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—— Abstract

We initiate the study of data dimensionality reduction, or sketching, for the ¢ — p norms.

Given an n x d matrix A, the ¢ — p norm, denoted [|Al4—p = sup,cga\g %, is a natural
q

generalization of several matrix and vector norms studied in the data stream and sketching
models, with applications to datamining, hardness of approximation, and oblivious routing. We
say a distribution S on random matrices L € R"? — R* is a (k, a)-sketching family if from L(A),
one can approximate ||A||,—, up to a factor & with constant probability. We provide upper and
lower bounds on the sketching dimension k for every p, ¢ € [1,00], and in a number of cases our
bounds are tight. While we mostly focus on constant a, we also consider large approximation
factors «, as well as other variants of the problem such as when A has low rank.
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1 Introduction

Data dimensionality reduction, or sketching, is a powerful technique by which one compresses
a large dimensional object to a much smaller representation, while preserving important
structural information. Motivated by applications in streaming and numerical linear algebra,
the object is often a vector € R™ or a matrix A € R"*?. One of the most common forms
of sketching is oblivious sketching, whereby one chooses a random matrix L from some
distribution S, and compresses © to Lz or A to L(A). The latter quantity L(A) denotes a
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linear map from R™?, interpreting A as an nd-dimensional vector, to an often much lower
dimensional space, say R” for a value k < nd.

Sketching has numerous applications. For example, in the data stream model, one sees
additive updates x; < x; + A, where the update indicates that x; should change from its
old value by an additive A. Given a sketch L - x, one can update it by replacing it with
L-z+ A-L,,;, where L, ; denotes the i-th column of L. Thus, it is easy to maintain a
sketch of a vector evolving in the streaming model. Similarly, in the matrix setting, given an
update A4; ; < A; ; + A, one can update L(A) to L(A) + AL(e; ;), where e; ; denotes the
matrix with a single one in the (4, j)-th position, and is otherwise 0. If L is oblivious, that is,
sampled from a distribution independent of x (or A in the matrix case), then one can create
L without having to see the entire stream in advance. Other applications include distributed
computing, whereby a vector or matrix is partitioned across multiple servers. For instance,
server 1 might have a vector z! and server 2 a vector 22. Given the sketches Lz' and La?,
by linearity one can combine them, using L(x! + 22) = La' + La2. In these applications it
is important that the number k& of rows of L is small, since it is proporational to the memory
required of the data stream algorithm, or the communication in a distributed protocol. Here
k is referred to as the sketching dimension.

Sketching vector norms is fairly well understood, and we have tight bounds up to logar-
ithmic factors for estimating the £,-norms ||z, = (3>, |2:]?)!/? for every p € [1,00]; for a
sample of such work, see [1, 10, 24, 23, 28, 27] for work in the related data stream context,
and [40, 9, 33] for work specifically in the sketching model. Recently, there is work [13]
characterizing the sketching complexity of any symmetric norm on a vector x. A number
of works have also looked at sketching matrixz norms. In particular, the Schatten p-norms

4], = (Zzinlk(A) ai(A)p> e have gained considerable attention. They have proven to
be considerably harder to approximate than the vector p-norms, and understanding their
complexity has led to important algorithmic and lower bound techniques. A body of work
has focused on understanding the complexity of estimating matrix norms in the data stream
model with 1-pass over the stream [4, 34], as well as with multiple passes [15], the sketching
model [32, 36], statistical models [31, 29], as well as the general RAM model [38, 44]. Di-
mensionality reduction in these norms also has applications in quantum computing [46, 22],
and are studied in nearest neighbor search data structures [2].

1.1 Qur Contributions

We consider the sketching complexity of a new family of norms, namely, the p — ¢ norms of
a matrix. A common quantity that arises in various applications is the amount by which
a linear map A “stretches” vectors. One way to measure this quantity is the maximum
singular value of A, which can be written as sup,,=; [|Az[|2, and is just the Schatten-oo
norm, defined above. In this work we consider a different way of measuring this stretch,
which considerably generalizes the operator norm.

For a linear operator A from a normed space X to a normed space Y, we define ||A]|x—y as
Sup|jz|x=1 [|42[ly. Of specific interest to us is the case where X' = (¢ and Y = £, and we
denote the corresponding norm of such an operator by [|Al|;—p. Our objective is to study
the sketching complexity of approximating this norm.

» Definition 1 ((k, a)-sketching family). Let S be a distribution over linear functions from
R"*4 to R* and f a function from R¥ to R. We call (S, f) a (k, a)-sketching family for
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the ¢ — p norm if for all A € R4, Prp.s[f(L(A)) € (1/, @) |Allqp) = 2.

We provide upper and lower bounds on k. The details of the specific results we have are
described in Section 1.3.

1.2 Motivation

This problem is well-studied in mathematics when p = ¢ as it simply corresponds to p-matrix
norm estimation’. An intriguing question is whether one can preserve ||Az||, in a lower-
dimensional sketch space, given that the vectors x come from the unit ball of a smaller
norm.

Apart from being mathematically interesting, this problem has a number of applications.
The operator norm is a special case when p = ¢ = 2. The operator norm can be accurately
estimated by any subspace embedding for /5, discussed in detail in [18]. The dual of this
norm is also the Schatten-1 norm, which has received considerable attention in the streaming
model [34, 15]. The ¢ — p norm problem is a natural generalization of the operator norm
problem, and when p < 2, may be more appropriate in the context of robust statistics, where
it is known that the p norm for p < 2 is less sensitive to outliers, see, e.g., Chapter 3 of [47]
for a survey on robust regression, and [42] for recent work on ¢;-low rank approximation.

The 2 — ¢ norms arise in the hardness of approximation literature and an algorithm for some
instances of the problem was used to break the Khot-Vishnoi Unique Games candidate hard
instance [30]. Work by [11] gives an algorithm running in time exp(n?/?) for approximating
2 — p norms for all p > 4. These algorithms give a constant factor approximation when
promised the 2 — p norm is in a certain range (depending on the operator norm) rather than
providing a general estimate of the 2 — p norm. This same paper also discusses assumptions
on the the NP-hardness and ETH hardness of approximating 2 — p norms. The work of [14]
extends that of [11] to all p > 2. The work of [12] gives a PTAS for computing || A|4—p if
1 < p < ¢ and A has non-negative entries, and gives an application of this to the oblivious
routing problem where congestion is measured using the £, norm. The paper also shows that
it is hard to approximate ||A||,—, within a constant factor for general A, and general p and
q. Sketching may allow, for example, for reducing the original problem to a smaller instance
of the same problem, which although may still involve exhaustive search, could give a faster
concrete running time.

The 1 — ¢ norm turns out to be the maximum of the g-norm of the columns of A, which
is related to the heavy hitters problems in data streams, e.g., the column with the largest
g-norm may be the most significant or desirable in an application. Likewise, the ¢ — oo
norms turn out to be the maximum of the p-norms of the rows of A, where p is the dual norm
to ¢, and therefore have similar heavy hitter applications. The co — ¢ norm is maximized
when x € {—1,1}" and therefore includes the cut-norm as a special case, and is related to
Grothendieck inequalities, see, e.g., [16, 39, 17].

Our main motivation for studying the p — ¢ norms comes from understanding and developing
new techniques for this family of norms. Another family of norms that is well-studied in the
data stream literature are the cascaded norms, which for an n x d matrix A and parameters

! See, e.g., https://en.wikipedia.org/wiki/Matrix_norm
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p and g, are defined to be (3°,_; . (|[4i«|lp)?)'/9, where A; . denotes the i-th row of A.
That is, we compute the ¢g-norm of the vector of p-norms of the rows of A. This problem

.....

originated in [19] and has applications to mining multi-graphs; the following sequence of
work established tight bounds up to logarithmic factors for every p, q € [1,00] [26, 6]. This
line of work led to very new techniques; one highlight is the use of Poincaré inequalities in
proving information complexity lower bounds, which has then been studied in a number of
followup works [5, 25, 7].

1.3 Our Results

After establishing preliminary results and theorems in Section 2, we give our results for
constant and large approximation factors. Our main theorem is as follows. Here £, is the
dual norm of 4,4, that is, 1/¢* +1/g =1 (when ¢ = 1, ¢* = oo, and vice versa).

» Theorem 2. For all matrices A € R™*™ with rank r and real values p,q € [1, 0], the table
below gives upper and lower bounds on k for a (k,0(1))-sketching family of various ¢ — p
norms.

q— p Norm | p* — ¢* Norm Upper Bound Sec Lower Bound Sec
1—[1,2] [2,00] = o0 O(nlogn) 3.1 Q(n) 4.2
1 [2,00] [1,2] = oo O(n* % log?n) 3.1 Qn®F) 4.3
[2,00] = [1,2] | [2,00] = [1,2] O(n?) - Q(n?) 4.4
2 — [2,00] [1,2] = 2 O(min{nl_%r2 logn,n?}) | 3.2 | Q(min{n, nl_%r}) 4.5
[1,2] = [1,2] | [2,00] = [2, 0] O(n?) - | Qin{n " Frn)) | 4.5
[1,2] = [2,00] | [1,2] = [2, 0] O(n?) - Q (logn) 4.6

The constant factor hidden in Theorem 2 does not hold for all constants, the smallest constant
it holds for varies depending on the specific values of g, p.

We also have several results for large approximation factors summarized in the theorem
below.

2
» Theorem 3. There exists a (O (”—) ,a) -sketching family for the 2 — p and co — p norm

[e3

and a (O (Z—z) ,a) -sketching family for the ¢ — p norm forq>1 and 1 <p < 2.

Our algorithms combine several insights, which we illustrate here in the case of the 2 — p
norm for p > 2 and when the rank of A is r: (1) we show by duality that ||A||2—, is the
same as [|AT|,«_2, where p* satisfies p% + ]% = 1 and is the dual norm to p. Although
the proof is elementary, this plays several key roles in our argument. Next, we (2) use
oblivious subspace embeddings S which provide constant factor approximations for all
vectors simultaneously in an r-dimensional subspace of /5, and enable us to say that with Cr
rows for a constant C' > 0, we have ||SAT ||+ 2 = O(1)|| AT |- 2. Next, (3) we use that for
a random Gaussian matrix G € RE7%CT for a constant C’ > 0, with appropriate variance, it
has the property that simultaneously for all € RE", ||Gz||; = ©(1) - ||z||2. This is a special
case of Dvoretsky’s theorem in functional analysis. Thus, instead of directly approximating
|SAT||,«—2, we can obtain a constant factor approximation by approximating ||GSAT
This is another norm we do not know how to directly work with, so we apply duality (1)

p*—1-

again, and argue this is the same as approximating ||ASTG” ||w—p. A key observation is
now (4), that sup, s ¢ |, ..=1 lASTG" 2|, is realized when x has each coordinate equal to

1 or —1. Consequently, as = € RY'", it suffices to use any sketch T for the p-norm of a
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fixed vector which fails with probability exp(—C’r), and estimate |TASTGTz||, for each of
the 20" possible maximizers z, and output the largest estimate. As there exist sketches T

with O(nl_Q/ Prlogn) rows for this purpose, this gives us an overall sketching complexity of
O(n'=2/Pr2logn).

We defer a discussion of our lower bound techniques to Section 4.

2 Preliminaries

In this section, we introduce the tools we use in this paper.

» Definition 4 (Total Variation Distance). Given two distributions D and D’ over sample
space §2 with density functions pp and pps, the total variation distance is defined in two
equivalent ways as follows drv (D, D’) = 3| lpp — ppr|l1 = supg [Pryap[€] — Prop[€]|

The following result bounds the total variation distance between two multivariate Gaussians.
» Lemma 5. /21, Lemma A4] Let X\ be the minimum eigenvalue of PSD matrixz X, then
drv N (p, Z), N (1, 2)) < %(Hu — W2+ | = X'||r) for an absolute constant C.

We state a well known result that a Lipschitz function of a Gaussian vector is tightly
concentrated around its expectation, which is useful since ¢, norms are Lipschitz.

» Theorem 6. [/3, Theorem 2.1.12] Let X ~ N(0,1,) be a Gaussian random vector and
let f :R™ — R be a I-Lipschitz function. Then for some absolute constants C,c > 0,
Pr[|f(X) — E[f(X)]| > A] < Cexp(—c)A?) Notice that this implies if f is t-Lipschitz, then
Pr(|f(X) — Bf(X)]| > \] < Coxp(—eX?/12)

It is possible to embed ¢35 into 61?(”) with constant distortion using a linear map when
p € [1,2], and we use the existence of such a linear map in our results.

» Lemma 7. [37, Theorem 2.5.1] For all p € [1,2], there is an absolute constant Cp such
that for any n, there is a linear map T : R™ — RY™ such that | T(z)||, = (1 £ 1) ||z
An important observation is that this implies for any linear map A : R® — R™, we have
ITAllgp = (14 3) |Allg—2-

In the lemma below we make an important observation that highlights the connection between
several p — ¢ norms.
» Lemma 8. For any p,q > 1 and d x n matriz A, ||Al|;—p = | AT

p*—q*-
Proof. Using the notation above for dual norms, we have

[Allg—p = sup{[| Azl : [|z[l, < 1}
sup{sup{y ' Az : [lyllg- < 1} : [|z]l, <1}

— sup{supla ATy all, <1} gl < 1)
= SUP{HAT?J p* - ”qu* <1}
= ”AT”p*—wz*

<
Throughout the paper, we make use of ¢* to refer to q%l since Eq%l is the dual norm of 4.
We give a characterization of the 1 — p and co — p norm of a matrix. The proofs can be
found in the full version’s Appendix A. For any d x n matrix A, we have

15:5
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» Lemma 9. [|A| 1, = max;cp{/| Ax il
» Lemma 10. [[A-p = max,c(i1yn

n}-
Az||p.

We introduce the machinery of e-nets, a common tool in the study of random matrices (see
[45]) along with some relevant lemmas and defer the proofs to the full version’s Appendix.
» Definition 11 (e-net). Let X be a normed space. For S C V, we call a set N an e-net for
S if for all v € S, there is v' € N such that ||[v —v'||x <e.

For a linear operator A, we show that to bound ||A||x—y, it suffices to bound ||Az||y for
taken over an e-net of the unit ball in X.

» Lemma 12. Let X and Y be normed spaces and let A: X — Y be a linear map. Suppose
N is an e-net of the unit ball in X, then ||Allx—y < T~ maxy,en [|Av|y.

We also give a way to construct ‘small’ e-nets of unit balls.
» Lemma 13. There is an e-net of the unit ball B in an n-dimensional normed space X
with at most (%)n elements.

Another tool we use is subspace embeddings, which we define below.

» Definition 14. An oblivious subspace embedding family (OSE family) is a distri-
bution S over O(m) x n matrices such that for any subspace K C R"™ of dimension m,
Prg.s[Ve € K : ||Sz||2 = O(1)||z||2] > 1%.

» Lemma 15. [41] There exist OSE families, where the matrices have dimension O(k) x n.
Note that this means for any rank-k matriz A, a randomly drawn S from such an oblivious
subspace embedding family satisfies ||SAx|2 = O(1)||Az|l2 simultaneously for all x with
probability at least 99/100.

3  Sketching algorithms for constant factor approximations

3.1 Sketches for approximating || A||;_,

We show how to use sketches for p-norms of vectors to come up with sketches for the 1 — p
norm.

» Lemma 16. Let = be an arbitrary vector in R™. If S is a distribution over t X n sketching
matrices, and f : R — R is a function such that Prg.s [f(Sz) € (3]|@]p,2]|z|lp)] > 2 then
there is an (O(ntlogn),2)-sketching family (S',g) for the 1 — p norm of n X n matrices.

Proof. Proof in the full version’s Appendix B. <

Given an n-dimensional vector x, we have the following theorems from [28] and [6] respectively.
» Theorem 17 (Efficient sketches for small norms). When p € [1,2], there is a function f
and a distribution over sketching matrices F with O(1) rows such that for S ~ F, f(Sz) is
a constant factor approzimation for x|, with probability at least 2/3.

» Theorem 18 (Efficient sketches for large norms). When p > 2, there is a function f and a
distribution over sketching matrices F with O(n'~2/Plogn) rows such that for S ~ F, f(Sx)
is a constant factor approzimation for ||x||, with probability at least 2/3.

Lemma 16 tells us the following as a corollary to Theorems 17 and 18.
» Theorem 19. There is an (O(nlogn),2)-sketching family for the 1 — p norm when
p € [1,2] and a (O(n?>~2/?)log® n,2)-sketching family for the 1 — p norm when p € (2, oc].
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3.2 Sketches for approximating || A|>—,, for p > 2

We give a sketching algorithm for the 2 — p norm of A, whose number of measurements
depends on the rank r of d x n matrix A.
» Theorem 20. There is an (O(n'=2/Pr2logn), ©(1))-sketching family for the 2 — p norm.

Proof. Observe that || Al|2—, is equal to || AT
drawn from an oblivious subspace embedding family, which exists by Lemma 15. From Lemma
7, let G be a Br x Cr map such that for all z, ||GSATz|; = ©(1)||SATz||5. Combining
with the subspace embedding property, we get that ||GSATz|; = O(1)||ATx||z for all ,
which is equivalent to saying ||GSAT||,«—1 = ©(1)||A||2—,. Another application of Lemma
8 gives us that |ASTGT||w—p = O(1)||All2—p. Since ASTGT is n x Br, [|ASTGT||oomyp =
maXge(41}6r [ASTGTx|,.

p—2 by Lemma 8 and let S be a C'r x d matrix

Our final ingredient is the existence of an O(n'=2/?lognlog(1/§)) x n sketching matrix F

and estimation function f such that for any x, Pr[f(Ey) = O(1)|y||,] > 1—0 [3] when p > 2.

We set § = 27287 and use a union bound over all 2°7 vectors in {£1}”" to conclude
PrlVe € {£1}7": f(EASTGTz) = 0(1)|ASTG z||,] > 1 —27F°"

Pr| max f(EASTGTz) = 0(1)||ASTGT||oosq| >1—27°"
ze{£1}pr

Consequently, we get a sketch that consists of O(n'~2/Pr2 log n) measurements to get a ©(1)
approximation to ||A||2—, with probability at least 0.99. <

4 Sketching lower bounds for constant factor approximations

4.1 Lower Bound Techniques

The way we prove most of our lower bounds is by giving two distributions over n X n matrices,
D; and D5, where matrices drawn from the two distributions have ¢ — p norm separated
by a constant factor £ with high probability, which means a (k, \/x)-sketching family can
distinguish between samples from the two distributions. We then show an upper bound on
the variation distance between distributions of k-dimensional sketches of D; and Dy. We
then argue that if k is too small, then the total variation distance is too small to solve the
distinguishing problem. We formalize this intuition in the following theorem.

» Theorem 21. Suppose D1 and Dy are distributions over d X n matrices such that

(i) Prp~p,[|Dllg=p < 8] 2 1= and Prp.p,[[|D]lg—p > k8] 21—

(ii) for any linear map L : R¥>*™ — R* dpy (L(D1), L(Ds)) = O (’:L—Z)
for constants s, k,a,b, any (k,/k)-sketching family for the ¢ — p norm must satisfy k =
Q(n*).

Proof. Let D be the distribution over matrices given by sampling from Dy with probability
% and drawing from Dy with probability % We shall fix a sketching operator L : R¥X" — RF
and consider A drawn from a distribution D. Suppose f(L(A)) lies in (1/v/k, V&) || Al q—p

15:7
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with probability at least 5/6. It suffices to show that k must be Q(n?®) since the theorem
statement then follows from Yao’s minimax principle. We must have

Pran, [1(L(4) € 5

V) WAl 2 5. Pracs, [0 € (4

V) ] 2
Thus, we have an algorithm that correctly distinguishes with probability at least % if A was
drawn from D; or Dy by checking if f(L(A)) is greater than or less than /ks.

The existence of this distinguishing algorithm means the total variation distance between
the distributions of L(D;) and L(Ds) is at least % From the theorem’s hypothesis, we know
of a constant C' such that Cn—’f > %, which gives us the desired upper bound. |

We also show an upper bound on the variation distance of sketches for two distributions
that we use throughout this paper. Define G; 4x, as the distribution over d x n Gaussian
matrices and Gy 4xn[a] as the distribution given by drawing a Gaussian matrix and adding
au, where u is a d-dimensional Gaussian vector to a random column. We write G; instead of
G; dxn when the dimensions of the random matrix are evident from context.

» Lemma 22. Let L be a linear sketch from R¥>*™ — RF and let H; be the distribution of
L(x) where x is drawn from G;. Then dry (Hi, Hs) < CO‘TQk for an absolute constant C'.

Proof. We can think of L as a k X nd matrix that acts on a sample from G; or G, as
though it were an nd-dimensional vector. Without loss of generality, we can assume that
the rows of L are orthonormal, since one can always perform a change of basis in post-
processing. Thus, the distribution #; is the same as N (0, I;). For fixed i and G a d x n
matrix of unit Gaussians, the distribution of L(G + aue!) is Gaussian with covariance
E[L(G + aue] ) L(G + aue] )], equal to I + o*Lp, LE;, where Lp, is the submatrix given by
columns of L indexed (i —1)d+1, (i —1)d+2,...,id. Let Ha; be N(0,I+o*Lp,LE). Ho

is the distribution of picking a random i and drawing a matrix from N'(0,1+ Lp, L ).

We now analyze the total variation distance between H; and Hs and get the desired bound
from a chain of inequalities. dpy (Hi,H2) = 3 verk [PH1(T) — Dr, () |d

< % rERF |Z?:1 %pHI ({L‘) - %pHQ,i(‘/L.)’ dx < %Z?:l % rERF ’pHI (‘T‘.) - pH2,i(x)| dx

< S i drvNV(0, 1), Ha) < 5 300 Co®|[Lp, L |IF < 5 320, Co?|| L, |17

< ng |L||% = CQT% The third last inequality follows from Lemma 5. |

4.2 Lower bounds for approximating ||Al|;_, for 1 <p <2

We follow the lower bound template given in Section 4.1.
» Lemma 23. For any k, there exist values s, such that with probability at least 1 — 1/n,
IG1lliop < sp and ||Gall1mp > KSp, for 1 <p <2, and G1 ~ G1 and G2 ~ GaK].

Proof. Recall that from Section 3.1, we know that ||Al[y—,, = max;cp,) [|A« |, which means
that it suffices to give bounds on the maximum ¢, norm across columns of G; and G
respectively.

The ¢, norm is (,-Lipschitz, where (, is equal to n'/?~1/2 in the regime 1 < p < 2. For a
given vector of standard Gaussians g, the probability that | g||, deviates from E [||g||,] by

2

3
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more than 3¢,v/logn is at most C’e=°8*108m from Theorem 6 where C” is the constant C
from the theorem, which for large enough choice of 3 can be made smaller than 1/n?. By a
union bound over all columns, the probability that ||G1|1-, exceeds E[| g,] + 8¢,v/Iogn
is at most 1/n. On the other hand, consider the perturbed column vector of G2, which
we denote g’. The probability that ||¢’[|2 is smaller than E[||¢'||,] — 8V1 + k2(,v/logn =
V1+ k2(E[|gll,] — B¢v/Iogn) is at most 1/n? by appropriate choice of 8 and Theorem 6,
from which a lower bound on ||Gz||1-, that holds with probability at least 1 — > immediately
follows.

Since E[||g|l,] is ©(n!/P) and the deviations from expectations in upper bounds on ||G1]1-p
and lower bounds on ||Gz||1—, are asymptotically less than the expectations. <

The desired theorem is immediate from Lemma 23, Lemma 22, and Theorem 21 using
D, = gl,nxn, and Dy = gz[/@]-

» Theorem 24. Suppose p € [1,2] and (S, f) is a (k,/K)-sketching family for the 1 — p
norm where k is some constant, then k = Q(n).

4.3 Lower bound for approximating || Al|,,, for p > 2

We follow the lower bound template given in Section 4.1.

Denote E[||g]|,] as n,. Let Gy be the distribution over n x n matrices given by i.i.d. Gaussians,
and Go[a, np] be the distribution over n x n matrices given by taking a Gaussian matrix and
adding an, to a random entry.

Since the proofs are very similar to those in Sections 4.1 and 4.2. We defer them to the full
version’s Appendix C.1.

» Lemma 25. For any k, there exists s, such that with probability at least 1 — L, [|G1]l1-p <
sp and ||Gall1p > KSp, such that G1 ~ G1 and G ~ G2[Ck, np] for some absolute constant
C andp > 2.

» Lemma 26. Let L be a linear sketch from R™"™ — R* and let D; be the distribution of

L(x) where x is drawn from G;. Then dry (D1, D2) < %”\/E for an absolute constant C'.

The theorem below immediately follows from Lemma 25, Lemma 26 and Theorem 21 using
Dl = g1 and DQ = QQ[CKZ,T]I)}.

» Theorem 27. Suppose (S, f) is a (k, k)-approximate sketching family for the 1 — p norm
n2
2

for p > 2 and some constant k, then k = ) (n ) In particular, using the fact that n,

p

is O(n'/?) for p < co and ©(y/logn) when p = oo gives k = Q (n27%) when p < oo and
k‘zQ( n’ ) when p = oo.

logn

4.4 Lower bound for approximating || A|,—, when ¢ > 2 and p < 2

We use the known lower bound of Q(n?) for sketching the 2 — 2 norm from [35] to deduce a
lower bound on sketching the ¢ — p norm for ¢ > 2 and p < 2.

» Theorem 28. Suppose ¢ > 2 and p < 2, and if (S, f) is a (k(n),
family for the ¢ — p norm where «y is some constant, then k(n) =

v)-approzimate sketching
Q(n?).

15:9
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Proof. We prove this by showing that if the hypothesis of the theorem statement holds, then
the 2 — 2 norm can be sketched in O(k) measurements.

Given an n X n matrix A for which we want to sketch the 2 — 2 norm, note that by Lemma 7
there is a Cn x n matrix L; such that ||L1A|2—q = (%, B)||A||2—2 for a constant 8, and by
Lemma 8 ||L1 Al|2—q~ = ||[ATLT||,—2, and another application of Lemma 7 gives us another
Cn x n matrix Ly for which |[LoATLY |, = (%,B)HATLlTHq_)g. Note that this means

| Lo ATLT | gmp = (éﬁﬂ |A]l2—2, so we can sketch A by drawing a random L from D and

storing L(LaATLT), which uses k(Cn) measurements and serves as a sketch from which f
can be used to estimate ||A||2—2 within a constant factor, which means from [35], k(Cn)
must be Q(n?), which means k(n) = Q(n?/C?) = Q(n?). <

4.5 Lower bounds for approximating ||A|/,—, for p,¢ <2 and p,q > 2

In this section, we show a lower bound on the sketching complexity of || 4| 4—p, where A is a
rank 7 matrix, when both p and ¢ are at most 2. A corresponding lower bound for when p
and ¢ are at least 2 follows from Lemma 8. We achieve this by first showing a lower bound
on the sketching complexity of || A|2—4 and then use Dvoretzky’s theorem along with the
relation between the ¢ — p norm and the p* — ¢* norm to deduce the result.

We show a lower bound for sketching the 2 — ¢ norm using the template from Section 4.1.
We use distributions D1 = G rxn and Dafa] = G2 rxn [a%], as defined in Section 4.1 where
d is max{n'/9, \/r}.

» Lemma 29. There exist values sq and t, such that with high probability, ||G1]l2—q < sq and
|G2ll2—q > Casq for some absolute constant C, for ¢ > 2, and G1 ~ Dy and G2 ~ Ds|a].

Proof. Let N be a 1/3-net of the Euclidean ball in R” with 7" elements, which exists by
Lemma 13. For a fixed z € N, Gz is distributed as an n-dimensional vector with independent
Gaussians, whose g-norm is at most 81n'/? for some constant 1 in expectation and exceeds
Bint/a + B2+/T with probability at most 8% for appropriate constant 2, which follows from
the g-norm being 1-Lipschitz and Theorem 6. A union bound over all z € N implies that
with probability at least 1 — (7/8)", Vo € N : [|Gyz||; < Bin'/ T+ Bar/T.

Then by applying Lemma 12, we conclude that with probability at least 1—(7/8)", ||G1|l2—q <
%(61711/‘1 + Bay/r) < %(51 + B2)d. On the other hand, the perturbed row of Gs, called ¢’ is

distributed as /1 + anTZQ for a vector of i.i.d. Gaussians g. If we take the unit vector u in
the direction of ¢/, then the entry of Gou corresponding to the perturbed row is concentrated

around /1 + a2%||g||2 = Vr + a?d?, which means ||Ga|l2—q > (1—0(1))Vr + a?d? > 0.9ad
with high probability. <

The theorem below immediately follows from Lemma 29, Lemma 22 and Theorem 21

» Theorem 30. Suppose g > 2 and (S, f) is a (k,~y)-sketching family for the 2 — q norm of
rank v matrices for some constant v. Then k = Q(nr/d?).

» Theorem 31. Suppose p,q <2 and (S, f) is a (k,7)-sketching family for the ¢ — p norm
of rank r matrices for some constant . Then k = Q(nr/d?) where d = max{\/r,n'/9"}.

Proof. For a matrix A, from Lemma 8 we have that ||A[|2—4+ = ||AT]|;—2, and from Lemma
7, we know there is a Cr x r matrix Ly such that |[L1AT |+, = O(1)[|All2—q+. We can
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use (S, f) to sketch L; AT to obtain an (O(k), ©(1))-sketching family for the 2 — ¢* norm,
whose lower bound from Theorem 30 gives us the desired lower bound. |

4.6 Lower bounds for approximating ||A|/,—, for 1 <¢ <2 and p > 2

We prove the desired lower bound using the template from Section 4.1. Let D; be a
distribution over n x n matrices where diagonal entries are Gaussians and off-diagonal entries
are 0 and let Ds[a] be a distribution over n X n matrices where a matrix is drawn from D;
and a+/logn is added to a random diagonal entry.

» Lemma 32. There exists values sp q, tpq and o such that with probability at least 1 —1/n,
1G1llgop < 8p.q and ||Ga|lq—p > KSpq for some desired constant factor k separation, such

that G1 ~ D1 and GQ ~ DQ[O[].
We give the proof of Lemma 32 in the full version’s Appendix C.2.

Without loss of generality, we can assume that any sketch of G; and G5 acts on diag(G1) and
diag(G2) respectively. Lemma 26 gives an upper bound of O(v/klogn//n) on the variation
distance between k-dimensional sketches of these distributions. Thus, from the variation
distance bound, Lemma 32 and Theorem 21, the desired theorem follows.

» Theorem 33. Suppose ¢ > 2 and (S, f) is a (k,7)-sketching family for the ¢ — p norm of
rank r matrices for some constant v, then k = Q(n/logn).

5 Sketching with large approximation factors

While our results primarily involve constant factor approximations, we give several preliminary
results studying large approximation factors for sketching the important cases of the 2 — ¢
norm and [1,00] — [1,2] norms. Our goal is, given an approximation factor a(n), to give
upper and lower bounds on k for a (k, «(n))-sketching family for the respective norms. As a
shorthand, we will refer to a(n) as a.

5.1 Sketching upper bounds for large approximations of || A2,

It is sufficient to give a (k, a)-sketching family for the co — ¢ norm. To see why, given an input
matrix A € R"*" by Lemma 8 we have that || A s_, = || AT
a linear map such that this is equal within a constant factor of |G AT
» Theorem 34. Given a matriz A € R"*"™, there exists a (O(%2
by (S, f) for the co — q norm.

¢*—2. Using Lemma 7, there is
=1 = ||AGTHO<>—><1-

), a)-sketching family given

Proof. Let B € Z* be some positive integer to be chosen later. Let the columns of our
sketch matrix S be indexed by sets given by {BZ}:':/iB such that B; = ((i — 1) B, ¢B]. For each
column vp,, we define i.i.d random variables {o;; };-3:1 such that o;; = 1 with probability %

and —1 with probability % Let the column vp, be as follows:

[] )0y for j € [(’L — 1)B,’LB]
= 0 o/w

We define our linear map L(A) to be L(A) = AS. Our function f : R*Z — R simply
optimizes over {—1,1}"/5 and outputs || AS||s—s4-

15:11
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Since all ;; € {—1,1} we have that f(L(A)) < [|Al|ocsq since Sz for x € {—1,1}"/5 has
the property that Sz € {—1,1}".
We now show a lower bound on f(L(A)). To do so, we let T; denote the column indices

of A such that the index is column 7 in its respective block. We then notice that there
exists ¢ € [n/B] such that ||A.,

imequality [ Allaesg < S22/ A,

> §||A||00%q. We get this by applying the triangle

Let i* be the index that realizes this n/B-approximation to ||A||cc—q and let {31}?:/? be the
assignment of signs that realizes the co — ¢ norm of A, 7.

B n/B n/B B n/B
>HZZSJ *B[z]||q>HZSJ *,B;[i*] +ZZSJ «B;11) llg
i=1 j=1 £ j=1
y z

Notice that z is symmetric around the origin and hence we get that ||y + 2z +y — 2|4 <
lutellitlv=zle which implies that f(L(A) > |y + zlq > OW)llyly > % Allcmsq with
probability at least % Thus, we get an O (%2) space sketch that gives us an a-approximation

by setting B = n/a. <

5.2 Sketching upper bounds for large approximations of || A||,_,, for
q € [l,00] and p € [1,2]

We give a description of our sketch followed by the approximation factor. Towards the end of
defining our sketch, let B € Z* be some positive mteger to be chosen later. Let the rows of
our sketch matrix S be indexed by sets given by {B; } 1 % such that B; = ((i — 1)B,iB). For
each row vp,, we define i.i.d random variables {o;;} 2 7=1 such that o;; = 1 with probability %
and —1 with probability % Let the row vp, be as follows:

v [] _ Oij for j S [(Z - 1)B, ZB]
Bl = 0 o/w

Our algorithm simply outputs ||SA|4—p. The proof of the theorem below can be found in
the full version’s Appendix D.

» Theorem 35. Given a matriz A € R™*"™, there exists an (O(Z—z), «)-sketching family given
by (S, f) for the ¢ — p norm for p € [1,2].

6 Further Directions

One interesting direction is to study the low-rank approximation problem with respect to the
q — p norm. An important open question in the literature is to find input sparsity time low
rank approximation algorithms with respect to the 2 — 2 norm, and a natural step might be
to try this problem with for ¢ — p norms for certain ¢ and p.

Another interesting problem would be to investigate algorithms for approximate nearest
neighbors with respect to the ¢ — p norm, in light of a question posed by [8] about what
metric spaces admit efficient approximate nearest neighbor algorithms, with matrix norms
mentioned as an object of interest.
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A Proofs from Section 2

Proof of Lemma 9. For any x that is unit according to /1,

[Az]lp = [[Acaz1 + A 2m2 + .. 4 Asnnllp
< lHAerllploal + 1 Awallplral + - 4 [ Awnllplon] < max{]lAxlp}

where the last inequality is because |z;| give a convex combination and is achieved for z = e;-
where i* = argmax; {|| 4. ||, }- <

Proof of Lemma 10. For any x such that there is a coordinate x; that is strictly between 1
or —1, let € be min{l — z;,x; + 1}, consider

Az, = [[Au s+ Acimilly
i#

1+, 1—x;
< (52) 1o+ T sl + (S5 ) 1= Ay + 2 vl

i#] i#J

where the inequality is due to the triangle inequality. Since ||Az||, is at most a convex
combination of the p-norms after replacing z; with 1 or —1, we can make x; one of 1 or —1
without decreasing the p-norm. |

Proof of Lemma 12. Pick z* on the unit ball such that [|Az*|y = ||A||x—=y. There is
x € N such that ||z* — z||x < e, which means

[A(z" = 2)lly <[[Allx-yllz —2"[lx <ellAllx-y
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On the other hand,
[A@™ = 2)lly = [[Az" ||y — [[Azlly = |Allx—y — [|Az]ly
and hence

[Allx—y — [Azlly <ellAllx—y

[Azly 1
A < A
Al x—y < 1—: = l—gme%(” x|y

Proof of Lemma 13. For z in a normed space X, we use the notation B,(r) to denote

{y : ||z — yl|lx < r}, the ball of radius r around z.

Start with an empty set N and while there is a point = in the unit ball B that has distance
at least € to every element in N, pick  and add it to N. This process terminates when
every x € B has distance less than € to some element in N, thereby terminating with NV as
an e-net. We claim that the size of N meets the desired bound.

By construction, any y and 3’ in N are at least € apart, which means B = {B,(¢/2) : x € N}

is a collection of disjoint sets and note that

U S < Bo(1+¢/2)
sSeB

By disjointness

Vol (U s) =) " Vol(S) = [N|Vol(Boy(e/2))

seB seB

where Vol(S) is the volume of S according to the Lebesgue measure.

And thus, we obtain

_ Vol (U c S)
NI = Vol B (/)
Vol(Bo(1 + £/2))
Vol(By(e/2))

<1j/;/2>n
2+¢e\"
-(%)

which concludes the proof.
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B Missing proofs from Section 3

Proof of Lemma 16. Draw clogn matrices Si,S2,...,Sciogn from D independently where
¢ is a constant to be determined later. We define

S
S2

Sc logn

g(Sz) := median{ f(S12), f(S2x),..., f(Sclogn®)}

Let’s analyze the probability that g(Sz) falls outside L, = (|||, 2||z|,). In order for that
to happen, more than half of f(S1z),..., f(Sciognz) must lie outside L,, and this happens
to each f(S;x) with probability at most % Using Hoeffding’s inequality, we know

Prlg(Sz) ¢ L] < 2exp (‘01;5 n)

1

which for appropriate choice of ¢ can be bounded by .

For a matrix A with n columns, a union bound tells us that for all i, g(SA, ;) fallsin L 4, , with
probability at least 1 — 2. Combined with Lemma 3.1, it follows that h(SA) := max; g(SA. ;)
is a 2-approximation to ||A||;_, with probability at least 1 — L. <

C Missing Proofs from Section 4

C.1 Missing Proofs from Section 4.3

Proof of Lemma 25. We denote Ck as « and set the exact value of « in the end of the
proof. For a fixed pair ¢, j let us denote the perturbation term ompeiejT as F;;. Recall that
from section 3.1, we know that || All;, = max;c[y) || A« ]|, which means that it suffices to
give bounds on the maximum ¢, norm across columns of G; and G respectively.

Since the ¢, norm is 1-Lipschitz for any p > 2, we can apply Theorem 6 to show concentration
around the expectation for ||G. ;||, for any column ¢ of a matrix G of i.i.d Gaussian entries.
Hence we have that for any column 4, and some positive constant A

Pr[l|G.ill, > AB[|Gill,] < Cexp(—cANE[[|G.ill,]%)

Letting ¢ be an n-dimensional vector of i.i.d Gaussians, since we know El||g||,] = Q(y/Iogn),
there exists appropriate constant 3 such that for any column ¢ of Gy we have that ||(G1)«.llp
is less than SE[| g||,] with probability at least 1 — -, By a union bound over all columns,
the probability that [|G1]1—, < BE[||g[|,] is at least 1 — +.

For a matrix Gy = G + E;; drawn from Gs[e, 7,], we know that the perturbed column j has
norm at least an, — |Gy 4||p, which satisfies (a — B)E[||g|l,] < |G2|l1—p- Setting a > (k+1)8
gives us the desired result. <
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Proof of Lemma 26. Recall perturbation term 0477][,61»63;r was referred to as Ej;. Just as in
Lemma 22, we can think of L as a k x n? matrix that acts on a sample from G; or Go[a] as
though it were an n?-dimensional vector. Without loss of generality, we can assume that
the rows of L are orthonormal, since as before we can always perform a change of basis
in post-processing. Thus, the distribution D; is the same as N(0, I). For fixed i, j, the
distribution of L(G + E;;) is Gaussian with mean vector L(E;;) (the ij*" column of the
k x n? matrix L scaled by an,) and covariance Ij because of the following.

Cov(L(G + Fyj)) = B [(L(G + By) ~BL(G + By))) (LG + By) ~BIL(G + Fy)))|
—E[(L(G) - E[L(G)]) (L&) - E[L@)])]

= Covgrn(o,1,)(G) = Ix

Thus, D, is the distribution of picking a random ¢, j and drawing a matrix from N (L(E;;), I).

We now analyze the total variation distance between D; and Do and get the desired bound
from a chain of inequalities.

1

drv(P1.D) = 5 [ Ipo,(@) = poao)lds
fAS]

1 1
5/ RE Zﬁpﬂ(ﬂv) - EPN(L(EU)J,C)(:U) dz
zeRF i.j

1 1
<30 [ @) = x| da
n k

= % ZdT\/(N(O,Ik)7N(L(Eij)7 Ik))

1

< 5 2 Clan||Lujllz [from lemma 3
Y

C'a
= =S| Lls

c’ k
<=5 -n||Ll|Fr = C'any - £ [by Cauchy-Schwarz]

’I’L2 n
<

C.2 Missing Proofs from Section 4.6

Proof of Lemma 32. We claim that for a diagonal matrix D, argmax|, -1 [|Dz, is

achieved when x is one of the e; standard basis vectors e;. To see this,

llq

n n n
D))t =" |dialP =Y |dil? (2| )P/1 <> |digP s < max |d;|?

=1 =1 i=1
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which is achieved by picking & = e;» where choice of i = i* maximizes d;;.

Thus, to analyze the ¢ — p norm of Gy, it suffices to analyze max e,y ||G12|,, which is
the same as ||g||c Where g is a vector of i.i.d. Gaussians. We can extract from the proof of
Lemma 25 that [|g|l« is upper bounded by B+/logn with probability at least 1 — .

On the other hand, if the perturbation is at index (4, %) and we pick & = k(8+1), then ||Gae; ||,
is at least x3+/logn with probability at least 1 — n—12 implying the desired separation. |

D General approximation factors «

D.1 Sketching Matrix Construction and Upper Bounds

Let us first define our sketch and then analyze its performance. For the sketch .S, we group
n

the rows of A into % groups of size a?. We label the groups by B, ... s Brjaz and let
014y .-+, 042; be £1 ii.d random variables with equal probability for block B;. Notice then
that the ih row of SA given by (SA), . is:

(SA); . & Z 0ji Ai

JEB;

To analyze the performance of this sketch, we will need a helpful inequality describing the
behavior of a random signed sums of reals.

» Theorem 36. Khintchine’s Inequality [20]

Let {x;}11 € R be reals and let {s;}* ; be i.i.d £1 random variables with equal probability
and let 0 < t < oo, we then have:

n p1l/p
E SiXi =
i=1

For some constants A,, B, that only depend on p.

Ap zn:xf <FE
i=1

Also recall that by Jensen’s inequality, we can relate two norms of a vector z € R"™.

» Remark. For two positive reals, p > ¢ > 1 and for a vector x € R™ we have that:
1 1
]l <na™> =],

We then have the following theorems describing the sketching complexity of the sketch S for
1 <p<2and for p> 2.

» Theorem 37. For any 1 < p <2 and for the mazimizer x € R™ of [|Al|,_,, the sketch S
defined earlier where each block B; has size B has the property that

1 1_ 1
O(1) g I4sll, < |4sl], < ©W)B> " |5 4al],
with probability at least %

Proof. Let us first show the first inequality in the theorem statement.
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For some coordinate 1 <3 < %:
P p
(SAz)|" = | > oj(Ax);| < [ D |(Ax),]
JEB; JEB;

By Remark D.1 relating |[-[|; and [|-[|,,

< B Y [(Ax)l

JEB;
n/B 1/p

s NS A)l, = [ YO(SAx)l” | < B ||Az],
i=1

Notice that the first inequality holds irrespective of the vector x, it holds for all vectors. Now
let us show the second inequality of the theorem statement.

For some coordinate 1 <3 < %:
1/p 1/2
> (Ax)? <Bv 2 [ 3 (Ax)? [By Remark D.1] [1]
JEB; JEB;
pq1/p
< @(1)3%_%E Z o;(Az), [By Khintchine’s Ineq.] [2]
JEB;
n/B
230 ST (4w = |Aaf) < ©(1) B G HE [ s Az
i=1 jEB;

Notice that the second inequality of the theorem statement follows by Markov’s inequality.

Notice that the success probability of line [2] is constant for each block. To get constant
success probability over the entire set of blocks, we construct O(log(n)) i.i.d copies of each
block B; given by {Bg}?z(llog(n)). We then pick j such that it is the index realizing the
quantity median;cioog(n))]|l(S;Az)il|, where S; corresponds the sketch with the 4 copy of
the blocks. Then, by standard concentration bounds, we can get 1 — n/% success probability
for each set of blocks B; and then union bound over the % blocks giving us constant success
probability. |

» Theorem 38. For any p > 2 and for the mazimizer x € R™ of || A||
earlier where each block B; has size B has the property that

the sketch S defined

q—p
1
9(1)F [SAz], < [[Az]|, <©Q1)[SAz],

The proof for Theorem 38 is the same as that for Theorem 37 except that there is no dilation
while upper bounding the [|Az||, with the 2-norm in line [1] of the proof.

Notice that the above theorems imply that the sketch S is a v/B-approximation when
0<p<2anda Blfi—approximation when p > 2 because it states that the sketch is
stretching HAxHZ by at most some factor and dilating it by at most some factor and hence
the approximation ratio is simply the product of these factors.
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