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Abstract
Natural language programming is a promising approach to
enable end users to instruct new tasks for intelligent agents.
However, our formative study found that end users would
often use unclear, ambiguous or vague concepts when nat-
urally instructing tasks in natural language, especially when
specifying conditionals. Existing systems have limited sup-
port for letting the user teach agents new concepts or explain-
ing unclear concepts. In this paper, we describe a new multi-
modal domain-independent approach that combines natural
language programming and programming-by-demonstration
to allow users to first naturally describe tasks and associated
conditions at a high level, and then collaborate with the agent
to recursively resolve any ambiguities or vagueness through
conversations and demonstrations. Users can also define new
procedures and concepts by demonstrating and referring to
contents within GUIs of existing mobile apps. We demon-
strate this approach in PUMICE, an end-user programmable
agent that implements this approach. A lab study with 10
users showed its usability.

Introduction
The goal of end user development (EUD) is to empower
users with little or no programming expertise to pro-
gram (Paterno and Wulf 2017). Among many EUD appli-
cations, a particularly useful one would be task automation,
through which users program intelligent agents to perform
tasks on their behalf (Maes 1994). To support such EUD
activities, a major challenge is to help non-programmers to
specify conditional structures in programs. Many common
tasks involve conditional structures, yet they are difficult for
non-programmers to correctly specify using existing EUD
techniques due to the great distance between how end users
think about the conditional structures, and how they are rep-
resented in programming languages (Pane, Myers, and oth-
ers 2001).

According to Green and Petre’s cognitive dimensions of
notations (Green and Petre 1996), the closer the program-
ming world is to the problem world, the easier the problem-
solving ought to be. This closeness of mapping is usually
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low in conventional and EUD programming languages, as
they require users to think about their tasks very differ-
ently from how they would think about them in familiar
contexts (Pane, Myers, and others 2001), making program-
ming particularly difficult for end users who are not famil-
iar with programming languages and “computational think-
ing” (Wing 2006). To address this issue, the concept of nat-
ural programming (Myers et al. 2017; Myers, Pane, and Ko
2004) has been proposed to create techniques and tools that
match more closely the ways users think.

Natural language programming is a promising technique
for bridging the gap between user mental models of tasks
and programming languages (Mihalcea, Liu, and Lieberman
2006). It should have a low learning barrier for end users, un-
der the assumption that the majority of end users can already
communicate procedures and structures for familiar tasks
through natural language conversations (Lieberman and Liu
2006; Pane, Myers, and others 2001). Speech is also a natu-
ral input modality for users to describe desired program be-
haviors (Oviatt 1999b). However, existing natural language
programming systems are not adequate for supporting end
user task automation in domain-general tasks. Some prior
systems (e.g., (Price et al. 2000)) directly translate user in-
structions in natural language into conventional program-
ming languages like Java. This approach requires users to
use unambiguous language with fixed structures similar to
those in conventional programming languages. Therefore, it
does not match the user’s existing mental model of tasks,
imposing significant learning barriers and high cognitive de-
mands on end users.

Other natural language programming approaches
(e.g., (Azaria, Krishnamurthy, and Mitchell 2016;
Fast et al. 2018; Kate, Wong, and Mooney 2005;
Srivastava, Labutov, and Mitchell 2017)) restricted the
problem space to specific task domains, so that they could
constrain the space and the complexity of target program
statements in order to enable the understanding of flexible
user utterances. Such restrictions are due to the limited
capabilities of existing natural language understanding
techniques – they do not yet support robust understanding
of utterances across diverse domains without extensive
training data and structured prior knowledge within each
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domain.
Another difficult problem in natural language program-

ming is supporting the instruction of concepts. In our study
(details below in the Formative Study section), we found
that end users often refer to ambiguous or vague concepts
(e.g., cold weather, heavy traffic) when naturally instruct-
ing a task. Moreover, even if a concept may seem clear to a
human, an agent may still not understand it due to the limi-
tations in its natural language understanding techniques and
pre-defined ontology.

In this paper, we address the research challenge of en-
abling end users to augment domain-independent task au-
tomation scripts with conditional structures and new con-
cepts through a combination of natural language program-
ming and programming by demonstration (PBD). To support
programming for tasks in diverse domains, we leverage the
graphical user interfaces (GUIs) of existing third-party mo-
bile apps as a medium, where procedural actions are repre-
sented as sequences of GUI operations, and declarative con-
cepts can be represented through references to GUI contents.
This approach supports EUD for a wide range of tasks, pro-
vided that these tasks can be performed with one or more
existing third-party mobile apps.

We took a user-centered design approach, first study-
ing how end users naturally describe tasks with condi-
tionals in natural language in the context of mobile apps,
and what types of tasks they are interested in automating.
Based on insights from this study, we designed and im-
plemented an end-user-programmable conversational agent
named PUMICE1 (Li et al. 2019) that allows end users to
program tasks with flexible conditional structures and new
concepts across diverse domains through spoken natural lan-
guage instructions and demonstrations.

PUMICE extends our previous SUGILITE (Li, Azaria, and
Myers 2017) system. A key novel aspect of PUMICE’s de-
sign is that it allows users to first describe the desired pro-
gram behaviors and conditional structures naturally in nat-
ural language at a high level, and then collaborate with an
intelligent agent through multi-turn conversations to explain
and to define any ambiguities, concepts and procedures in
the initial description as needed in a top-down fashion. Users
can explain new concepts by referring to either previously
defined concepts, or to the contents of the GUIs of third-
party mobile apps. Users can also define new procedures by
demonstrating using third-party apps (Li, Azaria, and Myers
2017). Such an approach facilitates effective program reuse
in automation authoring, and provides support for a wide
range of application domains, which are two major chal-
lenges in prior EUD systems. The results from the motivat-
ing study suggest that this paradigm is not only feasible, but
also natural for end users, which was supported by our sum-
mative lab usability study.

We build upon recent advances in natural language
processing (NLP) to allow PUMICE’s semantic parser to
learn from users’ flexible verbal expressions when describ-

1PUMICE is a type of volcanic rock. It is also an acronym
for Programming in a User-friendly Multimodal Interface through
Conversations and Examples

ing desired program behaviors. Through PUMICE’s mixed-
initiative conversations with users, an underlying persistent
knowledge graph is dynamically updated with new pro-
cedural (i.e., actions) and declarative (i.e., concepts and
facts) knowledge introduced by users, allowing the semantic
parser to improve its understanding of user utterances over
time. This structure also allows for effective reuse of user-
defined procedures and concepts at a fine granularity, reduc-
ing user effort in EUD.

PUMICE presents a multi-modal interface, through which
users interact with the system using a combination of
demonstrations, pointing, and spoken commands. Users may
use any modality that they choose, so they can leverage their
prior experience to minimize necessary training (MacLellan
et al. 2018; Laird et al. 2017). This interface also provides
users with guidance through a mix of visual aids and ver-
bal directions through various stages in the process to help
users overcome common challenges and pitfalls identified in
the formative study, such as the omission of else statements,
the difficulty in finding correct GUI objects for defining new
concepts, and the confusion in specifying proper data de-
scriptions for target GUI objects. A summative lab usability
study with 10 participants showed that users with little or no
prior programming expertise could use PUMICE to program
automation scripts for 4 tasks derived from real-world sce-
narios. Participants also found PUMICE easy and natural to
use.

This paper presents the following three primary contribu-
tions:

1. A formative study showing the characteristics of end
users’ natural language instructions for tasks with condi-
tional structures in the context of mobile apps.

2. A multi-modal conversational approach for the EUD of
task automation motivated by the aforementioned forma-
tive study, with the following major advantages:

(a) The top-down conversational structure allows users to
naturally start with describing the task and its con-
ditionals at a high-level, and then recursively clarify
ambiguities, explain unknown concepts and define new
procedures through conversations.

(b) The agent learns new procedural and declarative
knowledge through explicit instructions from users,
and stores them in a persistent knowledge graph, fa-
cilitating effective reusability and generalizability of
learned knowledge.

(c) The agent learns concepts and procedures in various
task domains while having a low learning barrier
through its multi-modal approach that supports ref-
erences and demonstrations using the contents of third-
party apps’ GUIs.

3. The PUMICE system: an implementation of this approach,
along with a user study evaluating its usability.

Background and Related Work
This research builds upon prior work from many different
sub-disciplines across human-computer interaction (HCI),
software engineering (SE), and natural language processing



(NLP). In this section, we focus on related work on three
topics: (1) natural language programming; (2) programming
by demonstration; and (3) the multi-modal approach that
combines natural language inputs with demonstrations.

Natural Language Programming
PUMICE uses natural language as the primary modality
for users to program task automation. The idea of us-
ing natural language inputs for programming has been ex-
plored for decades (Ballard and Biermann 1979; Biermann
1983). In the NLP and AI communities, this idea is also
known as learning by instruction (Azaria, Krishnamurthy,
and Mitchell 2016; Lieberman and Maulsby 1996).

The foremost challenge in supporting natural language
programming is dealing with the inherent ambiguities
and vagueness in natural language (Vadas and Curran
2005). To address this challenge, one prior approach
was to constrain the structures and expressions in the
user’s language to similar formulations of conventional
programming languages (e.g., (Ballard and Biermann 1979;
Price et al. 2000)), so that user inputs can be directly
translated into programming statements. This approach is
not adequate for EUD, as it has a high learning barrier for
users without programming expertise.

Another approach for handling ambiguities and vague-
ness in natural language inputs is to seek user clarifica-
tion through conversations. For example, Iris (Fast et al.
2018) asks follow-up questions and presents possible op-
tions through conversations when the initial user input is in-
complete or unclear. This approach lowers the learning bar-
rier for end users, as it does not require them to clearly de-
fine everything up front. It also allows users to form complex
commands by combining multiple natural language instruc-
tions in conversational turns under the guidance of the sys-
tem. PUMICE also adopts the use of multi-turn conversations
as a key strategy in handling ambiguities and vagueness in
user inputs. However, a key difference between PUMICE and
other conversational instructable agents is that PUMICE is
domain-independent. All conversational instructable agents
need to map the user’s inputs onto existing concepts, pro-
cedures and system functionalities supported by the agent,
and to have natural language understanding mechanisms
and training data in each task domain. Because of this con-
straint, existing agents limit their supported tasks to one
or a few pre-defined domains, such as data science (Fast
et al. 2018), email processing (Azaria, Krishnamurthy, and
Mitchell 2016; Srivastava, Labutov, and Mitchell 2017), or
database queries (Kate, Wong, and Mooney 2005).

PUMICE supports learning concepts and procedures from
existing third-party mobile apps regardless of the task do-
mains. End users can create new concepts with PUMICE by
referencing relevant information shown in app GUIs, and de-
fine new procedures by demonstrating with existing apps.
This approach allows PUMICE to support a wide range of
tasks from diverse domains as long as the corresponding mo-
bile apps are available. This approach also has a low learning
barrier because end users are already familiar with the capa-
bilities of mobile apps and how to use them. In comparison,
with prior instructable agents, it is often unclear what con-

cepts, procedures and functionalities already exist to be used
as “building blocks” for developing new ones.

Programming by Demonstration
PUMICE uses the programming by demonstration (PBD)
technique to enable end users to define concepts by referring
to the contents of GUIs of third-party mobile apps, and teach
new procedures through demonstrations with those apps.
PBD is a natural way of supporting EUD with a low learning
barrier (Cypher and Halbert 1993; Lieberman 2001). Many
domain-specific PBD tools have been developed in the past
in various domains, such as text editing (e.g., (Lau et al.
2001)), photo editing (e.g., (Grabler et al. 2009)), web scrap-
ing (e.g., (Chasins, Mueller, and Bodik 2018)), smart home
control (e.g., (Li et al. 2017)) and robot control (e.g., (Argall
et al. 2009)).

PUMICE supports domain-independent PBD by using the
GUIs of third-party apps for task automation and data ex-
traction. Similar approaches have also been used in prior
systems. For example, SUGILITE (Li, Azaria, and Myers
2017), KITE (Li and Riva 2018) and APPINITE (Li et al.
2018a) use mobile app GUIs, CoScripter (Leshed et al.
2008), d.mix (Hartmann et al. 2007), Vegemite (Lin et al.
2009) and PLOW (Allen et al. 2007) use web interfaces,
and HILC (Intharah, Turmukhambetov, and Brostow 2019)
and Sikuli (Yeh, Chang, and Miller 2009) use desktop GUIs.
Compared to those, PUMICE is the only one that can learn
concepts as generalized knowledge, and the only one that
supports creating conditionals from natural language in-
structions. Sikuli (Yeh, Chang, and Miller 2009) allows
users to create conditionals in a scripting language, which
is not suitable for end users without programming expertise.

The Multi-Modal Approach
A central challenge in PBD is generalization. A PBD agent
should go beyond literal record-and-replay macros, and be
able to perform similar tasks in new contexts (Cypher and
Halbert 1993; Lieberman 2001). This challenge is also a
part of the program synthesis problem. An effective way
of addressing this challenge is through multi-modal inter-
action (Oviatt 1999b). Demonstrations can clearly commu-
nicate what the user does, but not why the user does this and
how the user wants to do this in different contexts. On the
other hand, natural language instructions can often reflect
the user’s underlying intent (why) and preferences (how),
but they are usually ambiguous or unclear. This is where
grounding natural language instructions with concrete GUI
demonstrations can help.

This mutual disambiguation approach (Oviatt 1999a) in
multi-modal interaction has been proposed and used in many
previous systems. This approach leverages repetition in a
different modality for mediation (Mankoff, Abowd, and
Hudson 2000). Particularly for PBD generalization, SUG-
ILITE (Li, Azaria, and Myers 2017) and PLOW (Allen et al.
2007) use natural language inputs to identify parameteriza-
tion in demonstrations, APPINITE (Li et al. 2018a) uses nat-
ural language explanations of intents to resolve the “data de-
scription” (Cypher and Halbert 1993) for demonstrated ac-
tions, MARS (Chen, Martins, and Feng 2019) similarly used



multi-layer specifications including the textual descriptions
of user intents to disambiguate program synthesis results
from user-provided input-output examples in the data sci-
ence domain.

PUMICE builds upon this prior work, and extends the
multi-modal approach to support learning concepts involved
in demonstrated tasks. The learned concepts can also be gen-
eralized to new task domains, as described in later sections.
The prior multi-modal PBD systems also use demonstration
as the main modality. In comparison, PUMICE uses natu-
ral language conversation as the main modality, and uses
demonstration for grounding unknown concepts, values, and
procedures after they have been broken down and explained
in conversations.

Formative Study
We took a user-centered approach (Myers et al. 2016) for
designing a natural end-user development system (Myers et
al. 2017; Radensky, Li, and Myers 2018). We first studied
how end users naturally communicate tasks with declarative
concepts and control structures in natural language for
various tasks in the mobile app context through a formative
study on Amazon Mechanical Turk with 58 participants
(41 of which are non-programmers; 38 men, 19 women, 1
non-binary person).

Each participant was presented with a graphical descrip-
tion of an everyday task for a conversational agent to com-
plete in the context of mobile apps. All tasks had distinct
conditions for a given task so that each task should be per-
formed differently under different conditions, such as play-
ing different genres of music based on the time of the day.
Each participant was assigned to one of 9 tasks. To avoid
biasing the language used in the responses, we used the Nat-
ural Programming Elicitation method (Myers et al. 2016) by
showing graphical representations of the tasks with limited
text in the prompts. Participants were asked how they would
verbally instruct the agent to perform the tasks, so that the
system could understand the differences among the condi-
tions and what to do in each condition. Each participant was
first trained using an example scenario and the correspond-
ing example verbal instructions.

To study whether having mobile app GUIs can affect
users’ verbal instructions, we randomly assigned partici-
pants into one of two groups. For the experimental group,
participants instructed agents to perform the tasks while
looking at relevant app GUIs. Each participant was pre-
sented with a mobile app screenshot with arrows pointing
to the screen component that contained the information per-
tinent to the task condition. Participants in the control group
were not shown app GUIs. At the end of each study session,
we also asked the participants to come up with another task
scenario of their own where an agent should perform differ-
ently in different conditions.

The participants’ responses were analyzed by two in-
dependent coders using open coding (Strauss and Corbin
1990). The inter-rater agreement (Cohen 1960) was κ =
0.87, suggesting good agreement. 19% of responses were
excluded from the analysis for quality control due to the lack

of efforts in the responses, question misunderstandings, and
blank responses.

We report the most relevant findings which motivated the
design of PUMICE next.

App GUI Grounding Reduces Unclear Concept
Usage
We analyzed whether each user’s verbal instruction for the
task provided a clear definition of the conditions in the task.
In the control group (instructing without seeing app screen-
shots), 33% of the participants used ambiguous, unclear or
vague concepts in the instructions, such as “If it is daytime,
play upbeat music...” which is ambiguous as to when the
user considers it to be “daytime.” This is despite the fact that
the example instructions they saw had clearly defined con-
ditions.

Interestingly, for the experimental group, where each par-
ticipant was provided an app screenshot displaying specific
information relevant to the task’s condition, fewer partici-
pants (9%) used ambiguous or vague concepts (this differ-
ence is statistically significant with p ¡ 0.05), while the rest
clearly defined the condition (e.g., “If the current time is be-
fore 7 pm...”). These results suggest that end users naturally
use ambiguous and vague concepts when verbally instruct-
ing task logic, but showing users relevant mobile app GUIs
with concrete instances of the values can help them ground
the concepts, leading to fewer ambiguities and vagueness in
their descriptions. The implication is that a potentially effec-
tive approach to avoiding unclear utterances for agents is to
guide users to explain them in the context of app GUIs.

Unmet User Expectation of Common Sense
Reasoning
We observed that participants often expected and assumed
the agent to have the capability of understanding and reason-
ing with common sense knowledge when instructing tasks.
For example, one user said, “if the day is a weekend”. The
agent would therefore need to understand the concept of
“weekend” (i.e., how to know today’s day of the week, and
what days count as “weekend”) to resolve this condition.
Similarly when a user talked about “sunset time”, he ex-
pected the agent to know what it meant, and how to find
out its value.

However, the capability for common sense knowledge
and reasoning is very limited in current agents, especially
across many diverse domains, due to the spotty coverage and
unreliable inference of existing common sense knowledge
systems. Managing user expectation and communicating the
agent’s capability is also a long-standing unsolved challenge
in building interactive intelligent systems (Lieberman et al.
2004). A feasible workaround is to enable the agent to ask
users to ground new concepts to existing contents in apps
when they come up, and to build up knowledge of concepts
over time through its interaction with users.

Frequent Omission of Else Statements
In the study, despite all provided example responses con-
taining else statements, 18% of the 39 descriptions from



users omitted an else statement when it was expected. “Play
upbeat music until 8pm every day,” for instance, may im-
ply that the user desires an alternative genre of music to
be played at other times. Furthermore, 33% omitted an else
statement when a person would be expected to infer an else
statement, such as: “If a public transportation access point
is more than half a mile away, then request an Uber,” which
implies using public transportation otherwise. This might be
a result of the user’s expectation of common sense reasoning
capabilities. The user omits what they expect the agent can
infer to avoid prolixity, similar to patterns in human-human
conversations (Grice et al. 1975).

These findings suggest that end users will often omit ap-
propriate else statements in their natural language instruc-
tions for conditionals. Therefore, the agent should proac-
tively ask users about alternative situations in conditionals
when appropriate.

PUMICE
Motivated by the formative study results, we designed the
PUMICE agent that supports understanding ambiguous nat-
ural language instructions for task automation by allowing
users to recursively define any new, ambiguous or vague
concepts in a multi-level top-down process.

Example Scenario
This section shows an example scenario to illustrate how
PUMICE works. Suppose a user starts teaching the agent a
new task automation rule by saying, “If it’s hot, order a cup
of Iced Cappuccino.” We also assume that the agent has no
prior knowledge about the relevant task domains (weather
and coffee ordering). Due to the lack of domain knowledge,
the agent does not understand “it’s hot” and “order a cup
of Iced Cappuccino”. However, the agent can recognize the
conditional structure in the utterance (the parse for Utter-
ance 0 in Figure 1) and can identify that “it’s hot” should
represent a Boolean expression while “order a cup of Iced
Cappuccino” represents the action to perform if the condi-
tion is true.

PUMICE’s semantic parser can mark unknown parts in
user utterances using typed resolve...() functions, as
marked in the yellow highlights in the parse for Utterance
0 in Figure 1. The PUMICE agent then proceeds to ask the
user to further explain these concepts. It asks, “How do I tell
whether it’s hot?” since it has already figured out that “it’s
hot” should be a function that returns a Boolean value. The
user answers “It is hot when the temperature is above 85
degrees Fahrenheit.”, as shown in Utterance 2 in Figure 1.
PUMICE understands the comparison (as shown in the parse
for Utterance 2 in Figure 1), but does not know the concept
of “temperature”, only knowing that it should be a numeric
value comparable to 85 degrees Fahrenheit. Hence it asks,
“How do I find out the value for temperature?”, to which the
user responds, “Let me demonstrate for you.”

Here the user can demonstrate the procedure of find-
ing the current temperature by opening the weather app
on the phone, and pointing at the current reading of the
weather. To assist the user, PUMICE uses a visualization

overlay to highlight any GUI objects on the screen that fit
into the comparison (i.e., those that display a value compa-
rable to 85 degrees Fahrenheit). The user can choose from
these highlighted objects (see Figure 2 for an example).
Through this demonstration, PUMICE learns a reusable pro-
cedure query Temperature() for getting the current
value for the new concept temperature, and stores it in a per-
sistent knowledge graph so that it can be used in other tasks.
PUMICE confirms with the user every time it learns a new
concept or a new rule, so that the user is aware of the current
state of the system, and can correct any errors (see the Error
Recovery and Backtracking section for details).

For the next phase, PUMICE has already determined that
“order a cup of Iced Cappuccino” should be an action trig-
gered when the condition “it’s hot” is true, but does not
know how to perform this action (also known as intent ful-
fillment in chatbots (Li and Riva 2018)). To learn how to
perform this action, it asks, “How do I order a cup of Iced
Cappuccino?”, to which the user responds, “I can demon-
strate.” The user then proceeds to demonstrate the proce-
dure of ordering a cup of Iced Cappuccino using the existing
app for Starbucks (a coffee chain). From the user demon-
stration, PUMICE can figure out that “Iced Cappuccino” is
a task parameter, and can learn the generalized procedure
order Starbucks() for ordering any item in the Star-
bucks app, as well as a list of available items to order in
the Starbucks app by looking through the Starbucks app’s
menus, using the underlying SUGILITE framework [9] for
processing the task recording.

Finally, PUMICE asks the user about the else condition
by saying, “What should I do if it’s not hot?” Suppose the
user says “Order a cup of Hot Latte,” then the user will
not need to demonstrate again because PUMICE can rec-
ognize “hot latte” as an available parameter for the known
order Starbucks() procedure.

Design Features
In this section, we discuss several of PUMICE’s key design
features in its user interactions, and how they were motivated
by results of the formative study.

Support for Concept Learning In the formative study,
we identified two main challenges in regards to concept
learning. First, user often naturally use intrinsically unclear
or ambiguous concepts when instructing intelligent agents
(e.g., “register for easy courses”, where the definition of
“easy” depends on the context and the user preference).
Second, users expect agents to understand common-sense
concepts that the agents may not know. To address these
challenges, we designed and implemented the support for
concept learning in PUMICE. PUMICE can detect and learn
three kinds of unknown components in user utterances: pro-
cedures, Boolean concepts, and value concepts. Because
PUMICE’s support for procedure learning is unchanged from
the underlying SUGILITE mechanisms (Li et al. 2018a;
Li, Azaria, and Myers 2017), in this section, we focus on
discussing how PUMICE learns Boolean concepts and value
concepts.

When encountering an unknown or unclear concept in the



Figure 1: Example structure of how PUMICE learns the concepts and procedures in the command “If it’s hot, order a cup
of Iced Cappuccino.” The numbers indicate the order of utterances. The screenshot on the right shows the conversational
interface of PUMICE. In this interactive parsing process, the agent learns how to query the current temperature, how to order
any kind of drink from Starbucks, and the generalized concept of “hot” as “a temperature (of something) is greater than another
temperature”.

utterance parsing result, PUMICE first determines the con-
cept type based on the context. If the concept is used as a
condition (e.g., “if it is hot”), then it should be of Boolean
type. Similarly, if a concept is used where a value is ex-
pected (e.g., “if the current temperature is above 70°F”
or “set the AC to the current temperature”), then it will
be marked as a value concept. Both kinds of concepts are
represented as typed resolve() functions in the parsing
result (shown in Figure 1), indicating that they need to be
further resolved down the line. This process is flexible. For
example, if the user clearly defines a condition without in-
troducing unknown or unclear concepts, then PUMICE will
not need to ask follow-up questions for concept resolution.

PUMICE recursively executes each resolve() function
in the parsing result in a depth-first fashion. After a con-
cept is fully resolved (i.e., all concepts used for defining it
have been resolved), it is added to a persistent knowledge
graph (details in the System Implementation section), and a
link to it replaces the resolve() function. From the user’s
perspective, when a resolve() function is executed, the
agent asks a question to prompt the user to further explain
the concept. When resolving a Boolean concept, PUMICE
asks, “How do I know whether [concept name]?” For re-
solving a value concept, PUMICE asks, “How do I find out
the value of [concept name]?”

To explain a new Boolean concept, the user may verbally
refer to another Boolean concept (e.g., “traffic is heavy”
means “commute takes a long time”) or may describe a
Boolean expression (e.g., “the commute time is longer than
30 minutes”). When describing the Boolean expression, the
user can use flexible words (e.g., colder, further, more ex-
pensive) to describe the relation (i.e., greater than, less than,
and equal to). As explained previously, if any new Boolean
or value concepts are used in the explanation, PUMICE will
recursively resolve them. The user can also use more than
one unknown value concepts, such as “if the price of a Uber
is greater than the price of a Lyft” (Uber and Lyft are both

popular ridesharing apps).
Similar to Boolean concepts, the user can refer to another

value concept when explaining a value concept. When a
value concept is concrete and available in a mobile app, the
user can also demonstrate how to query the value through
app GUIs. The formative study has suggested that this multi-
modal approach is effective and feasible for end users. Af-
ter users indicate that they want to demonstrate, PUMICE
switches to the home screen of the phone, and prompts the
user to demonstrate how to find out the value of the concept.

To help the user with value concept demonstrations,
PUMICE highlights possible items on the current app GUI
if the type of the target concept can be inferred from the
type of the constant value, or using the type of value concept
to which it is being compared (see Figure 2). For example,
in the aforementioned “commute time” example, PUMICE
knows that “commute time” should be a duration, because
it is comparable to the constant value “30 minutes”. Once
the user finds the target value in an app, they can long press
on the target value to select it and indicate it as the target
value. PUMICE uses an interaction proxy overlay (Zhang et
al. 2017) for recording, so that it can record all values vis-
ible on the screen, not limited to the selectable or clickable
ones. PUMICE can extract these values from the GUI using
the screen scraping mechanism in the underlying SUGILITE
framework (Li, Azaria, and Myers 2017). Once the target
value is selected, PUMICE stores the procedure of navigating
to the screen where the target value is displayed and finding
the target value on the screen into its persistent knowledge
graph as a value query, so that this query can be used when-
ever the underlying value is needed. After the value concept
demonstration, PUMICE switches back to the conversational
interface and continues to resolve the next concept if needed.

Concept Generalization and Reuse Once concepts are
learned, another major challenge is to generalize them so
that they can be reused correctly in different contexts and
task domains. This is a key design goal of PUMICE. It should



Figure 2: The user teaches the value concept “commute
time” by demonstrating querying the value in Google Maps.
The red overlays highlight all durations it was able to iden-
tify on the Google Maps GUI.

be able to learn concepts at a fine granularity, and reuse
parts of existing concepts as much as possible to avoid ask-
ing users to make redundant demonstrations. In our previous
works on generalization for PBD, we focused on generaliz-
ing procedures, specifically learning parameters (Li, Azaria,
and Myers 2017) and intents for underlying operations (Li
et al. 2018a). We have already deployed these existing gen-
eralization mechanisms in PUMICE, but in addition, we also
explored the generalization of Boolean concepts and value
concepts.

When generalizing Boolean concepts, PUMICE assumes
that the Boolean operation stays the same, but the arguments
may differ. For example, for the concept “hot” in Figure 1,
it should still mean that a temperature (of something) is
greater than another temperature. But the two in comparison
can be different constants, or from different value queries.
For example, suppose after the interactions in Figure 1, the
user instructs a new rule “if the oven is hot, start the cook
timer.” PUMICE can recognize that “hot” is a concept that
has been instructed before in a different context, so it asks
“I already know how to tell whether it is hot when determin-
ing whether to order a cup of Iced Cappuccino. Is it the same
here when determining whether to start the cook timer?” Af-
ter responding “No”, the user can instruct how to find out
the temperature of the oven, and the new threshold value for
“hot” either by instructing a new value concept, or using a
constant value.

The generalization mechanism for value concepts works
similarly. PUMICE supports value concepts that share the
same name to have different query implementations for dif-
ferent task contexts. For example, following the “if the oven
is hot, start the cook timer” example, suppose the user de-
fines “hot” for this new context as “The temperature is above
400 degrees.” PUMICE realizes that there is already a value

concept named “temperature”, so it will ask “I already know
how to find out the value for temperature using the Weather
app. Should I use that for determining whether the oven is
hot?”, to which the user can say “No” and then demonstrate
querying the temperature of the oven using the correspond-
ing app (assuming the user has a smart oven with an in-app
display of its temperature).

This mechanism allows concepts like “hot” to be reused at
three different levels: (1) exactly the same (e.g., the tempera-
ture of the weather is greater than 85°F); (2) different thresh-
old (e.g., the temperature of the weather is greater than x);
and (3) different value query (e.g., the temperature of some-
thing else is greater than x).

Error Recovery and Backtracking Like all other inter-
active EUD systems, it is crucial for PUMICE to properly
handle errors, and to backtrack from errors in speech recog-
nition, semantic parsing, generalizations, and inferences of
intent (Li et al. 2018b). We iteratively tested early proto-
types of PUMICE with users through early usability testing,
and developed the following mechanisms to support error
recovery and backtracking in PUMICE.

To mitigate semantic parsing errors, we implemented a
mixed-initiative mechanism where PUMICE can ask users
about components within the parsed expression if the pars-
ing result is considered incorrect by the user. Because pars-
ing result candidates are all typed expressions in PUMICE’s
internal functional domain-specific language (DSL) as a
conditional, Boolean, value, or procedure, PUMICE can
identify components in a parsing result that it is less con-
fident about by comparing the top candidate with the alter-
natives and confidence scores, and ask the user about them.

For example, suppose the user defines a Boolean concept
“good restaurant” with the utterance “the rating is better than
2”. The parser is uncertain about the comparison operator
in this Boolean expression, since “better” can mean either
“greater than” or “less than” depending on the context. It
will ask the user “I understand you are trying to compare
the value concept ‘rating’ and the value ‘2’, should ‘rating’
be greater than, or less than ‘2’?” The same technique can
also be used to disambiguate other parts of the parsing re-
sults, such as the argument of resolve() functions (e.g.,
determining whether the unknown procedure should be “or-
der a cup of Iced Cappuccino” or “order a cup” for Utterance
0 in Figure 1).

PUMICE also provides an “undo” function to allow the
user to backtrack to a previous conversational state in case
of incorrect speech recognition, incorrect generalization, or
when the user wants to modify a previous input. Users can
either say that they want to go back to the previous state,
or click on an “undo” option in PUMICE’s menu (activated
from the option icon on the top right corner on the screen
shown in Figure 1).

System Implementation
We implemented the PUMICE agent as an Android app. The
app was developed and tested on a Google Pixel 2 XL phone
running Android 8.0. PUMICE does not require the root ac-
cess to the phone, and should run on any phone running An-



droid 6.0 or higher. PUMICE is open-sourced on GitHub2.

Semantic Parsing We built the semantic parser for
PUMICE using the SEMPRE framework (Berant et al. 2013).
The parser runs on a remote Linux server, and communi-
cates with the PUMICE client through an HTTP RESTful
interface. It uses the Floating Parser architecture, which is
a grammar-based approach that provides more flexibility
without requiring hand-engineering of lexicalized rules like
synchronous CFG or CCG based semantic parsers (Pasupat
and Liang 2015). This approach also provides more inter-
pretable results and requires less training data than neural
network approaches (e.g., (Yin et al. 2018; Yin and Neubig
2017)). The parser parses user utterances into expressions in
a simple functional DSL we created for PUMICE.

A key feature we added to PUMICE’s parser is allowing
typed resolve() functions in the parsing results to
indicate unknown or unclear concepts and procedures.
This feature adds interactivity to the traditional semantic
parsing process. When this resolve() function is called
at runtime, the front-end PUMICE agent asks the user
to verbally explain, or to demonstrate how to fulfill this
resolve() function. If an unknown concept or procedure
is resolved through verbal explanation, the parser can parse
the new explanation into an expression of its original type in
the target DSL (e.g., an explanation for a Boolean concept is
parsed into a Boolean expression), and replace the original
resolve() function with the new expression. The parser
also adds relevant utterances for existing concepts and
procedures, and visible text labels from demonstrations on
third-party app GUIs to its set of lexicons, so that it can
understand user references to those existing knowledge
and in-app contents. PUMICE’s parser was trained on rich
features that associate lexical and syntactic patterns (e.g.,
unigrams, bigrams, skipgrams, part-of-speech tags, named
entity tags) of user utterances with semantics and structures
of the target DSL over a small number of training data
(n = 905) that were mostly collected and enriched from the
formative study.

Demonstration Recording and Replaying PUMICE uses
our open-sourced SUGILITE (Li, Azaria, and Myers 2017)
framework to support its demonstration recording and re-
playing. SUGILITE provides action recording and replaying
capabilities on third-party Android apps using the Android
Accessibility API. SUGILITE also provides the support for
parameterization of sequences of actions (e.g., identifying
“Iced Cappuccino” as a parameter and “Hot Latte” as an al-
ternative value in the example in Figure 1), and the support
for handling minor GUI changes in apps. Through SUG-
ILITE, PUMICE operates well on most native Android apps,
but may have problems working with web apps and apps
with special graphic engines (e.g., games). It currently does
not support recording gestural and sensory inputs (e.g., ro-
tating the phone) either.

Knowledge Representations PUMICE maintains two
kinds of knowledge representations: a continuously refresh-
ing UI snapshot graph representing third-party app contexts

2https://github.com/tobyli/Sugilite development

Figure 3: An example showing how PUMICE parses the
user’s demonstrated action and verbal reference to an app’s
GUI content into a SET VALUE statement with a query over
the UI snapshot graph when resolving a new value concept
“current temperature”

for demonstration, and a persistent knowledge base for stor-
ing learned procedures and concepts.

The purpose of the UI snapshot graph is to support under-
standing the user’s references to app GUI contents in their
verbal instructions. The UI snapshot graph mechanism used
in PUMICE was extended from APPINITE (Li et al. 2018a).
For every state of an app’s GUI, a UI snapshot graph is con-
structed to represent all visible and invisible GUI objects
on the screen, including their types, positions, accessibility
labels, text labels, various properties, and spatial relations
among them. We used a lightweight semantic parser from
the Stanford CoreNLP (Manning et al. 2014) to extract types
of structured data (e.g., temperature, time, date, phone num-
ber) and named entities (e.g., city names, people’s names).
When handling the user’s references to app GUI contents,
PUMICE parses the original utterances into queries over the
current UI snapshot graph (example in Figure 3). This ap-
proach allows PUMICE to generate flexible queries for value
concepts and procedures that accurately reflect user intents,
and which can be reliably executed in future contexts.

The persistent knowledge base stores all procedures, con-
cepts, and facts PUMICE has learned from the user. Proce-
dures are stored as SUGILITE (Li, Azaria, and Myers 2017)
scripts, with the corresponding trigger utterances, param-
eters, and possible alternatives for each parameter. Each
Boolean concept is represented as a set of trigger utterances,
Boolean expressions with references to the value concepts or
constants involved, and contexts (i.e., the apps and actions
used) for each Boolean expression. Similarly, the structure
for each stored value concept includes its triggering utter-
ances, demonstrated value queries for extracting target val-
ues from app GUIs, and contexts for each value query.

User Study
We conducted a lab study to evaluate the usability of
PUMICE. In each session, a user completed 4 tasks. For each
task, the user instructed PUMICE to create a new task au-
tomation, with the required conditionals and new concepts.
We used a task-based method to specifically test the usabil-
ity of PUMICE’s design, since the motivation for the design
derives from the formative study results. We did not use a
control condition, as we could not find other tools that can
feasibly support users with little programming expertise to
complete the target tasks.



Participants
We recruited 10 participants (5 women, 5 men, ages 19 to
35) for our study. Each study session lasted 40 to 60 min-
utes. We compensated each participant $15 for their time. 6
participants were students in two local universities, and the
other 4 worked different technical, administrative or man-
agerial jobs. All participants were experienced smartphone
users who had been using smartphones for at least 3 years. 8
out of 10 participants had some prior experience of interact-
ing with conversational agents like Siri, Alexa and Google
Assistant.

We asked the participants to report their programming ex-
perience on a five-point scale from “never programmed” to
“experienced programmer”. Among our participants, there
were 1 who had never programmed, 5 who had only used
end-user programming tools (e.g., Excel functions, Office
macros), 1 novice programmer with experience equivalent to
1-2 college level programming classes, 1 programmer with
1-2 years of experience, and 2 programmers with more than
3 years of experience. In our analysis, we will label the first
two groups “non-programmers” and the last three groups
“programmers”.

Procedure
At the beginning of each session, the participant received a
5-minute tutorial on how to use PUMICE. In the tutorial, the
experimenter demonstrated an example of teaching PUMICE
to check the bus schedule when “it is late”, and “late” was
defined as “current time is after 8pm” through a conversa-
tion with PUMICE. The experimenter then showed how to
demonstrate to PUMICE finding out the current time using
the Clock app.

Following the tutorial, the participant was provided a
Google Pixel 2 phone with PUMICE and relevant third-party
apps installed. The experimenter showed the participant the
available apps, and made sure that the participant understood
the functionality of each third-party app. We did this because
the underlying assumption of the study (and the design of
PUMICE) is that users are familiar with the third-party apps,
so we are testing whether they can successfully use PUMICE,
not the apps. Then, the participant received 4 tasks in ran-
dom order. We asked participants to keep trying until they
were able to correctly execute the automation, and that they
were happy with the resulting actions of the agent. We also
checked the scripts at the end of each study session to eval-
uate their correctness.

After completing the tasks, the participant filled out a
post-survey to report the perceived usefulness, ease of use
and naturalness of interactions with PUMICE. We ended
each session with a short informal interview with the par-
ticipant on their experiences with PUMICE.

Tasks
We assigned 4 tasks to each participant. These tasks were
designed by combining common themes observed in users’
proposed scenarios from the formative study. We ensured
that these tasks (1) covered key PUMICE features (i.e.,
concept learning, value query demonstration, procedure

Figure 4: The graphical prompt used for Task 1 – A possible
user command can be “Order Iced coffee when it’s hot out-
side, otherwise order hot coffee when the weather is cold.”

demonstration, concept generalization, procedure general-
ization and “else” condition handling); (2) involved only
app interfaces that most users are familiar with; and (3) used
conditions that we can control so we can test the correctness
of the scripts (we controlled the temperature, the traffic
condition, and the room price by manipulating the GPS
location of the phone).

In order to minimize biasing users’ utterances, we used
the Natural Programming Elicitation method (Myers et al.
2016). Task descriptions were provided in the form of graph-
ics, with minimal text descriptions that could not be directly
used in user instructions (see Figure 4 for an example).

Task 1 In this task, the user instructs PUMICE to order iced
coffee when the weather is hot, and order hot coffee other-
wise (Figure 4). We pre-taught PUMICE the concept of “hot”
in the task domain of turning on the air conditioner. So the
user needs to utilize the concept generalization feature to
generalize the existing concept “hot” to the new domain of
coffee ordering. The user also needs to demonstrate order-
ing iced coffee using the Starbucks app, and to provide “or-
der hot coffee” as the alternative for the “else” operation.
The user does not need to demonstrate again for ordering
hot coffee, as it can be automatically generalized from the
previous demonstration of ordering iced coffee.

Task 2 In this task, the user instructs PUMICE to set an
alarm for 7:00am if the traffic is heavy on their commut-
ing route. We pre-stored “home” and “work” locations in
Google Maps. The user needs to define “heavy traffic” as
prompted by PUMICE by demonstrating how to find out the
estimated commute time, and explaining that “heavy traffic”
means that the commute takes more than 30 minutes. The
user then needs to demonstrate setting a 7:00am alarm using
the built-in Clock app.

Task 3 In this task, the user instructs PUMICE to choose
between making a hotel reservation and requesting a Uber
to go home depending on whether the hotel price is cheap.
The user should verbally define ”cheap” as ”room price is
below $100”, and demonstrate how to find out the hotel price
using the Marriott (a hotel chain) app. The user also needs to
demonstrate making the hotel reservation using the Marriott
app, specify ”request an Uber” as the action for the “else”



Figure 5: The average task completion times for each task.
The error bars show one standard deviation in each direction.
condition, and demonstrate how to request an Uber using
the Uber app.

Task 4 In this task, the user instructs PUMICE to order a
pepperoni pizza if there is enough money left in the food
budget. The user needs to define the concept of “enough
budget”, demonstrate finding out the balance of the budget
using the Spending Tracker app, and demonstrate ordering a
pepperoni pizza using the Papa Johns (a pizza chain) app.

Results
All participants were able to complete all 4 tasks. The to-
tal time for tasks ranged from 19.4 minutes to 25 min-
utes for the 10 participants. Figure 5 shows the overall av-
erage task completion time of each task, as well as the
comparison between the non-programmers and the pro-
grammers. The average total time-on-task for programmers
(22.12 minutes, SD=2.40) was slightly shorter than that for
non-programmers (23.06 minutes, SD=1.57), but the differ-
ence was not statistically significant.

Most of the issues encountered by participants were actu-
ally from the Google Cloud speech recognition system used
in PUMICE. It would sometimes misrecognize the user’s
voice input, or cut off the user early. These errors were han-
dled by the participants using the “undo” feature in PUMICE.
Some participants also had parsing errors. PUMICE’s current
semantic parser has limited capabilities in understanding ref-
erences of pronouns (e.g., for an utterance “it takes longer
than 30 minutes to get to work”, the parser would recognize
it as “it” instead of “the time it takes to get to work” is greater
than 30 minutes). Those errors were also handled by partic-
ipants through undoing and rephrasing. One participant ran
into the “confusion of Boolean operator” problem in Task
2 when she used the phrase “commute [time is] worse than
30 minutes”, for which the parser initially recognized incor-
rectly as “commute is less than 30 minutes.” She was able
to correct this using the mixed-initiative mechanism, as de-
scribed in the Error Recovery and Backtracking section.

Overall, no participant had major problem with the multi-
modal interaction approach and the top-down recursive
concept resolution conversational structure, which was en-
couraging. However, all participants had received a tutorial
with an example task demonstrated. We also emphasized in

the tutorial that they should try to use concepts that can be
found in mobile apps in their explanations of new concepts.
These factors might contributed to the successes of our
participants.

In a post survey, we asked participants to rate state-
ments about the usability, naturalness and usefulness of
PUMICE on a 7-point Likert scale from “strongly disagree”
to “strongly agree”. PUMICE scored on average 6.2 on “I feel
PUMICE is easy to use”, 6.1 on “I find my interactions with
PUMICE natural”, and 6.9 on “I think PUMICE is a useful
tool for automating tasks on smartphones,” indicating that
our participants were generally satisfied with their experi-
ence using PUMICE.

Discussion
In the informal interview after completing the tasks, par-
ticipants praised PUMICE for its naturalness and low learn-
ing barriers. Non-programmers were particularly impressed
by the multi-modal interface. For example, P7 (who was a
non-programmer) said: “Teaching PUMICE feels similar to
explaining tasks to another person...[Pumice’s] support for
demonstration is very easy to use since I’m already famil-
iar with how to use those apps.” Participants also considered
PUMICE’s top-down interactive concept resolution approach
very useful, as it does not require them to define everything
clearly upfront.

Participants were excited about the usefulness of
PUMICE. P6 said, “I have an Alexa assistant at home, but
I only use them for tasks like playing music and setting
alarms. I tried some more complicated commands before,
but they all failed. If it had the capability of PUMICE, I
would definitely use it to teach Alexa more tasks.” They also
proposed many usage scenarios based on their own needs in
the interview, such as paying off credit card balance early
when it has reached a certain amount, automatically closing
background apps when the available phone memory is low,
monitoring promotions for gifts saved in the wish list when
approaching anniversaries, and setting reminders for events
in mobile games.

Several concerns were also raised by our participants.
P4 commented that PUMICE should “just know” how to
find out weather conditions without requiring her to teach
it since “all other bots know how to do it”, indicating the
need for a hybrid approach that combines EUD with pre-
programmed common functionalities. P5 said that teaching
the agent could be too time-consuming unless the task was
very repetitive since he could just “do it with 5 taps.” Sev-
eral users also expressed privacy concerns after learning that
PUMICE can see all screen contents during demonstrations,
while one user, on the other hand, suggested having PUMICE
observe him at all times so that it can learn things in the
background.

Limitations and Future Work
The current version of PUMICE has no semantic under-
standing of information involved in tasks, which prevents it
from dealing with implicit parameters (e.g., “when it snows”
means “the current weather condition is snowing”) and un-



derstanding the relations between concepts (e.g., Iced Cap-
puccino and Hot Latte are both instances of coffee; Iced Cap-
puccino has the property of being cold). The parser also does
not process references, synonyms, antonyms, or implicit
conjunctions/disjunctions in utterances. We plan to address
these problems by leveraging more advanced NLP tech-
niques. Specifically, we are currently investigating bring-
ing in external sources of world knowledge (e.g., Wikipedia,
Freebase (Bollacker et al. 2008), ConceptNet (Liu and Singh
2004), WikiBrain (Sen et al. 2014), or NELL (Mitchell et al.
2018)), which can enable more intelligent generalizations,
suggestions, and error detection. The agent can also make
better guesses when dealing with ambiguous user inputs. As
discussed previously, PUMICE already uses relational struc-
tures to store the context of app GUIs and its learned knowl-
edge, which should make it easier to incorporate external
knowledge graphs.

In the future, we plan to expand PUMICE’s expressiveness
in representing conditionals and Boolean expressions. In the
current version, it only supports single basic Boolean oper-
ations (i.e., greater than, less than, equal to) without sup-
port for logical operations (e.g., when the weather is cold
and raining) or arithmetic operations (e.g., if is at least $10
more expensive than Lyft), or counting GUI elements (e.g.,
“highly rated” means more than 3 stars are red) We plan to
explore the design space of new interactive interfaces to sup-
port these features in future versions. Note that it will likely
require more than just adding grammar rules to the seman-
tic parser and expanding the DSL, since end users’ usage
of words like “and” and “or”, and their language for speci-
fying computation are known to often be ambiguous (Pane,
Myers, and others 2001).

Further, although PUMICE supports generalization of pro-
cedures, Boolean concepts and value concepts across differ-
ent task domains, all such generalizations are stored locally
on the phone and limited to one user. We plan to expand
PUMICE to support generalizing learned knowledge across
multiple users. The current version of PUMICE does not dif-
ferentiate between personal preferences and generalizable
knowledge in learned concepts and procedures. An impor-
tant focus of our future work is to distinguish these, and
allow the sharing and aggregation of generalizable compo-
nents across multiple users. To support this, we will also
need to develop appropriate mechanisms to help preserve
user privacy.

In this prototype of PUMICE, the proposed technique is
used in conversations for performing immediate tasks in-
stead of for completely automated rules. We plan to add the
support for automated rules in the future. An implementa-
tion challenge for supporting automated rules is to contin-
uously poll values from GUIs. The current version of un-
derlying SUGILITE framework can only support foreground
execution, which is not feasible for background monitor-
ing for triggers. We plan to use techniques like virtual ma-
chine (VM) to support background execution of demon-
strated scripts.

Lastly, we plan to conduct an open-ended field study to
better understand how users use PUMICE in real-life sce-
narios. Although the design of PUMICE was motivated from

results of a formative study with users, and the usability of
PUMICE has been supported by an in-lab user study, we hope
to further understand what tasks users choose to program,
how they switch between different input modalities, and how
useful PUMICE is for users in realistic contexts.

Conclusion
We have presented PUMICE, an agent that can learn concepts
and conditionals from conversational natural language in-
structions and demonstrations. Through PUMICE, we show-
cased the idea of using multi-modal interactions to support
the learning of unknown, ambiguous or vague concepts in
users’ verbal commands, which were shown to be common
in our formative study.

In PUMICE’s approach, users can explain abstract con-
cepts in task conditions using more concrete smaller con-
cepts, and ground them by demonstrating with third-party
mobile apps. More broadly, our work demonstrates how
combining conversational interfaces and demonstrational in-
terfaces can create easy-to-use and natural end user develop-
ment experiences.
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