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Abstract

A central problem in data streams is to characterize which functions of an underlying fre-
quency vector can be approximated efficiently. Recently there has been considerable effort in
extending this problem to that of estimating functions of a matrix that is presented as a data-
stream. This setting generalizes classical problems to the analogous ones for matrices. For ex-
ample, instead of estimating frequent-item counts, we now wish to estimate “frequent-direction”
counts. A related example is to estimate norms, which now correspond to estimating a vector
norm on the singular values of the matrix. Despite recent efforts, the current understanding for
such matrix problems is considerably weaker than that for vector problems.

We study a number of aspects of estimating matrix norms in a stream that have not previ-
ously been considered: (1) multi-pass algorithms, (2) algorithms that see the underlying matrix
one row at a time, and (3) time-efficient algorithms. Our multi-pass and row-order algorithms
use less memory than what is provably required in the single-pass and entrywise-update models,
and thus give separations between these models (in terms of memory). Moreover, all of our
algorithms are considerably faster than previous ones. We also prove a number of lower bounds,
and obtain for instance, a near-complete characterization of the memory required of row-order
algorithms for estimating Schatten p-norms of sparse matrices.

∗Email: vova@cs.jhu.edu. This material is based upon work supported by the NSF Grants IIS-1447639, EAGER
CCF-1650041, and CAREER CCF-1652257

†Email: stephenc@ethz.ch.
‡Email: robert.krauthgamer@weizmann.ac.il. Work supported in part by the Israel Science Foundation grant

#897/13.
§Email: leeyi@umich.edu.
¶Email: dwoodruf@cs.cmu.edu.
‖Email: lin.yang@princeton.edu. This material is based upon work supported by the NSF Grant IIS-1447639.

Work was done while the author was in Johns Hopkins University.



1 Introduction

Modern datasets, from text documents and images to social graphs, are often represented as a large
matrix A ∈ R

m×n. In many application domains, including database queries, data mining, network
transactions and sensor networks (see e.g. [Lib13, WLL+16, HK15] for recent examples), the input
matrix A is presented to the algorithm as a data stream, i.e., a sequence of items/updates that
can take several forms. In the entry-wise (or insertion-only) model, each item specifies (i, j, Aij)
and provides the value of one entry, in arbitrary order (and the unspecified entries are set to 0).
The row-order model is similar, except that the items follow the natural order (sorted with i as
the primary key, and j as the secondary one). In the turnstile model, each stream item has the
form (i, j, δ) and represents an update Aij ← Aij + δ for δ ∈ R (after initializing A to the all-zeros
matrix). These models capture different access patterns, but all three can represent sparse matrices
quite efficiently, because zero entries are implicit. As usual, the key parameters of an algorithm
in the data-stream model are its memory (also referred to as storage/space requirements) and its
runtime (per update and to report its output).

Many properties of a matrix are directly related to its spectral characteristics, i.e., its singu-
lar values. For example, the number of non-zero singular values is just the matrix rank, which
determines the degrees of freedom of a corresponding linear system; the maximum and minimum
singular values of a matrix determine its condition number, which in turn determines the hardness
of many problems, such as optimization problems; the leading singular values of a matrix determine
how well a matrix can be represented by the principal components; and so forth. It is generally
hard to compute directly the singular values of a matrix, especially in the streaming model, but
luckily, the Schatten norms of the matrix can often be used as surrogates for its spectrum, see e.g.
[ZWJ15, KV16, DNPS16, KO17]. Formally, the Schatten p-norm of a matrix A ∈ R

m×n is defined,
for every p ≥ 1, as

‖A‖Sp
:=
(∑

j≥1

σp
j

)1/p
,

where σ1 ≥ · · · ≥ σmin(m,n) are the singular values of A. This definition naturally extends to all
0 < p < 1 although then it is not a norm, and also to p = 0,∞ by taking the limit. This is a
very important family of matrix norms, and includes as special cases the well-known trace/nuclear

norm ‖A‖∗ =
∑

j≥1 σj = ‖A‖S1
, the Frobenius norm ‖A‖F =

(∑

j≥1 σ
2
j

)1/2
= ‖A‖S2

, and the
spectral/operator norm ‖A‖op = σ1(A) = ‖A‖S∞ .

We study algorithms that approximate the Schatten p-norm of a matrix A presented in a data
stream. While this problem has attracted significant attention lately [AN13, LNW14, LW16a,
LW16b, LW17], our results address three new aspects. First, we design faster and more space-
efficient multi-pass algorithms. Second, we consider the row-order model, which is a common
access pattern for matrix data (see, e.g. [Lib13]). Third, we design algorithms with faster update
time and/or query time. The above three aspects were not considered previously for matrix norms,
and our work opens the door for further diversification of prevailing models (and thereby of current
algorithms). In particular, our results can be applicable to classical scenarios, e.g., where data is
stored on disk (or any media where a linear scan is much faster than random access), and potentially
lead to performance improvements in other such domains. In the next few subsections, we present
our contributions in more detail.

1.1 New Estimator for PSD Matrices (or Even p)

Our first results rely on a new method for estimating the Schatten p-norm ‖A‖Sp of a positive
semidefinite matrix (PSD) matrix A ∈ R

n×n for integer p ≥ 2. This method yields two new

1



Problem: Schatten p-norm of PSD A, integer p ≥ 2 (or general A, even p)

passes space update time query time

1 ǫ−2n2−4/p ǫ−2n2−4/p ǫ−2np−2 [LNW14]

1 ǫ−2n2−4/p ǫ−2 ǫ−2n(1−2/p)ω Theorems 3.3 and 3.8
⌈p/2⌉ ǫ−2n ǫ−2 ǫ−2n [Woo14, Theorem 6.1]

⌈p/2⌉ ǫ−2n1−1/(p−1) ǫ−2 ǫ−2n(1−1/(p−1)) Theorems 3.6 and 3.8

Table 1: Streaming algorithms for (1+ ǫ)-approximation of the Schatten p-norm of A ∈ R
n×n. The

bounds for storage/time omit Op(1) factors, and count space in words.

streaming algorithms in the turnstile model, which require, respectively, one pass and ⌈p/2⌉ passes
over the input. Both algorithms are at least as good as the previous ones in all three standard
performance measures of storage, update time, and query time; and each algorithm offers signifi-
cant improvements in two out of these three. Our one-pass algorithm achieves update time O(1)
compared with the previous poly(n), and query time O(nω(1−p/2)), where ω ≤ 2.373 is the matrix
multiplication exponent [Le 14], compared with the previous np−2. And our multi-pass algorithm
requires storage that is sublinear in n, compared with O(n) previously. We note that if p is even,
then the above results extend to arbitrary A ∈ R

m×n (and not only PSD) by a standard argument.
A detailed comparison of the bounds is given in Table 1, and the results themselves appear in
Section 3.

Throughout the paper, a matrix is called sparse if it has at most O(1) non-zero entries per row
and per column. We write Õ(f) as a shorthand for O(f · logO(1) f), and write Oa(f) to indicate
that the constant in O-notation depends on some parameter a.

Techniques Our technical innovation is an unbiased estimator of Tr(Ap) for a symmetric (and
not only PSD) matrix A ∈ R

n×n. To see why this is useful, denote the eigenvalues of A by
λ1 ≥ · · · ≥ λn, and observe that if A is PSD (or alternatively if p is even), then Tr(Ap) =

∑

i λ
p
i =∑

i σi(A)
p = ‖A‖pSp

. Our estimator has the form

X := Tr(G1AG
T
2 G2AG

T
3 · · ·GpAG

T
1 ), (1)

where Gi ∈ R
t×n are certain random matrices. This estimator X can be computed from the p

bilinear sketches {GiAG
T
i+1}i∈[p] by straightforward matrix multiplication, where Gp+1 := G1 by

convention. And if, say, t = O(n1−2/p), then each bilinear sketch has dimension O(t2) = O(n2−4/p).
These determine the streaming algorithm’s storage requirement and query time, and, if the matrices
{Gi}i∈[p] have sparse columns, the updates will be fast.

The main difficulty is to bound the estimator’s variance, which highly depends on the choice
of the matrices {Gi}i∈[p]. The basics of this technique can be seen in the case p = 4, if the Gi’s
satisfy the following definition.

Definition 1.1. A random matrix S ∈ R
t×n is called an (ǫ, δ, d)-Johnson-Lindenstrauss Transfor-

mation (JLT) if for every V ⊆ R
n of cardinality |V | ≤ d it holds that

Pr
[
∀x ∈ V, ‖Sx‖22 ∈ (1± ǫ)‖x‖22

]
≥ 1− δ.

An (ǫ, δ, d)-JLT can be constructed with t = O(ǫ−2 log(d/δ)) rows, which is optimal (see
[KMN11] or [JW13]). While using independent N(0, 1/t) Gaussians entries works, there is a con-
struction with only O(ǫ−1 log(1/δ)) non-zero entries per column [KN14].

2



The case p = 4 has a particularly short and simple analysis, whenever G1 andG2 are independent
(ǫ, δ, n)-JLT matrices, which we can achieve with t = O(ǫ−2 log n). The first idea is to “peel off”
Gi from both sides, using that for any PSD matrix M , with high probability Tr(GiMGT

i ) ∈
(1 ± ǫ)Tr(M) (see Lemma 3.2 for a precise statement). A second idea is to use the identity
Tr(BC) = Tr(CB) to rewrite Tr(AATGT

2 G2AA
T ) = Tr(G2AA

TAATGT
2 ). Now using the first idea

once again, we are likely to arrive at an approximation to Tr(AAT AAT ) = ‖A‖S4
. The full details

are given in Section 3.1.
The sketching method extends from p = 4 to any integer p ≥ 2, but the simple analysis above

breaks (because for p > 4 the “inside” matrix M is no longer PSD) and thus our analysis is much
more involved. We first analyze Gi’s with independent Gaussian entries, by a careful expansion of
the fourth moment of X, which exploits certain cancellations occurring (only) for Gaussians. We
then consider Gi’s that are sampled from a particular sparse JLT due to [TZ04], and employ a
symmetrization-and-decoupling argument to compare the variance of X in this case with that of
Gaussian Gi’s.

We make two technical remarks. First, proving E[X] = Tr(Ap) is straightforward. Indeed, by the
second idea above, we can rewriteX = Tr(G1AG

T
2 G2AG

T
3 · · ·GpAG

T
1 ) asX = Tr(GT

1 G1AG
T
2 G2A · · ·

GT
p GpA). Now using E[GT

i Gi] = I together with linearity of trace and of expectation, we obtain

that E[X] = Tr(Ap). Second, after setting t = O(n1−2/p) (independent of ǫ), our bound on the
variance is O(E[X]2), which we can decrease in a standard way, taking O(1/ǫ2) repetitions. See
Sections 3.2 and 3.4 for details.

The multi-pass streaming algorithm is implemented slightly differently, in that G1 ∈ R
1×n,

i.e., has only one row. The other matrices G2, . . . , Gp ∈ R
t×n are as before, although we now

set t = O(n1−1/(p−1)). Our estimator X can be computed in ⌈p/2⌉ passes with space only 2t as
follows. In the first pass, compute vectors XL ← G1AG

T
2 ∈ R

1×t and XR ← GT
pAG1 ∈ R

t×1, and

then on the i-th pass update XL ← XLG
T
i AGi+1 and XR ← Gp−i+1AG

T
p−i+2XR. Notice that the

computation in each pass is linear in A. For even p, after completing p/2 passes, compute and
output X ′ = XLXR ∈ R (and similarly for odd p). This X ′ is similar to the estimator X described
above, except for the new dimensions of the Gi’s. See Sections 3.3 and 3.4.

This multi-pass algorithm offers a very significant space savings over the one-pass algorithm. It
is also a bit surprising because it is getting close to the corresponding vector norm, namely, ℓp-norm
on R

n, for which the optimal space for O(p) passes is Õ(n1−2/p) bits. In fact, for the vector norm,
O(p) passes do not significantly reduce the storage needed compared with one pass, which stands in
sharp contrast to Schatten p-norms. As mentioned before, if p is even then the algorithms extends
to arbitrary A ∈ R

m×n by a standard argument.

1.2 Lower Bound for PSD Matrices

Recent work [LW16a] has improved the storage lower bound for estimating Schatten p-norms for
non-integer values of p, by showing that (1 + ǫ)-approximation (in the one-pass entry-wise model)
requires storage n1−g(ǫ), for some function g(ǫ) → 0 as ǫ→ 0, even for a sparse matrix. This con-
trasts with our algorithms for PSD matrices (from Section 1.1), where the exponent is independent
of ǫ and bounded away from 1. However, the hard distribution used by [LW16a] is not over PSD
matrices, leaving open the possibility that PSD matrices admit algorithms that use storage O(nc)
for c < 1 independent of ǫ.

We close this gap in Section 4, by adapting the lower bound of [LW16a] to PSD matrices, to
show, for every non-integer p > 0, a storage lower bound of Ω(n1−g′(ǫ)) for some function g′(ǫ)→ 0
as ǫ→ 0 (again, in the one-pass entry-wise model and even for a sparse matrix). A key feature of
our lower bounds for PSD matrices is that they hold in the model in which each entry of the matrix

3



Problem: Schatten p-norm of a sparse matrix in row-order stream

which p > 0 space

Algorithms: all p Õ(n) trivial (by sparsity), ǫ = 0

p ≡ 0 (mod 4) Õp,ǫ(n
1−4/p) Section 1.3

p ≡ 2 (mod 4) Õp,ǫ(n
1−4/(p+2)) Theorem 6.1, p ≥ 6

Lower Bounds: p ∈ 2Z, p ≥ 4 Ω(n1−4/p) Theorem 5.4, for ǫ < ǫ0(p), even multi-pass

p /∈ 2Z Ωt(n
1−1/t) Theorem 5.3, for ǫ < ǫ0(t, p)

Table 2: Bounds for (1 + ǫ)-approximation of the Schatten p-norm of a sparse matrix A ∈ R
n×n in

the one-pass row-order model. Space is counted in bits.

occurs exactly once in the stream. This models applications where the matrix resides in external
memory and is being streamed through main memory; in such a model multiple updates to an entry
may not appear. While it is possible to obtain lower bounds for PSD matrices by embedding the
multiplayer Set-Disjointness lower bound [BJKS02] for vectors onto the diagonal of a matrix,
to apply such lower bounds the diagonal entries need to be incremented repeatedly, that is, one
such diagonal entry needs to be updated nΩ(1) times. In contrast, in our lower bounds each matrix
entry occurs exactly once in the stream, i.e., there are no updates to entries.

1.3 Results for Row-Order Model

For sparse matrices, estimating Schatten p-norms in the row-order model can be reduced to esti-
mating Schatten (p/2)-norms in the turnstile model. Consider estimating ‖A‖pSp

for some sparse

matrix A. The algorithm first forms ATA =
∑

i A
T
i Ai “on the fly”, by reading each row Ai and

immediately generating a stream of updates that corresponds to the non-zero entries in AT
i Ai, and

then it can just estimate the Schatten (p/2)-norm of that stream, because ‖ATA‖p/2Sp/2
= ‖A‖pSp

.

Observe that each row Ai has only O(1) non-zero entries, hence also AT
i Ai has only O(1) non-zero

entries, and the algorithm only needs O(1) space to generate the updates to ATA. Moreover, since
A is sparse, also ATA is sparse. It was shown in [LW16a] how to estimate the Schatten p-norm,
for an even integer p, using Õp,ǫ(n

1−2/p) bits of space, even in the turnstile model. For p ∈ 4Z, the
above yields an algorithm in the row-order model that uses Õp,ǫ(n

1−4/p) bits of space for sparse
matrices.

In Sections 5 and 6, we study the problem in the row-order model for all p > 0. When p is not
an even integer, we prove that (1 + ǫ)-approximating the Schatten p-norm in the one-pass entry-
wise model requires Ωǫ(n

1−g(ǫ)) bits of space where g(ǫ) → 0 as ǫ→ 0. This bound holds even for
sparse matrices, in which case it is almost tight. When p ≥ 4 is an even integer, we prove a lower
bound of Ωp(n

1−4/p) bits of space, matching up to logarithmic factors the algorithm from above
for p ∈ 4Z. For the remaining case p ≡ 2 (mod 4), we present an algorithm using Õp,ǫ(n

1−4/(p+2))
space, leaving a slight polynomial gap from the lower bound of Ωp(n

1−4/p).

1.4 Previous Work

The aforementioned algorithm of [LNW14] uses a single sketching matrix G, for example, if A is
PSD, then their sketch is S = GAGT , where G ∈ R

t×n is a Gaussian matrix. Its estimate for ‖A‖Sp

is produced by summing over all “cycles” Si1,i2Si2,i3 · · ·Sip,i1 , where i1, . . . , ip ∈ [t] are distinct.
Our sketch improves upon theirs in both update time and query time. The only other streaming
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algorithm for Schatten p-norm that we are aware of is that of [LW16a, Theorem 7], which uses

space O(n1− 2

p poly(1ǫ , log n)) but works only for matrices that have O(1)-entries per row and per
column.

One possible approach to improve the update time would be to replace the Gaussian matrices
in [LNW14] with a distribution over matrices that admit a fast multiplication algorithm. The
analysis done in [LNW14] relies on the Gaussian entries (rotational invariance, in particular), so
the replacement matrix should preserve the distribution of the sketch. Kapralov, Potluru, and
Woodruff [KPW16] present just such a distribution on matrices G̃, where the multiplication G̃A
can be computed quickly and G̃A is close to GA in total variation distance. Unfortunately, under
the distribution of [KPW16], or any other with a similar guarantee on total variation distance, each
coordinate update to A results in a dense rank-one update to the sketch, which means that the
update time is not improved.

Several strong lower bounds are known for approximating Schatten p-norms and other matrix
functions, both for the dimension of a sketch and for storage requirement (bits). Li, Nguyen
and Woodruff [LNW14] prove that for 0 ≤ p < 2 every linear sketch that can approximate rank
and Schatten p-norm must have dimension Ω(

√
n) and every bilinear sketch must have dimension

Ω(n1−ǫ). Li and Woodruff [LW16b] show that every linear sketch for Schatten p-norm, p ≥ 2,
requires dimension Ω(n2−4/p). In [LW16a], they prove space complexity lower bounds that hold
even when the input matrix is sparse. Specifically, they show that one-pass streaming algorithms
which (1 ± ǫ)-approximate various functions of the singular values, including Schatten p-norms
when p is not an even integer, require Ω(n1−g(ǫ)) bits of space for some function g(ǫ) → 0 as
ǫ→ 0. Additional space lower bounds, e.g., for p ∈ [1, 2), can be deduced from a general statement
of [AKR15], see [LW16a, Table 1].

2 Notation and Preliminaries

The space bounds of sketching algorithms in the turnstile model are stated in terms of sketch
dimension (number of entries). The number of bits required can be larger by a log nM factor,
where M is the absolute ratio of the largest element in the matrix to the smallest. We call a
matrix a Gaussian matrix if its entries are independent N(0, 1) random variables. A matrix G of
dimension t × n is a column-normalized Gaussian matrix if G = G′/

√
t, where G′ is a Gaussian

matrix. Now-standard techniques such as Nisan’s Pseudo-random generator or k-wise independence
can be used to derandomize Gaussian matrices for use in sketching algorithms. Column-normalized
Gaussian matrices serve as JLTs. In particular, there exists a constant c such that if G be a t× n
column-normalized Gaussian matrix with t ≥ c

ǫ2
log d

δ , then G is a (ǫ, δ, d)-JLT [IM98].

3 New Estimator for PSD Matrices (and Integer p)

The main result in this section is a new one-pass streaming algorithm for estimating the Schatten
p-norm, for integer p ≥ 2. When p is odd, it additionally requires that the input matrix is PSD.
The first version of this algorithm, described in Section 3.2, has the same storage requirement of
Õp(n

2−4/p/ǫ2) bits as the previous algorithm of [LNW14] that uses cycle sums, but has simpler
analysis and faster query time1, which is roughly matrix multiplication time, nω, instead of np.
Moreover, it is based on a new method that leads to a ⌈p/2⌉-pass algorithm with storage requirement

1In [KV16], Kong and Valiant independently improve the algorithm in [LNW14] to the same runtime as Theo-
rem 3.3 in this paper by considering only “increasing cycles”.
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Õp(n
1−1/(p−1)/ǫ2) bits, as described in Section 3.3. Previously, the algorithm in [Woo14, Theorem

6.1] has the same number of passes but larger storage requirement O(n/ǫ2).2 Finally, we improve
the update time, as described in Section 3.4, by employing the sketching matrices Gi that are
certain sparse matrices instead of Gaussians.

We start in Section 3.1 with the case p = 4, which is based on the same sketch but is significantly
easier to analyse.

3.1 Schatten 4-Norm using JLT matrices

Theorem 3.1. Let G1, G2 ∈ R
t×n be independent (ǫ, δ

n , 1)-JLT matrices. Then for every A ∈
R
n×m,

Pr
[

Tr(G1AA
TGT

2 G2AA
TGT

1 ) ∈ (1± 2ǫ)2‖A‖4S4

]

= 1− 2δ.

Thus, one can find a (1± ǫ)-approximation to the Schatten-4 norm of a general matrix A ∈ R
n×m

using a linear sketch of dimension O(ǫ−2n log n).

Before proving the theorem, we remark that if each column of Gi has only s non-zero entries,
it is easy to see that the update time of this linear sketch is O(s), assuming any entry of G1 and
G2 can be accessed in O(1) time (in a streaming algorithm, the entries are usually computed from
a small random seed in polylog(n) time). The query time is dominated by multiplying a matrix of
size t× n with one of size n× t, and thus take O(tω · n/t) = Õ(nω/ǫ2(ω−1)).

Now we prove Theorem 3.1, for which we need the following lemma.

Lemma 3.2. Let G ∈ R
t×n be an (ǫ, δ/n, 1)-JLT matrix. Then for every PSD matrix A ∈ R

n×n,

Pr
[

Tr(GAGT ) ∈ (1± ǫ)Tr(A)
]

≥ 1− δ.

Proof. By the Spectral Theorem, A = UΛUT , where Λ is a diagonal matrix and U is an orthonormal
matrix. Then G′ = GU is a still (ǫ, δ/n, 1)-JLT. Thus

Tr(GAGT ) = Tr(G′ΛG′T ) = Tr(
√
ΛG′TG′

√
Λ) =

n∑

i=1

λie
T
i G

′TG′ei =

n∑

i=1

λi‖G′ei‖22.

By the JLT guarantee and a union bound, with probability at least 1 − δ, for all i ∈ [n] we have
‖G′ei‖22 ∈ [1− ǫ, 1 + ǫ], in which case Tr(GAGT ) ∈ (1± ǫ)Tr(A).

of Theorem 3.1. Apply Lemma 3.2 to the PSD matrix AATAAT , to get that with probability at
least 1− δ (over the choice of G2),

Tr(G2AA
TAATGT

2 ) ∈ (1± 2ǫ)Tr(AATAAT ) = (1± 2ǫ)‖A‖S4
,

where the left-hand side is equal to Tr(AATGT
2 G2AA

T ), by the identity Tr(MMT ) = Tr(MTM).
Now suppose (by conditioning) that G2 is already fixed, and apply the same lemma to the PSD
matrix AATGT

2 G2AA
T , to get that with probability at least 1− δ (over the choice of G1),

Tr(G1AA
TGT

2 G2AA
TGT

1 ) ∈ (1± 2ǫ)Tr(AATGT
2 G2AA

T ).

The proof follows by a union bound.
The linear sketch of A consists of the two matrices G1A and G2A, which suffices to estimate

‖A‖4S4
as above with δ = 1/8. This sketch is linear and its dimension is 2tn, where we can use say

Gaussians to obtain t = O(ǫ−2 log n).
2We note that also in [Woo14, Theorem 6.1] it is required that p is even or that the input matrix is PSD, but this

is erroneously omitted.
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3.2 Schatten p-norm Using Gaussians

We now design a sketch for Schatten-p norm that uses column-normalized Gaussian matrices. We
will later extend and refine it to improve the per-update processing time.

Theorem 3.3. For every 0 < ǫ < 1/2 and integer p ≥ 2, there is an algorithm that outputs at
(1 ± ǫ)-approximation to the Schatten-p norm of a PSD matrix A ∈ R

n×n using a randomized
linear sketch of dimension s = Op(ǫ

−2n2−4/p). The update time (for each entry in A) is O(s) and
the query time (for computing the estimate) is O(ǫ−2n(1−2/p)ω), where ω < 2.373 is the matrix
multiplication constant.

If p is even, the above algorithm extends to a general matrix A ∈ R
n×m.

The first part of the theorem (for PSD matrices) follows directly from Proposition 3.4 below.
The proposition is applicable to all symmetric matrices, but ‖A‖pSp

= Tr(Ap) only for PSD matrices

or even p. The linear sketch stores GiAG
T
i+1 for i = 1, . . . , p, where by convention Gp+1 = G1,

repeated independently in parallel Op(1/ǫ
2) times. Thus, the sketch has dimension Op(ǫ

−2t2). The
estimator is obtained by computing the Op(1/ǫ

2) independent copies of X and reporting their
average. To analyze its accuracy, notice that a PSD matrix A satisfies E[X] = Tr(Ap) = ‖A‖pp.
Then setting t = n1−2/p gives Var(X) ≤ Op(‖A‖Sp)

2p and averaging multiple independent copies
of X reduces the variance.

The second part (for general matrices), follows by using the same sketch for the symmetric
matrix B =

(
0 A

AT 0

)
, because the nonzero singular values of B are those of A repeated twice and

‖B‖pSp
= 2‖A‖pSp

= 2Tr(Ap), where the last equality uses the assumption that p is even.
Because the correctness of the algorithm comes by bounding the variance of X, it is enough

that the entries in each Gaussian matrix are four-wise independent, which is crucial for applications
with limited storage like streaming.

Proposition 3.4. For integer p ≥ 2 and t ≥ 1, let G1, . . . , Gp be independent t × n column-
normalized Gaussian matrices. Then for every symmetric matrix A ∈ R

n×n, the estimator X =
Tr
(
G1AG

T
2 G2A . . . GT

p GpAG
T
1

)
satisfies

E[X] = Tr(Ap) and Var(X) = Op



1+

⌊ p
2
⌋+1
∑

z=2

(

n
1− 2

p

t

)z

+

p
∑

z=2

(

n1− 2

z

t

)z


 ‖A‖2pSp
.

The full proof of this proposition appears in postponed to Section A. We outline the general idea
here. It is standard that a Gaussian matrix is rotational invariant, i.e., G and GU are identically
distributed for any orthogonal matrix U . Thus, by the Spectral Theorem, instead of considering
symmetric matrix A = UΛUT , we can consider only its diagonalization Λ.

The proof of this proposition proceeds first by expanding X in terms of inner products of

columns of the matrix G, i.e., X =
∑

i1,i2,...,ip∈[n]
λi1λi2 . . . λip · 〈g(1)i1

, g
(1)
i2
〉· 〈g(2)i2

, g
(2)
i3
〉 . . . 〈g(p)ip

, g
(p)
i1
〉,

where λi is the i-th eigenvalue of A and g
(j)
ij

is the ij-th column of Gj . We then expand E(X2).

The non-zero terms in E(X2) are composed by only those terms of even powers in every eigenvalue.
Computing the expectation of each term is straightforward because the entries of G are independent
Gaussian random variables, but the crux of the proof is in bounding the sum of the terms. We
introduce a collection of diagrams that aid in enumerating the terms according to their structure
and computing the sum.
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3.3 Multi-Pass Algorithm

The proof of Proposition 3.4 relies on the matrices Gi being Gaussians in two places. First, we
assume that the matrix A is diagonal, and in general we need to consider GiU instead of Gi.
Second, the columns of these matrices have small variance/moments, as described in (7)-(8). We
now generalize the proof to relax these requirements (e.g., to 4-wise independence) and obtain a
multi-pass algorithm.

Lemma 3.5. For integers p ≥ 2 and 1 ≤ t′ ≤ t, let G1 ∈ R
t′×n and G2, . . . , Gp ∈ R

t×n be
independent column-normalized Gaussian matrices with 4-wise independent entries. The for every
symmetric matrix A ∈ R

n×n, the estimator X = Tr
(
G1AG

T
2 G2A . . . GT

p GpAG
T
1

)
satisfies

E[X] = Tr(Ap) and Var(X) = Op

(

1 +

⌊p/2⌋
∑

z=2

nz−1−2(z−1)/p

t′tz−1
+

p
∑

z=2

nz−2

t′tz−1

)

‖A‖2pSp
.

The proof of this lemma is postponed to B. It is a direct corollary of the proof of Proposition 3.4,
except that t′, the size of the first sketch matrix, is emphasized.

We can now use the above sketch to approximate the Schatten p-norm using Õ(n1−1/(p−1)) bits
of space with ⌈p/2⌉ passes over the input.

Theorem 3.6. Let p ≥ 2 be an even integer. There is a ⌈p/2⌉-pass streaming algorithm, that
on input matrix A ∈ R

n×m with n ≥ m given as a stream, outputs an estimate X such that with
probability at least 0.9, X ∈ (1 ± ǫ)‖A‖pSp

and uses Op(n
1−1/(p−1)/ǫ2) words of space. The above

extends to all integers p ≥ 2 if A is PSD.

of Theorem 3.6. Without loss of generality we may assume that A is symmetric as argued in the
proof of Theorem 3.3. We first describe a basic algorithm that produces an estimator for ‖A‖pSp

that is unbiased and has variance Op(‖A‖2pSp
). We will later decrease the variance to O(ǫ2‖A‖2pSp

)
using the standard technique of independent repetitions in parallel.

The basic algorithm uses a pseudo-random generator to produce a four-wise independent column-
normalized Gaussian matrix. In fact, it samples p such matrices, namely, G1 ∈ R

1×n andG2, . . . , Gp ∈
R
t×n for t = O(n1−1/(p−1)), where the p matrices are independent of each other. In the first pass,

the algorithm computes G1AG
T
2 and GpAG

T
1 , and stores them in memory. Notice that these are

linear sketches of A, each dimension t. In the second pass, the algorithm uses these results to
compute (G1AG

T
2 )G2AG

T
3 and Gp−1AG

T
p (GpAG

T
1 ) which are again linear sketches of the stream

A (given the result of the first pass), each of dimension t. Continuing in this manner until pass
number ⌈p/2⌉, the algorithm stores in memory the vectors h = G⌊p/2⌋AG

T
⌊p/2⌋+1 · GpAG

T
1 and

h′T = G1AG
T
2 · · ·G⌊p/2⌋−1AG

T
⌊p/2⌋, each of dimension t. Now compute Y = h′Th. By Lemma 3.5

we have that E[Y ] = Tr(Ap) =
∑

i λ
p
i (where in the case that p is odd we use the assumption that

A is PSD). Thus, Y is an unbiased estimator for ‖A‖pSp
, and it remains to bound its variance. By

Lemma 3.5,

Var(Y ) = Op

( ⌊p/2⌋
∑

z=2

n
z−1−2 z−1

p

nz−1− z−1

p−1

+

p
∑

z=2

nz−2

nz−1− z−1

p−1

)

‖A‖2pSp
= Op(‖A‖2pSp

).

By repeating the basic algorithm Op(1/ǫ
2) times in parallel and reporting the average of their

estimates Y , we obtain estimator X for ‖A‖pSp
that is unbiased and has variance at most 1

9ǫ
2‖A‖2pSp

.
The correctness of this estimator follows by Chebyshev’s ineuqality. The basic algorithm is required
to store 2p intermediate vectors of dimension t and random seeds for the p Gaussian matrices. By
standard techniques, the length of the seeds is Op(polylog n) bits. The final algorithm stores these
for all the Op(1/ǫ

2) repetitions, and Theorem 3.6 follows.
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3.4 Faster Update Time

Since Gaussian matrices are dense, a change to one coordinate of the input matrix A may lead to a
change of every entry in the sketch. This means long update times for a streaming algorithm based
on the sketch. In this section we extend our result for Gaussian sketching matrices to a distribution
over {−1, 0, 1} valued matrices with only one non-zero entry per column. The new sketch can be
used to improve the update time of algorithms in the last two sections.

Definition 3.7 (Sparse ZD-sketch). Let Dt,n be the distribution over matrices G := ZD ∈ R
t×n,

where Z = (z1, z2, . . . , zn) ∈ R
t×n and D = diag(d1, d2, . . . , dn) are generated as follows. Let

h : [n] → [t] be a 4-wise independent hash function, and set Zi,j = 1{i=h(j)}, i.e., in each zj only
the h(j)-th coordinate is set to 1, and all other coordinates are 0. The diagonal entries of D are
four-wise independent uniform {−1, 1} random variables, and D is independent from Z.

Notice that each column of G has a single non-zero entry, which is actually a random sign, and
the n columns are four-wise independent. This random matrix G is similar to the sketching matrix
used in [TZ04] to speed up the update time when estimating the second frequency moment of a
vector in R

n. Also note that the ZD-sketch is a version of sparse JL matrices (see e.g., [KN14,
DKS10]). In this paper we do not aim at optimizing the sparsity as we focus on approximating
Schatten norms.

It is fairly easy to show that ZD-sketch works for approximating Schatten p-norm of matrices
with all entries non-negative. The proof is presented in Section C. We now show that the conclusion
of Theorem 3.3 and Theorem 3.6 still hold if we replace the Gaussian matrices in the sketch
with independent samples from the sparse ZD-sketch. A major difficulty that arises in replacing
the Gaussian matrix with the sparse ZD-sketch is the latter’s lack of rotational invariance. To
prove Theorem 3.3 we were able to expand X2 in terms of the eigenvalues of A and compute the
expectation term-by-term, but this is not possible for the sparse ZD-sketch. For example, let G
be a Gaussian matrix, for any orthogonal matrix U , the matrix GU is again a Gaussian matrix
with an identical distribution to G. This does not hold for sparse ZD-sketch. As a consequence,
in the expansion of E(X2) in the proof of Proposition 3.4, the non-zero terms would also include
those monomials of odd powers of λi(A). For example, for Schatten 3-norm, one cannot bound
∑

i1,i2,...i6∈[n]

∏6
j=1 λij by O(‖A‖6S3

). But this term appears in the expansion of E(X2) of the
Schatten 3-norm estimator if using the sparse ZD-sketch matrices.

To resolve this problem, we use a technique similar to the proof of Hanson-Wright Inequality
in [RV13] to bound the variance of X. The proof is composed of three major steps. The first
step is to decouple the dependent summands by injecting independence. The second step is to
replace the independent random vectors with fully independent Gaussian vectors while preserving
the variance. We can then apply our techniques for Gaussians to bound the variance of the final
random variable. The case p = 1 is useful to illustrate the technique, even though Schatten 1-norm
approximation can be easily accomplished in other ways. Let G ∈ R

t×n be the sparse JLT matrix
and let A ∈ R

n×n be PSD. The sketch is GAGT and

Tr(GAGT )− Tr(A) =
∑

i 6=j

ai,j〈gi, gj〉. (2)

Since i 6= j, gi and gj are independent. However the summands are subtly dependent. We first
decouple the summand by choosing δi ∼Bernoulli(1/2), and write 〈gi, gj〉 = 4E(δi(1 − δj)〈gi, gj〉).
Let V = {i : δi = 1}, then ∑i 6=j ai,j〈gi, gj〉 = 4Eδ

∑

i∈V,j∈V̄ ai,j〈gi, gj〉. Thus conditioning on δ

and {gj : j ∈ V̄ }, the set {〈gi,
∑

j∈V̄ ai,jgj〉 : i ∈ V } is a set of independent random variables. We
can match these random variables with Gaussian random variables of the same variance, and thus
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replace gi with independent Gaussian vectors. The same process can be repeated for gj : j ∈ V̄ ,
and replace every vector gi : i ∈ [n] by independent Gaussian vectors. This lets us apply similar
techniques as used in the proof of Proposition 3.4 to bound the variance of the resulting random
variable, and thus bound the variance of the original random variable Tr(GAGT )−Tr(A).

The analogue of (2) for the case of our general estimator, X−Tr(Ap), is much more complicated
than the p = 1 case. We observe that these terms can be grouped as a sum of products of consecutive
walks, i.e.,

ai1,i2ai2,i3 . . . aiz ,jz+1
〈g(z+1)

jz+1
, g

(z+1)
iz+1

〉 for some z. Notice that 〈g(z
′)

j′ , g
(z′)
j′ 〉 = 1 for any j′ and z′. For

each walk, we can apply similar idea to replace the gi vectors with independent Gaussian vectors.
Again, we apply similar techniques as used in the proof of Proposition 3.4 to bound the variance of
each group. As a result, when replacing the Gaussian matrices by sparse JLT matrices, Lemma 3.5
still holds.

Using the sparse ZD-sketch, we are able to achieve the same space bound and query time as in
Theorem 3.3 and Theorem 3.6. But our update time is improved to O(1/ǫ2). We present the full
statement of our theorem below. The full proof can be found in are presented in Section ??.

Theorem 3.8. For every 0 < ǫ < 1/2 and integer p ≥ 2, there is a randomized one-pass streaming
algorithm A with space requirement O(n2−4/p/ǫ2), that given as input a PSD matrix A ∈ R

n×n,
outputs with high probability a (1 + ǫ)-approximation of ‖A‖pSp

. The algorithm processes an update

in time O(1/ǫ2), and computes the output (after the updates) in time O(n(1−2/p)ω)/ǫ2, where ω < 3
is the matrix multiplication constant.

There is similarly a randomized ⌈p/2⌉-pass streaming algorithm B with space requirement
O(n1−1/(p−1)/ǫ2), update time in a pass O(1/ǫ2), and output time O(n(1−2/p)/ǫ2).

For even p ≥ 2, both algorithms extend to general input A ∈ R
n×m with m ≤ n.

4 Lower Bound For PSD Matrices

Theorem 4.1. Suppose that p > 0 and X ∈ R
n×n is a PSD matrix given in the entry-wise

streaming model.

(a) When p ∈ Z, there is c = c(p) > 0 such that every one-pass streaming algorithm that (1 + c)-
approximates ‖X‖Sp with probability 2/3 must use Ωp(n

1−2/p) bits of space for even p, and

Ωp(n
1−2/(p−1)) bits of space for odd p.

(b) When p 6∈ Z, for every integer t ≥ 2, there is c = c(p, t) > 0 such that every one-pass streaming
algorithm that (1 + c)-approximates ‖X‖Sp with probability 2/3 must use Ωp,t(n

1−1/t) bits of
space.

Proof. Let M be drawn from the hard input distribution for even integer p in [LW16a], which
involves an integer parameter t but does not depend on the value of p. This M is drawn from
one of two distributions with the properties that (i) for each even integer r ≥ 2t, there exist a
threshold L and a small constant η which both depend on r and t such that with high probability,
‖M‖rr ≥ (1 + η)L when M is drawn from one distribution and ‖M‖rr ≤ (1− η)L when M is drawn
from the other distribution; (ii) for any even integer r < 2t, there is no such gap in ‖M‖rr between
the two distributions; (iii) distinguishing which distribution M is drawn from requires Ωt(n

1−1/t)
bits of space for one-pass streaming algorithms, even in the insertion-only model.

It was also proved in [LW16a] that the maximum singular value of M is at most t. Then

A =
(

tIn M
MT tIn

)

is positive semidefinite since its eigenvalues are t ± σ1(M), ..., t ± σn(M), all of
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which are non-negative. We shall show that there is a constant-factor gap in ‖A‖pSp
when M is

drawn from the two distributions, then the same lower bound in property (iii) above follows.
Consider two distributions over the PSD matrices of the above form, induced by the two dis-

tributions of M , respectively. Recall that if p > 0 is not an integer,

∀|x| ≤ 1, (1 + x)p =

∞∑

k=0

(
p

k

)

xk.

Hence when |σ| ≤ t,

(t+ σ)p + (t− σ)p = 2tp
∑

k even

(
p

k

)(σ

t

)k
.

Thus

‖A‖pSp
= 2

∑

k even

(
p

k

)

tp−k‖M‖kk.

The existence of a gap in ‖A‖pSp
follows immediately from properties (i) and (ii) above.

We remark that all lower bounds in Theorem 4.1 even hold for sparse matrices, since the hard
instances are sparse. The lower bounds for non-integers p and even integers p are strengthenings of
the same lower bounds in [LW16a], and are almost tight and tight up to polylogarithmic factors,
respectively.

5 Row-Order Model: Lower Bounds

First we discuss lower bounds for estimating Schatten norms in the row-order model. Suppose that
G is a graph with n nodes and m = O(n) edges. Let M ∈ R

m×n be the incidence matrix of G and

L ∈ R
n×n be the Laplacian matrix of G, then L = MTM and thus ‖M‖pSp

= ‖L‖p/2Sp/2
. Similarly

to the approach in [LW16a], we shall need a lower bound on distinguishing two families of graphs,
while some matrix derived from the graph has different Schatten norms in the two cases. The lower
bound on distinguishing graphs we shall use is due to Kogan and Krauthgamer [KK15] based on
the Boolean Hypermatching Problem [VY11], defined as follows.

Proposition 5.1 ([KK15]). Let t ≥ 2 be an integer, and let G be an undirected 2-regular graph on
n nodes consisting of either (a) vertex-disjoint (2t+1)-cycles or (b) vertex-disjoint (4t+2)-cycles.
Every randomized one-pass insertion-only streaming algorithm that, with probability at least 2/3,
determines whether G is of type (a) or type (b) must use Ωt(n

1−1/t) bits of space.

The next lemma shows that the Laplacian matrix has different Schatten p-norms between the
two cases in the hard instance.

Lemma 5.2. Suppose that t ≥ 2 is an integer and p > 0 is not an integer. Let G be a graph as in
Proposition 5.1, then the Schatten p-norm of the Laplacian matrix of G is different by a constant
factor c(t, p) 6= 1 between the two types.

Proof. Let m = 4t + 2. To prove the lemma it suffices to show a gap in the Schatten-p norm of
the Laplacian matrix between two (m/2)-cycles and one m-cycles. Let Lm denote the Laplacian
matrix of an m-cycle. Since Lm is circulant, its eigenvalues (and thus singular values since L is
PSD) are given by the following explicit expression:

σm,j = 2− ωj
m − ωj(m−1)

m , j = 0, . . . ,m− 1

11



where
ωm = e2πi

π
m .

Thus

‖Lm‖pSp
=

{

2
∑⌊m/2⌋

i=1 σp
m,j , m is odd;

4p + 2
∑m/2−1

i=1 σp
m,j , m is even.

When m is an even integer, the eigenvalues of Lm/2 are eigenvalues of Lm, more specifically,
σm/2,j = σm,2j . It follows that

2‖Lm/2‖pSp
− ‖Lm‖pSp

= 2

n
2
−1
∑

j=1

(−1)jσp
m,j − 4p,

where we used the fact that m = 4t+ 2 in our setting and thus m/2 = 2t+ 1 is odd. Note that

σm,j = 2− 2 cos
2jπ

m
= 4 sin2

jπ

m
,

we have that

2‖Lm/2‖pSp
− ‖Lm‖pSp

= 2 · 4p
n
2
−1
∑

j=1

(−1)j sin2p jπ
m
− 4p.

Our goal is therefore to show that

n
2
−1
∑

j=1

(−1)j sin2p jπ

m
6= 1

2
.

Consider the Fourier cosine series expansion

sin2p
jπ

m
=

1

22p
Γ(2p + 1)

Γ(p+ 1)2
+

1

22p−1

∞∑

k=1

(−1)kΓ(2p + 1)

Γ(p + k + 1)(p − k + 1)
cos
(

2kj
π

m

)

,

where the Fourier coefficient can be obtained by using Binomial Theorem and Gauss Theorem for
hypergeometric functions 2F1 to evaluate the following integral (cf. Exercise 44 on p123 of [AAR99])

∫ π/2

−π/2
(1− e2iθ)p−k(1− e−2iθ)p+kdθ.

Next, observe that

m
2
−1
∑

j=1

(−1)j cos
(

2kj
π

m

)

=







0, k is even;
m
2 − 1, k ≡ m

2 (mod m);

−1, otherwise.

(3)

The problem reduces to evaluate

S :=
1

22p−1

{
∑

odd k
k 6≡m

2
−1(mod m)

γp(k)−
(m

2
− 1
) ∑

k≡m
2
−1(mod m)

γp(k)

}

,
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where

γp(k) =
Γ(2p + 1)

Γ(p+ k + 1)Γ(p − k + 1)
.

Observe that γp(k) > 0 for k ≤ ⌈p⌉, γp(⌈p⌉+1) < 0 and γp(k) has alternating signs for k ≥ ⌈p⌉+1.
When ⌈p⌉ is even, it holds that γp(k) < 0 for k ≡ m/2− 1(mod m) and thus

S >
1

22p−1

∑

odd k

γp(k);

when ⌈p⌉ is odd, it holds that γp(k) > 0 for k ≡ m/2− 1(mod m) and thus

S <
1

22p−1

∑

odd k

γp(k).

The result follows immediately once the following identity is established:

1

22p−1

∑

odd k

γp(k) =
1

22p−1

∑

odd k

Γ(2p + 1)

Γ(p+ k + 1)Γ(p − k + 1)
=

1

2
. (4)

Consider the integral representation

Γ(2p + 1)

Γ(p+ k + 1)Γ(p − k + 1)
=

1

2πi

∫ (0+)

−∞
t−(p−k)−1(1− t)−(p+k)−1dt,

where the contour integral goes from the upper edge of the negative real axis from −∞ to 0,
then goes clockwise around 0, and returns to −∞ along the lower edge of the negative real axis.
Summing under the integral yields that

∑

odd k

γp(k)

=
1

2πi

∫ (0+)

−∞

1

(1− 2t)tp(1− t)p
dt

=
sin(pπ)

π
2F1

(
1, 1− p
1 + p

;−1
)

Γ(2p)Γ(1 − p)

Γ(1 + p)

=
sin(pπ)

π
· Γ(1 + p)Γ(32 )

Γ(2)Γ(12 + p)
· Γ(2p)Γ(1− p)

Γ(1 + p)

=
sin(pπ)

π
·
√
π/2

Γ(12+p)
· 2

2p−1

√
π

Γ(p)Γ

(

p+
1

2

)

Γ(1−p)

= 22p−2,

where we used the integral representation of hypergeometric function 2F1 (Equation (2.3.17) in
[AAR99]) for the second equality, Kummer’s identity ([AAR99, Corollary 3.1.2]) for the third equal-
ity, Legendre’s duplication formula ([AAR99, Theorem 1.5.1]) for the fourth and Euler Reflection
Formula ([AAR99, Theorem 1.2.1]) for the last equality. This establishes (4).

The next theorem follows easily by combining Proposition 5.1 and Lemma 5.2.

Theorem 5.3. Suppose that t ≥ 2 is an integer and p > 0 is not an even integer. Every randomized
streaming algorithm that with probability at least 2/3 estimates ‖A‖pSp

within factor 1 + ǫ, for

ǫ < ǫ0(t, p), when the input A ∈ R
n×n is sparse and given in row-order model, must use Ωt(n

1−1/t)
bits of space.
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Proof. Let A be the incidence matrix of G in Proposition 5.1. Since G has exactly n edges, the
size of A is exactly n × n. In the streaming model for G, each update describes an edge, which
corresponds to a row of A. Thus a stream of G corresponds to a stream of A in row-order model.
By Lemma 5.2, a Schatten-norm algorithm can distinguish the type of G, and the lower bound
therefore follows from Proposition 5.1.

The theorem above gives a nearly tight bound for estimating the Schatten p-norm for sparse
matrices and p /∈ 2Z. For p ∈ 2Z we have the following theorem.

Theorem 5.4. Suppose that t ≥ 2 is an integer and p ≥ 4 is an even integer. Every randomized
streaming algorithm that estimates the Schatten p-norm of the input matrix up to a constant factor
(depending on p) with probability ≥ 2/3 in the row-order model must use Ω(n1−4/p) bits of space.
This lower bound holds even for multi-pass algorithms.

Proof. We reduce the problem to the communication complexity of multiparty Set-Disjointness

[Gro09]. Suppose there are k = 2n2/p players. Each player is given a set in {1, . . . , n}. Let A
be an empty matrix and we shall show how to construct A according to the input of the Set-

Disjointness problem. For each element j in each player’s set, we add a row ej to A, where ej is
the j-th row of the n × n identity matrix. With high probability the hard instance of multiparty
Set-Disjointness has m ≤ n elements, and thus A will have m rows. By padding we may assume
that A is n× n, and is clearly given in the row-order model.

When the players’ sets are disjoint, it is clear that all singular values of A are 1 and thus
‖A‖ = m ≤ n. When the players’ set have a common element, there is a singular value of

√
k and

hence ‖A‖pSp
≥ kp/2 = 2p/2n. Therefore ‖A‖pSp

is different by a constant factor in the two cases.
The communication complexity lower bound of unrestricted protocols for Set-Disjointness

is Ω(n/k) bits, which implies that the streaming lower bound for estimating Schatten p-norm is
Ω(n/k2) = Ω(n1−4/p) bits, even for multi-pass algorithms.

As discussed in Introduction, Theorem 5.3 is asymptotically tight up to logarithmic factors for
p ∈ 4Z. For the remaining case p ≡ 2 (mod 4), we present an algorithm using Õ(n1−4/(p+2)) space
in Section 6, leaving a slight polynomial gap from the lower bound of Ω(n1−4/p).

6 Row-Order Model: Algorithm For Even p

In this section, we present an algorithm which estimates the Schatten p-norm (where p ≡ 2 (mod 4)
is an integer) of n × n sparse matrices in row-order model using Õ(n1−4/(p+2)) bits of space. The
following algorithm is in a similar flavour to the algorithm in [LW16a], where the Precision Sampling
structure was used to sample rows of a matrix proportionally to their row norms, and we shall omit
such details in this section. Since we are reading A in row-order model, we can sample and obtain
rows of A exactly with weighted reservoir sampling [ES06], but we shall use Precision Sampling to
sample rows of ATA.

Theorem 6.1. Suppose that p = 4k + 2 for some integer k ≥ 1 and A ∈ R
n×n is a sparse matrix

given in one-pass row-order model. Algorithm 1 returns Y such that (1−ǫ)‖A‖pSp
≤ Y ≤ (1+ǫ)‖A‖pSp

with probability ≥ 2/3, using space Op(n
1− 4

p+2 poly(1/ǫ, log n)).

Proof. The analysis is similar to [LW16a]. Let B = ATA, L = ‖B‖2F and Z = ‖A‖2F . For a matrix
M we shall denote its i-row by Mi. We also denote by B̃i the approximation recovered by the
algorithm to Bi. For notational convenience, we also define K1 = · · · = Kk = K and Kk+1 = V .

14



Algorithm 1 Algorithm for p = 4k + 2 and sparse matrices in row order model

Assume that matrix A has at most O(1) non-zero entries per row and per column and is given
in row order model and that p = 4k + 2 for some integer k ≥ 1.

1: T ← Θ(ǫ−2n1−1/(k+1))
2: Maintain a sketch for estimating ‖ATA‖2F and obtain an (1 + ǫ)-approximation L′

3: Z ← ‖A‖2F ⊲ Can be computed exactly in row-
order model

4: K ← set of indices of rows of ATA with norm ≥
√

L′/(10T ) ⊲ Count-Sketch, see [LW16a]

5: V ← set of indices of rows of A with norm ≥
√

Z/(10T ) ⊲ Maintaining 10T rows of largest
norm

6: for s = 1, . . . , k do

7: Sample T rows of ATA proportionally to row norm ⊲ Precision sampling, see [LW16a]
8: Obtain approximation to the sampled rows ⊲ By-product of precision sam-

pling, see [LW16a]
9: Is ← the set of the indices of the sampled rows

10: Is ← Is ∪K
11: end for

12: Sample T rows of A proportionally to row norm ⊲ Reservoir sampling
13: Ik+1 ← the set of the indices of the sampled rows
14: Ik+1 ← Ik+1 ∪ V
15: Return Y as defined in (5)

Next, we define for s = 1, . . . , k

τs(i) =

{

1, i ∈ K;

L/‖Bi‖22, i ∈ Is \K,

τ̃s(i) =

{

1, i ∈ K;

L′/‖B̃i‖22, i ∈ Is \K

and

τ̃k+1(i) = τk+1(i) =

{

1, i ∈ V ;

Z/‖Ai‖22, i ∈ Ik+1 \ V.
We further define

X(i1, . . . , it) =

k∏

j=1

〈Bij , Bij+1
〉〈Bij+1

, Aik+1
〉〈Aik+1

, Bi1〉 · τ1(i1) · · · τk+1(ik+1),

and

X̃(i1, . . . , it) =

k∏

j=1

〈B̃ij , B̃ij+1
〉〈B̃ij+1

, Aik+1
〉〈Aik+1

, B̃i1〉 · τ̃1(i1) · · · τ̃k+1(ik+1).
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Since B = ATA is PSD, it holds that

‖A‖pSp
= Tr(Bp/2)

=
∑

i1

eTi1B · (BTB) · · · (BTB)
︸ ︷︷ ︸

k−1 times

·B ·Bei1

=
∑

i1

Bi1 · (BTB) · · · (BTB)
︸ ︷︷ ︸

k−1 times

·ATA ·BT
i1

=
∑

i1,...,ik+1

Bi1(B
T
i2Bi2) · (BT

ik
Bik)(A

T
ik+1

Aik+1
)BT

i1

=
∑

i1,...,ik+1

〈Bij , Bij+1
〉〈Bij+1

, Aik+1
〉〈Aik+1

, Bi1〉.

Our estimator is

Y =
∑

i∈I1,...,ik+1∈Ik+1

1

T σ(i1,...,ik+1)
X̃(i1, . . . , ik+1), (5)

where
T σ(i1,...,ik+1) = |{1 ≤ s ≤ k + 1 : is 6∈ Ks}|

Following a similar analysis to that in [LW16a], we have that

∣
∣
∣EY − ‖A‖pSp

∣
∣
∣ ≤ ǫ‖A‖pSp

,

where we have crucially used the fact that A and ATA are sparse matrices. The variance bound
is similar, too. The covariance terms are sums over i1, . . . , ik+1, i

′
1, . . . , i

′
k+1 and we split them into

two kinds depending on whether ik+1 = i′k+1. Eventually we shall have

EY 2 − (EY )2 .

k∑

r=1

1

T r
‖B‖2rF ‖A‖2p−4r+4

S2p−4r+4
+

k+1∑

r=1

1

T r
‖B‖2(r−1)

F ‖A‖2F ‖A‖2p−4r+2
S2p−4r+2

.

k+1∑

r=1

1

T r
n
r− 4r−2

p ‖A‖2pSp
,

which implies that
EY 2 − (EY )2 ≤ ǫ2‖A‖2pp

if the constant C in T = Cn1−1/(k+1)/ǫ2 is large enough.
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A Proof of Proposition 3.4

Proof. Using the identity Tr(MMT ) = Tr(MTM) we have

X = Tr
(
G1AG

T
2 G2A · · ·GT

p GpA ·GT
1

)
= Tr

(
GT

1 ·G1AG
T
2 G2A · · ·GT

pGpA
)
.

By linearity of trace, expectation and matrix product, and by the fact that E[GT
i Gi] = In×n for all

i ∈ [p], we have

EX = ETr
(
GT

1 ·G1AG
T
2 G2A · · ·GT

pGpA
)

= ETr
(
In×nAG

T
2 G2A · · ·GT

p GpA
)

= · · · = Tr(Ap).

It remains to bound the variance of X. Without loss of generality we can assume that A is
a diagonal matrix diag(λ1, λ2, . . . , λn), where λ1 ≥ · · · ≥ λn. Indeed, in the case of a general
symmetric A, we can write A = UΛUT for an orthonormal matrix U and a diagonal matrix Λ.
Then GiAG

T
i+1 = (GiU)Λ(Gi+1U)T , and the matrices {GiU}i∈[p] have the same joint distribution

as {Gi}i∈[p], hence Var(X) would not change if A is replaced with Λ.

Let us write Gi = (g
(i)
1 , g

(i)
2 , . . . , g

(i)
n ), where each g

(i)
j ∈ R

t is a column vector. It is easily verified
that

X =
∑

i1,i2,...,ip∈[n]

λi1λi2 · · ·λip〈g(1)i1
, g

(1)
i2
〉〈g(2)i2

, g
(2)
i3
〉 · · · 〈g(p)ip

, g
(p)
i1
〉.
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i1 i2 i3 i4 i5 i6 i7 i8 i9

i′1 i′2 i′3 i′4 i′5 i′6 i′7 i′8 i′9

Figure 1: An example of a non-zero variance term (p = 9): i1 = · · · = i5 = i′1 = i′2 · · · = i′5, i6 = i′6,
i7 = i′7, i8 = i9 = i′8 = i′9 and i1, i6, i7, i8 are distinct. The term of the eigenvalues in the variance
expression is λ10

i1
λ2
i6
λ2
i7
λ4
i8
.

Indeed, first write

(GT
1 G1A)i1,i2 =

∑

k∈[t]

(GT
1 )i1,k(G1)k,i2Ai2,i2 = 〈g(1)i1

, g
(1)
i2
〉λi2 ,

and then expand the trace in
X = Tr

(
GT

1 G1A ·GT
2 G2A · · ·GT

p GpA
)
using all closed walks (i1, i2, . . . , ip) ∈ [n]p.

It is not difficult to verify that for all j 6= j′ ∈ [n] and i1, i2, i
′
1, i

′
2 ∈ [p],

E[〈g(j)i1
, g

(j)
i2
〉] = 1{i1=i2}, (6)

E[〈g(j)i1
, g

(j)
i2
〉〈g(j

′)
i′
1

, g
(j′)
i′
2

〉] = 1{i1=i2,i′1=i′
2
}. (7)

E[〈g(j)i1
, g

(j)
i2
〉〈g(j)

i′
1

, g
(j)
i′
2

〉] = 1{(i1,i′1)=(i2,i′2)}
+ 1

t1{(i1,i2)=(i′
1
,i′
2
)} +

1
t1{(i1,i2)=(i′

2
,i′
1
)}. (8)

Notice that in the last equation, the events in the three indicators are not disjoint, and when
i1 = i′1 = i2 = i′2 the righthand-side evaluates to 1 + 2/t.

We proceed to bound Var(X) ≤ E[X2]. Denoting I = (i1, i2, . . . , ip) ∈ [n]p with the convention
ip+1 := i1, and similarly for I ′, we can write

X2 =




∑

I

∏

j∈[p]

λij〈g
(j)
ij

, g
(j)
ij+1
〉





2

=
∑

I,I′

∏

j∈[p]

λijλi′j
〈g(j)ij

, g
(j)
ij+1
〉〈g(j)i′j

, g
(j)
i′j+1

〉. (9)

We can represent each term of X2 (a fixed choice for I, I ′) by a diagram (see an example
in Figure 1). Each node in the diagram represents an index ij, and each square corresponds to a

factor of the form 〈g(j)ij
, g

(j)
ij+1
〉〈g(j)

i′j
, g

(j)
i′j+1

〉. A line connecting two nodes represents that the respective

indices are equal. Notice that for each square, if a vertical line exists, then both vertical lines must
exist, otherwise the expectation of this square is zero, and it has no contribution to E[X2]. Thus,
for a non-zero diagram, if it has at least one vertical line, then it actually has all possible vertical
lines. Diagrams with no vertical lines can be non-zero diagrams only if they are made entirely by
horizontal cross-lines and parallel lines, which we call the trivial diagrams, and they correspond
to the coefficient of λp

i λ
p
j for i 6= j. Each non-trivial diagram corresponds to an integer partition

of p (i.e., a way of writing the integer p as the sum of positive integers, with the order of the
summands/parts having no significance), but we should account also for permutations and cyclic

shifts on the parts. Given an integer partition [p1, p2, . . . , pz] of p, we write it as (p
(z1)
1 , p

(z2)
2 · · · p(zt′)t′ ),
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where p1 ≥ p2 ≥ · · · ≥ pt′ are the distinct parts (or part sizes), and zi counts how many parts are
equal to pi. Then the number of different diagrams for a given integer partition [p1, p2, . . . , pz] is

C[p1,p2,...,pz] =
t′!p

z1!z2! · · · zt′ !
.

Observe that this number is upper bounded by a constant Mp determined only by p. Each integer
partition of p corresponds to a monomial of the eigenvalues. A connected component in the diagram
corresponding to a power of the eigenvalue, and this power is just the size of that component.
For each connected component, the total number of indices is an even number because of the
vertical lines. For a single square, the coefficient is given by Equations (7)-(8). Using the diagram
representation, we can calculate

E

( )

= 1 +
2

t
; E

( )

= 1;

E

( )

= E

( )

=
1

t
.

(10)

All other diagrams either do not exist in the expansion of X2, or have a zero expectation. Diagrams
corresponding to the same partition of p have the same coefficient. Since for each complete square
there is a factor 1 + 2/t, and for each incomplete square there is a factor 1/t, the coefficient for a
partition [p1, p2, . . . , pz] with z > 1 parts is

Z[p1,p2,...,pz] =
1

tz

(

1 +
2

t

)p−z

.

For non-trivial diagrams (i.e., have vertical lines) with z > 1 (i.e., excluding the completely con-
nected graph) we collect all such terms as X1 and bound their expectation by

E[X1] ≤
∑

[p1,p2,...,pz]

Mp

tz

∑

i1,i2,...,iz∈[n]

λ2p1
i1

λ2p2
i2
· · ·λ2pz

iz
. (11)

For non-trivial diagrams and z = 1, there cannot be any incomplete square, and we can compute
the expression explicitly,

E

[
∑

i∈[n]

λ2p
i

∏

j∈[p]

〈g(j)i , g
(j)
i 〉〈g

(j)
i , g

(j)
i 〉
]

=

(

1 +
2

t

)p n∑

i=1

λ2p
i

= 3p‖A‖2pS2p
.

For trivial diagrams (no vertical lines), we collect the terms as X2 and bound their expectation by

E[X2]

≤
∑

i 6=k∈[n]

λp
i λ

p
k

p
∑

z=0

(
p

z

)

E

( )z

E

( )p−z

≤ 2p
∑

i 6=k∈[n]

λp
i λ

p
k

≤M ′
p‖A‖2pSp

,
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where M ′
p is a constant that depends only on p.

We now turn to bounding E[X1] using (11). For each integer partition [p1, p2, . . . , pz] of p with
z > 1 parts,

∑

i1,i2,...,iz∈[n]

λ2p1
i1

λ2p2
i2
· · ·λ2pz

iz
=

(
∑

i1∈[n]

λ2p1
i1

)

· · ·
(
∑

iz∈[n]

λ2pz
iz

)

=
z∏

j=1

‖A‖2pjS2pj
.

Let z′ be the number of parts with 2pj ≤ p. Clearly, z′ ≥ z − 1, since at most one part can have
pj ≥ p/2. Consider first the case z′ = z. It is well-known (via an application of Hölder’s inequality)
that ‖x‖q ≤ ‖x‖r ≤ n1/r−1/q‖x‖q holds for all x ∈ R

n and 1 ≤ r ≤ q. This comparison of norms
applies also to the Schatten norms of A (viewed as n-dimensional norms of the eigenvalues of A),

proves that ‖A‖2pjS2pj
≤ n1/(2pj)−1/p‖A‖Sp . We thus obtain

z∏

j=1

‖A‖2pjS2pj
≤

z∏

j=1

(

n1/(2pj)−1/p‖A‖Sp

)2pj
= nz−2‖A‖2pSp

. (12)

In the case z′ = z − 1, there is a unique j∗ such that pj∗ > p/2, and therefore z ≤ (p − pj∗) + 1 ≤
⌊p/2⌋ + 1. For j 6= j∗ we can use the comparison of Schatten norms as above, and for j = j∗ we
simply use ‖A‖S2pj

≤ ‖A‖S2p . We thus obtain

z∏

j=1

‖A‖2pjS2pj
≤ ‖A‖2pj∗S2p

∏

j 6=j∗

(

n1/(2pj)−1/p‖A‖Sp

)2pj

≤ nz−1−2(p−pj∗)/p‖A‖2pSp

≤ nz−2z/p‖A‖2pSp
.

(13)

where the last inequality follows by 1 + 2(p − pj∗)/p ≥ 1 + 2(z − 1)/p = 2z/p + (1 − 2/p). With
also the z = 1 term considered, we have

Var(X) ≤M ′′
p



1+

⌊p/2⌋+1
∑

z=2

(

n1−2/p

t

)z

+

p
∑

z=2

(

n1−2/z

t

)z


‖A‖2pSp
.

where M ′′
p is a constant depends only on p. This completes the proof of Proposition 3.4.

B Proof of Lemma 3.5

Proof. We first argue that it suffices to prove the corollary under the assumption that the entries
of Gl are fully independent. Indeed, each of the terms we need to calculate is the expectation of a
polynomial of total degree at most 4 in the random variables Gij . For example, the factor contains

Gl in a typical term of X2 is 〈g(l)il
g
(l)
jl
〉〈g(l)

i′l
g
(l)
j′l
〉 The expectation of such a polynomial when Gl’s

entries are 4-wise independent is exactly the same as when these entries are fully independent.
Assume henceforth that the entries of Gl are mutually independent. We repeat the proof of

Proposition 3.4, except that when considering the square containing (i1, i2), we replace t with t′ in
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(8) and (10). In diagrams where this square is complete, the contribution to E[X2], as given by
(9), does not change. When this square is incomplete, we replace t by t′ in subsequent calculations
like (11) and (12). The proof is otherwise identical, but we kept the more precise bound obtained
in (13).

C A Simple Proof for Sparse Sketch of Matrices With Non-Negative

Entries

Lemma C.1. Let G = (g1, g2, . . . , gn) ∼ Dt,n, then the following conditions hold.

1. for each i ∈ [n], E〈gi, gi〉 = 1, E[〈gi, gi〉2] = 1;

2. for each i, j ∈ [n], i 6= j, E〈gi, gj〉 = 0, E[〈gi, gj〉2] = 1/t;

3. for each i, j, i′, j′ ∈ [n], {i, j} 6= {i′, j′}, i 6= j, i′ 6= j′, E〈gi, gj〉 = E[〈gi, gj〉〈gi′ , gj′〉] = 0;

Proof. Property 1 follows immediately. For 2, E〈gi, gj〉 = 0 and

E〈gi, gj〉2 = E

(
∑

l

gi,lgj,l

)2

=
∑

l,k

E(gi,lgj,lgi,kgj,k)

=
t∑

l=1

E(d2i d
2
jzi,lzi,k)

=
t∑

l=1

1

t2
=

1

t
.

For 3, we only need to consider the case when {i, j}∩{i′ , j′} 6= ∅. Without loss of generality, assume
i = i′, thus,

E〈gi, gj〉〈gi, gj′〉 =
∑

l

E(gi,lgj,lgi,l, gj′,l)

+
∑

l 6=k

E(gi,lgj,lgi,k, gj′,k) = 0,

where we use that gi,lgi,k = 0 when l 6= k.

The following lemma is a simple case that the variance of a sparse sketch is smaller than the
Gaussian sketch. We will show in the next section that the sparse sketch is superior to the Gaussian
sketch for every symmetric matrix.

Lemma C.2. Let G1 ∼ Dt′,n and let G2, . . . Gp be independent copies of Dt,n, where p ≥ 2 is an
integer and c1, c2 are two absolute constants. Let A be a symmetric matrix with all entries non-
negative and 1 ≤ t′ ≤ t. Let X = Tr

(
G1AG

T
2 G2AG3 · · ·GpAG

T
1

)
. Let X ′ be a random variable

obtained by replacing Gi of X by a column normalized gassian matrix of the same size. Then,

E(X2) ≤ E(X ′2).
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Proof. Let J = {j1, . . . jp} ∈ [n]p and I = {i1, . . . ip} ∈ [n]p. Define

XI,J := aip,j1ai1,j2 · · · aip−1,jp〈g
(1)
j1

, g
(1)
i1
〉〈g(2)j2

, g
(2)
i2
〉

· · · 〈g(p)jp
, g

(p)
ip
〉.

We now expand X in a different form,

X =
∑

I,J

XI,J .

Thus, X2 =
∑

I,J,I′,J ′

XI,JXI′,J ′ .

DefineX ′
I,J analogously by replacing gi with Gaussian vectors. Since each ai,j ≥ 0, with Proposition

3.4 and Lemma C.1, we immediately have that E(X2) ≤ E(X ′2).

The preceding lemma leads to the following theorem.

Theorem C.3. For every integer p ≥ 2, there exists a randomized one-pass streaming algorithm
A using space
O(n2−4/p/ǫ2), and a ⌈p/2⌉-pass streaming algorithm B using space O(n1−1/(p−1)/ǫ2), given as input
PSD matrix A ∈ R

n×n with all entries non-negative, then the output of the algorithms A(A) and
B(A) satisfy

Pr[A(A) ∈ (1± ǫ)‖A‖pSp
] ≥ 0.99;

and
Pr[B(A) ∈ (1± ǫ)‖A‖pSp

] ≥ 0.99,

where the probability is over the randomness of the algorithms. Both algorithms require O(1/ǫ2)
time to process each update in a pass. After the updates, A requires time O(n(1−2/p)ω/ǫ2) to compute
its output and B requires time O(n(1−2/p)/ǫ2), where ω < 3 is the matrix multiplication constant.
For general input matrices A of size n×m for m ≤ n, if A has all entries non-negative, the above
claim holds for even integers p ≥ 2.
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