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Abstract

We initiate the study of data dimensionality reduction, or sketching, for the q → p norms.

Given an n × d matrix A, the q → p norm, denoted ‖A‖q→p = supx∈Rd\~0
‖Ax‖p

‖x‖q
, is a natural

generalization of several matrix and vector norms studied in the data stream and sketching

models, with applications to datamining, hardness of approximation, and oblivious routing. We

say a distribution S on random matrices L ∈ R
nd → R

k is a (k, α)-sketching family if from L(A),

one can approximate ‖A‖q→p up to a factor α with constant probability. We provide upper and

lower bounds on the sketching dimension k for every p, q ∈ [1,∞], and in a number of cases our

bounds are tight. While we mostly focus on constant α, we also consider large approximation

factors α, as well as other variants of the problem such as when A has low rank.
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1 Introduction

Data dimensionality reduction, or sketching, is a powerful technique by which one compresses

a large dimensional object to a much smaller representation, while preserving important

structural information. Motivated by applications in streaming and numerical linear algebra,

the object is often a vector x ∈ R
n or a matrix A ∈ R

n×d. One of the most common forms

of sketching is oblivious sketching, whereby one chooses a random matrix L from some

distribution S, and compresses x to Lx or A to L(A). The latter quantity L(A) denotes a
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15:2 On Sketching the q to p Norms

linear map from R
nd, interpreting A as an nd-dimensional vector, to an often much lower

dimensional space, say R
k for a value k � nd.

Sketching has numerous applications. For example, in the data stream model, one sees

additive updates xi ← xi + ∆, where the update indicates that xi should change from its

old value by an additive ∆. Given a sketch L · x, one can update it by replacing it with

L · x + ∆ · L∗,i, where L∗,i denotes the i-th column of L. Thus, it is easy to maintain a

sketch of a vector evolving in the streaming model. Similarly, in the matrix setting, given an

update Ai,j ← Ai,j + ∆, one can update L(A) to L(A) + ∆L(ei,j), where ei,j denotes the

matrix with a single one in the (i, j)-th position, and is otherwise 0. If L is oblivious, that is,

sampled from a distribution independent of x (or A in the matrix case), then one can create

L without having to see the entire stream in advance. Other applications include distributed

computing, whereby a vector or matrix is partitioned across multiple servers. For instance,

server 1 might have a vector x1 and server 2 a vector x2. Given the sketches Lx1 and Lx2,

by linearity one can combine them, using L(x1 + x2) = Lx1 + Lx2. In these applications it

is important that the number k of rows of L is small, since it is proporational to the memory

required of the data stream algorithm, or the communication in a distributed protocol. Here

k is referred to as the sketching dimension.

Sketching vector norms is fairly well understood, and we have tight bounds up to logar-

ithmic factors for estimating the `p-norms ‖x‖p = (
∑

i |xi|p)1/p for every p ∈ [1,∞]; for a

sample of such work, see [1, 10, 24, 23, 28, 27] for work in the related data stream context,

and [40, 9, 33] for work specifically in the sketching model. Recently, there is work [13]

characterizing the sketching complexity of any symmetric norm on a vector x. A number

of works have also looked at sketching matrix norms. In particular, the Schatten p-norms

‖A‖p =
(
∑rank(A)

i=1 σi(A)p
)1/p

have gained considerable attention. They have proven to

be considerably harder to approximate than the vector p-norms, and understanding their

complexity has led to important algorithmic and lower bound techniques. A body of work

has focused on understanding the complexity of estimating matrix norms in the data stream

model with 1-pass over the stream [4, 34], as well as with multiple passes [15], the sketching

model [32, 36], statistical models [31, 29], as well as the general RAM model [38, 44]. Di-

mensionality reduction in these norms also has applications in quantum computing [46, 22],

and are studied in nearest neighbor search data structures [2].

1.1 Our Contributions

We consider the sketching complexity of a new family of norms, namely, the p→ q norms of

a matrix. A common quantity that arises in various applications is the amount by which

a linear map A “stretches” vectors. One way to measure this quantity is the maximum

singular value of A, which can be written as sup‖x‖2=1 ‖Ax‖2, and is just the Schatten-∞
norm, defined above. In this work we consider a different way of measuring this stretch,

which considerably generalizes the operator norm.

For a linear operator A from a normed space X to a normed space Y , we define ‖A‖X →Y as

sup‖x‖X =1 ‖Ax‖Y . Of specific interest to us is the case where X = `d
q and Y = `n

p , and we

denote the corresponding norm of such an operator by ‖A‖q→p. Our objective is to study

the sketching complexity of approximating this norm.

I Definition 1 ((k, α)-sketching family). Let S be a distribution over linear functions from

R
n×d to R

k and f a function from R
k to R. We call (S, f) a (k, α)-sketching family for
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the q → p norm if for all A ∈ R
n×d, PrL∼S [f(L(A)) ∈ (1/α, α) ‖A‖q→p] ≥ 5

6 .

We provide upper and lower bounds on k. The details of the specific results we have are

described in Section 1.3.

1.2 Motivation

This problem is well-studied in mathematics when p = q as it simply corresponds to p-matrix

norm estimation1. An intriguing question is whether one can preserve ‖Ax‖p in a lower-

dimensional sketch space, given that the vectors x come from the unit ball of a smaller

norm.

Apart from being mathematically interesting, this problem has a number of applications.

The operator norm is a special case when p = q = 2. The operator norm can be accurately

estimated by any subspace embedding for `2, discussed in detail in [18]. The dual of this

norm is also the Schatten-1 norm, which has received considerable attention in the streaming

model [34, 15]. The q → p norm problem is a natural generalization of the operator norm

problem, and when p < 2, may be more appropriate in the context of robust statistics, where

it is known that the p norm for p < 2 is less sensitive to outliers, see, e.g., Chapter 3 of [47]

for a survey on robust regression, and [42] for recent work on `1-low rank approximation.

The 2→ q norms arise in the hardness of approximation literature and an algorithm for some

instances of the problem was used to break the Khot-Vishnoi Unique Games candidate hard

instance [30]. Work by [11] gives an algorithm running in time exp(n2/p) for approximating

2 → p norms for all p ≥ 4. These algorithms give a constant factor approximation when

promised the 2→ p norm is in a certain range (depending on the operator norm) rather than

providing a general estimate of the 2→ p norm. This same paper also discusses assumptions

on the the NP-hardness and ETH hardness of approximating 2→ p norms. The work of [14]

extends that of [11] to all p ≥ 2. The work of [12] gives a PTAS for computing ‖A‖q→p if

1 ≤ p ≤ q and A has non-negative entries, and gives an application of this to the oblivious

routing problem where congestion is measured using the `p norm. The paper also shows that

it is hard to approximate ‖A‖q→p within a constant factor for general A, and general p and

q. Sketching may allow, for example, for reducing the original problem to a smaller instance

of the same problem, which although may still involve exhaustive search, could give a faster

concrete running time.

The 1 → q norm turns out to be the maximum of the q-norm of the columns of A, which

is related to the heavy hitters problems in data streams, e.g., the column with the largest

q-norm may be the most significant or desirable in an application. Likewise, the q → ∞
norms turn out to be the maximum of the p-norms of the rows of A, where p is the dual norm

to q, and therefore have similar heavy hitter applications. The ∞→ q norm is maximized

when x ∈ {−1, 1}n and therefore includes the cut-norm as a special case, and is related to

Grothendieck inequalities, see, e.g., [16, 39, 17].

Our main motivation for studying the p→ q norms comes from understanding and developing

new techniques for this family of norms. Another family of norms that is well-studied in the

data stream literature are the cascaded norms, which for an n× d matrix A and parameters

1 See, e.g., https://en.wikipedia.org/wiki/Matrix_norm

APPROX/RANDOM
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p and q, are defined to be (
∑

i=1,...,n(‖Ai,∗‖p)q)1/q, where Ai,∗ denotes the i-th row of A.

That is, we compute the q-norm of the vector of p-norms of the rows of A. This problem

originated in [19] and has applications to mining multi-graphs; the following sequence of

work established tight bounds up to logarithmic factors for every p, q ∈ [1,∞] [26, 6]. This

line of work led to very new techniques; one highlight is the use of Poincaré inequalities in

proving information complexity lower bounds, which has then been studied in a number of

followup works [5, 25, 7].

1.3 Our Results

After establishing preliminary results and theorems in Section 2, we give our results for

constant and large approximation factors. Our main theorem is as follows. Here `q∗ is the

dual norm of `q, that is, 1/q∗ + 1/q = 1 (when q = 1, q∗ =∞, and vice versa).

I Theorem 2. For all matrices A ∈ R
n×n with rank r and real values p, q ∈ [1,∞], the table

below gives upper and lower bounds on k for a (k, Θ(1))-sketching family of various q → p

norms.

q → p Norm p∗ → q∗ Norm Upper Bound Sec Lower Bound Sec

1 → [1, 2] [2, ∞] → ∞ O(n log n) 3.1 Ω(n) 4.2

1 → [2, ∞] [1, 2] → ∞ O(n
2−

2

p log2 n) 3.1 Ω(n
2−

2

p ) 4.3

[2, ∞] → [1, 2] [2, ∞] → [1, 2] O(n2) - Ω(n2) 4.4

2 → [2, ∞] [1, 2] → 2 O(min{n
1−

2

p r2 log n, n2}) 3.2 Ω(min{n, n
1−

2

p r}) 4.5

[1, 2] → [1, 2] [2, ∞] → [2, ∞] O(n2) - Ω(min{n
1−

2

q∗ r, n}) 4.5

[1, 2] → [2, ∞] [1, 2] → [2, ∞] O(n2) - Ω
(

n

log n

)
4.6

The constant factor hidden in Theorem 2 does not hold for all constants, the smallest constant

it holds for varies depending on the specific values of q, p.

We also have several results for large approximation factors summarized in the theorem

below.

I Theorem 3. There exists a
(

O
(

n2

α

)

, α
)

-sketching family for the 2→ p and ∞→ p norm

and a
(

O
(

n2

α2

)

, α
)

-sketching family for the q → p norm for q ≥ 1 and 1 ≤ p ≤ 2.

Our algorithms combine several insights, which we illustrate here in the case of the 2→ p

norm for p ≥ 2 and when the rank of A is r: (1) we show by duality that ‖A‖2→p is the

same as ‖AT ‖p∗→2, where p∗ satisfies 1
p∗ + 1

p = 1 and is the dual norm to p. Although

the proof is elementary, this plays several key roles in our argument. Next, we (2) use

oblivious subspace embeddings S which provide constant factor approximations for all

vectors simultaneously in an r-dimensional subspace of `2, and enable us to say that with Cr

rows for a constant C > 0, we have ‖SAT ‖p∗→2 = Θ(1)‖AT ‖p∗→2. Next, (3) we use that for

a random Gaussian matrix G ∈ R
C′r×Cr, for a constant C ′ > 0, with appropriate variance, it

has the property that simultaneously for all x ∈ R
Cr, ‖Gx‖1 = Θ(1) · ‖x‖2. This is a special

case of Dvoretsky’s theorem in functional analysis. Thus, instead of directly approximating

‖SAT ‖p∗→2, we can obtain a constant factor approximation by approximating ‖GSAT ‖p∗→1.

This is another norm we do not know how to directly work with, so we apply duality (1)

again, and argue this is the same as approximating ‖AST GT ‖∞→p. A key observation is

now (4), that supx s.t. ‖x‖∞=1 ‖AST GT x‖p is realized when x has each coordinate equal to

1 or −1. Consequently, as x ∈ R
C′r, it suffices to use any sketch T for the p-norm of a



A. Krishnan, S. Mohanty, D. P. Woodruff 15:5

fixed vector which fails with probability exp(−C ′r), and estimate ‖TAST GT x‖p for each of

the 2C′r possible maximizers x, and output the largest estimate. As there exist sketches T

with O(n1−2/pr log n) rows for this purpose, this gives us an overall sketching complexity of

O(n1−2/pr2 log n).

We defer a discussion of our lower bound techniques to Section 4.

2 Preliminaries

In this section, we introduce the tools we use in this paper.

I Definition 4 (Total Variation Distance). Given two distributions D and D′ over sample

space Ω with density functions pD and pD′ , the total variation distance is defined in two

equivalent ways as follows dT V (D,D′) = 1
2‖pD − pD′‖1 = supE |Prx∼D[E ]−Prx∼D′ [E ]|

The following result bounds the total variation distance between two multivariate Gaussians.

I Lemma 5. [21, Lemma A4] Let λ be the minimum eigenvalue of PSD matrix Σ, then

dT V (N (µ, Σ),N (µ′, Σ′)) ≤ C√
λ

(‖µ− µ′‖2 + ‖Σ− Σ′‖F ) for an absolute constant C.

We state a well known result that a Lipschitz function of a Gaussian vector is tightly

concentrated around its expectation, which is useful since `p norms are Lipschitz.

I Theorem 6. [43, Theorem 2.1.12] Let X ∼ N (0, In) be a Gaussian random vector and

let f : R
n → R be a 1-Lipschitz function. Then for some absolute constants C, c > 0,

Pr[|f(X)− E[f(X)]| ≥ λ] ≤ C exp(−cλ2) Notice that this implies if f is t-Lipschitz, then

Pr[|f(X)−E[f(X)]| ≥ λ] ≤ C exp(−cλ2/t2)

It is possible to embed `n
2 into `

O(n)
p with constant distortion using a linear map when

p ∈ [1, 2], and we use the existence of such a linear map in our results.

I Lemma 7. [37, Theorem 2.5.1] For all p ∈ [1, 2], there is an absolute constant Cp such

that for any n, there is a linear map T : Rn → R
Cpn such that ‖T (x)‖p =

(
1± 1

2

)
‖x‖2.

An important observation is that this implies for any linear map A : Rn → R
n, we have

‖TA‖q→p =
(
1± 1

2

)
‖A‖q→2.

In the lemma below we make an important observation that highlights the connection between

several p→ q norms.

I Lemma 8. For any p, q ≥ 1 and d× n matrix A, ‖A‖q→p = ‖AT ‖p∗→q∗ .

Proof. Using the notation above for dual norms, we have

‖A‖q→p = sup{‖Ax‖q : ‖x‖p ≤ 1}
= sup{sup{y>Ax : ‖y‖q∗ ≤ 1} : ‖x‖p ≤ 1}
= sup{sup{x>A>y : ‖x‖p ≤ 1} : ‖y‖q∗ ≤ 1}
= sup{‖A>y‖p∗ : ‖y‖q∗ ≤ 1}
= ‖A>‖p∗→q∗

J

Throughout the paper, we make use of q∗ to refer to q
q−1 since ` q

q−1

is the dual norm of `q.

We give a characterization of the 1→ p and ∞→ p norm of a matrix. The proofs can be

found in the full version’s Appendix A. For any d× n matrix A, we have

APPROX/RANDOM
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I Lemma 9. ‖A‖1→p = maxi∈[n]{‖A∗,i‖p}.
I Lemma 10. ‖A‖∞→p = maxx∈{±1}n ‖Ax‖p.

We introduce the machinery of ε-nets, a common tool in the study of random matrices (see

[45]) along with some relevant lemmas and defer the proofs to the full version’s Appendix.

I Definition 11 (ε-net). Let X be a normed space. For S ⊆ V , we call a set N an ε-net for

S if for all v ∈ S, there is v′ ∈ N such that ‖v − v′‖X < ε.

For a linear operator A, we show that to bound ‖A‖X →Y , it suffices to bound ‖Ax‖Y for x

taken over an ε-net of the unit ball in X .

I Lemma 12. Let X and Y be normed spaces and let A : X → Y be a linear map. Suppose

N is an ε-net of the unit ball in X , then ‖A‖X →Y ≤ 1
1−ε maxv∈N ‖Av‖Y .

We also give a way to construct ‘small’ ε-nets of unit balls.

I Lemma 13. There is an ε-net of the unit ball B in an n-dimensional normed space X
with at most

(
2+ε

ε

)n
elements.

Another tool we use is subspace embeddings, which we define below.

I Definition 14. An oblivious subspace embedding family (OSE family) is a distri-

bution S over O(m) × n matrices such that for any subspace K ⊆ R
n of dimension m,

PrS∼S [∀x ∈ K : ‖Sx‖2 = Θ(1)‖x‖2] ≥ 9
10 .

I Lemma 15. [41] There exist OSE families, where the matrices have dimension O(k)× n.

Note that this means for any rank-k matrix A, a randomly drawn S from such an oblivious

subspace embedding family satisfies ‖SAx‖2 = Θ(1)‖Ax‖2 simultaneously for all x with

probability at least 99/100.

3 Sketching algorithms for constant factor approximations

3.1 Sketches for approximating ‖A‖1→p

We show how to use sketches for p-norms of vectors to come up with sketches for the 1→ p

norm.

I Lemma 16. Let x be an arbitrary vector in R
n. If S is a distribution over t× n sketching

matrices, and f : Rt → R is a function such that PrS∼S
[
f(Sx) ∈

(
1
2‖x‖p, 2‖x‖p

)]
≥ 2

3 then

there is an (O(nt log n), 2)-sketching family (S ′, g) for the 1→ p norm of n× n matrices.

Proof. Proof in the full version’s Appendix B. J

Given an n-dimensional vector x, we have the following theorems from [28] and [6] respectively.

I Theorem 17 (Efficient sketches for small norms). When p ∈ [1, 2], there is a function f

and a distribution over sketching matrices F with O(1) rows such that for S ∼ F , f(Sx) is

a constant factor approximation for ‖x‖p with probability at least 2/3.

I Theorem 18 (Efficient sketches for large norms). When p > 2, there is a function f and a

distribution over sketching matrices F with O(n1−2/p log n) rows such that for S ∼ F , f(Sx)

is a constant factor approximation for ‖x‖p with probability at least 2/3.

Lemma 16 tells us the following as a corollary to Theorems 17 and 18.

I Theorem 19. There is an (O(n log n), 2)-sketching family for the 1 → p norm when

p ∈ [1, 2] and a (O(n2−2/p) log2 n, 2)-sketching family for the 1→ p norm when p ∈ (2,∞].
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3.2 Sketches for approximating ‖A‖2→p for p > 2

We give a sketching algorithm for the 2 → p norm of A, whose number of measurements

depends on the rank r of d× n matrix A.

I Theorem 20. There is an (O(n1−2/pr2 log n), Θ(1))-sketching family for the 2→ p norm.

Proof. Observe that ‖A‖2→p is equal to ‖AT ‖p∗→2 by Lemma 8 and let S be a Cr×d matrix

drawn from an oblivious subspace embedding family, which exists by Lemma 15. From Lemma

7, let G be a βr × Cr map such that for all x, ‖GSAT x‖1 = Θ(1)‖SAT x‖2. Combining

with the subspace embedding property, we get that ‖GSAT x‖1 = Θ(1)‖AT x‖2 for all x,

which is equivalent to saying ‖GSAT ‖p∗→1 = Θ(1)‖A‖2→p. Another application of Lemma

8 gives us that ‖AST GT ‖∞→p = Θ(1)‖A‖2→p. Since AST GT is n× βr, ‖AST GT ‖∞→p =

maxx∈{±1}βr ‖AST GT x‖p.

Our final ingredient is the existence of an O(n1−2/p log n log(1/δ))× n sketching matrix E

and estimation function f such that for any x, Pr[f(Ey) = Θ(1)‖y‖p] ≥ 1− δ [3] when p > 2.

We set δ = 2−2βr and use a union bound over all 2βr vectors in {±1}βr to conclude

Pr[∀x ∈ {±1}βr : f(EAST GT x) = Θ(1)‖AST GT x‖q] ≥ 1− 2−βr

Pr

[

max
x∈{±1}βr

f(EAST GT x) = Θ(1)‖AST GT ‖∞→q

]

≥ 1− 2−βr

Consequently, we get a sketch that consists of O(n1−2/pr2 log n) measurements to get a Θ(1)

approximation to ‖A‖2→p with probability at least 0.99. J

4 Sketching lower bounds for constant factor approximations

4.1 Lower Bound Techniques

The way we prove most of our lower bounds is by giving two distributions over n×n matrices,

D1 and D2, where matrices drawn from the two distributions have q → p norm separated

by a constant factor κ with high probability, which means a (k,
√

κ)-sketching family can

distinguish between samples from the two distributions. We then show an upper bound on

the variation distance between distributions of k-dimensional sketches of D1 and D2. We

then argue that if k is too small, then the total variation distance is too small to solve the

distinguishing problem. We formalize this intuition in the following theorem.

I Theorem 21. Suppose D1 and D2 are distributions over d× n matrices such that

(i) PrD∼D1
[‖D‖q→p < s] ≥ 1− 1

n and PrD∼D2
[‖D‖q→p > κs] ≥ 1− 1

n

(ii) for any linear map L : Rd×n → R
k, dT V (L(D1), L(D2)) = O

(
ka

nb

)

for constants s, κ, a, b, any (k,
√

κ)-sketching family for the q → p norm must satisfy k =

Ω(nb/a).

Proof. Let D be the distribution over matrices given by sampling from D1 with probability
1
2 and drawing from D2 with probability 1

2 . We shall fix a sketching operator L : Rd×n → R
k

and consider A drawn from a distribution D. Suppose f(L(A)) lies in (1/
√

κ,
√

κ)‖A‖q→p

APPROX/RANDOM
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with probability at least 5/6. It suffices to show that k must be Ω(nb/a) since the theorem

statement then follows from Yao’s minimax principle. We must have

PrA∼D1

[

f(L(A)) ∈
(

1√
κ

,
√

κ

)

‖A‖q→p

]

≥ 2

3
, PrA∼D2

[

f(L(A)) ∈
(

1√
κ

,
√

κ

)

‖A‖q→p

]

≥ 2

3

Thus, we have an algorithm that correctly distinguishes with probability at least 3
5 if A was

drawn from D1 or D2 by checking if f(L(A)) is greater than or less than
√

κs.

The existence of this distinguishing algorithm means the total variation distance between

the distributions of L(D1) and L(D2) is at least 1
5 . From the theorem’s hypothesis, we know

of a constant C such that Cka

nb ≥ 1
5 , which gives us the desired upper bound. J

We also show an upper bound on the variation distance of sketches for two distributions

that we use throughout this paper. Define G1,d×n as the distribution over d× n Gaussian

matrices and G2,d×n[α] as the distribution given by drawing a Gaussian matrix and adding

αu, where u is a d-dimensional Gaussian vector to a random column. We write Gi instead of

Gi,d×n when the dimensions of the random matrix are evident from context.

I Lemma 22. Let L be a linear sketch from R
d×n → R

k and let Hi be the distribution of

L(x) where x is drawn from Gi. Then dT V (H1,H2) ≤ Cα2k
n for an absolute constant C.

Proof. We can think of L as a k × nd matrix that acts on a sample from G1 or G2 as

though it were an nd-dimensional vector. Without loss of generality, we can assume that

the rows of L are orthonormal, since one can always perform a change of basis in post-

processing. Thus, the distribution H1 is the same as N (0, Ik). For fixed i and G a d × n

matrix of unit Gaussians, the distribution of L(G + αueT
i ) is Gaussian with covariance

E[L(G + αueT
i )L(G + αueT

i )T ], equal to I + α2LBi
LT

Bi
where LBi

is the submatrix given by

columns of L indexed (i− 1)d + 1, (i− 1)d + 2, . . . , id. Let H2,i be N (0, I + α2LBi
LT

Bi
). H2

is the distribution of picking a random i and drawing a matrix from N (0, I + LBi
LT

Bi
).

We now analyze the total variation distance between H1 and H2 and get the desired bound

from a chain of inequalities. dT V (H1,H2) = 1
2

∫

x∈Rk |pH1
(x)− pH2

(x)|dx

≤ 1
2

∫

x∈Rk

∣
∣
∑n

i=1
1
n pH1

(x)− 1
n pH2,i

(x)
∣
∣ dx ≤ 1

n

∑n
i=1

1
2

∫

x∈Rk

∣
∣pH1

(x)− pH2,i
(x)
∣
∣ dx

≤ 1
n

∑n
i=1 dT V (N (0, Ik),H2,i) ≤ 1

n

∑n
i=1 Cα2‖LBi

LT
Bi
‖F ≤ 1

n

∑n
i=1 Cα2‖LBi

‖2
F

≤ Cα2

n ‖L‖2
F = Cα2k

n . The third last inequality follows from Lemma 5. J

4.2 Lower bounds for approximating ‖A‖1→p for 1 ≤ p ≤ 2

We follow the lower bound template given in Section 4.1.

I Lemma 23. For any κ, there exist values sp such that with probability at least 1− 1/n,

‖G1‖1→p ≤ sp and ‖G2‖1→p ≥ κsp, for 1 ≤ p ≤ 2, and G1 ∼ G1 and G2 ∼ G2[κ].

Proof. Recall that from Section 3.1, we know that ‖A‖1→p = maxi∈[n] ‖A∗,i‖p which means

that it suffices to give bounds on the maximum `p norm across columns of G1 and G2

respectively.

The `p norm is ζp-Lipschitz, where ζp is equal to n1/p−1/2 in the regime 1 ≤ p ≤ 2. For a

given vector of standard Gaussians g, the probability that ‖g‖p deviates from E [‖g‖p] by
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more than βζp

√
log n is at most C ′e−cβ2 log n from Theorem 6 where C ′ is the constant C

from the theorem, which for large enough choice of β can be made smaller than 1/n2. By a

union bound over all columns, the probability that ‖G1‖1→p exceeds E[‖g‖p] + βζp

√
log n

is at most 1/n. On the other hand, consider the perturbed column vector of G2, which

we denote g′. The probability that ‖g′‖2 is smaller than E[‖g′‖p] − β
√

1 + κ2ζp

√
log n =√

1 + κ2(E[‖g‖p]− βζp

√
log n) is at most 1/n2 by appropriate choice of β and Theorem 6,

from which a lower bound on ‖G2‖1→p that holds with probability at least 1− 1
n2 immediately

follows.

Since E[‖g‖p] is Θ(n1/p) and the deviations from expectations in upper bounds on ‖G1‖1→p

and lower bounds on ‖G2‖1→p are asymptotically less than the expectations. J

The desired theorem is immediate from Lemma 23, Lemma 22, and Theorem 21 using

D1 = G1,n×n, and D2 = G2[κ].

I Theorem 24. Suppose p ∈ [1, 2] and (S, f) is a (k,
√

κ)-sketching family for the 1 → p

norm where κ is some constant, then k = Ω(n).

4.3 Lower bound for approximating ‖A‖1→p for p > 2

We follow the lower bound template given in Section 4.1.

Denote E[‖g‖p] as ηp. Let G1 be the distribution over n×n matrices given by i.i.d. Gaussians,

and G2[α, ηp] be the distribution over n× n matrices given by taking a Gaussian matrix and

adding αηp to a random entry.

Since the proofs are very similar to those in Sections 4.1 and 4.2. We defer them to the full

version’s Appendix C.1.

I Lemma 25. For any κ, there exists sp such that with probability at least 1− 1
n , ‖G1‖1→p ≤

sp and ‖G2‖1→p ≥ κsp, such that G1 ∼ G1 and G2 ∼ G2[Cκ, ηp] for some absolute constant

C and p > 2.

I Lemma 26. Let L be a linear sketch from R
n×n → R

k and let Di be the distribution of

L(x) where x is drawn from Gi. Then dT V (D1,D2) ≤ C′αηp

√
k

n for an absolute constant C ′.

The theorem below immediately follows from Lemma 25, Lemma 26 and Theorem 21 using

D1 = G1 and D2 = G2[Cκ, ηp].

I Theorem 27. Suppose (S, f) is a (k, κ)-approximate sketching family for the 1→ p norm

for p > 2 and some constant κ, then k = Ω
(

n2

η2
p

)

. In particular, using the fact that ηp

is Θ(n1/p) for p < ∞ and Θ(
√

log n) when p = ∞ gives k = Ω
(

n2− 2

p

)

when p < ∞ and

k = Ω
(

n2

log n

)

when p =∞.

4.4 Lower bound for approximating ‖A‖q→p when q ≥ 2 and p ≤ 2

We use the known lower bound of Ω(n2) for sketching the 2→ 2 norm from [35] to deduce a

lower bound on sketching the q → p norm for q ≥ 2 and p ≤ 2.

I Theorem 28. Suppose q ≥ 2 and p ≤ 2, and if (S, f) is a (k(n), γ)-approximate sketching

family for the q → p norm where γ is some constant, then k(n) = Ω(n2).

APPROX/RANDOM
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Proof. We prove this by showing that if the hypothesis of the theorem statement holds, then

the 2→ 2 norm can be sketched in O(k) measurements.

Given an n×n matrix A for which we want to sketch the 2→ 2 norm, note that by Lemma 7

there is a Cn× n matrix L1 such that ‖L1A‖2→q∗ = ( 1
β , β)‖A‖2→2 for a constant β, and by

Lemma 8 ‖L1A‖2→q∗ = ‖AT LT
1 ‖q→2, and another application of Lemma 7 gives us another

Cn × n matrix L2 for which ‖L2AT LT
1 ‖q→p = ( 1

β , β)‖AT LT
1 ‖q→2. Note that this means

‖L2AT LT
1 ‖q→p =

(
1

β2 , β2
)

‖A‖2→2, so we can sketch A by drawing a random L from D and

storing L(L2AT LT
1 ), which uses k(Cn) measurements and serves as a sketch from which f

can be used to estimate ‖A‖2→2 within a constant factor, which means from [35], k(Cn)

must be Ω(n2), which means k(n) = Ω(n2/C2) = Ω(n2). J

4.5 Lower bounds for approximating ‖A‖q→p for p, q ≤ 2 and p, q ≥ 2

In this section, we show a lower bound on the sketching complexity of ‖A‖q→p where A is a

rank r matrix, when both p and q are at most 2. A corresponding lower bound for when p

and q are at least 2 follows from Lemma 8. We achieve this by first showing a lower bound

on the sketching complexity of ‖A‖2→q and then use Dvoretzky’s theorem along with the

relation between the q → p norm and the p∗ → q∗ norm to deduce the result.

We show a lower bound for sketching the 2→ q norm using the template from Section 4.1.

We use distributions D1 = G1,r×n and D2[α] = G2,r×n

[

α d√
r

]

, as defined in Section 4.1 where

d is max{n1/q,
√

r}.
I Lemma 29. There exist values sq and tq such that with high probability, ‖G1‖2→q ≤ sq and

‖G2‖2→q ≥ Cαsq for some absolute constant C, for q > 2, and G1 ∼ D1 and G2 ∼ D2[α].

Proof. Let N be a 1/3-net of the Euclidean ball in R
r with 7r elements, which exists by

Lemma 13. For a fixed x ∈ N , G1x is distributed as an n-dimensional vector with independent

Gaussians, whose q-norm is at most β1n1/q for some constant β1 in expectation and exceeds

β1n1/q + β2
√

r with probability at most 1
8r for appropriate constant β2, which follows from

the q-norm being 1-Lipschitz and Theorem 6. A union bound over all x ∈ N implies that

with probability at least 1− (7/8)r, ∀x ∈ N : ‖G1x‖q ≤ β1n1/q + β2
√

r.

Then by applying Lemma 12, we conclude that with probability at least 1−(7/8)r, ‖G1‖2→q ≤
3
2 (β1n1/q + β2

√
r) ≤ 3

2 (β1 + β2)d. On the other hand, the perturbed row of G2, called g′ is

distributed as
√

1 + α2 d2

r g for a vector of i.i.d. Gaussians g. If we take the unit vector u in

the direction of g′, then the entry of G2u corresponding to the perturbed row is concentrated

around
√

1 + α2 d2

r ‖g‖2 =
√

r + α2d2, which means ‖G2‖2→q ≥ (1−o(1))
√

r + α2d2 ≥ 0.9αd

with high probability. J

The theorem below immediately follows from Lemma 29, Lemma 22 and Theorem 21

I Theorem 30. Suppose q ≥ 2 and (S, f) is a (k, γ)-sketching family for the 2→ q norm of

rank r matrices for some constant γ. Then k = Ω(nr/d2).

I Theorem 31. Suppose p, q ≤ 2 and (S, f) is a (k, γ)-sketching family for the q → p norm

of rank r matrices for some constant γ. Then k = Ω(nr/d2) where d = max{√r, n1/q∗}.

Proof. For a matrix A, from Lemma 8 we have that ‖A‖2→q∗ = ‖AT ‖q→2, and from Lemma

7, we know there is a Cr × r matrix L1 such that ‖L1AT ‖q∗→p = Θ(1)‖A‖2→q∗ . We can
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use (S, f) to sketch L1AT to obtain an (O(k), Θ(1))-sketching family for the 2→ q∗ norm,

whose lower bound from Theorem 30 gives us the desired lower bound. J

4.6 Lower bounds for approximating ‖A‖q→p for 1 ≤ q ≤ 2 and p ≥ 2

We prove the desired lower bound using the template from Section 4.1. Let D1 be a

distribution over n×n matrices where diagonal entries are Gaussians and off-diagonal entries

are 0 and let D2[α] be a distribution over n× n matrices where a matrix is drawn from D1

and α
√

log n is added to a random diagonal entry.

I Lemma 32. There exists values sp,q, tp,q and α such that with probability at least 1− 1/n,

‖G1‖q→p ≤ sp,q and ‖G2‖q→p ≥ κsp,q for some desired constant factor κ separation, such

that G1 ∼ D1 and G2 ∼ D2[α].

We give the proof of Lemma 32 in the full version’s Appendix C.2.

Without loss of generality, we can assume that any sketch of G1 and G2 acts on diag(G1) and

diag(G2) respectively. Lemma 26 gives an upper bound of O(
√

k log n/
√

n) on the variation

distance between k-dimensional sketches of these distributions. Thus, from the variation

distance bound, Lemma 32 and Theorem 21, the desired theorem follows.

I Theorem 33. Suppose q ≥ 2 and (S, f) is a (k, γ)-sketching family for the q → p norm of

rank r matrices for some constant γ, then k = Ω(n/ log n).

5 Sketching with large approximation factors

While our results primarily involve constant factor approximations, we give several preliminary

results studying large approximation factors for sketching the important cases of the 2→ q

norm and [1,∞] → [1, 2] norms. Our goal is, given an approximation factor α(n), to give

upper and lower bounds on k for a (k, α(n))-sketching family for the respective norms. As a

shorthand, we will refer to α(n) as α.

5.1 Sketching upper bounds for large approximations of ‖A‖2→q

It is sufficient to give a (k, α)-sketching family for the∞→ q norm. To see why, given an input

matrix A ∈ R
n×n, by Lemma 8 we have that ‖A‖2→q = ‖AT ‖q∗→2. Using Lemma 7, there is

a linear map such that this is equal within a constant factor of ‖GAT ‖q∗→1 = ‖AGT ‖∞→q.

I Theorem 34. Given a matrix A ∈ R
n×n, there exists a (O( n2

α ), α)-sketching family given

by (S, f) for the ∞→ q norm.

Proof. Let B ∈ Z
+ be some positive integer to be chosen later. Let the columns of our

sketch matrix S be indexed by sets given by {Bi}n/B
i=1 such that Bi = ((i− 1)B, iB]. For each

column vBi
, we define i.i.d random variables {σij}B

j=1 such that σij = 1 with probability 1
2

and −1 with probability 1
2 . Let the column vBi

be as follows:

vBi
[j] =

{

σij for j ∈ [(i− 1)B, iB]

0 o/w

We define our linear map L(A) to be L(A) = AS. Our function f : R
n/B → R simply

optimizes over {−1, 1}n/B and outputs ‖AS‖∞→q.

APPROX/RANDOM
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Since all σij ∈ {−1, 1} we have that f(L(A)) ≤ ‖A‖∞→q since Sx for x ∈ {−1, 1}n/B has

the property that Sx ∈ {−1, 1}n.

We now show a lower bound on f(L(A)). To do so, we let Ti denote the column indices

of A such that the index is column i in its respective block. We then notice that there

exists i ∈ [n/B] such that ‖A∗,Ti
‖∞→q ≥ B

n ‖A‖∞→q. We get this by applying the triangle

inequality ‖A‖∞→q ≤
∑n/B

i=1 ‖A∗,Ti
‖∞→q.

Let i∗ be the index that realizes this n/B-approximation to ‖A‖∞→q and let {s1}n/B
i=1 be the

assignment of signs that realizes the ∞→ q norm of A∗,Ti∗ .

f(L(A)) ≥ ‖
B∑

i=1

n/B
∑

j=1

sjA∗,Bj [i]‖q ≥ ‖
n/B
∑

j=1

sjA∗,Bj [i∗]

︸ ︷︷ ︸
y

+

B∑

i 6=i∗

n/B
∑

j=1

sjA∗,Bj [i]

︸ ︷︷ ︸
z

‖q

Notice that z is symmetric around the origin and hence we get that ‖y + z + y − z‖q ≤
‖y+z‖q+‖y−z‖q

2 which implies that f(L(A)) ≥ ‖y + z‖q ≥ Θ(1)‖y‖q ≥ n
B ‖A‖∞→q with

probability at least 1
2 . Thus, we get an O

(
n2

α

)

space sketch that gives us an α-approximation

by setting B = n/α. J

5.2 Sketching upper bounds for large approximations of ‖A‖q→p for
q ∈ [1,∞] and p ∈ [1, 2]

We give a description of our sketch followed by the approximation factor. Towards the end of

defining our sketch, let B ∈ Z
+ be some positive integer to be chosen later. Let the rows of

our sketch matrix S be indexed by sets given by {Bi}n/B
i=1 such that Bi = ((i− 1)B, iB]. For

each row vBi
, we define i.i.d random variables {σij}B

j=1 such that σij = 1 with probability 1
2

and −1 with probability 1
2 . Let the row vBi

be as follows:

vBi
[j] =

{

σij for j ∈ [(i− 1)B, iB]

0 o/w

Our algorithm simply outputs ‖SA‖q→p. The proof of the theorem below can be found in

the full version’s Appendix D.

I Theorem 35. Given a matrix A ∈ R
n×n, there exists an (Õ( n2

α2 ), α)-sketching family given

by (S, f) for the q → p norm for p ∈ [1, 2].

6 Further Directions

One interesting direction is to study the low-rank approximation problem with respect to the

q → p norm. An important open question in the literature is to find input sparsity time low

rank approximation algorithms with respect to the 2→ 2 norm, and a natural step might be

to try this problem with for q → p norms for certain q and p.

Another interesting problem would be to investigate algorithms for approximate nearest

neighbors with respect to the q → p norm, in light of a question posed by [8] about what

metric spaces admit efficient approximate nearest neighbor algorithms, with matrix norms

mentioned as an object of interest.
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A Proofs from Section 2

Proof of Lemma 9. For any x that is unit according to `1,

‖Ax‖p = ‖A∗,1x1 + A∗,2x2 + . . . + A∗,nxn‖p

≤ ‖A∗,1‖p|x1|+ ‖A∗,2‖p|x2|+ . . . + ‖A∗,n‖p|xn| ≤ max
i∈[n]
{‖A∗,i‖p}

where the last inequality is because |xi| give a convex combination and is achieved for x = ei∗

where i∗ = arg maxi{‖A∗,i‖p}. J

Proof of Lemma 10. For any x such that there is a coordinate xj that is strictly between 1

or −1, let ε be min{1− xj , xj + 1}, consider

‖Ax‖p = ‖A∗,jxj +
∑

i 6=j

A∗,ixi‖p

≤
(

1 + xj

2

)

‖A∗,j +
∑

i 6=j

A∗,ixi‖p +

(
1− xj

2

)

‖ −A∗,j +
∑

i 6=j

A∗,ixi‖p

where the inequality is due to the triangle inequality. Since ‖Ax‖p is at most a convex

combination of the p-norms after replacing xj with 1 or −1, we can make xj one of 1 or −1

without decreasing the p-norm. J

Proof of Lemma 12. Pick x∗ on the unit ball such that ‖Ax∗‖Y = ‖A‖X →Y . There is

x ∈ N such that ‖x∗ − x‖X < ε, which means

‖A(x∗ − x)‖Y ≤ ‖A‖X →Y‖x− x∗‖X < ε‖A‖X →Y
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On the other hand,

‖A(x∗ − x)‖Y ≥ ‖Ax∗‖Y − ‖Ax‖Y ≥ ‖A‖X →Y − ‖Ax‖Y

and hence

‖A‖X →Y − ‖Ax‖Y < ε‖A‖X →Y

‖A‖X →Y <
‖Ax‖Y
1− ε

≤ 1

1− ε
max
x∈N
‖Ax‖Y

J

Proof of Lemma 13. For x in a normed space X , we use the notation Bx(r) to denote

{y : ‖x− y‖X < r}, the ball of radius r around x.

Start with an empty set N and while there is a point x in the unit ball B that has distance

at least ε to every element in N , pick x and add it to N . This process terminates when

every x ∈ B has distance less than ε to some element in N , thereby terminating with N as

an ε-net. We claim that the size of N meets the desired bound.

By construction, any y and y′ in N are at least ε apart, which means B = {Bx(ε/2) : x ∈ N}
is a collection of disjoint sets and note that

⋃

S∈B
S ⊆ B0(1 + ε/2)

By disjointness

Vol

(
⋃

S∈B
S

)

=
∑

S∈B
Vol(S) = |N |Vol(B0(ε/2))

where Vol(S) is the volume of S according to the Lebesgue measure.

And thus, we obtain

|N | = Vol
(⋃

S∈B S
)

Vol(B0(ε/2))

≤ Vol(B0(1 + ε/2))

Vol(B0(ε/2))

=

(
1 + ε/2

ε/2

)n

=

(
2 + ε

ε

)n

which concludes the proof.

J
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B Missing proofs from Section 3

Proof of Lemma 16. Draw c log n matrices S1, S2, . . . , Sc log n from D independently where

c is a constant to be determined later. We define

S :=








S1

S2

...

Sc log n








g(Sx) := median{f(S1x), f(S2x), . . . , f(Sc log nx)}

Let’s analyze the probability that g(Sx) falls outside Lx =
(

1
2‖x‖p, 2‖x‖p

)
. In order for that

to happen, more than half of f(S1x), . . . , f(Sc log nx) must lie outside Lx, and this happens

to each f(Six) with probability at most 1
3 . Using Hoeffding’s inequality, we know

Pr[g(Sx) /∈ L] ≤ 2 exp

(

−c log n

72

)

which for appropriate choice of c can be bounded by 1
n2 .

For a matrix A with n columns, a union bound tells us that for all i, g(SA∗,i) falls in LA∗,i
with

probability at least 1− 1
n . Combined with Lemma 3.1, it follows that h(SA) := maxi g(SA∗,i)

is a 2-approximation to ‖A‖1→p with probability at least 1− 1
n . J

C Missing Proofs from Section 4

C.1 Missing Proofs from Section 4.3

Proof of Lemma 25. We denote Cκ as α and set the exact value of α in the end of the

proof. For a fixed pair i, j let us denote the perturbation term αηpeie
>
j as Eij . Recall that

from section 3.1, we know that ‖A‖1→p = maxi∈[n] ‖A∗,i‖p which means that it suffices to

give bounds on the maximum `p norm across columns of G1 and G2 respectively.

Since the `p norm is 1-Lipschitz for any p ≥ 2, we can apply Theorem 6 to show concentration

around the expectation for ‖G∗,i‖p for any column i of a matrix G of i.i.d Gaussian entries.

Hence we have that for any column i, and some positive constant λ

Pr [‖G∗,i‖p ≥ λE[‖G∗,i‖p]] ≤ C exp(−cλ2
E[‖G∗,i‖p]2)

Letting g be an n-dimensional vector of i.i.d Gaussians, since we know E[‖g‖p] = Ω(
√

log n),

there exists appropriate constant β such that for any column i of G1 we have that ‖(G1)∗,i‖p

is less than βE[‖g‖p] with probability at least 1− 1
n2 . By a union bound over all columns,

the probability that ‖G1‖1→p ≤ βE[‖g‖p] is at least 1− 1
n .

For a matrix G2 = G + Eij drawn from G2[α, ηp], we know that the perturbed column j has

norm at least αηp−‖G∗,i‖p, which satisfies (α−β)E[‖g‖p] ≤ ‖G2‖1→p. Setting α ≥ (κ+ 1)β

gives us the desired result. J
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Proof of Lemma 26. Recall perturbation term αηpeie
>
j was referred to as Eij . Just as in

Lemma 22, we can think of L as a k × n2 matrix that acts on a sample from G1 or G2[α] as

though it were an n2-dimensional vector. Without loss of generality, we can assume that

the rows of L are orthonormal, since as before we can always perform a change of basis

in post-processing. Thus, the distribution D1 is the same as N (0, Ik). For fixed i, j, the

distribution of L(G + Eij) is Gaussian with mean vector L(Eij) (the ijth column of the

k × n2 matrix L scaled by αηp) and covariance Ik because of the following.

Cov(L(G + Eij)) = E
[(

L(G + Eij)−E [L(G + Eij)]
)>(

L(G + Eij)−E [L(G + Eij)]
)]

= E
[(

L(G)−E [L(G)]
)>(

L(G)−E [L(G)]
)]

= CovG∼N (0,In)(G) = Ik

Thus, D2 is the distribution of picking a random i, j and drawing a matrix from N (L(Eij), Ik).

We now analyze the total variation distance between D1 and D2 and get the desired bound

from a chain of inequalities.

dT V (D1,D2) =
1

2

∫

x∈Rk

|pD1
(x)− pD2

(x)|dx

=
1

2

∫

x∈Rk

∣
∣
∣
∣
∣
∣

∑

i,j

1

n2
pD1

(x)− 1

n2
pN (L(Eij),Ik)(x)

∣
∣
∣
∣
∣
∣

dx

≤ 1

n2

∑

i,j

1

2

∫

x∈Rk

∣
∣pD1

(x)− pN (L(Eij),Ik)

∣
∣ dx

=
1

n2

∑

i,j

dT V (D1,N (L(Eij), Ik))

=
1

n2

∑

i,j

dT V (N (0, Ik),N (L(Eij), Ik))

≤ 1

n2

∑

i,j

C ′αηp‖L∗,ij‖2 [from lemma 5]

=
C ′αηp

n2
‖L‖1,2

≤ C ′αηp

n2
· n‖L‖F = C ′αηp ·

√
k

n
[by Cauchy-Schwarz]

J

C.2 Missing Proofs from Section 4.6

Proof of Lemma 32. We claim that for a diagonal matrix D, arg max‖x‖q=1 ‖Dx‖p is

achieved when x is one of the ei standard basis vectors ei. To see this,

‖Dx‖p
p =

n∑

i=1

|diixi|p =

n∑

i=1

|dii|p(|xi|q)p/q ≤
n∑

i=1

|dii|p|xi|q ≤ max
i
|dii|p

APPROX/RANDOM
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which is achieved by picking x = ei∗ where choice of i = i∗ maximizes dii.

Thus, to analyze the q → p norm of G1, it suffices to analyze maxx∈{ei} ‖G1x‖p, which is

the same as ‖g‖∞ where g is a vector of i.i.d. Gaussians. We can extract from the proof of

Lemma 25 that ‖g‖∞ is upper bounded by β
√

log n with probability at least 1− 1
n2 .

On the other hand, if the perturbation is at index (i, i) and we pick α = κ(β+1), then ‖G2ei‖p

is at least κβ
√

log n with probability at least 1− 1
n2 implying the desired separation. J

D General approximation factors α

D.1 Sketching Matrix Construction and Upper Bounds

Let us first define our sketch and then analyze its performance. For the sketch S, we group

the rows of A into n
α2 groups of size α2. We label the groups by B1, . . . , Bn/α2 and let

σ1i, . . . , σα2i be ±1 i.i.d random variables with equal probability for block Bi. Notice then

that the ith row of SA given by (SA)i,∗ is:

(SA)i,∗ ,
∑

j∈Bi

σjiAi,∗

To analyze the performance of this sketch, we will need a helpful inequality describing the

behavior of a random signed sums of reals.

I Theorem 36. Khintchine’s Inequality [20]

Let {xi}n
i=1 ∈ R be reals and let {si}n

i=1
be i.i.d ±1 random variables with equal probability

and let 0 < t <∞, we then have:

Ap

√
√
√
√

n∑

i=1

x2
i ≤ E

[∣
∣
∣
∣
∣

n∑

i=1

sixi

∣
∣
∣
∣
∣

p]1/p

≤ Bp

√
√
√
√

n∑

i=1

x2
i

For some constants Ap, Bp that only depend on p.

Also recall that by Jensen’s inequality, we can relate two norms of a vector x ∈ R
n.

I Remark. For two positive reals, p ≥ q > 1 and for a vector x ∈ R
n we have that:

‖x‖p ≤ n
1

q
− 1

p ‖x‖q

We then have the following theorems describing the sketching complexity of the sketch S for

1 ≤ p ≤ 2 and for p > 2.

I Theorem 37. For any 1 ≤ p ≤ 2 and for the maximizer x ∈ R
n of ‖A‖q→p the sketch S

defined earlier where each block Bi has size B has the property that

Θ(1)
1

B1− 1

p

‖SAx‖p ≤ ‖Ax‖p ≤ Θ(1)B
1

p
− 1

2 ‖SAx‖p

with probability at least 99
100

Proof. Let us first show the first inequality in the theorem statement.
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For some coordinate 1 ≤ i ≤ n
B :

|(SAx)i|p =

∣
∣
∣
∣
∣
∣

∑

j∈Bi

σj(Ax)j

∣
∣
∣
∣
∣
∣

p

≤




∑

j∈Bi

|(Ax)j |





p

By Remark D.1 relating ‖·‖1 and ‖·‖p

≤ Bp−1
∑

j∈Bi

|(Ax)j |p

∴ ‖(SAx)i‖p =





n/B
∑

i=1

|(SAx)i|p




1/p

≤ B1− 1

p ‖Ax‖p

Notice that the first inequality holds irrespective of the vector x, it holds for all vectors. Now

let us show the second inequality of the theorem statement.

For some coordinate 1 ≤ i ≤ n
B :




∑

j∈Bi

(Ax)p
j





1/p

≤ B
1

p
− 1

2




∑

j∈Bi

(Ax)2
j





1/2

[By Remark D.1] [1]

≤ Θ(1)B
1

p
− 1

2 E





∣
∣
∣
∣
∣
∣

∑

j∈Bi

σj(Ax)j

∣
∣
∣
∣
∣
∣

p



1/p

[By Khintchine’s Ineq.] [2]

∴

n/B
∑

i=1

∑

j∈Bi

(Ax)p
j = ‖Ax‖p

p ≤ Θ(1)Bp( 1

p
− 1

2 )E
[

‖SAx‖p
p

]

Notice that the second inequality of the theorem statement follows by Markov’s inequality.

Notice that the success probability of line [2] is constant for each block. To get constant

success probability over the entire set of blocks, we construct O(log(n)) i.i.d copies of each

block Bi given by {Bj
i }

O(log(n))
i=1 . We then pick j such that it is the index realizing the

quantity medianj∈[O(log(n))]‖(SjAx)i‖p where Sj corresponds the sketch with the jth copy of

the blocks. Then, by standard concentration bounds, we can get 1− 1
n/B success probability

for each set of blocks Bi and then union bound over the n
B blocks giving us constant success

probability. J

I Theorem 38. For any p > 2 and for the maximizer x ∈ R
n of ‖A‖q→p the sketch S defined

earlier where each block Bi has size B has the property that

Θ(1)
1

B1− 1

p

‖SAx‖p ≤ ‖Ax‖p ≤ Θ(1) ‖SAx‖p

The proof for Theorem 38 is the same as that for Theorem 37 except that there is no dilation

while upper bounding the ‖Ax‖p with the 2-norm in line [1] of the proof.

Notice that the above theorems imply that the sketch S is a
√

B-approximation when

0 ≤ p ≤ 2 and a B1− 1

p -approximation when p > 2 because it states that the sketch is

stretching ‖Ax‖p
p by at most some factor and dilating it by at most some factor and hence

the approximation ratio is simply the product of these factors.
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