arXiv:1806.10222v1 [cs.LG] 26 Jun 2018

Conditional Sparse £,-norm Regression With Optimal Probability*

John Hainline Brendan Juba Hai S. Le David Woodruft
Washington University in St. Louis Carnegie Mellon University
{john.hainline,bjuba,hsle}@wustl.edu dwoodruf@cs.cmu.edu

June 28, 2018

Abstract

We consider the following conditional linear regression problem: the task is to identify both
(i) a k-DNF! condition ¢ and (ii) a linear rule f such that the probability of ¢ is (approxi-
mately) at least some given bound p, and f minimizes the ¢, loss of predicting the target z
in the distribution of examples conditioned on c. Thus, the task is to identify a portion of the
distribution on which a linear rule can provide a good fit. Algorithms for this task are useful
in cases where simple, learnable rules only accurately model portions of the distribution. The
prior state-of-the-art for such algorithms could only guarantee finding a condition of probability
Q(u/n*) when a condition of probability y exists, and achieved an O(n*)-approximation to the
target loss, where n is the number of Boolean attributes. Here, we give efficient algorithms for
solving this task with a condition ¢ that nearly matches the probability of the ideal condition,
while also improving the approximation to the target loss. We also give an algorithm for finding
a k-DNF reference class for prediction at a given query point, that obtains a sparse regression
fit that has loss within O(n*) of optimal among all sparse regression parameters and sufficiently
large k-DNF reference classes containing the query point.

1 Introduction

In areas such as advertising, it is common to break a population into segments, on account of
a belief that the population as a whole is heterogeneous, and thus better modeled as separate
subpopulations. A natural question is how we can identify such subpopulations. A related question
arises in personalized medicine. Namely, we need existing cases to apply data-driven methods, but
how can we identify cases that should be grouped together in order to obtain more accurate models?

In this work, we consider a problem of this sort recently formalized by Juba 2017: we are given
a data set where each example has both a real-valued vector together with a Boolean-valued vector
associated with it. Let ¥ denote the real-valued vector for some example, and let X denote the
vector of Boolean attributes. We are also given some target prediction Z of interest, and we wish to

—

identify a k-DNF ¢ such that ¢(X) specifies a subpopulation on which we can find a linear predictor

*B. Juba and H. S. Le were supported by an AFOSR Young Investigator Award and NSF Award CCF-1718380.
D. Woodruff would like to thank IBM Almaden, where part of this work was done, as well as support by the National
Science Foundation under Grant No. CCF-1815840.

!k-Disjunctive Normal Form (k-DNF): an OR of ANDs of at most k literals, where a literal is either a Boolean
attribute or the negation of a Boolean attribute.

for Z, (a, 37'>, that achieves small loss. In particular, it may be that neither @, nor any other linear
predictor achieves small loss over the entire data distribution, and we simply wish to find the subset
of the distribution, determined by our k-DNF ¢ evaluated on the Boolean attributes of our data, on
which accurate regression is possible. We refer to this subset of the distribution as a "segment".

Juba proposed two algorithms for different families of loss functions, one for the sup norm (that
only applies to O(1)-sparse regression) and one for the usual £, norms. But, the algorithm for the ¢,
norm has a major weakness, namely that it can only promise to identify a condition ¢/ ()Z) that has
a probability polynomially smaller than optimal. This is especially problematic if the segment had
relatively small probability to begin with: it may be that there is no such condition with enough
examples in the data for adequate generalization. By contrast, the algorithm for the sup norm
recovers a condition ¢’ with probability essentially the same as the optimal condition, but of course
the sup norm is an undesirable norm to use for regression, as it is maximally sensitive to outliers.
In general, ¢, regression is more tolerant to outliers as p decreases, and the sup norm is roughly
“p— 007

In this work, in Theorem 10, we show how to give an algorithm for O(1)-sparse ¢, regression
with a two-fold improvement over the previous ¢, regression algorithm (mentioned above) when the
coeflicient vector is sparse:

1. The new algorithm recovers a condition ¢’ with probability essentially matching the optimal

condition.

2. We also obtain a smaller blow-up of the loss relative to the optimal regression parameters @

and optimal condition ¢, reducing the degree of this polynomial factor.

More concretely, Juba’s previous algorithm identifies k-DNF conditions, as does ours. This algo-
rithm only identified a condition of probability Q(u/n*) when a condition with probability p exists,
and only achieved loss bounded by O(en¥) when it is possible to achieve loss e. We improve the
probability of the condition to (1 —n)u for any desired n > 0, and also reduce the bound on the loss
to O(en¥/?), or further to O(egloglog(n¥)) if the condition has only g “terms” (ANDs of literals),
in Corollary 12. This latter algorithm furthermore features a smaller sample complexity, that only
depends logarithmically on the number n of Boolean attributes. We include a synthetic data ex-
periment demonstrating that the latter algorithm can successfully recover more terms of a planted
solution than Juba’s sup norm algorithm.

We also give an algorithm for the closely related reference class regression problem in Theorem 14.
In this problem, we are given a query point £* (along with values for the real attributes 5*), and we
wish to estimate the corresponding z*. In order to compute this estimate for a single point, we find
some k-DNF ¢ such that ¢ (Z*) = 1 so &* is in the support of the distribution conditioned on ¢ (X),
and such that there are (sparse) regression parameters @ for ¢’ that (nearly) match the optimal
loss for sparse regression under any condition ¢ with ¢(Z*) = 1. In this case, the condition ¢ is a
reference class containing &*, obtaining the tightest possible fit among k-DNF classes containing &*.
We think of this as describing a collection of “similar cases” for use in estimating the target value
z* from the attributes %*. For this problem, we guarantee that we find a condition ¢’ and sparse
regression parameters @ that achieve loss within O(n¥) of optimal.

Our algorithms are based on sparsifiers for linear systems, for example as obtained for the /o
norm by Batson et al. 2012, and as obtained for non-Euclidean ¢, norms by Cohen and Peng 2015
based on Lewis weights [Lewis, 1978|. The strategy is similar to Juba’s sup norm algorithm: there,
by enumerating the vertices of the polytopes obtained on various subsets of the data, he is able
to obtain a list of all possible candidates for the optimal estimates of the sup-norm regression

coefficients. Here, we can similarly obtain such a list of estimates for the £, norms by enumerating
the possible sparsified linear systems. Sparsifiers are often used to accelerate algorithms, e.g., to run
in time in terms of the number of nonzero entries rather than the size of the overall input, though
here we use that the size of a sparsified representation is small in a rather different way. Namely,
the small representation allows for a feasible enumeration of possible candidates for the regression
coeflicients.

We note that this means that we also obtain an algorithm for O(1)-sparse ¢,-norm regression
in the list-learning model [Balcan et al., 2008, Charikar et al., 2017]. Although Charikar et al. in
particular are able to solve a large family of problems in the list-learning model, they observe that
their technique can only obtain trivial estimates for regression problems. We show that once we
have such a list, algorithms for the conditional distribution search problem [Juba, 2016, Zhang et al.,
2017, Juba et al., 2018| can be generically used to extract a description of a good event ¢ for the
given candidate linear rule. Similar algorithms can also then be used to find a good reference class.

1.1 Relationship to other work

The conditional linear regression problem is most closely related to the problem of prediction with
a “reject” option. In this model, a prediction algorithm has the option to abstain from making a
prediction. In particular, El-Yaniv and Weiner 2012 considered linear regression in such a model.
However, like most of the work in this area, their approach is based on scoring the “confidence” of
a prediction function, and only making a prediction when the confidence is sufficiently high. This
does not necessarily yield a nice description of the region in which the predictor will actually make
predictions. On the other hand, Cortes et al. 2016 consider an alternative variant of learning with
rejection that does obtain such nice descriptions; but, in their model, they assume that abstention
comes at a fixed, known cost, and they simply optimize the overall loss when their space of possible
prediction values includes this fixed-cost “abstain” option. By contrast, we can explicitly consider
various rates of coverage or loss.

Our work is also related to the field of robust statistics [Huber, 1981, Rousseeuw and Leroy,
1987]: in this area, one seeks to mitigate the effect of outliers. That is, roughly, we suppose that
a small fraction of the data has been corrupted, and we wish for our models and inferences to
be relatively unaffected by this corrupted data. The difference between robust statistics and the
conditional regression problem is that in conditional regression we are willing to ignore most of the
data. We only wish to find a small fraction, described by some rule, on which we can obtain a good
regression fit.

Another work that similarly focuses on learning for small subsets of the data is the the work by
Charikar et al. 2017 in the list-learning model of Balcan et al. 2008. In that work, one seeks to find a
setting of some parameters that (nearly) minimizes a given loss function on an unknown small subset
of the data. Since it is generally impossible to produce a single set of parameters to solve this task
— many different small subsets could have different choices of optimal parameters — the objective is
to produce a small list of parameters that contains a near-optimal solution for the unknown subset
somewhere in it. As we mentioned above, our approach actually gives a list-learning algorithm
for O(1)-sparse ¢, regression; but, we show furthermore how to identify a conditional distribution
such that some regression fit in the list obtains a good fit, thus also solving the conditional linear
regression task. Indeed, in general, we find that algorithms for solving the list-learning task for
regression yield algorithms for conditional linear regression. The actual technique of Charikar et
al. does not solve our problem since their approximation guarantee essentially always admits the

zero vector as a valid approximation. Thus, they also do not obtain an algorithm for list-learning
(sparse) regression either.

Another task similar to list-learning of linear regression is the problem of finding dense linear
relationships, as solved by RANSAC [Fischler and Bolles, 1981]. But, these techniques only work
in constant dimension. By contrast, although we are seeking sparse regression rules, this is a sparse
fit in high dimension. As with list-learning, in contrast to the conditional regression problem, such
algorithms do not provide a description of the points fitting the dense linear relationship.

Finally, yet another task similar to list-learning for regression is fitting linear mixed mod-
els [McCulloch and Searle, 2001, Jiang, 2007]. In this approach, one seeks to explain all (or almost
all) of the data as a mixture of several linear rules. The guarantee here is incomparable to ours:
in contrast to list-learning, the linear mixed model simply needs a list of linear rules that accounts
for nearly all of the data; it does not need to find a list that accounts for all possible sufficiently
large subsets of the data. So, there is no guarantee that any of the mixture components represent
an approximation to the regression parameters corresponding to an event of interest. On the other
hand, in linear mixed models, one does not need to give any description at all of which points should
lie in which of the mixture components. In applications, one usually assigns points to the linear
rule that gives it the smallest residual, but this may be less useful for predicting the values for new
points.

2 Preliminaries

We now formally define the problems we consider in this work, and recall the relevant background.

2.1 The conditional regression and distribution search tasks

Formally, we focus on the following task:

Definition 1 (Conditional /,-norm Regression) Conditional ¢,-norm linear regression is the
following task. Suppose we are given access to i.i.d. examples drawn from a joint distribution over
(X,Y,2) € {0,1}* x{f € R%: ||yl < b} x [=b,b] such that for some k-DNF ¢* and some coefficient
vector @* € R% with, ||@*||y < b, E[|(@*,Y) — Z|P|c*(X)] < € and Pr[c*(X)] > (1+n)u for some given
b>0,¢>0,7>0, and > 0. Then we wish to find ¢ and @ such that B[|(a@,Y) — Z|P|&(X)]'/P < ae
and Pr[é(X)] > (1 — n)u for an approximation factor function .

If @* has at most s nonzero components, and we require @ likewise has at most s nonzero com-

ponents, then this is the conditional s-sparse £,-norm regression task.

As stressed by Juba 2017, the restriction to k-DNF conditions is not arbitrary. If we could
identify conditions that capture arbitrary conjunctions, even for one-dimensional regression, this
would yield PAC-learning algorithms for general DNFs. In addition to this being an unexpected
breakthrough, recent work by Daniely and Shalev-Shwartz 2016 shows that such algorithms would
imply new algorithms for random k-SAT, falsifying a slight strengthening of Feige’s hypothesis [Feige,
2002]. We thus regard it as unlikely that any algorithm can hope to find conditions of this kind. Of
the classes of Boolean functions that do not contain arbitrary conjunctions, k-DNFs are the most
natural large class, and hence are the focus for this model.

The difficulty of the problem lies in the fact that initially we are given neither the condition nor
the linear predictor. Naturally, if we are told what the relevant subset is, we can just use standard

methods for linear regression to obtain the linear predictor; conversely, if we are given the linear
predictor, then we can use algorithms for the conditional distribution search (learning abduction)
task (introduced by Juba 2016, recalled below) to identify a condition on which the linear predictor
has small error. Our final algorithm actually uses this connection, by considering a list of candidates
for the linear predictors to use for labeling the data, and choosing the linear predictor that yields a
condition that selects a large subset. In particular, we will use algorithms for the following weighted
variant of the conditional distribution search task:

Definition 2 (Conditional Distribution Search) Weighted conditional distribution search is
the following problem. Suppose we are given access to examples drawn i.i.d. from a distribution over

(X, W) € {0,1}" x [0,b] such that there exists a k-DNF condition ¢* with Pr[c*(X)] > (1+n)u and
E[W|c*(X)] < € for some given parameters n, pi,b,e > 0. Then, find a k-DNF ¢ such that Pr[¢(X)] >
(1 —=n)p and E[W1é(X)] < a - € for some approximation factor function a (or INFEASIBLE if no

such c¢* exists).

This task is closely related to agnostic conditional distribution search, which is the special case
where the weights only take values 0 or 1. The current state of the art for agnostic conditional
distribution search is an algorithm given by Zhang et al. 2017, achieving an O(m)—approximation
to the optimal error. That work built on an earlier algorithm due to Peleg 2007. Peleg’s work
already showed how to extend his original algorithm to a weighted variant of the problem, and
we observe that an analogous modification of the algorithm used by Zhang et al. will obtain an
algorithm for the more general weighted conditional distribution search problem we are considering
here:

Theorem 3 (Peleg 2007, Zhang et al. 2917) There is a polynomial-time algorithm for weighted
conditional distribution search achieving an O(n*/?(log b+log 1/n+log log 1/8))-approzimation with
b3
pen?

probability 1 — § given m = © ((n* + log %)) examples.

We note that it is possible to obtain much stronger guarantees when we are seeking a small
formula. Juba et al. 2018 present an algorithm that, when there is a k-DNF with g terms achieving
eITOr €, uses only m = O(sziz log %) examples and obtains a k-DNF with probability at least (1—n)u
and error O(eglogm). Although this is stated for the unweighted case (i.e., € is a probability), it is
easy to verify that since our loss is nonnegative and bounded, by rescaling the losses to lie in [0, 1],

we can obtain an analogous guarantee for the weighted case:

Theorem 4 (Juba et al. 2018) There is a polynomial-time algorithm for weighted conditional

distribution search when the condition has g terms using m = O(:Z;Z log %) examples achieving an

O(glog m)-approzimation using a k-DNF with O(glogm) terms with probability 1 —§.

2.2 Reference class regression

Using a similar approach, we will also solve a related problem, selecting a best k-DNF ‘“reference
class” for regression. In this task, we are not merely seeking some k-DNF event of probability u on
which the conditional loss is small. Rather, we are given some specific observed Boolean attribute
values Z*, and we wish to find a k-DNF condition ¢ that is satisfied by £* solving the previous task.
That is, ¢ should have probability at least 1 and our sparse regression fit has small conditional loss,

conditioned on c. Naturally, the motivation here is that we have some specific point (z*,y*) for
which we are seeking to predict z*, and so we are looking for a “reference class” ¢ such that we can
get the tightest possible regression estimate of z* from #*; to do so, we need to take u large enough
that we have enough data to get a high-confidence estimate, and we need &* to lie in the support
of the conditional distribution for which we are computing this estimate.

Definition 5 (Reference Class /,-Regression) Reference class £,-norm regression is the follow-
ing task. We are given a query point &* € {0,1}", target density u € (0,1), ideal loss bound
€0 > 0 approximation parameter n > 0, confidence parameter § > 0, and access to i.i.d. exam-
ples drawn from a joint distribution over (X,Y,Z) € {0,1}" x {§ € R% : ||7]l2 < b} x [~b,b].
We wish to find @ € RY with ||@lly < b and a reference class k-DNF & such that with probability
1 -6, (i) @) =1, (ii) Pr[e(X)] > (1 — n)u, and (iii) for a fired approximation factor a > 1,
E[(a@,Y) — Z|P|e(X)]YP < amax{e*,eo} where ¢* is the optimal ¢y loss E[|(@*,Y) — Z|P|e*(X)]V/P
over @ € RY of |@*||a < b and k-DNFs ¢* such that ¢*(Z*) = 1 and Pr[c*(X)] > p. If we also
require both @ and @ to have at most s nonzero components, then this is the reference class s-sparse
{,-norm regression task.

The selection and use of such reference classes for estimation goes back to work by Reichen-
bach 1949. Various refinements of this approach were proposed by Kyburg 1974 and Pollock 1990,
e.g., to choose the estimate provided by the highest-accuracy reference class that is consistent with
the most specific reference class containing the point of interest £*. Our approach is not compatible
with these proposals, as they essentially disallow the use of the kind of disjunctive classes that are
our exclusive focus. Along the lines we noted earlier, it is unlikely that there exist efficient algo-
rithms for selecting reference classes that capture arbitrary conjunctions, so k-DNFs are essentially
the most expressive class for which we can hope to solve this task. Bacchus et al. 1996 give a nice
discussion of other unintended shortcomings of disallowing disjunctions. A concrete example dis-
cussed by Bacchus et al. is the genetic disease Tay-Sachs. Tay-Sachs only occurs in two very specific,
distinct populations: Eastern European Jews and French Canadians. Thus, a study of Tay-Sachs
should consider a reference class at least partially defined by a disjunction over membership in these
two populations.

2.3 /(, sparsification

Our approach is based on techniques for extracting low-dimensional sketches of small subspaces in
high dimensions. The usual £5 norm uses much simpler underlying techniques, and we describe it
first. The extension to ¢, norms for p # 2 is obtained via Lewis weights [Lewis, 1978|.

2.3.1 Euclidean sparsifiers

The kind of sketches we need originate in the work of Batson et al. 2012. Specifically, it will be
convenient to start from the following variant due to Boutsidis et al. 2014:

Lemma 6 (BSS weights [Boutsidis et al., 2014]) Let [u] € R™* (¢ < d) be the matriz with
rows U1, . .., Uq such that 2?21 wu] = I;. Then given an integer r € (t,d], there exist s1,...,5q > 0
such that at most r of the s; are nonzero and for the d X r matriz [s] with ith column \/5;€;,

Ae(lu) Ts [ul) > (1= V/t/r)* and M ([u][s][s] " [u)) < (1+ V/t/r)?

where \;j denotes the jth largest eigenvalue.

In particular, taking r = t/4? for some v € (0,1), we obtain that for the [s] guaranteed to exist
by Lemma 6, ||[s]" [u]&]|2 = ([s]" [u]¥) T ([s] " [u]) for any @, and hence by Lemma 6, (1 —)|z <
I[s][u]¥]]2 < (1 +)||¥||2. Furthermore, we can bound the magnitude of the entries of [s] for or-
thonormal [u] as follows:

Lemma 7 Suppose the rows of [u] are orthonormal. Then the matriz [s] obtained by Lemma 6 has
entries of magnitude at most (1 + \/t/r)V/d.

Proof: Observe that since the each ith row of [u] has unit norm, it must have an entry w; ;- that
is at least 1/4/d in magnitude. By the above argument,

T 1o "
Ils]" [l [13 < (1 + Vt/r)llej- 13 = (1 + v/t/r)?

where notice in particular, the ith row of [s]T contributes at least (y/3;u; j+)? > s;/d to the norm.

Thus, s; < (14 +/t/r)%d. A

2.3.2 Sparsifiers for non-Euclidean norms

It is possible to obtain an analogue of the BSS weights for p # 2 using techniques based on Lewis
weights |Lewis, 1978|. Lewis weights are a general way to reduce problems involving ¢, norms
to analogous ¢ computations. Cohen and Peng 2015 applied this to sparsification to obtain the
following family of sparsifiers:

Theorem 8 (¢, weights [Cohen and Peng, 2015]) Given a d x t matriz [u] there exists a set
of r(p,t,y) weights s1,...,s, such that for the d x r matriz [s] which has as its ith column s;é;,

(1 =Nl < Ns]" ()@l < (1 +)|l

where r(p,t,7) is asymptotically bounded as in Table 1.

Table 1: Dimension required for (1 £)-approximate ¢, sparsification of ¢-dimensional subspaces.
p = 2 uses BSS weights.

D Required dimension r
p=1 |
l<p<2 V—lztlog(t/’y) log? log(t/7)
p=2 |t/y
p > 2 log,y#tp/ 2logt

Cohen and Peng also show how to construct the sparsifiers for a given matrix efficiently, but we
won’t be able to make use of this, since we will be searching for the sparsifier for an unknown subset
of the rows.

We furthermore obtain an analogue of Lemma 7 for the £, weights, using essentially the same
argument:

Lemma 9 Suppose the rows of [u] are orthonormal. Then the matriz [s] obtained by Theorem 8
has entries of magnitude at most (1 +~)v/d.

3 The weighting algorithms for conditional and reference class re-
gression

The results from sparsification of linear systems tell us that we can estimate the loss on the subset
of the data selected by the unknown condition by computing the loss on an appropriate “sketch,” a
weighted average of the losses on a small subset of the data. The dimensions in Table 1 give the
size of these sparsified systems, i.e., the number of examples from the unknown subset we need to
use to estimate the loss over the whole subset. The key point is that since the predictors are sparse,
the dimension is small; and, since we are willing to accept a constant-factor approximation to the
loss, a small number of points suffice. Therefore, it is feasible to enumerate these small tuples of
points to obtain a list of candidate sets of points for use in the sketch. We also need to enumerate
the weights for these points, but since we have also argued that the weights are bounded and we
are (again) willing to tolerate a constant-factor approximation to the overall expression, there is
also a small list of possible approximate weights for the points. The collection of points, together
with the weights, gives a candidate for what might be an appropriate sketch for the empirical loss
on the unknown subset. We can use each such candidate approximation for the loss to recover a
candidate for the linear predictor. Thus, we obtain a list of candidate linear predictors that we can
use to label our data as described above. More precisely, our algorithm is as shown in Algorithm 1.

In the following, let Iy, . 4, denote the projection to coordinates di,ds,...,ds.
input : Examples (a‘:’(l),g’(l),z(l)), e (f(m),ﬂ(m), z(m)), target loss bound e and
fraction p.
output : A k-DNF over xq,...,z, and linear predictor over y,...,yq, or INFEASIBLE
if none exist.
subroutines: WtCond takes as inputs examples (:i’(l), e ,f(m)), nonnegative weights
(wM, ..., wl™), and a bound y, and returns a k-DNF ¢ over z1, ..., z,

solving the weighted conditional distribution search task.
begin
Let my = (%(%(2])1) +1/2In(12/6))? + In 2)], r is as given in Table 1.
forall (di,...,ds) € (9), (q1,....q;) € {=[2(Inr = LIm)],...,0,..., [In(s +1)/2y]}
and (j1,...,jr) € ([T}) do
Let @ be a solution to the following convex optimization problem: minimize
>t (14 7)9((@, My, a, 7U0) — 2U0))P subject to [|@ll, < b.
Put ¢ < the output of WtCond on (f(l), ... ,f(m)) with the weights
w = (@, My, _4.57) — 2P and bound p.
if WtCond did not return INFEASIBLE and K[((a@, Hdl,...,d5}7> — Z)P|e(X)]HP < ae
then return d and c.

end

return INFEASIBLE.
end

Algorithm 1: Weighted Sparse Regression

Theorem 10 (Conditional sparse {,-norm regression) For any constant s and v > 0, r as

given in Table 1 fort = (s+1), andm = © (((17—27)2%(71]‘3 + slogd + rlog %WS/T) + log %) + m(])

examples, Algorithm 1 runs in polynomial time and solves the conditional s-sparse £, regression task
with o = O((1 + v)VnF(log b + log % + loglog %)e).

In our proof of this theorem, we will find it convenient to use the Rademacher generalization bounds
for linear predictors (note that z + |x|P is pb?~!-Lipschitz on [—b, b]):

Theorem 11 (Bartlett and Mendelson 2002, Kakade et al. 2009) For b > 0, p > 1, ran-
dom wvariables (Y, Z) distributed over {§ € RY : |jy|l2 < b} x [b,b], and any § € (0,1), let L,(@)

denote E[|(a@,Y) — Z|P], and for an an i.i.d. sample of size m let L,(@) be the empirical loss
1 > a, 79y — 20 P, We then have that with probability 1 — & for all @ with ||allz < b,

- L 2pbPt1 21n(4/6
L@ - Ly < 2y 2200,

Note that although this bound is stated in terms of the £ norm of the attribute and parameter

vectors ¢ and @, we can obtain a bound in terms of the dimension s of the sparse rule if we are given
a bound B on the magnitude of the entries: b < /sB.
Proof of Theorem 10: Given that we are directly checking the empirical ¢, loss before returning
a and ¢, for the quoted number of examples m it is immediate by a union bound over the iterations
that any @ and ¢ we return are satisfactory with probability 1 — §. All that needs to be shown is
that the algorithm will find a pair that passes this final check.

By Theorem 11, we note that it suffices to have %(2])1) + 1/2In(12/4))? examples from
the distribution conditioned on the unknown A-DNF event ¢* to obtain that the /£, loss of each
candidate for @ is estimated to within an additive e with probability 1 — §/3. By Hoeffding’s
inequality, therefore when we draw mg examples, there is a sufficiently large subset satisfying c*
with probability 1 —4/3.

We let [u] be an orthonormal basis for span{(Ily, 4.7, 29)) : ¢*(#0)) = 1, j < mo} and invoke
Lemma 6 for ¢ or Theorem 8 for p # 2. In either case, there is some set of weights s, ..., s, for
a subset of ro coordinates ji,...,7, such that for any @ in the column span of [u], [s]"[u]¥ has
¢, norm that is a 1 £ y-approximation to the £, norm of [u]t. In particular, for any d@, observing
U = [y]@ — Z is in the column span of [u] by construction, we obtain

(L= Nlyla — 2llp < llls]" (W)@ = Dl < L +yla — 21lp.

Now, we observe that we can discard weights (and dimensions) from sy, ..., s,, of magnitude smaller

than ’y/ré/ P since for any unit vector ¥, the contribution of such entries to ||[s]" [u]]| (recalling
there are at most 7 nonzero entries) is at most 4*. So we may assume the r < ry remaining weights
all have magnitude at least v/ r1/P_ Furthermore, if we round each weight to the nearest power of
(1 4+), this only changes ||[s] " [u]¥]h by an additional (1 #+ «) factor. Finally, we note that since
(g, ..d, g9, 20)) has dimension s+ 1, Lemmas 7 and 9 guarantee that the magnitude is also at most
(1 +v)vs+ 1. Thus it indeed suffices to find the powers (qi,...,q,) for our r examples ji,...,jr
such that (1 +)% is within (1 +) of sy, and the resulting set of weights will approximate the
¢p-norm of every ¥ in the column span to within a 1 + 3~-factor.

Now, when the loop in Algorithm 1 considers (i) the dimensions dj, ..., d% contained in the opti-
mal s-sparse regression rule @* (ii) the set of examples j, ..., used for the sparse approximation
for these coordinates and (iii) the appropriate weights (1 4 +)%,..., (1 4+)%, the algorithm will

obtain a vector @ that achieves a (1 + 3)-approximation to the empirical £)-loss of @* on the same
s coordinates.

It then follows from Theorem 3 that with probability at least 1 — /3 over the data, WtCond will
in turn return to us a k-DNF ¢ with probability (1 —n)u that selects a subset of the data on which
@ achieves an ae = O((1 +~)Vnk(log b+ log 1/n + log log 1/8)e) approximation to the empirical £,
loss of @* on ¢*. This choice of @ and ¢ passes the final check and is thus sufficient. W

By simply plugging in the algorithm from Theorem 4 for WtCond, we can obtain the following
improvement when the desired k-DNF condition is small:

Corollary 12 For any constant s and v > 0, r as given in Table 1 for t = (s + 1), and m =
0 (1+'y)bgk mo log(’yl/ps/r)>

pen? ¥
tion to the conditional s-sparse £y,-regression task, then the modified Algorithm 1 runs in polynomial

time and solves the task with a O(glogm)-term k-DNF with a = O((1 + ~)eglogm).

<log + slogd + rlog + m0> examples, if there is a g-term k-DNF solu-

Note that this guarantee is particularly strong in the case where the k-DNF would be small
enough to be reasonably interpretable by a human user.

The extension to reference class £,-norm regression proceeds by replacing the weighted condition
search algorithm with a variant of the tolerant elimination algorithm from Juba 2016, given in
Algorithm 2.

input : Examples (1, w®), ... (2™ w(™) query point #*, minimum fraction o,
minimum loss target €y, approximation parameter 7.

output: A k-DNF over x1,...,x,.
begin
Initialize p <=1, ¢ <= L, € < max; w)
while y > g do
Initialize € < €
while € > ¢/(1 4+ n) do

Initialize ¢ to be the empty disjunction

forall Terms T of at most k literals do

‘ if > ()= w9 < epm then Add T to c.

end

Put € < ¢/(1 +n)
end
if c(2*) =1, 2]1()) > pm, and € < é then Put é < ¢, é + ¢
Put pu < p/(141n)
end

return ¢
end

Algorithm 2: Reference Class Search

Lemma 13 If m > Q(W(kzlogn + log =2 w T loglog— + loglog ~)) where W € [0,0], then

Algorithm 2 returns a k-DNF ¢ such that with probability 1—0, 1. ¢(z*) =1 2. Pr[¢ (X)] > po/(1+n)
3. E[W|e(X)] < O((1 + 7])4 k(eo + €*)) where € is the minimum E[W |c*(X)] over k-DNF ¢* such
that ¢*(Z*) = 1 and Pr[c*(X)] > (14 n)po-

10

Proof: For convenience, let N < (1 + logy,, b/€)(1 + log; 1, 1/uo) denote the total number of

—

iterations. Consider first what happens when the loop considers the largest p < Pr[c*(X)]/(1 + n)
and the smallest € that is at least (1 + n)%¢*. On this iteration, for each term T of ¢*, we observe
that E[WW - T'(X)] < €* Pr[¢*(X)]—indeed,

— —

E[W - T(X)] <E[W - ¢*(X)] < € Pr[c*(X)].

So, since W is bounded by b, by a Chernoff bound, 1 2T (a))=1 w) < (1 + n)e* Pr[e*(X)] with
[
TN :
But similarly, for 7" not in ¢ with E[W - T'(X)] > (1 4+ n)ue, the Chernoff bound also yields that
Zj:T(x(j))zl w9 > em with probability 1 — 6/2(2,)N. By a union bound over all T € ¢* and T
not in ¢* with such large error, we see that with probability at least 1 — d/2N, all of the terms of

—

¢* are included in ¢ and only terms with E[W - T'(X)] < (1 + n)pe are included in c. So,

probability 1 — . Since this is in turn at most ey, T will be included in ¢ on this iteration.

EW - c(X)] < > EW - T(X)]
T in ¢

< O((1 4 n)n*ue).

Furthermore, by yet another application of a Chernoff bound, ¢* is true of at least um examples
with probability at least 1 — §/2N. Thus, with probability 1 — d/N, after this iteration ¢ is set to
some k-DNF and € < (1 + n)? max{e*, e }.

Now, furthermore, on every iteration, we see more generally that with probability 1— /N, only
terms with E[W - T(X)] < (1 4+ n)ue are included in ¢, and ¢ is only updated if ¢(#*) = 1 and
Prle(X)] > p/(1+1n), where > pg. Thus, for the ¢ we return, since E[W - ¢(X)] < O((1 + n)n* ue)
and E[W|c(X)] = E[W - ¢(X)]/ Pr[e(X)], E]W|é(X)] < O((14n)2nFé). Thus, with probability 1— 4
overall, since we found above that ¢ < (1 + n)? max{e*, ¢}, we return a k-DNF ¢ as claimed. W

Now, as noted above, our algorithm for reference class regression is obtained essentially by sub-
stituting Algorithm 2 for the subroutine WtCond in Algorithm 1; the analysis, similarly, substitutes
the guarantee of Lemma 13 for Theorem 3. In summary, we find:

Theorem 14 (Reference class regression) For any constant s and vy > 0, r as given in Table 1

1 3p3 1 1/p k gs 1 b
fort = (s+1), and m > mg + Q (% (rlogw + log ("n—gllogilog %)))
examples, our modified algorithm runs in polynomial time and solves the reference class s-sparse £,

regression task with o = O((1 +~)(1 + n)*nk).

4 Experimental evaluation

To evaluate our algorithm’s performance in practice, we two kinds of experiments: one using syn-
thetic data with a planted solution, and another using some standard benchmark data sets from

the LIBSVM repository [Chang and Lin, 2011].

Synthetic data. To generate the synthetic data sets, we first chose a random 2-DNF over Boolean
attributes by sampling terms uniformly at random. We also fixed two out of d coordinates at
random and sampled parameters @ from a mean 0, variance o2 Gaussian for our target regression
fit. For the actual data, we then sampled Boolean attributes X that, with 25% probability are

11

Table 2: Synthetic Data Set Properties

Size Real Attributes (d) Boolean Attributes (X) k-DNF Terms Variance o2

1000 6 10 4 0.01
5000 10 50 16 0.1

a uniformly random satisfying assignment to the DNF and with 75% probability are a uniformly
random fa151fy1ng assignment. We sampled Y from a standard Gaussian in R%. Fmally, for the
examples where X was a satisfying assignment, we let Z be given by the linear rule (@, Y> + v where
v is a mean 0, variance o2 Gaussian; otherwise, if X was a falsifying assignment, Z was set to v*
where v* is a standard mean 0, variance 1 Gaussian. (Parameters in Table 2.) Thus, conditioned
on the planted formula, there is a small-error regression fit @—the expected error of @ is |v|. Off of
this planted formula, the expected error for the optimal prediction z =0 is |v*| = 1.

For these simple data sets, we made several modifications to simplify and accelerate the algo-
rithm. First, we simply fixed all of the weights (of the form (1 4+ «)%) to 1, i.e., ¢; = 0 for all i,
since the leverage scores for Gaussian data (and indeed, most natural data sets) are usually small.
Second, we set mg = 200 for the 1000-example data set and mg = 500 for the 5000-example data
set. Third, we used the version of the algorithm for small DNFs considered in Corollary 12, that
uses algorithm of Juba et al. 2018 (recalled in Theorem 4) for WtCond.

With these modifications, we ran Algorithm 1 for /5 regression with s =2, v =1, and p = 0.22
on the 1000-example data set. The algorithm was able to identify the planted 2-DNF together
with the two components used in the regression rule in this case, and thus also we approximately
identify the linear predictor. The mean squared error of the approximate predictor returned by our
algorithm was 0.0149 on the planted 2-DNF (c.f. the ideal linear fit has variance-0.01 Gaussian noise
added to it). However, we note that once the planted 2-DNF has been identified, a good regression
fit can be found by any number of methods. We also ran Algorithm 1 for ¢5 regression with s = 2,
v =1, and pu = 0.2465 on the 5000-example data set. The algorithm was able to identify a subset
of 11 out of the 16 planted k-DNF terms, picking up about 98% of the planted k-DNF data. The
mean squared error of the approximate predictor was 0.4221.

As a baseline, we also used the algorithm from Juba 2017 for conditional sparse sup-norm
regression on our synthetic data. In order to obtain reasonable performance, we needed to make
some modifications: we modified the algorithm along the lines of Algorithm 1, to only search over
tuples of a random mgy = 200 examples for the 1000-example data set and mg = 500 for the
5000-example data set in producing its candidate regression parameters. We also chose to take the
parameters that achieved the smallest residuals under the sup norm, among those that obtained
a condition satisfied by the desired fraction of the data. Again, we used s = 2, and for the norm
bound we used a threshold of € = 0.24 for the 1000-example data set and 1.1 for the 5000-example
data set. (We considered a range of possible thresholds; when € =~ 1.5 on the 02 = 0.1 data, the
sup norm algorithm starts adding terms outside the planted DNF, significantly increasing its error.)
For the 1000-example data set, this algorithm was able to identify the planted 2-DNF. However, for
the 5000-example data set, it only found 10 out 16 terms of the planted 2-DNF, picking up about
96% of the planted k-DNF data.

12

Real-world benchmarks. We also compared Algorithm 1 against selective regressors [El-Yaniv and Wiener,
2012] on some of the LIBSVM |[Chang and Lin, 2011| regression data sets that were used to eval-
uate that work. We split each of those datasets into a training set (1/3 of the data) and test set
(2/3 of the data). We generated Boolean attributes by choosing different binary splits (median,
quartile) on the numerical features, excluding the target attribute. We then run our algorithm 1
on the training set to obtain a 2-DNF. Next, we filtered both the training and test data satisfying
the 2-DNF, using the first one to train a new regression fit on the selected subset and the other
as a holdout to estimate the error of this resulting regression fit. We compared this to the test
error for selective regression. Risk-Coverage (RC) curves of the results are shown in Figure 1. We
outperform the baseline on the Boston housing dataset, and we generally achieved lower error than
the baseline for lower coverage (less than 0.5) and somewhat higher error for higher coverage for
the other three data sets (Body fat, Space, and Cpusmall). Note that in addition, we obtained a
2-DNF that describes the subpopulation on all four, which is the main advantage of our method.
Since selective regression first tries to fit the entire data set, and then chooses a subset where that
fixed predictor does well, it is to be expected that it may miss a small subset where a different
predictor can do better, but that its freedom to abstain on a somewhat arbitrary subset may give
it an advantage at high coverage.

5 Directions for future work

There are several natural open problems. First, although sparsity is desirable, our exponential
dependence of the running time (or list size) on the sparsity is problematic. (The sup norm regression
algorithm [Juba, 2017] also suffered this deficiency.) Is it possible to avoid this? Second, our
algorithm for reference class regression has an O(n*) blow-up of the loss, as compared to O(n¥/?) for
conditional regression. Can we achieve a similar approximation factor for reference class regression?
Finally, we still do not know how close to optimal this blow-up of the loss is; in particular, we do
not have any lower bounds. Note that this is a computational and not a statistical issue, since we
can obtain uniform convergence over all k-DNF conditions.

References

Fahiem Bacchus, Adam J. Grove, Joseph Y. Halpern, and Daphne Koller. From statistical knowledge
bases to degrees of belief. Artificial Intelligence, 87:75-143, 1996.

Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A discriminative framework for clustering
via similarity functions. In Proc. 40th STOC, pages 671-680, 2008.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. JMLR, 3:463-482, 2002.

Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. STAM J.
Comput., 41(6):1704-1721, 2012.

Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-optimal column-based matrix
reconstruction. SIAM J. Comput., 43(2):687-717, 2014.

13

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM Trans.
Intell. Syst. Technol., 2(3):27:1-27:27, May 2011. ISSN 2157-6904. doi: 10.1145/1961189.1961199.
URL http://doi.acm.org/10.1145/1961189.1961199.

Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In Proc.
49th STOC, pages 47-60, 2017.

Michael B Cohen and Richard Peng. [, row sampling by lewis weights. In Proc. 47th STOC, pages
183-192, 2015.

Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. Learning with rejection. In ALT 2016, volume
9925 of LNAI, pages 67-82. 2016.

Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limtations on learning DNF’s. In
Proc. 29th COLT, volume 49 of JMLR Workshops and Conference Proceedings, pages 1-16. 2016.

Ran El-Yaniv and Yair Wiener. Pointwise tracking the optimal regression function. In Advances in
Neural Information Processing Systems, pages 2042-2050, 2012.

Uriel Feige. Relations between average case complexity and approximation complexity. In Proc.
34th STOC, pages 534-543, 2002.

Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the ACM,
24(6):381-395, 1981.

Peter J. Huber. Robust Statistics. John Wiley & Sons, New York, NY, 1981.

Jiming Jiang. Linear and Generalized Linear Mixed Models and Their Applications. Springer, Berlin,
2007.

Brendan Juba. Learning abductive reasoning using random examples. In Proc. 30th AAAI, pages
999-1007, 2016.

Brendan Juba. Conditional sparse linear regression. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 67. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. Proc. 8th
ITCS.

Brendan Juba, Zongyi Li, and Evan Miller. Learning abduction under partial observability. In Proc.

32nd AAAI pages 1888-1896, 2018.

Sham M Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear prediction:
Risk bounds, margin bounds, and regularization. In Advances in neural information processing
systems, pages 793-800, 2009.

Henry E. Kyburg. The Logical Foundations of Statistical Inference. Reidel, Dordrecht, 1974.

D. Lewis. Finite dimensional subspaces of L,. Studia Mathematica, 63(2):207-212, 1978.

Charles E. McCulloch and Shayle R. Searle. Generalized, Linear, and Mized Models. John Wiley
& Sons, New York, NY, 2001.

14

David Peleg. Approximation algorithms for the label-covermax and red-blue set cover problems. J.
Discrete Algorithms, 5:55-64, 2007.

John L. Pollock. Nomic Probabilities and the Foundations of Induction. Oxford University Press,
Oxford, 1990.

Hans Reichenbach. Theory of Probability. University of California Press, Berkeley, CA, 1949.

Peter J. Rousseeuw and Annick M. Leroy. Robust Regression and Outlier Detection. John Wiley &
Sons, New York, NY, 1987.

Mengxue Zhang, Tushar Mathew, and Brendan Juba. An improved algorithm for learning to perform
exception-tolerant abduction. In Proc. 81st AAAIL pages 1257-1265, 2017.

15

3.8 T T T T T T T

36

Error
Error

2.8

26

24

22

L L L L L 2 I T L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Coverage (1) Coverage (1)
(a) Body fat (b) Boston housing

0.105 T T T T T T

0.1

0.095

s s

i i

009
0.085
15 0.08
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Coverage (i) Coverage (1)
(¢) Cpusmall (d) Space

Figure 1: RC curves of Algorithm 1 (red line) and the baseline method (dashed line) on different
regression data sets from the LIBSVM repository. The horizontal axis represents the coverage (u),
while the vertical axis represents the error.

16

	1 Introduction
	1.1 Relationship to other work

	2 Preliminaries
	2.1 The conditional regression and distribution search tasks
	2.2 Reference class regression
	2.3 p sparsification
	2.3.1 Euclidean sparsifiers
	2.3.2 Sparsifiers for non-Euclidean norms

	3 The weighting algorithms for conditional and reference class regression
	4 Experimental evaluation
	5 Directions for future work

