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—— Abstract

We study the distinct elements and £,,-heavy hitters problems in the sliding window model, where
only the most recent n elements in the data stream form the underlying set. We first introduce the
composable histogram, a simple twist on the exponential (Datar et al., SODA 2002) and smooth
histograms (Braverman and Ostrovsky, FOCS 2007) that may be of independent interest. We
then show that the composable histogram along with a careful combination of existing techniques
to track either the identity or frequency of a few specific items suffices to obtain algorithms for
both distinct elements and ¢)-heavy hitters that are nearly optimal in both n and e.

Applying our new composable histogram framework, we provide an algorithm that out-
puts a (1 + €)-approximation to the number of distinct elements in the sliding window model
and uses O (}2 lognlog%loglogn—&— %log2 n) bits of space. For f,-heavy hitters, we provide
an algorithm using space O (eiploan (10g2 logn—i—log%)) for 0 < p < 2, improving upon
the best-known algorithm for fo-heavy hitters (Braverman et al., COCOON 2014), which has
space complexity O (}4 log® n) We also show complementing nearly optimal lower bounds of
Q (% log®n + 6% log n) for distinct elements and €2 (6%, log? n) for £,-heavy hitters, both tight up
to O (loglogn) and O (log %) factors.
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1 Introduction

The streaming model has emerged as a popular computational model to describe large data
sets that arrive sequentially. In the streaming model, each element of the input arrives one-
by-one and algorithms can only access each element once. This implies that any element
that is not explicitly stored by the algorithm is lost forever. While the streaming model is
broadly useful, it does not fully capture the situation in domains where data is time-sensitive
such as network monitoring [29, 30, 33] and event detection in social media [61]. In these
domains, elements of the stream appearing more recently are considered more relevant than
older elements. The sliding window model was developed to capture this situation [35]. In
this model, the goal is to maintain computation on only the most recent n elements of the
stream, rather than on the stream in its entirety. We call the most recent n elements active
and the remaining elements expired. Any query is performed over the set of active items
(referred to as the current window) while ignoring all expired elements.

The problem of identifying the number of distinct elements, is one of the foundational
problems in the streaming model.

» Problem 1 (Distinct elements). Given an input S of elements in [m], output the number
of items ¢ whose frequency f; satisfies f; > 0.
The objective of identifying heavy hitters, also known as frequent items, is also one of the
most well-studied and fundamental problems.

» Problem 2 (¢,-heavy hitters). Given parameters 0 < ¢ < € < 1 and an input S of elements
in [m], output all items i whose frequency f; satisfies f; > €(F,)*/? and no item 4 for which
fi < (e — @) (F,)'/?, where F, = > icim] fP. (The parameter ¢ is typically assumed to be at
least ce for some fixed constant 0 < ¢ < 1.)

In this paper, we study the distinct elements and heavy hitters problems in the sliding
window model. We show almost tight results for both problems, using several clean tweaks
to existing algorithms. In particular, we introduce the composable histogram, a modification
to the exponential histogram [35] and smooth histogram [19], that may be of independent
interest. We detail our results and techniques in the following section, but defer complete
proofs to the full version of the paper [16].

1.1 OQur Contributions
Distinct elements.

An algorithm storing O (% lognlog %(log 2 + loglogn)) bits in the insertion-only model
was previously provided [53]. Plugging the algorithm into the smooth histogram framework
of [19] yields a space complexity of O (E% log® n(log% + loglog n)) bits. We improve this
significantly as detailed in the following theorem.

» Theorem 1. Given ¢ > 0, there exists an algorithm that, with probability at least %,
provides a (1 + €)-approzimation to the number of distinct elements in the sliding window
model, using O (6% log nlog % loglogn + % log2 n) bits of space.

A known lower bound is (6% + log n) bits [1, 50] for insertion-only streams, which is also
applicable to sliding windows since the model is strictly more difficult. We give a lower
bound for distinct elements in the sliding window model, showing that our algorithm is
nearly optimal, up to log% and loglogn factors, in both n and e.
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» Theorem 2. Let 0 < € < ﬁ Any one-pass streaming algorithm that returns a (1 + €)-
approzimation to the number of distinct elements in the sliding window model with probability
% requires §2 (% log®n + 6% log n) bits of space.

/,-heavy hitters.

We first recall in Lemma 16 a condition that allows the reduction from the problem of
finding the £,-heavy hitters for 0 < p < 2 to the problem of finding the £»-heavy hitters. An
algorithm of [12] allows us to maintain an estimate of F». However, observe in Problem 2
that an estimate for F5 is only part of the problem. We must also identify which elements are
heavy. First, we show how to use tools from [13] to find a superset of the heavy hitters. This
alone is not enough since we may return false-positives (elements such that f; < (e—¢)V/F2).
By keeping a careful count of the elements (shown in Section 4), we are able to remove these
false-positives and obtain the following result, where we have set ¢ = %e:

» Theorem 3. Given € > 0 and 0 < p < 2, there exists an algorithm in the sliding window
model that, with probability at least %, outputs all indices i € [m] for which f; > erl/p, and
reports no indices i € [m)] for which f; < %Fpl/p. The algorithm has space complexity (in

bits) O (2 log®n (log®logn +log 1)).

Finally, we obtain a lower bound for £,-heavy hitters in the sliding window model, showing
that our algorithm is nearly optimal (up to log% and loglog n factors) in both n and e.

» Theorem 4. Letp > 0 ande,d € (0,1). Any one-pass streaming algorithm that returns the
£p-heavy hitters in the sliding window model with probability 1—0 requires Q((1—46)e™? log? n)
bits of space.

More details are provided in Section 4 and Section 5.

By standard amplification techniques any result that succeeds with probability % can be
made to succeed with probability 1— 0 while multiplying the space and time complexities by
O (log %) Therefore Theorem 1 and Theorem 15 can be taken with regard to any positive
probability of failure.

See Table 1 for a comparison between our results and previous work.

Problem Previous Bound New Bound
l2-heavy hitters @) (6—} log® n) [15] O (;15 log®n (log2 logn + log? %))

Distinct elements | O (zlg log® n + % log? n) [53,19] | O (:l; log % lognloglogn + % log? n)

Table 1 Our improvements for £2-heavy hitters and distinct elements in the sliding window
model.

1.2  Our Techniques

We introduce a simple extension of the exponential and smooth histogram frameworks, which
use several instances of an underlying streaming algorithm. In contrast with the existing
frameworks where O (logn) different sketches are maintained, we observe in Section 2 when
the underlying algorithm has certain guarantees, then we can store these sketches more
efficiently.
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T T

Pi—n—2 | Pi—n—1 , Pi—n pj
] ]

Pi—n—1, Pi—n Pi

Pi—n : Pi

Sliding window begins

Figure 1 Each horizontal bar represents an instance of the insertion-only algorithm. The red
instance represents the sliding window. Storing an instance beginning at each possible start point
would ensure that the exact window is always available, but this requires linear space. To achieve
polylogarithmic space, the histogram stores a strategically chosen set of O (logn) instances (shaded
grey) so that the value of f on any window can be (14 ¢)-approximated by its value on an adjacent
window.

Sketching Algorithms

Consider the sliding window model, where elements eventually expire. A very simple (but
wasteful) algorithm is to simply begin a new instance of the insertion-only algorithm upon
the arrival of each new element (Figure 1). The smooth histogram of [19], summarized in
Algorithm 1, shows that storing only O (logn) instances suffices.

Algorithm 1 Input: a stream of elements py, ps, . .. from [m], a window length n > 1, error
e€(0,1)
1: T+ 0
2: 1+ 1
3: loop
4: Get p; from stream
5: T < T +1; tp < i; Compute D(tr), where f(D) is a (1 + i)-approximation of f.
6: foralll1 < j < T do
7: if f(D(tj—1:t7)) < (1—%) f(D(tj41:tr)) then
8: Delete t;; update indices; T' < T' — 1
9: if ¢t <7 —n then
10: Delete t;; update indices; T < T — 1
11 1 1+1

Algorithm 1 may delete indices for either of two reasons. The first (Lines 9-10) is that
the index simply expires from the sliding window. The second (Lines 7-8) is that the indices
immediately before (¢;_1) and after (¢;41) are so close that they can be used to approximate
t.

For the distinct elements problem (Section 3), we first claim that a well-known streaming
algorithm [6] provides a (1+e€)-approximation to the number of distinct elements at all points
in the stream. Although this algorithm is suboptimal for insertion-only streams, we show
that it is amenable to the conditions of a composable histogram (Theorem 6). Namely, we
show there is a sketch of this algorithm that is monotonic over suffixes of the stream, and
thus there exists an efficient encoding that efficiently stores D(t; : ¢;41) for each 1 <i < T,
which allows us to reduce the space overhead for the distinct elements problem.

For ¢s-heavy hitters (Section 4), we show that the £3 norm algorithm of [12] also satisfies
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the sketching requirement. Thus, plugging this into Algorithm 1 yields a method to maintain
an estimate of f5. Algorithm 2 uses this subroutine to return the identities of the heavy
hitters. However, we would still require that all n instances succeed since even O (1) instances
that fail adversarially could render the entire structure invalid by tricking the histogram into
deleting the wrong information (see [19] for details). We show that the ¢5 norm algorithm
of [12] actually contains additional structure that only requires the correctness of polylog(n)
instances, thus improving our space usage.

1.3 Lower Bounds
Distinct elements.
To show a lower bound of 2 (%log2n+ 6%log n) for the distinct elements problems, we
show in Theorem 19 a lower bound of (% log? n) and we show in Theorem 22 a lower
bound of € (}2 log n) We first obtain a lower bound of 2 (% log? n) by a reduction from
the IndexGreater problem, where Alice is given a string S = x1x2 - x,, and each x; has n
bits so that S has mn bits in total. Bob is given integers ¢ € [m] and j € [2"] and must
determine whether z; > j or z; < j.

Given an instance of the IndexGreater problem, Alice splits the data stream into blocks
of size O ( e"n) and further splits each block into v/n pieces of length (1 + 2¢)*, padding

log

the remainder of each block with zeros if necessary. For each i € [m], Alice encodes z;
by inserting the elements {0,1,..., (1 + 2¢)¥ — 1} into piece x; of block (¢ — i + 1). Thus,
the number of distinct elements in each block is much larger than the sum of the number
of distinct elements in the subsequent blocks. Furthermore, the location of the distinct
elements in block (£ — i+ 1) encodes z;, so that Bob can recover x; and compare it with j.

We then obtain a lower bound of 2 (E%log n) by a reduction from the GapHamming
problem. In this problem, Alice and Bob receive length-n bitstrings x and y, which have
Hamming distance either at least § 4+ y/n or at most § — y/n, and must decide whether
the Hamming distance between z and y is at least 5. Recall that for e < %, a (1+e)-
approximation can differentiate between at least 5 + v/n and at most 5= v/n. We use this
idea to show a lower bound of (6% log n) by embedding (logn) instances of GapHamming
into the stream. As in the previous case, the number of distinct elements corresponding
to each instance is much larger than the sum of the number of distinct elements for the
remaining instances, so that a (1 + €)-approximation to the number of distinct elements in
the sliding window solves the GapHamming problem for each instance.

Heavy hitters.

To show a lower bound on the problem of finding £,-heavy hitters in the sliding window
model, we give a reduction from the Augmentedindex problem. Recall that in the Augmente-
dIndex problem, Alice is given a length-n string S € {1,2...,k}" (which we write as [k]™)
while Bob is given an index i € [n], as well as S[1,7 — 1], and must output the i* symbol of
the string, S[i]. To encode Si] for S € [k]™, Alice creates a data stream aj oago...oap with
the invariant that the heavy hitters in the suffix a; 0 a;41 0 ... 0 ap encode S[i]. Specifically,
the heavy hitters in the suffix will be concentrated in the substream a; and the identities
of each heavy hitter in a; gives a bit of information about the value of S[i]. To determine
S[i], Bob expires the elements aj,as,...,a;—; so all that remains in the sliding window is

@; © @41 © ...0ap, whose heavy hitters encode SJi].
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1.4 Related Work

The study of the distinct elements problem in the streaming model was initiated by Flajolet
and Martin [44] and developed by a long line of work [1, 45, 6, 38, 43]. Kane, Nelson, and
Woodruff [53] give an optimal algorithm, using O (E% + log n) bits of space, for providing a
(1 + €)-approximation to the number of distinct elements in a data stream, with constant
probability. Blasiok [9] shows that to boost this probability up to 1—4 for a given 0 < 6 < 1,
the standard approach of running O (log %) independent instances is actually sub-optimal

and gives an optimal algorithm that uses O ( + log n) bits of space.

The #1-heavy hitters problem was first solved by Misra and Gries, who give a determinis-
tic streaming algorithm using O (% log n) space [59]. Other techniques include the CountMin
sketch [32], sticky sampling [57], lossy counting [57], sample and hold [40], multi-stage bloom
filters [21], sketch-guided sampling [54], and CountSketch [26]. Among the numerous appli-
cations of the ¢,-heavy hitters problem are network monitoring [37, 62], denial of service
prevention [40, 4, 31], moment estimation [51], ¢p-sampling [60], finding duplicates [47],
iceberg queries [41], and entropy estimation [22, 48].

A stronger notion of “heavy hitters” is the ¢o-heavy hitters. This is stronger than the
{1-guarantee since if f; > eF) then f? > 2F? > ¢Fy (and so f; > ey/Fy). Thus any
algorithm that finds the ¢s-heavy hitters will also find all items satisfying the ¢;-guarantee.
In contrast, consider a stream that has f; = \/m for some i and f; = 1 for all other elements
j in the universe. Then the f5-heavy hitters algorithm will successfully identify i for some
constant €, whereas an algorithm that only provides the ¢;-guarantee requires € = #, and
therefore 2(y/nlogn) space for identifying i. Moreover, the fs-gaurantee is the best we can
do in polylogarithmic space, since for p > 2 it has been shown that identifying ¢,-heavy
hitters requires Q(n'~2/?) bits of space [23, 5.

The most fundamental data stream setting is the insertion-only model where elements
arrive one-by-one. In the insertion-deletion model, a previously inserted element can be
deleted (each stream element is assigned +1 or —1, generalizing the insertion-only model
where only +1 is used). Finally, in the sliding window model, a length n is given and the
stream consists only of insertions; points expire after n insertions, meaning that (unlike the

insertion-deletion model) the deletions are implicit. Letting S = s, s2, ... be the stream, at
time ¢ the frequency vector is built from the window W = {s;_(,_1),..., s} as the active
elements, whereas items {s1,...,s;_,} are expired. The objective is to identify and report

the “heavy hitters”, namely, the items ¢ for which f; is large with respect to W.

Table 2 shows prior work for £o-heavy hitters in the various streaming models. A retuning
of CountSketch in [63] solves the problem of £a-heavy hitters in O (log2 n) bits of space.
More recently, [13] presents an fo-heavy hitters algorithm using O (lognloglogn) space.
This algorithm is further improved to an O (logn) space algorithm in [12], which is optimal.

In the insertion-deletion model, CountSketch is space optimal [26, 52], but the update
time per arriving element is improved by [55]. Thus in some sense, the ¢3-heavy hitters
problem is completely understood in all regimes except the sliding window model. We
provide a nearly optimal algorithm for this setting, as shown in Table 2.

We now turn our attention to the sliding window model. The pioneering work by Datar
et al. [35] introduced the exponential histogram as a framework for estimating statistics
in the sliding window model. Among the applications of the exponential histogram are
quantities such as count, sum of positive integers, average, and £, norms. Numerous other
significant works include improvements to count and sum [46], frequent itemsets [28], fre-
quency counts and quantiles [2, 56], rarity and similarity [36], variance and k-medians [3] and
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Model Upper Bound Lower Bound
Insertion-Only o (c72 log n) [12] Q(¢ %logn) [Folklore]
Insertion-Deletion o (6_2 log? n) [26] Qe ?1og?® n) [52]
Sliding Windows | O (672 log? n(loge™* + loglog n)) [Theorem 15] | Q(e ?log®n) [Theorem 4]

Table 2 Space complexity in bits of computing ¢2-heavy hitters in various streaming models.
We write n = |S| and to simplify bounds we assume logn = O (log m).

other geometric problems [42, 25]. Braverman and Ostrovsky [19] introduced the smooth
histogram as a framework that extends to smooth functions. [19] also provides sliding win-
dow algorithms for frequency moments, geometric mean and longest increasing subsequence.
The ideas presented by [19] also led to a number of other results in the sliding window model
[34, 17, 20, 18, 27, 39, 14]. In particular, Braverman et al. [15] provide an algorithm that
finds the f5-heavy hitters in the sliding window model with ¢ = ce for some constant ¢ > 0,
using O (%4 log? n) bits of space, improving on results by [49]. [7] also implements and pro-
vides empirical analysis of algorithms finding heavy hitters in the sliding window model.
Significantly, these data structures consider insertion-only data streams for the sliding win-
dow model; once an element arrives in the data stream, it remains until it expires. It remains
a challenge to provide a general framework for data streams that might contain elements
“negative” in magnitude, or even strict turnstile models. For a survey on sliding window
algorithms, we refer the reader to [11].

2 Composable Histogram Data Structure Framework

We first describe a data structure which improves upon smooth histograms for the estimation
of functions with a certain class of algorithms. This data structure provides the intuition for
the space bounds in Theorem 1. Before describing the data structure, we need the definition
a smooth function.

» Definition 5. [19] A function f > 1 is («, 8)-smooth if it has the following properties:
Monotonicity f(A) > f(B) for B C A (B is a suffix of A)
Polynomial boundedness There exists ¢ > 0 such that f(A) < n°.
Smoothness For any e € (0,1), there exists o € (0,1), 8 € (0,a] so that if B C A and
(1-05)f(A) < f(B), then (1 —a)f(AUC) < f(BUC) for any adjacent C.
We emphasize a crucial observation made in [19]. Namely, for p > 1, £, is a (e, %)—smooth
function while for p < 1, £, is a (¢, €)-smooth function.
Given a data stream S = py,po,...,p, and a function f, let f(t1, ) represent f applied
to the substream py, , Py, +1, - - -, Dt,- Furthermore, let D(¢; : t2) represent the data structure
used to approximate f(t1,t2).

» Theorem 6. Let f be an (a, §)-smooth function so that f = O (n®) for some constant c.
Suppose that for all €,6 > 0:

(1) There exists an algorithm A that maintains at each time t a data structure D(1 : t)
which allows it to output a value f(1,t) so that

Pr[|f(1,¢) - f(1,0)] < %f(l,t),for al0<t<n|>1-4

(2) There exists an algorithm B which, given D(ty : t;) and D(t; + 1 : t;y1), can compute
D(t; : tix1). Moreover, suppose storing D(t; : t;11) uses O (g;(e,d)) bits of space.
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Then there exists an algorithm that provides a (1 + €)-approzimation to f on the sliding
1 % logn 5

window, using O | = log®n + Z gi |l € — bits of space.
B i=1 "

We remark that the first condition of Theorem 6 is called “strong tracking” and well-
motivated by [10].

3 Distinct Elements

We first show that a well-known streaming algorithm that provides a (1 + €)-approximation
to the number of distinct elements actually also provides strong tracking. Although this al-
gorithm uses O (}2 log n) bits of space and is suboptimal for insertion-only streams, we show
that it is amenable to the conditions of Theorem 6. Thus, we describe a few modifications
to this algorithm to provide a (1 + €)-approximation to the number of distinct elements in
the sliding window model.

Define Isb(z) to be the 0-based index of least significant bit of a non-negative integer x
in binary representation. For example, Isb(10) = 1 and Isb(0) := log(m) where we assume
log(m) = O (logn). Let S C [m] and h : [m] — {0,1}°¢™ be a random hash function. Let
Sy, := {s € S :Isb(h(s)) > k} so that 2¥|S| is an unbiased estimator for |S|. Moreover, for
k such that E[S;] = © (&), the standard deviation of 2¥|Sy| is O (¢[S]). Let hy : [m] —
[B] be a pairwise independent random hash function with B = 160—20. Let ®p(m) be the
expected number of non-empty bins after m balls are thrown at random into B bins so that
E[|h2(Sk)I] = ®5(|Sk])-
> Fact 7. @, (t) =t (1— (1-H)™)

Blasiok provides an optimal algorithm for a constant factor approximation to the number
of distinct elements with strong tracking.

» Theorem 8. [9] There is a streaming algorithm that, with probability 1 — &, reports a
(1 4 €)-approxzimation to the number of distinct elements in the stream after every update

and uses O (M + log n) bits of space.

Thus we define an algorithm Oracle that provides a 2-approximation to the number of distinct
elements in the stream after every update, using O (logn) bits of space.

Since we can specifically track up to O (6%) distinct elements, let us consider the case
where the number of distinct elements is w (6%) Given access to Oracle to output an estimate
K, which is a 2-approximation to the number of distinct elements, we can determine an
integer k& > 0 for which & = O(%). Then the quantity 28® 51 (|ha(Sk)|) provides both
strong tracking as well as a (1 4 €)-approximation to the number of distinct elements:

» Lemma 9. [9] The median of O (loglogn) estimators 28® 5 (|ha(Sk)|) is a (1 + €)-
approzimation at all times for which the number of distinct elements is © (2—:), with constant

probability.

Hence, it suffices to maintain ho(S;) for each 1 < i < logm, provided access to Oracle to
find k, and O (loglogn) parallel repetitions are sufficient to decrease the variance.

Indeed, a well-known algorithm for maintaining ho(S;) simply keeps a logm x O (6%)
table T of bits. For 0 < i < logn, row i of the table corresponds to ho(S;). Specifically, the
bit in entry (i,7) of T' corresponds to 0 if ha(s) # j for all s € S; and corresponds to 1 if
there exists some s € S; such that ha(s) = j. Therefore, the table maintains ho(S;), so then
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Lemma 9 implies that the table also gives a (1 + €)-approximation to the number of distinct
elements at all times, using O (6% log n) bits of space and access to Oracle. Then the total
space is O (6% logn log log n) after again using O (loglogn) parallel repetitions to decrease
the variance.

Naively using this algorithm in the sliding window model would give a space usage de-
pendency of O (}3 log? nloglog n) To improve upon this space usage, consider maintaining
tables for substreams (t1,t), (t2,t), (t3,t), ... where t; < to < t3 < ... <t. Let T; represent
the table corresponding to substream (¢;,t). Since (t;41,t) is a suffix of (¢;,t), then the
support of the table representing (¢;41,t) is a subset of the support of the table representing
(t;,t). That is, if the entry (a,b) of T;11 is one, then the entry (a,b) of T; is one, and
similarly for each j < 4. Thus, instead of maintaining élogn tables of bits corresponding
to each of the (¢;,¢), it suffices to maintain a single table T' where each entry represents the
ID of the last table containing a bit of one in the entry. For example, if the entry (a,b) of
Ty is zero but the entry (a,b) of Ty is one, then the entry (a,b) for T is 8. Hence, T is a
table of size logm x O (6%), with each entry having size O (log % + loglog n) bits, for a total
space of O (6% logn (log% + loglog n)) bits. Finally, we need O (% log? n) bits to maintain
the starting index ¢; for each of the %logn tables represented by T'. Again using a number
of repetitions, the space usage is O (6% logn (log % + log log n) loglogn + % log? n)

Since this table is simply a clever encoding of the O (% log n) tables used in the smooth
histogram data structure, correctness immediately follows. We emphasize that the improve-
ment in space follows from the idea of Theorem 6. That is, instead of storing a separate
table for each instance of the algorithm in the smooth histogram, we instead simply keep
the difference between each instance.

Finally, observe that each column in 7' is monotonically decreasing. This is because
Sk :={s € S:Isb(h(s)) > k} is a subset of S,_;1. Alternatively, if an item has been sampled
to level k, it must have also been sampled to level k—1. Instead of using O (log % + loglog n)
bits per entry, we can efficiently encode the entries for each column in T with the observation
that each column is monotonically decreasing.

Proof of Theorem 1: Since the largest index of T; is i = %logn and T has logm
% log n+logm—1

rows, the number of possible columns is
’ logm

), which can be encoded using
o (lognlog %) bits. Correctness follows immediately from Lemma 9 and the fact that the
estimator is monotonic. Again we use O (% log? n) bits to maintain the starting index t;
for each of the %logn tables represented by 7. As T has O (}2) columns and account-
ing again for the O (loglogn) repetitions to decrease the variance, the total space usage is

O (% lognlog Lloglogn + 1 log? n) bits. O

4 [/, Heavy Hitters

Subsequent analysis by Berinde et al. [8] proved that many of the classic ¢5-heavy hitter
algorithms not only revealed the identity of the heavy hitters, but also provided estimates
of their frequencies. Let fq(x) be the vector f whose largest k entries are instead set
to zero. Then an algorithm that, for each heavy hitter 7, outputs a quantity fAZ such that
|fl — fil <€l fraitrylln < €| f]]1 is said to satisfy the (e, k)-tail guarantee. Jowhari et al. [52]
show an algorithm that finds the ¢5-heavy hitters and satisfies the tail guarantee can also
find the ¢)-heavy hitters. Thus, we first show results for £»-heavy hitters and then use this
property to prove results for /,-heavy hitters.

To meet the space guarantees of Theorem 15, we describe an algorithm, Algorithm 2,
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that only uses the framework of Algorithm 1 to provide a 2-approximation of the o norm
of the sliding window. We detail the other aspects of Algorithm 2 in the remainder of the
section.

Recall that Algorithm 1 partitions the stream into a series of “jump-points” where f
increases by a constant multiplicative factor. The oldest jump point is before the sliding
window and initiates the active window, while the remaining jump points are within the
sliding window. Therefore, it is possible for some items to be reported as heavy hitters
after the first jump point, even though they do not appear in the sliding window at all! For
example, if the active window has ¢5 norm 2\, and the sliding window has ¢3 norm (1 + €)A,
all 2e)\ instances of a heavy hitter in the active window can appear before the sliding window
even begins. Thus, we must prune the list containing all heavy hitters to avoid the elements
with low frequency in the sliding window.

To account for this, we begin a counter for each element immediately after the element
is reported as a potential heavy hitter. However, the counter must be sensitive to the
sliding window, and so we attempt to use a smooth-histogram to count the frequency of
each element reported as a potential heavy hitter. Even though the count function is (e, €)
smooth, the necessity to track up to O (}2) heavy hitters prevents us from being able to
(1 4 e)-approximate the count of each element. Fortunately, a constant approximation of
the frequency of each element suffices to reject the elements whose frequency is less than
§l2. This additional data structure improves the space dependency to O (6%)

4.1 Background for Heavy Hitters

We now introduce concepts from [13, 12] to show the conditions of Theorem 6 apply, first
describing an algorithm from [12] that provides a good approximation of F» at all times.

» Theorem 10 (Remark 8 in [12]). For any € € (0,1) and 6 € [0,1), there exists a one-pass
streaming algorithm Estimator that outputs at each time t a value ﬁé(t) so that

Pr [\Fg” —FP1 < eFO, for all0< t < n} >1-3,

and uses O (6% logm (log logm + log %) log %) bits of space and O ((log logm + log %) log %)
update time.

The algorithm of Theorem 10 is a modified version of the AMS estimator [1] as follows.
Given vectors Z; of 6-wise independent Rademacher (i.e. uniform =£1) random variables,
let X;(t) = <Zj,f(f’)>, where f() is the frequency vector at time ¢. Then [12] shows that
Y, = % Zjvzl ng,t is a reasonably good estimator for F». By keeping X;(1,t1), X;(t1 +
1,t2),...,X,(t; + 1,t), we can compute X, from these sketches. Hence, the conditions of
Theorem 6 are satisfied for Estimator, so Algorithm 1 can be applied to estimate the ¢
norm. One caveat is that naively, we still require the probability of failure for each instance
of Estimator to be at most % for the data structure to succeed with probability at least
1 — 4. We show in Appendix A that it suffices to only require the probability of failure for
each instance of Estimator to be at most W, thus incurring only O (loglogn) additional
space rather than O (logn). We now refer to a heavy hitter algorithm from [12] that is space
optimal up to log% factors.

» Theorem 11 (Theorem 11 in [12]). For any € > 0 and § € [0,1), there exists a one-
pass streaming algorithm, denoted (e,0) — BPTree, that with probability at least (1 — §),
returns a set of §-heavy hitters containing every e-heavy hitter and an approximate fre-
quency for every item returned satisfying the (e,1/€%)-tail guarantee. The algorithm uses
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O (}2 (log 5—16) (logn + log m)) bits of space and has O (log i) update time and O (6% log i)
retrieval time.

Observe that Theorem 10 combined with Theorem 6 already yields a prohibitively expen-
sive 6% dependency on €. Thus, we can only afford to set € to some constant in Theorem 10
and have a constant approximation to F5 in the sliding window.

At the conclusion of the stream, the data structure of Theorem 6 has another dilemmas:
either it reports the heavy hitters for a set of elements S; that is a superset of the sliding
window or it reports the heavy hitters for a set of elements Sy that is a subset of the sliding
window. In the former case, we can report a number of unacceptable false positives, elements
that are heavy hitters for S; but may not appear at all in the sliding window. In the latter
case, we may entirely miss a number of heavy hitters, elements that are heavy hitters for
the sliding window but arrive before S; begins. Therefore, we require a separate smooth
histogram to track the counter of specific elements.

» Theorem 12. For any ¢ > 0, there exists an algorithm, denoted (1 + €) — SmoothCounter,
that outputs a (14€)-approximation to the frequency of a given element in the sliding window
model, using O (% (logn + logm)log n) bits of space.

The algorithm follows directly from Theorem 6 and the observation that ¢; is (e, €)-smooth.

4.2 [(y-Heavy Hitters Algorithm

We now prove Theorem 15 using Algorithm 2. We detail our fs-heavy hitters algorithm
in full, using 5 = /F5 and e-heavy hitters to refer to the £s-heavy hitters problem with
parameter e.

Algorithm 2 e-approximation to the f3-heavy hitters in a sliding window

Input: A stream S of updates p; for an underlying vector v and a window size n.
Output: A list including all elements ¢ with f; > ef2 and no elements j with f; < {5¢2.
1: Maintain sketches D(py, : pry), D(Pts + 1 Peg)s---s DDty + 1 : p1,) to estimate the
{5 norm.
> Use Estimator and Algorithm 1 with parameters (%, g) here.
Let A; be the merged sketch D(p;, +1: py,).
: For each merged sketch A;, find a superset H; of the {5-heavy hitters.
> Use (15, 3) — BPTree here. (Theorem 11)
4: For each element in Hy, create a counter.
> Instantiate a 2 — SmoothCounter for each of the O (}2) elements reported in H;.
5. Let 5 be the estimated ¢5 norm of A;.
> Output of Estimator on A;. (Theorem 10)
6: For element ¢ € Hy, let ﬁ be the estimated frequency of i.
> Output by 2 — SmoothCounter. (Theorem 12)
7: Output any element ¢ with ﬁ > ie@.

» Lemma 13. Any element i with frequency f; > els is output by Algorithm 2.

» Lemma 14. No element i with frequency f; < {502(W) is output by Algorithm 2.

» Theorem 15. Given €,6 > 0, there exists an algorithm in the sliding window model
(Algorithm 2) that with probability at least 1 — & outputs all indices i € [m] for which

fi > e/Fs, and reports no indices i € [m] for which f; < T;\/E The algorithm has space
complexity (in bits) O (6% log®n (log2 logn + log %))
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4.3 Extension to /, norms for 0 < p < 2

To output a superset of the £,-heavy hitters rather than the f»-heavy hitters, recall that an
algorithm provides the (e, k)-tail guarantee if the frequency estimate fi for each heavy hitter
i € [m] satisfies \fl — fil < € ||fraire)|l1, Where fiai k) is the frequency vector f in which
the k most frequent entries have been replaced by zero. Jowhari et al. [52] show the impact
of ¢5-heavy hitter algorithms that satisfy the tail guarantee.

» Lemma 16. [52/ For any p € (0,2], any algorithm that returns the e’/?-heavy hitters for
Uy satisfying the tail guarantee also finds the e-heavy hitters for £,,.

The correctness of Theorem 3 immediately follows from Lemma 16 and Theorem 15.

5 Lower Bounds

5.1 Distinct Elements

To show a lower bound of {2 (% log?n + }2 log n) for the distinct elements problem, we show
in Theorem 19 a lower bound of 2 (% log? n) and we show in Theorem 22 a lower bound
of Q (s%log n) We first obtain a lower bound of €2 (%log2 n) by a reduction from the

IndexGreater problem.

Sliding window string S of length n

. ben 6en Gen Gen
Block length' logn logn logn logn

I A A Ay
T

Elements {0,1,...,(1+ 2¢)* — 1} inserted into piece z; of block i.

Alice: x1...x,,, where m = é logn.

-~
Each zj is %logn bits.

Figure 2 Construction of distinct elements instance by Alice. Pieces of block i have length
(1+2¢)" —1.

» Definition 17. In the IndexGreater problem, Alice is given a string S = x1x2 - - ), of
length mn, and thus each x; has n bits. Bob is given integers i € [m] and j € [2"]. Alice is
allowed to send a message to Bob, who must then determine whether x; > j or x; < j.

Given an instance of the IndexGreater problem, Alice first splits the data stream into blocks

of size O ( 1§£n> She further splits each block into v/ pieces of length (1 + 2¢)*, before

padding the remainder of block (¢ — k + 1) with zeros. To encode z; for each i € [m)],
Alice inserts the elements {0,1,..., (1 + 2¢)¥ — 1} into piece x; of block (¢ — i + 1), before
padding the remainder of block (¢ —k+ 1) with zeros. In this manner, the number of distinct
elements in each block dominates the number of distinct elements in the subsequent blocks.
Moreover, the location of the distinct elements in block (£ — ¢ + 1) encodes x;, so that Bob
can compare z; to j. We formalize this argument in Appendix B.

» Lemma 18. The one-way communication complezity of IndexGreater is Q(nm) bits.
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» Theorem 19. Let p > 0 and €,6 € (0,1). Any one-pass streaming algorithm that returns
a (1+ €)-approzimation to the number of distinct elements in the sliding window model with
probability % requires §2 (% log? n) space.

To obtain a lower bound of 2 (}2 log n), we give a reduction from the GapHamming problem.

» Definition 20. [50] In the GapHamming problem, Alice and Bob receive n bit strings z
and y, which have Hamming distance either at least & +/n or at most § —/n. Then Alice
and Bob must decide which of these instances is true.

Chakrabarti and Regev show an optimal lower bound on the communication complexity of
GapHamming.

» Lemma 21. [2/] The communication complexity of GapHamming is Q(n).

Observe that a (1 +¢€)§ < 5§ + y/n for € < % and thus a (1 4 €)-approximation can
differentiate between at least § 4 /n and at most § —+/n. We use this idea to show a lower

bound of Q (6% log n) by embedding Q(logn) instances of GapHamming into the stream.

» Theorem 22. Let p > 0 and €,d € (0,1). Any one-pass streaming algorithm that returns
a (14 €)-approzimation to the number of distinct elements in the sliding window model with
probability % requires €} (}2 log n) space for e < %

Hence, Theorem 2 follows from Theorem 19 and Theorem 22.

5.2 /(,-Heavy Hitters

To show a lower bound for the £,-heavy hitters problem in the sliding window model, we
consider the following variant of the Augmentedindex problem. Let k and n be positive
integers and ¢ € [0,1). Suppose the first player Alice is given a string S € [k]™, while the
second player Bob is given an index ¢ € [n], as well as S[1,i — 1]. Alice sends a message to
Bob, and Bob must output S[i] with probability at least 1 — 4.

» Lemma 23. [58] Even if Alice and Bob have access to a source of shared randomness,
Alice must send a message of size Q((1 — d)nlogk) in a one-way communication protocol
for the Augmentedindex problem.

We reduce the Augmentedindex problem to finding the £,-heavy hitters in the sliding window
model. To encode S[i] for S € [k]™, Alice creates a data stream aj oag o ... o a, with the
invariant that the heavy hitters in the suffix a; o a;41 o ... o ap encodes S[i]. Thus to
determine S[i], Bob just needs to run the algorithm for finding heavy hitters on sliding
windows and expire the elements aq, as,...,a;—1 so all that remains in the sliding window
is a; 0 a;qq 0...0a,. We formally prove Theorem 4 in Appendix B.
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A Full Version

We show that the structure of the Fy algorithm only requires the correctness of a specific
O (polylogn) algorithms in the data structure. Given a vector v € R™, let Fy(v) = v? +
v3 + ...+ v2,. Recall that the histogram creates a new algorithm each time a new element
arrives in the data stream. Instead of requiring all n algorithms perform correctly, we show
that it suffices to only require the correctness of a specific O (polylogn) of these algorithms.

Let F' be the value of F5 on the most recent n elements. For the purpose of analysis,
we say that an algorithm is important if it is still maintained within the histogram when its
output is at least s

2logn

We first show that with high probability, all algorithms correctly maintain a logn-

and the algorithm never outputs anything greater than 8F log® n.

approximation of the value of Fy for the corresponding frequency vector. Conditioned on
each algorithm correctly maintaining a log n-approximation, we then show that O (log6 n)
algorithms are important. Observe that an algorithm that reports a 2-approximation to
F is important. Furthermore, we show that any algorithm that is not important cannot
influence the output of the histogram, conditioned on each algorithm correctly maintaining
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a log n-approximation. Thus, it suffices to require correctness of strong tracking on these
@ (10g6 n) important algorithms and we apply a union bound over the O (log6 n) important
algorithms to ensure correctness. Hence for each algorithm, we require the probability of

failure to be at most O ( ) for the histogram to succeed with probability at least 1 — 4.

log® n
» Fact 24. Given m-dimensional vectors z,y, z with non-negative entries, then Fy(z + y +
2) = Fy(a+y) > Fa(a+ 2) - Faa).

Although the number of algorithms in the histogram at any given moment is at most
O (logn), it may be possible that many algorithms have output at least ﬁ only to be
deleted at some point in time. We now show that in a window of size 2n, there are only
O (10g6 n) important algorithms.

» Lemma 25. Conditioned on all algorithms in the stream correctly providing a logmn-
approzimation, then there are at most O (log6 n) important algorithms that begin in the
most recent 2n elements.

Proof. Let s; < sy < ... < s; be the starting points of important algorithms A;, As, ..., A;,
respectively, that begin within the most recent 2n elements. For ed,Lh 1<j<i,lett; be

the first time that algorithm A; outputs a value that is at least . The idea is to show

2 log
at the end of the stream the elements between s; and s;41 are responsible for an increase in

F5 by at least TT for all j. Since an algorithm is important if it never outputs anything

greater than 8F log® n, then the Fy value of the substream represented by the algorithm is
at most 8F log” n, and it follows that i = O (10g6 n)

Recall that to maintain the histogram, there exists a constant ¢ such that whenever two
adjacent algorithms have output within a factor of c then we delete one of these algorithms.
Hence, A;_; must output a value that is at least 210g at time ¢;. Otherwise, the histogram
would have deleted algorithm A; before t;, preventing A; from being important. Condi-

tioning on correctness of a logn-approximation of all algorithms, the value of F5 on the
frequency vector from s;_; to ¢; is at least %

In other words, the elements from time s;_; to s; are responsible for a difference of at
least ﬁgn between the F; values of the substreams represented by A;_; and A; at time

t;. Thus by Fact 24, the difference between the Fy values of the substreams represented by

Aj_1 and A; at any time ¢ > t; is at least —<f By induction, the value of F5 on the

2log®n
substream from s; to ¢; is at least (Jl—olg)z% Recall that the Fy of the substream represented
by any important algorithm is at most 8F log® n. Therefore, i = O (log6 n) and so at most

O (log‘6 n) algorithms are important. <

» Fact 26. For z > 0 and a,b > 0, (T+a) > (m(;ri;r)l;)z.

(zita;)? > Z(z +a;+b; )

TS T @ity

» Lemma 28. Conditioned on all algorithms in the stream correctly providing a logmn-
approzimation, then any algorithm that outputs a value that is at least 8F log®n cannot
delete an important algorithm that provides a 2-approximation to F.

» Corollary 27. For a;,b;,x; > 0 where >, x? > 0, 2 (@ita)’

Proof. Note that any algorithm A that outputs a value that is at least 8F loggn must
represent a substream whose F; value is at least 8F log? n at the end of the stream, assuming
a log n-approximation of all algorithms. Observe that the substream represented by an
important algorithm B that provides a 2-approximation has F5 value at most 2F at the
end of the stream. By Corollary 27, the ratio between the F, values of the substreams
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represented by A and B must be at least 4log? n at every previous point in time. Thus, if
A and B always correctly maintain a log n-approximation of the corresponding substreams,
the ratio of the outputs between A and B is at least 4, so A will never cause the histogram
data structure to delete B. <

Hence, it remains to show that with high probability, all algorithms correctly maintain a
log n-approximation of the value of Fy for the corresponding frequency vector. Recall that
Estimator from Theorem 10 uses an AMS sketch so that the resulting frequency of each
element f; is multiplied by a Rademacher random variable R;.

» Theorem 29 (Khintchine's inequality). Let R € {—1,1}" be chosen uniformly at random
and f € R™ be a given vector. Then for any even integer p, E [(31", lel)p] < VP|Ifll5-

Although we would like to apply Khintchine’s inequality directly, the Rademacher random
variables R; used in Estimator are log n-wise independent. Nevertheless, we can use inde-
pendence to consider the log n-th moment of the resulting expression.

» Corollary 30. Let 21, 22,...,2m € {—1,1} be a set of log n-wise independent random vari-
ables and f € R™ be a given vector. Then for any even integer p < logn, E [(Z:’;l zifi)p] <

I, -

We now show that each algorithm fails to maintain a log n-approximation of the value of Fy
for the corresponding frequency vector only with negligible probability.

» Lemma 31. Let z1,29,...,2m € {—1,1} be a set of logn-wise independent random vari-

m Y m 1
ables and f € R™ be a given vector. Then Pr[|> """, z; fi| > (logn)||f||2] < —Te

Proof. For the ease of notation, let p = logn be an even integer. Observe that

m m P
Pr (|3 2| = (logn)l|fllz| = Pr |3 zifi| = (logn)?|IfI[3
i=1 i=1

By Markov’s inequality, Pr [0, zi fil” > (logn)?||f|[5] < E[((lgn:)},ﬁj‘f‘g ] By Corol-

m . \P P
lary 30, it follows that Bl iti)'] VEr 11 <

< = i
(logn)P[[fII5  — (logn)P[[fII5 lognViegn
Therefore, with high probability, all algorithms correctly maintain a log n-approximation of
the value of Fy for the corresponding frequency vector.

B Supplementary Proofs

Proof of Lemma 13: Since the /5 norm is a smooth function, and so there exists a
smooth-histogram which is an (%, %)—estimation of the ¢ norm of the sliding window by
Theorem 6. Thus, %ég(Al) < (W) < %E}(Al). With probability 1 — g, any element i
whose frequency satisfies f;(W) > ely(W) must have f;(W) > ely(W) > %6[?2(A1) and is
reported by (%, g) — BPTree in Step 3.

Since BPTree is instantiated along with A;, the sliding window may begin either before
or after BPTree reports each heavy hitter. If the sliding window begins after the heavy hitter
is reported, then all f;(WW) instances are counted by SmoothCounter. Thus, the count of f;
estimated by SmoothCounter is at least f;(W) > ely(W) > %6[?2(141), and so Step 7 will

output 7.
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On the other hand, the sliding window may begin before the heavy hitter is reported.
Recall that the BPTree algorithm identifies and reports an element when it becomes an
1g-heavy hitter with respect to the estimate of /. Hence, there are at most 2 - %ég (4;) <
%6?2 (A7) instances of an element appearing in the active window before it is reported by
BPTree. Since f;(W) > ela(W) > %6@2(/11)7 any element ¢ whose frequency satisfies f; (W) >
elo(W) must have f;(W) > %gg(Al) and therefore must have at least (3 — 3) ely(Ay) >
%5?2 (A7) instances appearing in the stream after it is reported by BPTree. Thus, the count
of f; estimated by SmoothCounter is at least ielﬁg(Al), and so Step 7 will output . O

Proof of Lemma 14: If i is output by Step 7, then f; > %6@2(141). By the properties of
SmoothCounter and Estimator, f;(W) > % > %G@Q(Al) > 1—1262(W)7 where the last inequality

comes from the fact that fo(W) < %Eg(Al). O

Proof of Theorem 15: By Lemma 13 and Lemma 14, Algorithm 2 outputs all elements
with frequency at least efo(WW) and no elements with frequency less than {5/2(W). We
now proceed to analyze the space complexity of the algorithm. Step 1 uses Algorithm 1
in conjunction with the Estimator routine to maintain a %—approximation to the £-norm

polylogn
rem 10 and observing that 5 = O (1) in Theorem 6 suffices for a %—approximation, it follows
that Step 1 uses O (log n(logn + log mlog? log m)) bits of space. Since Step 3 runs an in-
stance of BPTree for each of the at most O (logn) buckets, then by Theorem 11, it uses
o (%2 (log i) log n(logn + log m)) bits of space.

of the sliding window. By requiring the probability of failure to be O (L> in Theo-

Notice that BPTree returns a list of O (6%) elements, by Theorem 11. By running
SmoothCounter for each of these, Step 7 provides a 2-approximation to the frequency of
each element after being returned by BPTree. By Theorem 12, Step 7 has space complex-
ity (in bits) O (}z(logn+logm) logn). Assuming logm = O (logn), the algorithm uses
@ (}2 log®n (log2 logn + log %)) bits of space. O

Proof of Theorem 3: By Theorem 11, BPTree satisfies the tail guarantee. Therefore
by Lemma 16, it suffices to analyze the space complexity of finding the e?/2-heavy hitters
for £5. By Theorem 15, there exists an algorithm that uses O (}2 log®n (10g2 logn + log %))
bits of space to find the e-heavy hitters for /5. Hence, there exists an algorithm that uses
O (E%, log®n (10g2 logn + log %)) bits of space to find the e-heavy hitters for £,, where 0 <
p<2. o

Proof of Lemma 18: We show the communication complexity of IndexGreater through
a reduction from the Augmentedindex problem. Suppose Alice is given a string S € {0, 1}"™
and Bob is given an index i along with the bits S[1], S[2],...,S[i — 1]. Then Bob’s task in
the Augmentedindex problem is to determine S[i].

Observe that Alice can form the string T' = xi29 - -z, of length mn, where each xy
has n bits of S. Alice can then use the IndexGreater protocol and communicate to Bob a
message that will solve the IndexGreater problem. Let j = L%J so that the symbol S[i]
is a bit inside x;4;. Then Bob constructs the string w by first concatenating the bits
Sljn + 1], S[in+2],...,S[i — 1], which he is given from the Augmentedindex problem. Bob
then appends a zero to w, and pads w with ones at the end, until w reaches n bits:

until w has n bits
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Bob takes the message from Alice and runs the IndexGreater protocol to determine whether
xj > w. Observe that by construction x; > w if and only if S[i] = 1. Thus, if the Index-
Greater protocol succeeds, then Bob will have solved the Augmentedindex problem, which
requires communication complexity Q(nm) bits. Hence, the communication complexity of
IndexGreater follows. a

Proof of Theorem 19: We reduce a one-way communication protocol for IndexGreater
to finding a (1 + €)-approximation to the number of distinct elements in the sliding window
model.

Let n be the length of the sliding window and suppose Alice receives a string S =
T1To...x¢ € {0, 1}4, where £ = é logn and each xj has %logn bits. Bob receives an index
i € [¢] and an integer j € [\/n]. Suppose Alice partitions the sliding window into ¢ blocks,
each of length % = 1?2";1- For each 1 <k < é log n, she further splits block (¢ — k + 1) into
V/n pieces of length (14 2€)*, before padding the remainder of block (¢ — k -+ 1) with zeros.
Moreover, for piece zj of block (£—k+1), Alice inserts the elements {0,1,..., (142€)* —1},
before padding the remainder of block (¢ — k + 1) with zeros. Hence, the sliding window
contains all zeros, with the exception of the elements {0,1,..., (1 + 2¢)* — 1} appearing in
piece xy of block (¢ —k+ 1) for all 1 < k < £ = £ logn. Note that (1 + 2¢)* < ¢/n and
zr < +/n for all k, so all the elements fit within each block, which has length ICG)Z”T’L. Finally,
Alice runs the (1 + €)-approximation distinct elements sliding window algorithm and passes

the state to Bob. See Figure 2 for an example of Alice’s construction.

Given integers i € [¢] and j € [v/n], Bob must determine if z; > j. Thus, Bob is interested
in x;, so he takes the state of the sliding window algorithm, and inserts a number of zeros to
expire each block before block 7. Note that since Alice reversed the stream in her final step,
Bob can do this by inserting (¢—i) (3 log n) number of zeros. Bob then inserts (j —1)(1+2¢)°
additional zeros, to arrive at piece j in block . Since piece x; contains (1 + 2¢)* distinct
elements and the remainder of the stream contains (1 + 2¢)*~! distinct elements, then the

output of the algorithm will decrease below (+20)°

< 1+e€
less than F29° after Bob arrives at piece j, then x; < j. Otherwise, if the output is at

14
(lff:)z, then z; > j. By the communication complexity of IndexGreater (Lemma 18),

this requires space 2 (% log? 77) O

during piece x;. Hence, if the output is

least

Proof of Theorem 22: We reduce a one-way communication protocol for the GapHam-
ming problem to finding a (1 + €)-approximation to the number of distinct elements in
the sliding window model. For each % <i< logT"_l, let j = 2¢ and z; and y; each
have length 27 and (xj,y;) be drawn from a distribution such that with probability %,
HAM (z;,y;) = (1+4€)2/~! and otherwise (with probability 1), HAM (z;,y;) = (1—4e)2/ 1.
Then Alice is given {x;} while Bob is given {y;} and needs to output HAM (z;,y;). For
€ < in, this is precisely the hard distribution in the communication complexity of GapHam-
ming given by [24].

_ 108;% _ logn—1 _ ot 2k—1
Let a = —= and b = =55—. Let war = x2 and let war_1 be a string of length 2 ,

all consisting of zeros. Suppose Alice forms the concatenated string S = wop 0 wop_10-+- 0
Waqt1 © Waq. Note that Zib:% 2% < n, so S has length less than n. Alice then forms a data
stream by the following process. She initializes £k = 1 and continuously increments k& until
k = n. At each step, if S[k] = 0 or k is longer than the length of S, Alice inserts a 0 into the
data stream. Otherwise, if S[k] = 1, then Alice inserts k into the data stream. Meanwhile,
Alice runs the (1 + €)-approximation distinct elements sliding window algorithm and passes

the state of the algorithm to Bob.
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To find HAM (z9;, y2;), Bob first expires (Zib:%H 2k> — 2% elements by inserting zeros
into the data stream. Similar to Alice, Bob initializes £ = 1 and continuously increments k
until k& = 22!, At each step, if y2;[k] = 0 (that is, the k™ bit of y; is zero), then Bob inserts a 0
into the data stream. Otherwise, if y2;[k] = 1, then Bob inserts k into the data stream. At the
end of this procedure, the sliding window contains all zeros, nonzero values corresponding to
the nonzero indices of the string xo;0ws;_10x2;_20- - -0T94420Waq+10T2,, and nonzero values
corresponding to the nonzero indices of y2;. Observe that each w; solely consists of zeros
and Z;C;la 22k < 2%i=1 Therefore, HAM (9;, yo;) is at least (1 — 4€)2%~! while the number
of distinct elements in the sliding window is at most (1 +4€)22* while the number of distinct
elements in the suffix z9; 9o0w9; 3--- is at most (1+€)22*=2. Thus, a (1+ €)-approximation
to the number of distinct elements differentiates between HAM (z2;, y2;) = (1+4€)2%~! and
HAM (:L'Qi,yzi) = (]. — 46)22i_1.

Since the sliding window algorithm succeeds with probability %, then the GapHamming
distance problem succeeds with probability % across the Q(logn) values of i. Therefore, any
(1 + €)-approximation sliding window algorithm for the number of distinct elements that
succeeds with probability é requires {2 (}2 log n) space for € < ﬁ O

Proof of Theorem 4: We reduce a one-way communication protocol for the AugmentedIn-
dex problem to finding the £, heavy hitters in the sliding window model. Let a = # log /0
and b = logn. Suppose Alice receives S = [29]” and Bob receives i € [b] and S[1,i — 1]. Ob-
serve that each S[i] is 57— log v/n bits and so S[i] can be rewritten as S[i] = w; owso. ..owy,
52 and so each w; is log \/n bits.

To recover S|i], Alice and Bob run the following algorithm. First, Alice constructs data
stream A = aj oago...oap, which can be viewed as updates to an underlying frequency
vector in R™. Each aj consists of ¢ updates, adding 2P(b=k) {6 coordinates vy, vs ..., vy of
the frequency vector, where the binary representation of each v; € [n] is the concatenation

where each ¢t =

of the binary representation of j with the log+/n bit string w;. She then runs the sliding
window heavy hitters algorithm and passes the state of the algorithm to Bob.

Bob expires all elements of the stream before a;, runs the sliding window heavy hitters
algorithm on the resulting vector, and then computes the heavy hitters. We claim that
the algorithm will output ¢ heavy hitters and by concatenating the last log/n bits of the
binary representation of each of these heavy hitters, Bob will recover exactly S[i]. Ob-
serve that the £, norm of the underlying vector represented by a; o a;11 0...0ayp is exactly

(55 (1P +2P 447 + .. + 2p<b_i)))1/p < L2b=itl = 19b=i Tet uy, uy. .., u be the coordi-
nates of the frequency vector incremented by Alice as part of a;. Each coordinate u; has

frequency 2°7% > € (12°7%), so that u; is an £,-heavy hitter.

Moreover, the first logt¢ bits of u; encode j € [t] while the next log+/n bits encode w;.
Thus, Bob identifies each heavy hitter and finds the corresponding j € [t] so that he can
concatenate S[i] = wj owg 0 ...0w;. O
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