
Proceedings on Privacy Enhancing Technologies ..; .. (..):1–15

David Chaum, Mario Yaksetig*, Alan T. Sherman, and Joeri de Ruiter

UDM: Private User Discovery
with Minimal Information Disclosure
Abstract: We present and analyze UDM, a new protocol
for user discovery in anonymous communication systems that
minimizes the information disclosed to the system and users.
Unlike existing systems, including those based on private set
intersection, UDM learns nothing about the contact lists and
social graphs of the users, is not vulnerable to off-line dictio-
nary attacks that expose contact lists, does not reveal platform
identifiers to users without the owner’s explicit permission,
and enjoys low computation and communication complexity.

UDM solves the following user-discovery problem. User
Alice wishes to communicate with Bob over an anonymous
communication system, such as cMix or Tor. Initially, each
party knows each other’s public contact identifier (e.g., email
address or phone number), but neither knows the other’s pri-
vate platform identifier in the communication system. If both
parties wish to communicate with each other, UDM enables
them to establish a shared key and learn each other’s private
platform identifier.

UDM uses an untrusted user-discovery system, which
processes and stores only public information, hashed values,
or values encrypted with keys it does not know. Therefore,
UDM cannot learn any information about the social graphs of
its users. Using the anonymous communication system, each
pair of users who wish to communicate with each other up-
loads to the user-discovery system their private platform iden-
tifier, encrypted with their shared key. Indexing their request
by a truncated cryptographic hash of their shared key, each
user can then download each other’s encrypted private plat-
form identifier.

Keywords: anonymous communication systems, cMix, con-
tact discovery, contact lists, social graphs, user discovery, User
Discovery with Minimal information disclosure (UDM).

DOI Editor to enter DOI
Received ..; revised ..; accepted ...

David Chaum: xx.network, USA, E-mail: david@chaum.com
*Corresponding Author: Mario Yaksetig: University of Porto, E-mail:
mario.yaksetig@fe.up.pt
Alan T. Sherman: Cyber Defense Lab, CSEE Department, University
of Maryland, Baltimore County (UMBC), Baltimore, MD 21250 USA,
E-mail: sherman@umbc.edu
Joeri de Ruiter: SIDN Labs, NL, E-mail: joeri.deruiter@sidn.nl

1 Introduction

To protect the confidentiality of messages, some communica-
tion systems—such as Signal [1] and WhatsApp [2]—offer
end-to-end encryption services. End-to-end encryption, how-
ever, does not protect against traffic analysis, in which an ad-
versary monitors observable characteristics of the messages
(e.g., time, size, file type) and who is communicating with
whom. Furthermore, anonymous communications systems—
such as cMix [3] and Tor [4]—protect against traffic anal-
ysis but fail to provide services for private user discovery.
For a user to learn the private platform identifiers of intended
recipients—which are, for example, used when sending and
receiving messages through the anonymous communication
system—most existing messaging systems force users to dis-
close their contact lists to the system. Some systems are vul-
nerable to off-line dictionary attacks that enable the system or
anyone to learn the contact lists or even social graphs of users.
Other systems offer more privacy, but at the cost of high com-
putation and communication complexity.

For example, exhibiting an egregious lack of concern for
user privacy, Telegram [5] facilitates user discovery as follows.
With permission from the user, Telegram uploads the user’s
entire contact list in plaintext and stores it. By contrast, Sig-
nal [1] is one of the most popular communication systems that
purports to provide privacy. Their 2014 user-discovery proto-
col [6], however, has high computation and communication
complexity, due to its use of an RSA-based [7] Bloom fil-
ter [8]. Signal’s 2017 user-discovery protocol [9] uploads the
user’s contact list to the system and requires trust that secure
hardware does not leak information. Silent Circle’s [10] set in-
tersection method is vulnerable to an off-line dictionary attack
that exposes the contact list to the system.

Private user discovery is important to protect contact lists,
social graphs, and who is communicating with whom. Such
data are attractive targets for criminals, and protecting them is
vital to democracy and the way of life many people desire.

Seeking greater privacy for communicants, we present
a new private user-discovery protocol, User Discovery with
Minimal information disclosure (UDM), with low computa-
tion and communication complexity. Invented by Chaum in

Private User Discovery with Minimal Information Disclosure 2

June 2016,1 and first analyzed by Yaksetig [11], and unlike
existing systems, UDM distinguishes between a user’s pub-
lic contact identifier (public ID), such as an email address,
and their private platform identifier (private ID), for exam-
ple, a 128-bit random string. UDM enables a registered user of
a communication system to discover the private ID of some-
one from their public ID, provided this person grants permis-
sion for its disclosure to the user. In our protocol, no one—
including users, external attackers, and the user-discovery
system—can learn the private ID associated with any user’s
public ID, except when authorized by the user associated with
the private ID. In addition, no one can link any two other dis-
tinct registered members, at least one of whom lists the other
in their contact list. UDM works by encrypting and crypto-
graphically hashing in novel ways.

The rest of this paper defines the user-discovery prob-
lem, gives an overview of UDM, reviews and compares user-
discovery systems and approaches, explains our adversarial
model, presents our UDM protocol, comments on its privacy,
describes our prototype implementation, discusses various is-
sues involving UDM, illustrates useful applications of UDM,
and presents our conclusions.

The main contributions of this paper are: (1) a definition
of the user-discovery problem, (2) a new protocol UDM for
solving it, (3) a preliminary analysis of UDM, (4) a compar-
ison of the characteristics of UDM with those of several ex-
isting user-discovery mechanisms, and (5) a discussion of se-
lected applications for private user discovery.

2 Problem Specification

The user-discovery problem can be defined in terms of users
and their contact identifiers, communication channels, inputs,
outputs, usability, and computational, implementation, and
privacy requirements.

There is a universe of users, each of whom has a public
ID (e.g., email address or telephone number) and a means of
communicating with each other over an insecure channel (e.g.,
email), addressing messages using these public IDs. All users
know, or could learn, each other’s public IDs. Each user has a
list of the public IDs of the users they know; we call this list
the user’s contact list. The transitive closure of this list under
the contact relation is the user’s social graph.

A subset of these users are registered members of some
Communication System in which they address messages us-
ing their private IDs (e.g., a random string). We assume this

1 Private correspondence dated June 6, 2016.

communication system provides anonymous communications,
such as those provided by cMix [3] or Tor [4]. Each regis-
tered member has and knows their own private ID. They can
also establish a connection with the communication system’s
User-Discovery System, in which connection the user can au-
thenticate the system.

The user-discovery problem is for a registered user, say
Alice, to learn the private ID of another registered user, say
Bob, identified by their public ID, provided Bob consents to
disclosing his private ID to Alice. In the basic form of the
problem, we assume that Alice and Bob already know each
other in the sense that they list each other’s public ID in their
contact list.

Importantly, there are two privacy requirements:

1. No one—including users, external attackers, and the User-
Discovery System—should learn the private ID associated
with any other user’s public ID, except when authorized
by the user associated with the private ID.

2. No one—including users, external attackers, and the User-
Discovery System—should be able to link any two other
distinct registered members, at least one of whom lists the
other in their contact list. Here, “linking” means finding
for any two users, say Alice and Bob, any contact identi-
fier pair (a, b), where a is the public ID or private ID for
Alice, and b is public ID or private ID for Bob.

Furthermore, we seek solutions that are easy to use, relatively
easy to implement, and have low computation and communi-
cation complexity (transmit a small number of bits).

3 Overview of UDM

In UDM, the User-Discovery System comprises a Public-Key
Manager and Encrypted ID Manager. Suppose that Alice and
Bob are registered with the anonymous communication sys-
tem and with UDM, and that Alice lists Bob’s public ID in
her contact list. Alice wishes to learn the private ID of Bob
for the anonymous communication system. As summarized in
Figure 1, the UDM protocol works in six steps:

0. If Bob does not list Alice’s public ID in his contact list,
or if Bob is not registered with the communication sys-
tem and UDM, then Bob must register with the commu-
nication system and UDM, and Bob must add Alice as
a contact. Alice could prompt Bob to do so through an
out-of-band communication, for example, in person, by
telephone, or through the insecure channel.

Private User Discovery with Minimal Information Disclosure 3

Fig. 1. Summary of the UDM process. For Alice and Bob to learn each other’s private ID, Alice and Bob register with the User-Discovery
System, establish a shared key with each other, and exchange their encrypted private IDs encrypted with the shared key. All communi-
cations take place over an anonymous communication system.

1. Using the anonymous communication system and with
the help of UDM’s User-Discovery System, Alice and
Bob learn each other’s UDM public keys associated with
their public IDs.

2. Without disclosing any secrets to each other, and using
their UDM public keys, Alice and Bob establish a shared
symmetric encryption key. Each does so asynchronously
by performing a calculation on the other’s public key.

3. Alice sends to the User-Discovery System her private ID
encrypted under the shared key, together with a truncated
hash of the shared key. The User-Discovery System stores
the ciphertext in a table indexed by the associated trun-
cated hash value.

4. If Bob does not wish to proceed, he stops. Otherwise, Bob
sends to the User-Discovery System his private ID en-
crypted under the shared key, together with a truncated
hash of the shared key.

5. From the User-Discovery System, and using the truncated
hash, each party can retrieve the other’s encrypted private
ID.

With the help of a UDM app running on each user’s trusted
device, Steps 2-3 happen automatically, provided Alice and
Bob include each other in their contact list.

Throughout this process, the User-Discovery System
never learns anyone’s private ID or shared key. Furthermore,

the system cannot link any two distinct registered members, at
least one of whom lists the other in their contact list.

4 Previous User-Discovery
Systems and Approaches

Existing communication systems perform user discovery in
ways that disclose contact lists and social graphs or reveal
social contacts (links between two users), to users, external
attackers, or the system. Some are vulnerable to off-line dic-
tionary attacks that learn such information, or carry out large
computations or transmit large amounts of data. We briefly
review selected previous user-discovery methods; we discuss
other possible approaches to user discovery; and we compare
these methods and approaches to UDM.

4.1 Previous User-Discovery Systems

Telegram [5] exhibits a disturbing lack of concern for user pri-
vacy. After a user installs the app on their personal mobile
device, with permission from the user, Telegram uploads the
user’s entire contact list and stores it permanently on its server.
Implementing a commonly used “set intersection” strategy,
Telegram also returns those contacts (including their telephone

Private User Discovery with Minimal Information Disclosure 4

numbers) who are registered users. Whenever someone regis-
ters, Telegram notifies each user in the registrant’s contact list
that this friend has joined. Telegram also provides a search ca-
pability to find any user. Favoring functionality and simplicity
over user privacy, Telegram can learn every user’s contact list.

The extremely popular WhatsApp [2] messaging system
also implements a set intersection strategy, which exposes
each user’s contact list to the system. With the user’s permis-
sion, WhatsApp uploads the user’s entire contact list and re-
turns those contacts who are registered users.

WeChat [12] follows a strategy similar to Telegram’s and
WhatsApp’s. Each user can upload their contact list and link it
to their telephone number.

Skype [13] allows users to search the entire database of
users who have not opted out. There is no mechanism to find
users who have opted out. If Alice shared her contact details
with Bob before opting out, Bob could still contact Alice.
Skype also supports a set intersection strategy. A user may cre-
ate a Skype contact list and upload it to learn which contacts
are registered with the system. Curiously, and with some po-
tentially adverse privacy implications, Alice can already send
messages to Bob before Bob accepts Alice as a contact.

Zoom [14] enables any user, say Alice, to add a contact by
submitting their public contact identifier (i.e., email address).
Alice may also connect her Gmail or Facebook account to her
Zoom account and thereby submit all of her contacts to Zoom.
If the submitted user, say Bob, is not registered, then Zoom
sends an email to Bob inviting him to join. If Bob is regis-
tered, then Zoom sends a “friend request” from Alice to Bob,
inviting him to accept the request. The system informs Alice
of Bob’s decision. Even after receiving a rejection, Alice may
repeat the friend request any number of times. Although not
yet implemented, Zoom released specifications for a new way
to detect misbehaving Zoom servers (see Section 7.7).

Keybase [15] permits users to search the database of reg-
istered users, or on mobile clients, to upload their contact list
and learn which of those contacts are registered on the plat-
form. Users may “follow” other users. For any user, say Alice,
anyone may see the users whom Alice follows and the users
who follow Alice.

Signal’s [1] 2014 and 2017 user-discovery protocols pro-
tect user privacy the most in comparison with all existing user-
discovery systems in use. They also represent the most popu-
lar of the systems that try to protect user privacy. Neverthe-
less, each has serious limitations. Using Bloom filters with
RSA signatures, Signal’s 2014 user-discovery protocol fails to
scale to a significant user base. Each user downloads an entire
encrypted Bloom filter containing the server’s RSA signature
for each registered contact in the system. Users upload to the
server a blinded query hiding the value of each telephone num-
ber in their contact list. The Signal server blindly signs [16]

each uploaded value and returns a valid RSA signature on
each. Users receive these signatures, unblind the values, and
perform local queries to check whether or not the contacts are
in the Bloom filter.

For a large user base (e.g., 10 million), Bloom filters are
relatively large (40 MB). Therefore, this strategy does not
scale well: it would require clients to perform a considerable
download frequently on their mobile devices.

Instead of downloading a large Bloom filter, Sig-
nal 2017 [9] allows users to query a secure enclave operated
by Signal in the cloud. This approach relies on trusted hard-
ware and the capability of users to verify that the server is
executing the correct software. However, several attacks (e.g.,
Meltdown [17], Spectre [18], and Foreshadow [19]) threaten
to leak confidential data from the enclave. Regardless, the user
still uploads their contact list in the query stage to allow the
secure enclave to intersect it with its local records and return
which users are registered in the system.

Zimmermann’s Silent Circle [10] introduces a protocol
based on hashing the private platform identifiers (telephone
numbers) before sending them to the server. Each user uploads
a highly truncated (at least four bits) hash value of each plat-
form identifier in their device. The server responds with less
truncated hash values of those uploaded values that correspond
to registered users. The user then compares the less truncated
values with the full hash values. The user assumes that, if these
values match, then the corresponding user is registered, which
introduces a false-positive error rate in detecting membership.
Because telephone numbers are relatively short, an adversary
could precompute the truncated hash value of all possible tele-
phone numbers. In doing so, anyone (including the system)
who learns the transmitted lists of hashed identifiers learns the
user’s contact list and which list members are registered in the
system.

4.2 Other Approaches to User Discovery

Other possible approaches to private user discovery include
methods based on Private Set Intersection (PSI) and Private
Information Retrieval (PIR). When comparing systems, keep
in mind that UDM leverages an anonymous communication
system, which incurs its own setup and communication costs,
whereas most other user-discovery systems do not take advan-
tage of such a communication system.

PIR-PSI [20] (2018) combines PIR and PSI techniques
with two servers that store their data sets in a Cuckoo table [21]
to allow clients to calculate the set intersection. Building on an
existing PIR method [22, 23], this design allows one server to
learn the PIR output, blinded by masks known to the client.
Consequently, the server and the client can perform a stan-

Private User Discovery with Minimal Information Disclosure 5

Table 1. Selected user-discover systems and their characteristics. Many of the systems use some type of “set intersection strategy,” in
which the user uploads their contact list, and the system responds with those contacts on the list who are registered with the system.
Only in UDM is the platform identifier (private ID) different from the public contact identifier (public ID, such as an email address). Rating
codes: ⊕ good, � fair, 	 poor.

System Year Method System Reveals platform Amount of Number of bits
receives identifiers computation transmitted
contact list to users

Skype 2003 transparent search 	 yes 	 yes ⊕ low ⊕ low
and set intersection

WhatsApp 2009 set intersection 	 yes 	 yes ⊕ low ⊕ low

WeChat 2011 set intersection 	 yes 	 yes ⊕ low ⊕ low

Zoom 2011 private search 	 yes 	 yes ⊕ low ⊕ low
and set intersection

Telegram 2013 set intersection 	 yes 	 yes ⊕ low ⊕ low

Signal 2014 RSA-based encrypted ⊕ no � yes (b) 	 high 	 high
Bloom filter

Keybase 2014 transparent search 	 yes 	 yes ⊕ low ⊕ low
and set intersection

Silent Circle 2015 set intersection � yes (a) � yes (b) ⊕ low ⊕ low
with truncated hashes

Signal 2017 user searches database 	 yes 	 yes ⊕ low ⊕ low
in secure enclave in cloud

PIR-PSI 2018 private information retrieval � yes (a) � yes (b) 	 high 	 high
& private set intersection

MPCD 2019 unbalanced private set ⊕ no � yes (b) 	 high 	 high
intersection

UDM 2016 platform identifier ⊕ no ⊕ no ⊕ low ⊕ low
encrypted by shared key

Comments
a Dictionary attack reveals contact lists.
b Dictionary attack reveals platform identifiers.

Private User Discovery with Minimal Information Disclosure 6

dard two-party PSI on masked values. This approach requires
the assumption of multiple non-colluding servers and results
in a relatively high communication complexity. By compari-
son, leveraging an anonymous communication system, UDM
tolerates colluding managers, while still providing low com-
munication complexity.

Mobile Private Contact Discovery at Scale (MPCD) [24]
(2019) optimizes existing off-line/on-line unbalanced PSI
techniques by applying new forms of correlated random obliv-
ious transfer (OT) [25] precomputation, and introducing a
compression method for Cuckoo filters [21] that allows the
protocol to reduce the required network communication. In the
off-line stage, the server performs symmetric cryptographic
operations for every element in the corresponding set. The re-
sult of this phase is a compact Cuckoo filter of the pseudoran-
dom function (PRF) [26] evaluation of all users in the system,
which MPCD sends to the user. At this point, the client and the
server can run an oblivious PRF evaluation protocol, where
one input is the client’s search string, and the other input is
the PRF key the server used in the off-line step. This process
ensures that the client learns only the PRF output value and
that the server learns nothing about the search string. Thus, the
client checks only if a specific entry is present in the server’s
set. The client can then check the received PRF output against
the Cuckoo filter obtained in the setup phase. If the element
is in the Cuckoo filter, then the contact associated with that
search string is a registered user.

MPCD requires a setup phase, in which the server must
perform a large amount of computation to be able to provide
users with the required information for local searches. There-
fore, MPCD incurs a heavy computational cost in comparison
to UDM, which has no setup phase.

4.3 Comparison of User-Discovery
Systems

Table 1 lists and compares the characteristics of several se-
lected systems.

5 System Architecture

We describe the UDM architecture in terms of its components
and roles. As shown in Figure 2, the UDM system involves
registered users and two untrusted managers—a Public-Key
Manager and an Encrypted ID Manager, which compose the
user-discovery system. All communications among these roles
take place via an underlying anonymous communication sys-
tem, such as cMix [3] or Tor [4].

Each registered UDM user U has a private ID IU , which
they use in the anonymous communication system. In addi-
tion, each user U has a public ID JU (e.g., email address, legal
name, pseudonym), which they might use in an available in-
secure communication system (e.g., email). Using the anony-
mous communication system, each user can establish a ses-
sion with either manager, in which the user can authenticate
the manager.

Together, the Public-Key and Encrypted ID Managers im-
plement a user-discovery system. Conceptually, it is conve-
nient to view this system with two separate roles; in practice
one might choose to implement them together or separately.
The Public-Key Manager keeps track of the public key asso-
ciated with each public ID. The Encrypted ID Manager keeps
track of encrypted private IDs, encrypted with shared keys un-
known to the managers.

UserA

UserB

...

UserZ

Anonymous
Communication

System

Public-Key
Manager

Encrypted
ID Manager

User-Discovery System

Fig. 2. UDM Architecture. Users interact with a Public-Key Man-
ager and an Encrypted ID Manager through an anonymous com-
munication system.

6 Adversarial Model

The adversary could be anyone, including users, the Public-
Key Manager, the Encrypted ID Manager, or an external at-
tacker. The adversary’s goals are: (1) to learn the private ID
corresponding to the public ID of any user, and (2) to link any
two users who list each other in their contact list.

Between all communicants in the underlying anonymous
communication system, we assume channels are protected for
authentication, confidentiality, and integrity. Also, inputs and
outputs of this system cannot be linked. The adversary cannot
defeat standard cryptographic functions, including encryption,
hashing, and signatures.

Private User Discovery with Minimal Information Disclosure 7

We assume that users have some way to authenticate
themselves during the UDM registration process to ensure that
their UDM public key is correctly associated with their public
ID. We also assume that users can authenticate the managers.
To detect misbehaving managers and dishonest users who en-
ter incorrect registration information, one option is periodi-
cally for users to verify that the user-discovery system cor-
rectly returns the UDM public key associated with their public
ID. To obtain some assurance that the user is in control of the
given public ID, another option, albeit weak, is for the system
during registration to send a verification message to the user’s
public ID via the insecure channel.

We make no security assumptions about communications
that take place outside of the anonymous communication sys-
tem. In particular, for any such communications that are not
protected, the adversary can eavesdrop, modify, or inject mes-
sages. Furthermore, the adversary can delay or stop messages
and observe the traffic flows. That is, we assume a Dolev-Yao
attacker [27] in the insecure channel.

The managers are untrusted. The managers, however, are
cautious in the sense that they do not wish to be caught en-
gaging in any improper activity. We do not consider denial-
of-service attacks and assume that suitable protections are in
place to mitigate at least flooding attacks.

We assume that the user operates from a trusted device,
perhaps a smartphone. We assume further that a trusted app
running on the trusted device supports the UDM system. The
trusted device holds the user’s keys and contact list.

7 System Design

We explain how UDM works by describing its cryptographic
elements, the two tables maintained by the User-Discovery
System, how users register with the system, how any pair of
users can establish a shared key, how users can upload and re-
trieve encrypted private IDs, how users can check that the un-
trusted managers are acting correctly, and how the UDM app
supports these processes. To protect user privacy, each table
includes only public values, hashed public values, or hashed
or encrypted private values. Figure 3 illustrates the process.

7.1 Cryptographic Elements

UDM uses a symmetric encryption function E and a crypto-
graphic hash function H . The notation E[k, I] denotes the
symmetric encryption of private ID I under key k. The en-
crypted ID manager also uses a truncated hash function Ĥ

(e.g., the first 128 bits of H’s output).

In addition, users engage in an asynchronous key-
establishment process over the anonymous communica-
tion system. Each user U has a UDM public-private key
pair (pU , sU) that is used only in the key-establishment pro-
cess. Only the user knows their UDM private key.

7.2 Public-Key Manager

The Public-Key Manager maintains a table of public keys for
the UDM registered users (Table 2). Known as the “blind di-
rectory,” this table is indexed by a cryptographic hash (finger-
print) of the corresponding public ID.

Table 2. The blind directory of public keys of registered users
stored by the Public-Key Manager, indexed by a hash of the public
ID.

Fingerprint of Public ID Public Key
H(JB) pB

H(JA) pA

H(JC) pC

.

7.3 Encrypted ID Manager

The Encrypted ID Manager stores a table of encrypted private
IDs for pairs of communicants who have established a shared
key (Table 3). In this table, which is known as the “encrypted
address database,” each private ID is encrypted by the cor-
responding shared key. Indexed by a truncated cryptographic
hash Ĥ of the shared key, the second column of the table stores
the encrypted ID of the communicant who first uploaded the
given truncated hash value. The third column, if present, stores
the encrypted ID of the communicant who uploaded the given
truncated hash value second. The truncated hash provides a
way for the two communicants to upload and download their
encrypted private IDs, without the manager learning who they
are.

Table 3. The encrypted address database of encrypted private
IDs stored by the Encrypted ID Manager, encrypted by a shared
key, and indexed by a truncated cryptographic hash of the shared
key. Only the two communicants know their shared key.

Fingerprint of Encrypted First Encrypted Second
Shared Key Uploaded Private ID Uploaded Private ID
tA,B = Ĥ(kA,B) E[kA,B , IA] E[kA,B , IB]
tC,A = Ĥ(kC,A) E[kC,A, IC] E[kC,A, IA]
tA,D = Ĥ(kA,D) E[kA,D, IA] -
.

Private User Discovery with Minimal Information Disclosure 8

Fig. 3. The UDM process. Alice and Bob learn each other’s private ID by interacting with an untrusted Public-Key Manager and an un-
trusted Encrypted ID Manager. Initially, each user registers with UDM. Then, they establish a shared key and exchange their private IDs
encrypted with this shared key. All communications take place over an anonymous communication system. In Steps 4–5, tA,B is a trun-
cated hash of the shared key. H is a cryptographic hash function, and E is symmetric encryption. In this figure, we assume that Alice
uploads her encrypted private ID before Bob uploads his.

7.4 UDM Registration

To register with UDM, Alice generates a UDM public-private
key pair (pA, sA). Using the anonymous communication sys-
tem, Alice establishes a session with the Public-Key Manager,
in which Alice authenticates the manager. Alice sends to the
manager (JA, pA), where JA is her public ID. The manager
enters (H(JA), pA) into the table of public keys. Behold that
the manager does not learn anything about Alice other than
(JA, pA); in particular, the manager does not necessarily learn
Alice’s name or IP address. Alice uses her UDM public key
pA only to establish shared keys with other UDM users, using
a Diffie-Hellman key-exchange [28] process.

Separately, Alice registers with the anonymous communi-
cation system by establishing a private ID IA, which she does
not disclose to UDM. We assume that the only other informa-
tion Alice provides to the anonymous communication system
is her public key for that system, which is needed for setup
and certain functionality in that system, and which is separate
from her UDM public key.

7.5 Establishing a Shared Key

Assume Alice and Bob are registered with the anonymous
communication system and with UDM. Assume also that Al-

ice and Bob know each other in the sense that they list each
other’s public ID in their contact list. Suppose that Alice
wishes to communicate with Bob over the anonymous commu-
nication system. We now describe how they establish a shared
symmetric key kA,B known only to them.

If Bob is not registered with the anonymous communica-
tion system and UDM, then Alice could prompt Bob to register
by sending him an out-of-band message, for example, over the
insecure channel, from JA to JB including her public ID JA.

With the support of the UDM app running on each user’s
trusted device, automatically, the following two steps are car-
ried out between each pair of registered UDM users who know
each other, including Alice and Bob. In particular, if Bob was
not registered, Alice’s app periodically checks with the man-
ager if Bob completed his registration.

First, Alice and Bob learn each other’s UDM public keys
from their public IDs as follows. Using the anonymous com-
munication system, Alice sends the request H(JB) to the
Public-Key Manager. If Bob is registered with UDM, the man-
ager responds by sending Bob’s public key pB to Alice. If Bob
is not registered with UDM, the manager generates, sends, and
remembers a randomly generated public key to Alice. Simi-
larly, Bob learns Alice’s public key from the Public-Key Man-
ager.

Private User Discovery with Minimal Information Disclosure 9

Second, Alice and Bob compute a shared key asyn-
chronously using the other’s UDM public key and their own
UDM private key. For example, using a Diffie-Hellman key
exchange, Alice can compute kA,B = kA = (pB)sA , where
sA is Alice’s UDM private key. Similarly, Bob can compute
kA,B = kB = (pA)sB , where sB is Bob’s UDM private key.
For key exchange based on discrete logarithms, all computa-
tions are performed modulo q for some public prime q. Only
Alice and Bob know their shared key.

7.6 Uploading and Retrieving Encrypted
Private Identifiers

Assume that Alice and Bob have established a shared key
kA,B with each other, which they associate with their public
IDs JA and JB . Supported by a UDM app running on their
trusted devices, Alice and Bob proceed as follows.

First, using the anonymous communication system, say,
Alice sends (tA,B , E[kA,B , IA]) to the Encrypted ID Man-
ager, where IA is Alice’s private ID and tA,B is a truncated
hash of kA,B . If there is no entry in the manager’s table for
tA,B , the manager enters tA,B and E[kA,B , IA] into the first
and second columns of the table, respectively.

Second, if Bob wishes to share his private ID IB with Al-
ice, Bob sends (tA,B , E[kA,B , IB]) to the Encrypted ID Man-
ager. If there is already exactly one entry in the table at row
tA,B , and if this entry is not E[kA,B , IB], the Manager sends
the contents of the second column at row tA,B to Bob. In this
case, the contents of the second column are E[kA,B , IA]. The
Manager enters E[kA,B , IB] into the third column of the table
at row tA,B .

Third, Alice periodically sends (tA,B , E[kA,B , IA]) to
the Encrypted ID Manager to determine if the table at row
tA,B has two entries. If it does, and if the second column has
the value E[kA,B , IA], the Encrypted ID Manager sends the
contents of the third column at row tA,B to Alice. In this case,
the contents of the third column are E[kA,B , IB]. With knowl-
edge of kA,B , Alice and Bob each can decrypt the private ID
of the other.

If Bob happens to start the process before Alice does, then
the protocol proceeds with the roles of Alice and Bob reversed.

7.7 Checking the Managers

Periodically, users can check if the user-discovery system is
operating correctly by interacting with the Managers through
the anonymous communication system and verifying their re-
sponses. For example, anyone who knows the correspondence
(JA, pA)—including Alice—could verify if the Public-Key

Manager correctly returns Alice’s UDM public key pA when
given the request H(JA) of Alice’s public ID. In addition, pe-
riodically any user can request the public key of any other user,
to create dummy requests that hide the user’s potential inter-
est in new recipients. Another way to enhance assurance is to
have multiple independent managers.

Recently, Zoom released specifications [29] for their end-
to-end encryption services, which include a useful idea for
their server to commit cryptographically to the (public ID,
public key)-pairs it provides by cryptographically signing each
pair. This technique could be easily added to UDM to facili-
tate checking the correct operation of the UDM Public-Key
Manager.

7.8 UDM App

A trusted UDM app [30] running on the user’s trusted device
supports the UDM Protocol. In particular, the app allows users
to register in the UDM service and requests the user’s per-
mission for the app to access the contact list locally. This list
is not uploaded directly to the User Discovery System. Over
the anonymous communication system, the app separately per-
forms individual contact queries and establishes a shared key
with each registered user on this contact list.

8 Privacy Notes

We briefly and informally discuss the privacy properties of
UDM (see privacy requirements in Section 2), considering in-
formation learned by the untrusted user-discovery system and
possible attacks on the protocol. Such information includes in-
formation stored by the system, information that can be in-
ferred from the history of messages sent to the system, and
information observed from communications over the insecure
channel. See also open problems in Section 10.

Information Stored by User-Discovery System. Because the
Public-Key Manager and Encrypted ID Manager are untrusted,
these managers can collude with each other and exfiltrate any
information they possess. However, because they are cautious,
they must operate correctly, at least for any functionality that
can be checked (with non-negligible probability) by users. Be-
cause any communication between any user and manager takes
place over the anonymous communication system, the man-
ager does not know with whom they are communicating.

The Public-Key Manager maintains a table that asso-
ciates, for each registered user U of UDM, the hash H(JU)
of their public ID with their UDM public key pU . The man-
ager also learns the public ID JU . Thus, the manager learns

Private User Discovery with Minimal Information Disclosure 10

who is registered with UDM (in terms of the associated public
IDs). All of this information is public.

Whenever the Public-Key Manager is asked for the UDM
public key corresponding to the public ID of an unregistered
person, the manager returns a randomly generated public key
(not belonging to any user). Although we consider member-
ship in UDM public information, returning a random public
key makes it harder for users to determine UDM membership,
without the help of the untrusted manager. To accomplish this
goal, it is important that UDM remember the randomly gen-
erated value; otherwise, receiving two different public keys
in subsequent queries would reveal non-membership. Never-
theless, an observer could detect a difference in the responses
from the Public-Key Manager between those given before and
after a user registers. Also, care should be taken not to reveal
through differences in the timing of responses whether or not
a random key was selected.

Similarly, indexing the public keys by the hash of the cor-
responding public ID, complicates membership determination
for anyone who gains access to the table, without the help of
the untrusted manager (see Section 10).

The Encrypted ID Manager maintains a three-column ta-
ble in which, for each row, the first column holds a truncated
hash tA,B = Ĥ(kA,B) of a shared key known by some regis-
tered users A and B. The remaining two columns of this row,
respectively, hold the encrypted private IDs E[kA,B , IA] and
E[kA,B , IB] of these two users, ordered by who first contacted
the Encrypted ID Manager. Because we assume H and E are
perfectly secure, these data are indistinguishable from random
bits. UDM maintains the two stated privacy requirements, even
if the adversary gains access to the tables.

Information Derived from Communication History. Al-
though the user-discovery system does not know with whom
it is communicating, during registration, the Public-Key Man-
ager learns the public ID of each registrant. Moreover, it might
be able to infer some information based on the pattern and
timing of messages, at least for some situations. The untrusted
managers can record their entire communication history and
exfiltrate this information. Because all communications take
place over the anonymous communication system, external at-
tackers can not observe such patterns.

For example, suppose Alice and Bob are registered with
UDM, and Alice adds Bob to her contact list. Suppose also
that Bob wishes to communicate with Alice. In relative close
proximity in time, Alice and Bob will contact the Public-Key
Manager. Pairs of users who match this usage pattern are more
likely to be contacts with each other than are arbitrary pairs
of users. We assume that the volume of such requests is suf-
ficiently high that no useful inferences can be made. To avoid
creating a detectable pattern, when the app initiates requests

concerning members of the user’s contact list, the app should
make those requests in random order and spread out the re-
quests over moderate time periods.

The situation is slightly worse if one or both of the com-
municants is not yet registered with UDM. In this case, one of
both of the parties will first register with UDM, and then both
parties will communicate with the Public-Key Manager.

An additional leakage of information can be observed if
one of the parties, say Alice, prompts the other, say Bob, to
register over the insecure channel. Anyone observing this com-
munication can infer that Alice probably wishes to communi-
cate with Bob. The managers might be able to strengthen such
inference if then, in relatively close proximity in time, Bob
registers with UDM, and Alice and Bob contact the Public-
Key Manager. For this reason, privacy is best maintained if the
parties never use the insecure channel.

One possible mitigation for these leaks of information
might be for users (via their app) to generate additionalre-
quests to the user-discovery system to obtain public keys for
randomly selected users.

Man-in-the-Middle During Key Establishment. It is impor-
tant that users check that the Public-Key Manager operates
correctly, returning the correct public keys corresponding to
the given public IDs. Similarly, any pair of users who were
able to verify their shared key and private platform IDs, could
additionally check the correct behavior of the Encrypted ID
Manager. Without checking the Public-Key Manager, the fol-
lowing Man-in-the-Middle (MitM) attack by the user discov-
ery system would be possible.

For any pair of users—say, Alice and Bob—whom the
system would like to attack, the system mounts a classic MitM
attack. Instead of giving pB to anyone who requests Bob’s
public key, the system returns a key pβ of its creation. Sim-
ilarly, to anyone who requests Alice’s public key, the system
returns a key pα of its creation. Because the system does not
know with whom it is communicating, it does not know when
Alice and Bob are making requests. In the resulting actions,
Alice establishes a shared key kA,S with the system (falsely
thinking the key is shared with Bob), and Bob establishes a
shared key kS,B with the system (falsely thinking the key is
shared with Alice). To avoid exposing its malicious activity,
the system maintains a six-column table of encrypted IDs, with
separate columns for Alice’s and Bob’s points of view. Varia-
tions of this attack are also possible. For example, instead of
providing, say, Alice’s UDM public key, the system provides
the public key of some other user.

A consequence of this attack is that the system learns the
shared keys kA,S and kS,B , and therefore Alice’s and Bob’s
private IDs. In addition, the malicious system can store incor-
rect private IDs in the table (e.g., ones that it controls).

Private User Discovery with Minimal Information Disclosure 11

In addition to checking the correct operation of the Public-
Key Manager, a possible second mitigation of this attack is
for Alice and Bob to verify their shared key, as is commonly
done at the end of key-establishment protocols. If Alice and
Bob met in person, each could scan the other’s QR code of
their shared key. Such verification cannot be performed se-
curely through the anonymous communication system until
Alice and Bob have authenticated each other’s private IDs.
Furthermore, our assumptions presuppose only one additional
channel, which is insecure. If Alice and Bob attempt to ver-
ify their shared key over the insecure channel, they risk intru-
sion of the malicious managers in the middle of that channel,
foiling their verification protocol. All communication systems
face this challenge of detecting MitM, which stems from the
difficulty of authenticating users as they register into the sys-
tem.

9 Implementation

We implemented a prototype of UDM for the cMix system in
the Elixxir platform (see Section 11) supporting over 1, 000
active users. Written in Golang running on a simple Ama-
zon Web Services (AWS) instance with 1 CPU core and
2GB RAM, the prototype has an available bandwidth of 125
Mbits/s. For symmetric encryption we use AES-GCM [31];
for hashing we use Blake2 [32]; and for key establishment we
use Diffie-Hellman with a 2048-bit group, as defined in [33].
To truncate any hash value, we take the first 128 bits.

We have not yet implemented a memory-intensive hash
function (see Section 10), pending a study of tradeoffs between
the running time on the trusted device to process discovery
requests and increased work required by an off-line adversary
to learn what users are registered.

Our simple and modular implementation runs well on
light-weight machines. By contrast, PIR-PSI [20] runs on a
single benchmark machine with 2x 18-core Intel Xeon E5-
2699 2.30 GHz CPU and 256 GB RAM, and MPCD [24]
runs on a server equipped with an Intel Core i7-4600U 2.6
GHz CPU and 16GB of RAM. Each of these approaches sim-
ulates a setting where a user with a contact list of length
Nc ∈ {1, 28, 210} performs a lookup against a server with
a user population of Ns ∈ {220, 224, 226, 228}.

For implementation simplicity, the Public-Key Manager
and Encrypted ID Manager run on the same AWS instance and
share a PostgreSQL database comprising two tables. Each en-
try in the encrypted address database includes a Time-To-Live
field set to two weeks. This mechanism helps prevent filling
the database with older data entries; the anonymous commu-
nication system provides the primary defense against flooding

attacks. The implementation works as expected and is limited
mostly by the speed of the anonymous communication net-
work. The current implementation can handle Nc = 210 with
Ns = 220.

Automatically, with support of the UDM app, each user
establishes a shared key with every other UDM user she knows
(whose public ID appears on her contact list). UDM carries
out this key establishment individually, one user pair at a time.
Each new user first registers with UDM. The app periodically
checks for newly registered members.

10 Discussion

We briefly discuss selected issues, including major design
decisions, registration design, authenticating users, encrypted
database design, and open problems.

Major Design Decisions. In pursuit of our goal to effect user
discovery with minimal disclosure to the system and other
users, our major design decisions were: (1) to leverage the ca-
pabilities of the underlying anonymous communication sys-
tem, (2) to separate the public ID from the private ID, and
(3) to establish a shared key between each pair of communi-
cants, and to use this key to hide the communicants’ relation-
ship with each other from UDM.

The main difficult cryptographic work is for pairs of com-
municants to establish shared keys. Thus, at some additional
complexity, UDM provides greater contact privacy to its users.
Our UDM implementation hides much of this additional com-
plexity from the user through an app running on the user’s de-
vice.

UDM is intended for use with an anonymous communi-
cation system. There would be limited value in using UDM on
a non-anonymous system, which exposes all traffic flows.

Registration Design. To register with UDM, a user U sends
the Public-Key Manager (JU , pU), where JU is U ’s public ID,
and pU is U ’s UDM public key. An alternative design choice
would have been instead to send (H(JU), pU). A disadvan-
tage of this alternative is that anyone could register as some-
one else. With our choice, the Public-Key Manager can verify
that the registrant has control of their JU , assuming some au-
thentication mechanism were available.

A consequence of our design choice is that the Public-
Key Manager learns for each registered user U in UDM their
(JU , pU) pair. Because the Manager is untrusted, the Manager
can exfiltrate the entire list of registered members and their
(JU , pU) pairs. Although we consider this information public,
we prefer not to facilitate its dissemination.

Private User Discovery with Minimal Information Disclosure 12

Even without a malicious Manager, for anyone who gains
access to the blind directory of UDM public keys, an off-line
attack on the public IDs reveals the (JU , pU) pairs, assum-
ing the universe of public IDs is known and tractable (e.g.,
all telephone numbers). Using a memory-intensive hash func-
tion [34–37] would mitigate this off-line attack.

Authenticating Users. The difficulties discussed involving
registration design and MitM attacks during key establishment
stem largely from a fundamental challenge faced by all com-
munication systems: how to authenticate users, including dur-
ing registration with the system? Some suitable assumptions
are necessary to solve this challenge. For a discussion of tech-
niques for doing so with minimal assumptions, see Sherman et
al. [38].

Encrypted Address Database Design. Assuming a secure
hash function, our design of the encrypted address database
(Section 7.3) associates on each line the encrypted private ID
with a tag that is the truncated hash of the shared key used to
encrypt the private ID. A limitation of this design is that, if the
adversary could mount a preimage attack (possibly off-line)
of the hash function, then the adversary could decrypt the pri-
vate ID. Also, it is wise practice not to re-use key material for
different algorithms.

A more cautious design can unlink the encryption key
k∗ used to encrypt the private ID from the tag t as follows:
compute t||k∗ = f(k), where k is the shared key; f is a
cryptographically-secure pseudorandom key-derivation func-
tion [39]; and || denotes concatenation. This construction also
mitigates the potential danger that the key-exchange process
might not generate uniformly distributed key values.

Open Problems. Open problems include:

1. Formally state and prove the privacy properties of UDM.
2. Design a decentralized version of UDM by replacing the

centralized user-discovery system with a multi-party com-
putation [40, 41].

3. Expand the capability of UDM to handle groups of users
and group communications.

4. Incorporate a Diffie-Hellman key-exchange mechanism
that provides forward secrecy so that compromise of a
user’s UDM private key will not compromise the private
IDs of other users who previously established a shared key
with the user [42, 43].

5. Design a variation of UDM that uses ephemeral private
IDs that change with every connection. For example, the
shared key could act as a seed for cryptographically-
secure pseudorandom number generator. This variation
would limit loss caused by disclosure of a private ID.

11 Selected Applications of
UDM

To illustrate some of the many potential useful capabilities
made possible by private user discovery, we describe three se-
lected applications of UDM: thwarting spam, remailers, and
in-person private user discovery. We do so in the context of
how we integrated our UDM implementation with cMix in the
Elixxir platform [44].

The cMix system, as implemented by Elixxir, allows
senders to publish a pair of values in an output batch—while
hiding which specific one of many senders provided the cor-
responding pair of values to the input batch. One value of the
pair, called the “payload,” is an encrypted message of a stan-
dard size. The other value of the pair is called the “address.”
The basic idea, at a high level, is that the recipient’s smart-
phone looks for its addresses in published output batches and
decrypts the paired payloads to recover the messages sent to
it. The implementation, for greater efficiency, carries out this
high-level idea with multiple gateways from which a client can
request messages sent to a given address. Building on cMix,
Elixxir provides a variety of services with strong privacy prop-
erties.

Thwarting Spam. Private user discovery with a large address
space of private IDs can help prevent and deal with spam.
Nobody can spam users by simply guessing valid addresses,
and there is no public list of valid addresses. Each address in
Elixxir is 256 bits long. They are generated by a cryptographic
hash function, and therefore appear random and without struc-
ture. One of several advantages, of this admittedly huge ad-
dress space, is that addresses are in some sense unlisted. Be-
sides the inconvenience, spam can also in extreme cases under-
mine privacy of recipients: for example, downloading a huge
amount of spam might be detectable.

Remailers. Private user discovery combined with “remailers”
can effect powerful functionality to enhance privacy. For ex-
ample, remailers can forward messages and hide forwarding
addresses from untrusted users, and their actions can be updat-
able and based on conditional logic. Their utility is enhanced
by the fact that UDM allows users to change their private IDs
and to create a different private ID for use with each contact.

Rather than supplying, say, Charlie’s main address (pri-
vate ID) to UDM, Charlie’s smartphone could instead supply
the addresses of a remailer. A remailer is a small independent
service that watches for messages sent to certain addresses that
its customer has supplied to it. If it finds a message sent to
one of these addresses, in the simplest case, then it just en-
crypts the payload using the key that customer supplied and

Private User Discovery with Minimal Information Disclosure 13

then sends the result over cMix to the forward-to address that
the customer also supplied. When the recipient’s smartphone
finds messages at one of the forward-to addresses it has set
up with remailers, it can decrypt the payloads with the keys
shared with the remailer before decrypting with the keys from
UDM.

Example use cases illustrating the system can be divided
roughly into two broad expected types: the first type is where
parties know that there is or will be an ongoing trusted re-
lationship. The second type is exemplified by brief chance
meetings, where potentially either person may wish to be con-
tactable and/or potentially to be able to contact. For the on-
going trusted type, smartphones may simply exchange their
main addresses and keying. Examples of this trusted type in-
clude such scenarios as two or more friends meeting in person
or enrolling with a medical or professional services office.

The second type of use case is typically where, say, two
people, who did not previously know each other, have met un-
predictably by chance—potentially, either person may wish to
be contactable or be able to make contact later, but with some
restrictions enforced at least initially. For instance, one person
may: know the whereabouts of an item left accidentally by
the other person, remember how or where they had previously
seen or known the other person, or a related person, recall the
answer to a question or have a helpful suggestion or a question
such as about sourcing a fashion item, or have later seen that
person from afar with a mutual friend or on some media.

One power of a remailer is that it can decide whether or
not to forward, thereby providing a sophisticated filtering ser-
vice. It can, for instance, be used to set up one-time-use ad-
dresses. Doing so lets anyone contact the user once, with a
single message, but that is the only message that will be for-
warded through that one-time-use address (subsequent mes-
sages will be dropped). Further exchange of messages would
typically be through the user’s main address, which the user’s
phone could automatically supply if the user replies.

Another power of a remailer is that it can hide the main ad-
dress from those who may not yet be trusted with it, including
for entities who have ongoing communications with the user,
reducing the risk of spam. Yet another power is that a remailer
can be updatable and conditional. For example, a remailer can
allow someone to contact the user only if they present it with
a digital signature certifying some condition. In our era of
contract-tracing for exposure to the COVID-19 virus, it would
be useful to set the condition to be that the sender has been
diagnosed with a certain disease (the user could even change
the list of diseases later).

Most or all of the functionality of a remailer could be im-
plemented within UDM, especially considering the option of
frequently changing private IDs. It is convenient, however, to
organize this functionality in remailers external to UDM.

There can be a permissive remailer without filtering
whose address is directly linked to a particular legacy address,
such as an old email address of the user. For example, the user
might allow anyone with the user’s old phone number a chance
to reach the user, perhaps only once, by virtue of their system
enrollment or perhaps just by answering so-called “captchas.”

Someone, perhaps if their smartphone were compromised,
who is trusted with a user’s main address, might unwittingly
allow a massive spam attack on that user, perhaps aimed at re-
vealing the user’s identity. The target recipient could stop this
attack and recover by publicly announcing, through a cMix
message, what might be called a “change of address.” Such
an announcement would be authenticated by the preimage of
the current address under the one-way function used to form it.
The announcement would not include a new address, but rather
would alert anyone using the old address to go through user
discovery. The user might maintain the previous main address
as a legacy address. All traffic could initially be sent through
remailers before the user shares a new main address.

A centralized service could hypothetically provide all the
user discovery and remailing, but a distributed solution is
preferable and has several advantages. UDM’s blind directory
and encrypted address database could each be provided sep-
arately and even by multiple independent entities. One way
to structure this architecture, so as not to require multiple in-
quiries, would be to divide the services by legacy identifier
types, or ranges, of fingerprint values. Some redundancy of
these services, however, can be advantageous in terms of re-
liability and verifiability of correctness. Unlike user-discovery
services, remailer services can be provided independently by
many parties and can be strung together in chains or even
graphs, with some information even split between remailers.
Some power users might, for example, have permissive remail-
ers for a few legacy addresses and different remailer chains for
public keys for which they desire restricted access.

In-Person Private User Discovery. We describe a variation
of UDM that can be used when two people, possibly strangers,
meet in close physical proximity, each carrying a trusted de-
vice. In this scenario, public IDs are not needed because the
physical proximity plays the role of public IDs. Each trusted
device broadcasts a randomly chosen ephemeral public key,
used only for this one encounter. The broadcast might happen
over Bluetooth. The two people then establish a shared key
using a Diffie-Hellman key exchange.

To protect against MitM, taking advantage of their phys-
ical proximity, the parties then verify their key using one of
the following optical or aural options. (1) Each party’s device
scans a QR code of the other’s shared key and compares it with
their key. (2) Using a truncated hash of the key, each party
selects a piece of music from a standard list of recognizable

Private User Discovery with Minimal Information Disclosure 14

tunes. The trusted devices then play the music simultaneously,
strictly alternating which device plays each beat. The device
with the larger public key starts. Each person verifies that the
music sounds correct. If the music sounds correct, the parties
have high assurance that their keys match.

At this point, there are two variations. (1) Encrypting their
messages with the shared key, the parties can directly ex-
change IDs. (2) The parties can engage in the UDM protocol,
starting at the step after establishing a shared key. In either
variation, the ID could be the ID of a remailer. By using re-
mailers, the parties could limit the privacy risk created by this
encounter, for example, by allowing for only one subsequent
communication and only under certain conditions.

12 Conclusion

We propose a new user-discovery protocol, UMD, for anony-
mous communication systems that minimally discloses infor-
mation to the system, external attackers, and other users. With
Bob’s permission, any user Alice can discover Bob’s private
platform identifier without disclosing it to the system, even
under an off-line dictionary attack. Furthermore, UDM does
not reveal to Alice any other private platform identifier, or any
links between two other users, and UDM enjoys low compu-
tation and communication complexity. Existing user-discover
systems, such as those for Telegram, Signal, and Skype do not
achieve these objectives.

An increasing number of communication systems are pro-
viding confidentiality, integrity, and authentication services. A
few systems also protect meta-data of traffic flows. For any
communication system to be useful, it must provide a mecha-
nism through which users can discover the platform identifiers
of intended recipients. We should expect more and demand
that any communication and user-discovery system work with
minimal information disclosure, protecting not only message
contents and traffic flows, but also the contact lists and social
graphs of its users.

We hope that our protocol will provide a useful tool, and
set a new higher level of privacy and performance expecta-
tions, for all communication systems.

Acknowledgments

We thank Akshita Gorti for helpful comments and drawing
Figures 1 and 3. Yaksetig was supported in part by the MO-
BILE+ project, coordinated by the University of Porto, with
support from the European Commission through a fellow-
ship, during which he visited UMBC for the spring 2017

semester. Sherman was supported in part by the National Sci-
ence Foundation under SFS grants DGE-1241576, 1753681,
and 1819521, and by the U.S. Department of Defense un-
der CySP grants H98230-17-1-0387, H98230-18-1-0321, and
H98230-19-1-0308.

References

[1] Signal. https://signal.org, 2013.
[2] WhatsApp. https://whatsapp.com, 2009.
[3] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate,

Anna Krasnova, Joeri de Ruiter, and Alan T. Sherman. cMix:
Mixing with minimal real-time asymmetric cryptographic op-
erations. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki
Kikuchi, editors, Applied Cryptography and Network Secu-
rity - 15th International Conference, ACNS 2017, Kanazawa,
Japan, July 10-12, 2017, Proceedings, volume 10355 of Lec-
ture Notes in Computer Science, pages 557–578. Springer,
2017.

[4] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. In Proceedings
of the 13th Conference on USENIX Security Symposium
- Volume 13, SSYM’04, pages 21–21, Berkeley, CA, USA,
2004. USENIX Association.

[5] Telegram. https://telegram.org, 2013.
[6] Moxie Marlinspike. The Difficulty of Private Contact Discov-

ery. https://whispersystems.org/blog/contact-discovery, 2014.
[7] R. L. Rivest, A. Shamir, and L. Adleman. A method for

obtaining digital signatures and public-key cryptosystems.
Commun. ACM, 21(2):120–126, February 1978.

[8] Burton H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7):422–426, July 1970.

[9] Moxie Marlinspike. Technology preview: Private contact
discovery for Signal. https://signal.org/blog/private-contact-
discovery, 2017.

[10] Phil Zimmermann. A privacy-preserving contact discovery
server. https://github.com/SilentCircle/contact-discovery,
2015.

[11] Mario Yaksetig. Implementation and analysis of privategrity
user discovery: Learning contact identifiers with minimal
information disclosure. Master’s thesis, Faculdade de Engen-
haria, Universidade do Porto, Porto, Portugal, July 2017.

[12] WeChat - Free Messaging and calling app. https://wechat.
com, 2011.

[13] Skype | Communication tool for free calls and chat. https:
//skype.com, 2009.

[14] Zoom. https://zoom.us, 2011.
[15] Keybase. https://keybase.io, 2014.
[16] David Chaum. Blind signatures for untraceable payments.

In David Chaum, Ronald L. Rivest, and Alan T. Sherman,
editors, Advances in Cryptology, pages 199–203, Boston,
MA, 1983. Springer US.

[17] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Stefan Mangard, Paul Kocher,
Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown.
CoRR, abs/1801.01207, 2018.

https://signal.org
https://whatsapp.com
https://telegram.org
https://whispersystems.org/blog/contact-discovery
https://signal.org/blog/private-contact-discovery
https://signal.org/blog/private-contact-discovery
https://github.com/SilentCircle/contact-discovery
https://wechat.com
https://wechat.com
https://skype.com
https://skype.com
https://zoom.us
https://keybase.io

Private User Discovery with Minimal Information Disclosure 15

[18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spec-
tre attacks: Exploiting speculative execution. CoRR,
abs/1801.01203, 2018.

[19] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin,
Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F.
Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Ex-
tracting the keys to the intel sgx kingdom with transient out-
of-order execution. In Proceedings of the 27th USENIX Con-
ference on Security Symposium, SEC’18, page 991–1008,
USA, 2018. USENIX Association.

[20] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu.
PIR-PSI: Scaling private contact discovery. Proceedings on
Privacy Enhancing Technologies, 2018(4):159 – 178, 2018.

[21] Bin Fan, Dave G. Andersen, Michael Kaminsky, and
Michael D. Mitzenmacher. Cuckoo filter: Practically better
than bloom. In Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and Tech-
nologies, CoNEXT ’14, page 75–88, New York, NY, USA,
2014. Association for Computing Machinery.

[22] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015, pages 337–
367, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[23] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing: Improvements and extensions. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, page 1292–1303, New
York, NY, USA, 2016. Association for Computing Machinery.

[24] Danie Kales, Christian Rechberger, Thomas Schneider,
Matthias Senker, and Christian Weinert. Mobile private
contact discovery at scale. In Proceedings of the 28th
USENIX Conference on Security Symposium, SEC’19, page
1447–1464, USA, 2019. USENIX Association.

[25] Michael O. Rabin. How to exchange secrets with oblivious
transfer. Technical Report TR-81, 1981, 1981.

[26] Moni Naor and Omer Reingold. Number-theoretic construc-
tions of efficient pseudo-random functions. J. ACM, 51(2):
231–262, March 2004.

[27] D. Dolev and A. C. Yao. On the Security of Public Key Pro-
tocols. In Proceedings of the 22nd Annual Symposium on
Foundations of Computer Science, SFCS ’81, pages 350–
357, Washington, DC, USA, 1981. IEEE Computer Society.

[28] Whitfield Diffie and Martin Hellman. New directions in cryp-
tography. IEEE transactions on Information Theory, 22(6):
644–654, 1976.

[29] Josh Blum, Simon Booth, Oded Gal, Maxwell Krohn, Karan
Lyons, Antonio Marcedone, Mike Maxim, Merry Ember Mou,
Jack O’Connor, Miles Steele, Matthew Green, Lea Kissner,
and Alex Stamos. E2E Encryption for Zoom Meetings. https:
//github.com/zoom/zoom-e2e-whitepaper/blob/master/zoom_
e2e.pdf, 2020.

[30] xx network. xx messenger app. https://elixxir.io/xx-
messenger, 2019.

[31] David Mcgrew and John Viega. The Galois/counter mode of
operation (GCM). 02 2004.

[32] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-
O’Hearn, and Christian Winnerlein. BLAKE2: simpler,
smaller, fast as MD5. https://blake2.net/blake2.pdf, 2013.

[33] T. Kivinen and M. Kojo. More Modular Exponential (MODP)
Diffie-Hellman groups for Internet Key Exchange (IKE). https:
//tools.ietf.org/html/rfc3526, 2003.

[34] A. Biryukov, D. Dinu, and D. Khovratovich. Argon2: New
generation of memory-hard functions for password hashing
and other applications. In 2016 IEEE European Symposium
on Security and Privacy (EuroS P), pages 292–302, 2016.

[35] Niels Provos and David Mazières. A future-adaptable pass-
word scheme. In USENIX Annual Technical Conference,
FREENIX Track, 1999. URL http://www.usenix.org/events/
usenix99/provos.html.

[36] C. Percival and S. Josefsson. The scrypt Password-Based
Key Derivation Function. https://tools.ietf.org/html/rfc7914,
2016.

[37] Burt Kaliski. PKCS #5: Password-Based Cryptography
Specification Version 2.0. https://tools.ietf.org/html/rfc2898#
section-5.2, 2000.

[38] Alan T. Sherman, John Seymour, Akshayraj Kore, and
William Newton. Chaum’s protocol for detecting man-in-
the-middle: Explanation, demonstration, and timing studies
for a text-messaging scenario. Cryptologia, 41(1):29–54,
February 2017.

[39] H. Krawczyk and P. Eronen. MAC-based extract-and-expand
key derivation function (HKDF). Internet Engineering Task
Force (IETF), Request for Comments: 5869, May 2010.
https://tools.ietf.org/html/rfc5869.

[40] David Chaum, Ivan B. Damgård, and Jeroen van de Graaf.
Multiparty computations ensuring privacy of each party’s
input and correctness of the result. In Carl Pomerance,
editor, Advances in Cryptology — CRYPTO ’87, pages 87–
119, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.
ISBN 978-3-540-48184-3.

[41] David Chaum. The spymasters double-agent problem: Mul-
tiparty computations secure unconditionally from minorities
and cryptographically from majorities. In Proceedings on
Advances in Cryptology, CRYPTO ’89, page 591–602, Berlin,
Heidelberg, 1989. Springer-Verlag.

[42] Christoph G. Günther. An identity-based key-exchange
protocol. In Jean-Jacques Quisquater and Joos Vandewalle,
editors, Advances in Cryptology — EUROCRYPT ’89, pages
29–37, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.

[43] Trevor Perrin and Moxie Marlinspike. The Double Ratchet Al-
gorithm. https://signal.org/docs/specifications/doubleratchet/
doubleratchet.pdf, 2016.

[44] David Chaum. Elixxir. https://elixxir.io, 2018.

Submitted to PETS 2021 (May 29, 2020).

https://github.com/zoom/zoom-e2e-whitepaper/blob/master/zoom_e2e.pdf
https://github.com/zoom/zoom-e2e-whitepaper/blob/master/zoom_e2e.pdf
https://github.com/zoom/zoom-e2e-whitepaper/blob/master/zoom_e2e.pdf
https://elixxir.io/xx-messenger
https://elixxir.io/xx-messenger
https://blake2.net/blake2.pdf
https://tools.ietf.org/html/rfc3526
https://tools.ietf.org/html/rfc3526
http://www.usenix.org/events/usenix99/provos.html
http://www.usenix.org/events/usenix99/provos.html
https://tools.ietf.org/html/rfc7914
https://tools.ietf.org/html/rfc2898#section-5.2
https://tools.ietf.org/html/rfc2898#section-5.2
https://tools.ietf.org/html/rfc5869
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://elixxir.io

	UDM: Private User Discoverywith Minimal Information Disclosure
	1 Introduction
	2 Problem Specification
	3 Overview of UDM
	4 Previous User-Discovery Systems and Approaches
	4.1 Previous User-Discovery Systems
	4.2 Other Approaches to User Discovery
	4.3 Comparison of User-Discovery Systems

	5 System Architecture
	6 Adversarial Model
	7 System Design
	7.1 Cryptographic Elements
	7.2 Public-Key Manager
	7.3 Encrypted ID Manager
	7.4 UDM Registration
	7.5 Establishing a Shared Key
	7.6 Uploading and Retrieving Encrypted Private Identifiers
	7.7 Checking the Managers
	7.8 UDM App

	8 Privacy Notes
	9 Implementation
	10 Discussion
	11 Selected Applications of UDM
	12 Conclusion

