole dataset.
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4.4 When the Similarity Graph is a Matching

Recall that to recover all close pairs with high probability, we need to iterate the LSF-Join algorithm
O(log N) times, because each time finds a constant fraction of close pairs. We exhibit an improve-
ment using multiple communication steps when the similar pairs are structured. An important
application of all-pairs similarity is constructing the similarity graph. In our setting, the similarity
graph connects all pairs v,v” € V such that their cosine similarity is at least 7. The structure that
we consider is when the similarity graph happens to be a matching, containing exactly N/2 disjoint
pairs v, v’ with similarity at least 7.

The key idea is that each iteration decreases the number of input nodes by a constant fraction.
We will remove these nodes (or at least one endpoint from each close pair) from consideration,
and then repeat the procedure using the remaining nodes. We observe that this method can also
be extended to near-matchings (e.g., small disjoint cliques). Similarly, our result is not specific to
LSF-Join, and the technique would work for any LSF similarity join method.

We state our result using the r-th iterated log function log(T) N, where log(l) N =log N, and
log™ N = log(log(T_l) N) for r > 2. Then, we show:

Theorem 5. Using 2r—1 communication steps, we can find all but a negligible fraction of close pairs
when the similarity graph is a matching. The total communication and computation is O(log(r) N)
times the cost of one execution of LSF-Join.

Proof. For r = 1, we simply run LSF-Join O(log N) times independently in a single communication
step, where each time finds a constant fraction of close pairs. For 2r —1 > 3 communication steps,
we will use r rounds of LSF-Join, and we will remove all found pairs between subsequent rounds
(each round will take two communication steps, except for the last, which takes one).

In the first round, we run LSF-Join T, = O(log(r) N) times. Then, the expected number of
pairs that are not found will be O(N/27), where 27+ = poly(log”" ™" N). In the next round, with
r — 1 rounds remaining, we will only consider the remaining pairs, and we will iterate LSF-Join
T,_1 times. We repeat this process until no more rounds remain, and output the close pairs from
all rounds.

We can implement each round of the above algorithm using at most two communication steps.
We do so by marking the found pairs between rounds using a single extra communication step.
More formally, the input pairs start partitioned across p processors. We denote the input partition
as V = ViU---UV,. After finding some fraction of close pairs, processor < must be notified of which
nodes in V; are no longer active. Whenever processor j finds a close pair (v,v’), it sends the index
of v to processor i such that v € V; (and similarly for v" € V), where i is known to processor j
because processor 7 must have sent v to processor j in LSF-Join. We reduce the total input set
from V to V', where V' denotes the remaining nodes after removing the found pairs.

To analyze this procedure, notice that the dominant contribution to the total communication
and computation is the first round. This is because the subsequent rounds have a geometrically
decreasing number of input nodes. The first round uses T, = O(log™ N) iterations of LSF-Join,
which shows that overall communication and computation is O(log(r) N) times the cost of one
iteration. O
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4.5 Hashing to Improve Recall

Not only is hashing helpful in order to reduce the description size of the neighborhood sets, as
described in Section 4.2, hashing can also be used to increase the number of similar pairs surviving
a repetition, and thus the recall. Before, a node pair (u,v) survives a repetition with probability
/P WY@ Hashing can, however, make |I'(x) U I'(v)| smaller due to collisions. Suppose we hash
the characteristic vector x,, € {0,1}* of the neighborhood of a node u down to d/C dimensions
for some parameter C' > 1, obtaining the vector 7, € {0, 1}d/ ¢ as in Section 4.2. We could, for

example, set C' = z7 as in Section 4.2.

Lemma 8. Thinking of v, and v, as characteristic vectors of sets, and letting t = |I'(u) U T (v)],
we have

Ell7, U] = (d/C)(1 - (1 - C/d)) <.

Proof. Let X; = 1 be an indicator random variable for the event that i-th bin is non-empty when
throwing ¢ balls into d/C bins. If the bin is empty, then let X; = 0. Then E[X;] =1 — (1 — C/d)t,
and so E[X]| =d/C — (d/C)(1 - C/d)t =d/C(1 — (1 — C/d)") < d/C, where X = |y, U, is the
total number of non-empty bins. O

By Lemma 8, the expected size of the union of the neighborhoods drops after hashing. This
is useful, as the survival probability of the node pair (u,v) in a repetition after hashing is now
"I @) which by the previous lemma is larger than before since |y(u) U (v)| < |I'(u) UT ()],
and this inequality is strict in expectation. Note, however, that the communication and work per
machine increase in expectation, but this tradeoff may be beneficial.

5 Experimental Results

In this section, we complement the theoretical analysis presented earlier with experiments that
measure the recall and efficiency of LSF-Join on three real world graphs from the SNAP reposi-
tory [20]: WikiVote, PhysicsCitation, and Epinions. In accordance with our motivation, we also
run LSF-Join on an extremely skewed synthetic graph, on which the WHIMP algorithm fails.

Experimental Setup

We compare LSF-Join against the state of the art WHIMP algorithm from [27], and hence our setup
is close to the one for WHIMP. In this vein, we transform our graphs into bipartite graphs, either
by orienting edges from left to right (for directed graphs), or by duplicating nodes on either side (for
undirected ones). This is in accordance with the setup of the left side denoting sets and the right
side denoting nodes that is described in the introduction. Also, we pre-filter each bipartite graph
to have a narrow degree range on the right (the left degrees can still be O(n)) to minimize variance
in cosine similarity values due to degree mismatch. This makes the experiments cleaner, and the
algorithm itself can run over all degrees in a doubling manner. We use sparse matrix multiplication
for computing all-pairs similarity after computing the survivor sets .S; for each bucket i, as it is
quite fast in practice and consumes d - O(]S;|) memory on each server. Finally, even though we
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Communication Cost Recall
Dataset N M

LSF-Join WHIMP' LSF-Join WHIMP

WikiVote 7K 104K | 710MB (Y, S| = 71M, 8 = 30) 60MB 100% 100%
Citation 34K 421K | 410MB (Y, |5 = 41M, g =1) 50MB 100% 100%
Epinions 60K 500K 6GB (X, |Si| = 573M, B =1) 60MB 100% 100%
Synthetic ~ 10M  200M 160GB (Y, |S:| = 8B, 8 = 50) Failed 90% —

Table 1: Summary of the performance of LSF-Join and WHIMP on the four datasets, in terms of
communication cost and recall (precision for WHIMP was also high). We note that LSF-Join was
run at the minimum number of independent iterations 3 to achieve high recall for 7 = 0.1.

* The communication cost of LSF-Join depends on the number of survivors, which we note along
with the value of 5.

1 WHIMP communication cost is dominated by shuffling SimHash sketches. We use 8K bits for
SimHash, as suggested in [27].

computed a theoretically optimal value of « earlier, in practice, a smaller choice of « often suffices
in combination with repeating the Fast-Filter method for 8 > 1 independent iterations.

For each of the graphs, we run LSF-Join on the graph on a distributed MapReduce platform
internal to Google, and compare the output similar pairs against a ground truth set generated from
a sample of the data. The ground truth set is generated by doing an exact all-pairs computation
for a small subset of nodes chosen at random. Using this ground truth, we can measure the
efficacy of the algorithm, and the measure we focus on for the evaluation is the recall of similar
pairs!. Specifically, let the set of true similar pairs in the ground truth with similarity at least 7 be
denoted by S. Furthermore, let the set of similar pairs on the same set of nodes that are returned

by the algorithm be S. Then, the recall R = |S|2|S|. For a fixed value of 7, we can measure the

change in recall as the number § of independent iterations varies (with fixed o and k = N). We
run our experiments at a value of 3 that achieves high recall (which is a strategy that carries across
datasets), and the results are summarized in Table 1 for ease of comparison. There is a synthetic
dataset included in the table, which is described later. The communication cost for LSF-Join is
dependent on the number of survivors, which in turn depends on the choice of 3. We do ignore a
subtlety here in that the communication cost will actually often be much less than the number of
survivors, since multiple independent repetitions will produce many copies of the same node and
hence we can only send one of those copies to a processor.

We reiterate that our experimental comparison is only against the WHIMP algorithm as the
WHIMP paper demonstrated that commonly used LSH-based techniques are provably worse. Since
WHIMP is only applicable in the scenario where there are no high degree left nodes, our three public

!The precision is dependent on the method used to compute all-pairs similarity in a bucket, and since we use
sparse matrix multiplication, for us this is 100%.
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Figure 3: Recall and number of survivors as § increases for the synthetic skewed graph.

graphs are those for which this assumption holds in order to be able to do a comparison. Since
the WHIMP algorithm has output-optimal communication complexity, we expect WHIMP to have
lower communication cost than LSF-Join, as WHIMP’s communication cost is dominated by the
number of edges in the graph. This is indeed seen to be the case from Table 1. However, LSF-Join
trades-off higher communication cost with the benefit of load balancing across individual servers.
WHIMP does not do any load balancing in the worst case, which can render it inapplicable for a
broad class of graphs, as we shall see in the next section. Indeed, the WHIMP job failed for our
synthetic graph.

5.1 Synthetic Graph With Extreme Skew

To illustrate a case that WHIMP fails to address, we present results on a synthetic graph that
contains the core element of skeweness that we set out to address in this work. We anticipate
that the same results will hold for several real world settings, but a synthetic graph is sufficient
for comparison with WHIMP. Indeed, the motivation for this randomly generated synthetic graph
comes from user behavior where even though users consume almost the same amount of content
(say, videos) online, the content being consumed sees a power-law distribution (e.g., some videos are
vastly more popular than others). A simplified setting of the same phenomenon can be captured in
the following random bipartite graph construction: we build an N x N bipartite graph G(U,V, E),
where each right node has degree d. Each right node v € V chooses to connect to left nodes
as follows: first pick d/2 nodes at random (without replacement) from a small set of hot nodes
H C U, and pick d/2 nodes at random (again, without replacement) from the rest of U \ H. If
|H| =7 -d, and |H| < N, this results in right nodes having pairwise cosine similarity that scale
with 1/ while the hot dimensions have degree O(n) for constant 7. In this setting, we expect
wedge sampling-based methods to fail since the hot dimensions have large neighborhoods.

We constructed such a synthetic random bipartite graph with the following parameters: N =
10 million, d = 20, and v = 10. Then, we repeated the same experiment as the one described above
for the real world graphs. This time, we noted that WHIMP failed as the maximum degree for
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left nodes was around 500K. We were able to run our procedure though, and the recall and the
communication cost of the Fast-Filter procedure is shown in Table 1. The recall of the Fast-Filter
procedure is shown in Fig 3a, and the number of survivors in Fig 3b. Note that, as before, we
are able to achieve high recall even on this graph with a heavily skewed degree distribution, with
reasonable communication cost.

6 Conclusion

We present a new distributed algorithm, LSF-Join, for approximate all-pairs set similarity search.
The key idea of the algorithm is the use of a novel LSF scheme. We exhibit an efficient version of
this scheme that runs in nearly linear time, utilizing pairwise independent hash functions. We show
that LSF-Join effectively finds low similarity pairs in high-dimensional datasets with extreme skew.
Theoretically, we provide guarantees on the accuracy, communication, and work of LSF-Join. Our
algorithm improves over hash-join and LSH-based methods. Experimentally, we show that LSF-Join
achieves high accuracy on real and synthetic graphs, even for a low similarity threshold. Moreover,
our algorithm succeeds for a graph with extreme skew, whereas prior approaches fail.
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