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Abstract

We consider joint estimation of multiple graphical models arising from heterogeneous and
high-dimensional observations. Unlike most previous approaches which assume that the
cluster structure is given in advance, an appealing feature of our method is to learn cluster
structure while estimating heterogeneous graphical models. This is achieved via a high di-
mensional version of Expectation Conditional Maximization (ECM) algorithm (Meng and
Rubin, 1993). A joint graphical lasso penalty is imposed on the conditional maximiza-
tion step to extract both homogeneity and heterogeneity components across all clusters.
Our algorithm is computationally efficient due to fast sparse learning routines and can be
implemented without unsupervised learning knowledge. The superior performance of our
method is demonstrated by extensive experiments and its application to a Glioblastoma
cancer dataset reveals some new insights in understanding the Glioblastoma cancer. In
theory, a non-asymptotic error bound is established for the output directly from our high
dimensional ECM algorithm, and it consists of two quantities: statistical error (statisti-
cal accuracy) and optimization error (computational complexity). Such a result gives a
theoretical guideline in terminating our ECM iterations.
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1. Introduction

Graphical models have been widely employed to represent conditional dependence relation-
ships among a set of variables. The structure recovery of an undirected Gaussian graph
is known to be equivalent to recovering the support of its corresponding precision matrix
(Lauritzen, 1996). In the situation where data dimension is comparable to or much larger
than the sample size, the penalized likelihood method is proven to be an effective way to
learn the structure of graphical models (Yuan and Lin, 2007; Friedman et al., 2008; Shojaie
and Michailidis, 2010a,b). When observations come from several distinct subpopulations,
a naive way is to estimate each graphical model separately. However, separate estimation
ignores the information of common structure shared across different subpopulations, and
thus can be inefficient in some real applications. For instance, in the glioblastoma multi-
forme (GBM) cancer dataset from The Cancer Genome Atlas Research Network (TCGA,
2008), Verhaak et al. (2010) showed that GBM cancer could be classified into four subtypes.
Based on this cluster structure, it has been suggested that although the graphs across four
subtypes differ in some edges, they share many common structures. In this case, the naive
procedure can be suboptimal (Danaher et al., 2014; Lee and Liu, 2015). Such applications
have motivated recent studies on joint estimation methods (Guo et al., 2011; Danaher et al.,
2014; Lee and Liu, 2015; Qiu et al., 2016; Wang, 2015; Cai et al., 2016a; Peterson et al., 2015)
that encourage common structure in estimating heterogeneous graphical models. However,
all aforementioned approaches crucially rely on an assumption that the class label of each
sample is known in advance.

For certain problems, prior knowledge of the class membership may be available. But
this may not be the case for the massive data with complex and unknown population struc-
tures. For instance, in online advertising, an important task is to find the most suitable
advertisement (ad) for a given user in a specific online context. This could increase the
chance of users’ favorable actions (e.g., click the ad, inquire about or purchase a product).
In recent years, user clustering has gained increasing attention due to its superior perfor-
mance of ad targeting. This is because users with similar attributes, such as gender, age,
income, geographic information, and online behaviors, tend to behave similarly to the same
ad (Yan et al., 2009). Moreover, it is very important to understand conditional depen-
dence relationships among user attributes in order to improve ad targeting accuracy (Wang
et al., 2015a). Such conditional dependence relationships are expected to share commonal-
ity across different groups (user homogeneity) while maintaining some levels of uniqueness
within each group (user heterogeneity) (Jeziorski and Segal, 2015). In this online adver-
tising application, previously mentioned joint estimation methods are no longer applicable
as they need to know the user cluster structure in advance. Furthermore, with the data
being continuously collected, the number of underlying user clusters grows with the sample
size (Chen et al., 2009). This provides another reason for simultaneously conducting user
clustering and joint graphical model estimation, which is much needed in the era of big
data.

Our contributions in this paper are two-fold. On the methodological side, we propose
a general framework of Simultaneous Clustering And estimatioN of heterogeneous graph-
ical models (SCAN). SCAN is a likelihood based method which treats the underlying class
label as a latent variable. Based on a high-dimensional version of Expectation Conditional
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Maximization (ECM) algorithm (Meng and Rubin, 1993), we are able to conduct clustering
and sparse graphical model learning at the same time. In each iteration of the ECM algo-
rithm, the expectation step performs cluster analysis by estimating missing labels and the
conditional maximization step conducts feature selection and joint estimation of heteroge-
neous graphical models via a penalization procedure. With an iteratively updating process,
the estimation for both cluster structure and sparse precision matrices becomes more and
more refined. Our algorithm is computationally efficient by taking advantage of the fast
sparse learning in the conditional maximization step. Moreover, it can be implemented in
a user-friendly fashion, without the need of additional unsupervising learning knowledge.

As a promising application, we apply the SCAN method on the GBM cancer dataset
to simultaneously cluster the GBM patients and construct the gene regulatory network
of each subtype. Our method greatly outperforms the competitors in clustering accuracy
and delivers new insights in understanding the GBM disease. Figure 1 reports four gene
networks estimated from the SCAN method. The black lines are links shared in all four
subtypes, and the color lines are uniquely presented in some subtypes. Our findings generally
agree with the GBM disease literature (Verhaak et al., 2010). Besides common edges of all
subtypes, we have discovered some unique gene connections that were not found through
separate estimation (Danaher et al., 2014; Lee and Liu, 2015). This new finding suggests
further investigation on their possible impact on the GBM disease. See Section 4.5 for more
discussions.

On the theoretical side, we develop non-asymptotic statistical analysis for the output
directly from the high dimensional ECM algorithm. This is nontrivial due to the non-
convexity of the likelihood function. In this case, there is no guarantee that the sample-
based estimator is close to the maximum likelihood estimator. Hence, we need to directly
evaluate the estimation error in each iteration. Let ©® represent vectorized cluster means pu
and precision matrices €y, see (3) for a formal definition. Given an appropriate initialization
O the finite sample error bound of the ¢-th step solution ®®) consists of two parts:
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with high probability. Here, K is the number of clusters, W(M) measures the sparsity
of cluster means and precision matrices, and x € (0,1) is a contraction coefficient. The
above theoretical analysis is applicable to any decomposable penalty used in the conditional
maximization step.

The error bound (1) enables us to monitor the dynamics of estimation error in each
iteration. Specifically, the optimization error decays geometrically with the iteration number
t, while the statistical error remains the same when ¢ grows. Therefore, the maximal number
of iterations T is implied, beyond which the optimization error is dominated by the statistical
error such that consequently the whole error bound is in the same order as the statistical
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Figure 1: Estimated gene networks corresponding to the Classical, Mesenchymal, Neural
and Proneural clusters from our SCAN method applying to the Glioblastoma
Cancer Data. In each network, the black lines are the links shared in all four
groups. The color lines are the edges shared by some subtypes.
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where d and s are the sparsity for a single cluster mean and precision matrix. This result
indicates that, after T steps, the SCAN estimator will fall within statistical precision of
the true parameter {p;,Q;}. It is worth mentioning that our theory allows the number
of clusters K to diverge polynomially with the sample size, reflecting a typical big data
scenario. When K is fixed, our statistical rate for the precision matrix estimation under
the Frobenius norm, i.e., Op(y/(s+ p)logp/n), achieves the optimal rate established in
Theorem 7 of Cai et al. (2016b), which is the best rate we could obtain even when the true
cluster structure is given.

In the literature, a related line of research focuses on methodological developments of
high-dimensional clustering. Pan and Shen (2007) and Sun et al. (2012) introduced regu-
larized model-based clustering and regularized K-means clustering, and Zhou et al. (2009)
proposed a network-based clustering approach by imposing a graphical lasso to each individ-
ual precision matrix estimation. However, the regularized model-based clustering assumes
an identical covariance matrix in each cluster, while the network-based clustering treats
each graphical model estimation separately. As pointed out in Danaher et al. (2014) and
Lee and Liu (2015), ignoring the network information of other clusters may lead to subop-
timal graphical model estimation. During the submission of our paper, we became aware of
an independent work by Gao et al. (2016) who also considered the multiple precision ma-
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trices estimation via a Gaussian mixture model. Different from ours, Gao et al. (2016) did
not enforce the sparsity in the cluster means, which would inevitably lead to sub-optimal
estimators in high-dimensional clustering (Yi and Caramanis, 2015; Wang et al., 2015b).
Most importantly, no theoretical guarantee was provided in Zhou et al. (2009) and Gao
et al. (2016). On the other hand, our SCAN method is more general than these existing
methods since we allow the sparsity in both cluster means and precision matrices, and our
theoretical analysis of the general SCAN framework sheds some lights on the behavior of
these existing method, See Remark 1 for more discussions. In addition, in terms of the
heterogeneous graphical model estimation, Saegusa and Shojaie (2016) proposed an inter-
esting two-stage method which used hierarchical clustering to obtain cluster memberships
and then estimated the multiple graphical models based on the attained cluster assignments.
Despite its simplicity, it is unclear how the performance of clustering in the first stage could
affect the performance of precision matrix estimation in the second stage. In comparison,
our approach unifies clustering and parameter estimation into one optimization framework,
which allows us to quantify both estimation errors in each iteration.

Another line of related work is the theoretical analysis of EM algorithm (Balakrishnan
et al., 2016; Yi and Caramanis, 2015; Wang et al., 2015b). Specifically, Balakrishnan et al.
(2016) studied the low-dimensional Gaussian mixture model, while Wang et al. (2015b)
and Yi and Caramanis (2015) considered its high dimensional extensions. However, their
methods are not applicable for the estimation of heterogeneous graphical models due to
the assumed identity covariance matrix. In fact, our consideration of the general covariance
matrix demands more challenging technical analysis since simultaneous estimation of cluster
means and covariance matrices induces a bi-convex optimization beyond the non-convexity
of the EM algorithm itself. This also explains why ECM is needed instead of EM. To
address these technical issues, key ingredients of our theoretical analysis are to bound the
dual norm of the gradient of an auxiliary Q-function and employ nice properties of bi-convex
optimization (Boyd et al., 2011) in the regularized M-estimation framework (Negahban
et al., 2012). See Section 3 for more details.

In terms of notation, we use [K] to denote the set {1,2,..., K}. For a vector p € RP,
||e|l2 is its Euclidean norm. For a matrix X € RP1*P2 we denote | X | r and || X |2 as
its Frobenius norm and spectral norm, respectively, and define its matrix max norm as
| X |lmax = max; ; | X;;| and its max induced norm as || X ||oc = max;—1__p, 21;2:1 | X5], which
is simply the maximum absolute row sum of the matrix. For a square matrix A € RP*P, let
Omin(A) and opyax(A) be its smallest and largest eigenvalue respectively and | A| be its deter-
minant. For a sub-Gaussian random variable Z, we use || Z||, and || Z||,, to denote its Orlicz
norm. Specifically, [|Z||y, = sup,>; p~V2(E|Z|P)/P and || Z||y, = SUp,>1 p L (E|Z[P)'/P. For
two sequences {a, } and {b,} of positive numbers, a,, < b, refers to the case that a,, < Cb,
for some uniform constant C. We write 1(-) as an indicator function. Throughout this pa-
per, we use C,C1,Co,...D, Dy, Do, ... to denote generic absolute constants, whose values
may vary at different places.

The rest of this article is organized as follows. Section 2 introduces heterogeneous
graphical models and the SCAN method. Section 3 provides some statistical guarantees for
the output directly from the SCAN method. Section 4 shows some simulation results as well
as a real data analysis on the Glioblastoma cancer data. Section 5 gives some discussions
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for future works. The appendix is devoted to the technical details of the main theorems,
and the online supplementary material contains all the supporting lemmas and their proofs.

2. Methodology

In this section, we introduce the SCAN method that simultaneously conducts high-dimensional
clustering and estimation of heterogeneous graphical models.

2.1 Heterogeneous Graphical Models

We start our discussions from heterogeneous graphical models with known labels. Assume
we are given K groups of data sets Aj,..., Ax and the samples in the k-th group are
generated i.i.d. from the following Gaussian distribution:

1 _
ol B2 = () S e { S ) B e - ) | k=1 K (@)

Let Qp = 2,;1 be the k-th precision matrix with the ij-th entry wy;;. For the k-th pair of
parameters (g, ), i.e.,

Mkl WE1r o Welp
Kkp Wgp1 - Wkpp
. 2
we write O 1= vec(fig, k) = (Hkiy - -« s fohps W11y - - - Whpls - -+ s Whlps - - -, Whpp) € RP TP as

its vectorized representation, and write the parameter of interest ©® as
®=(0©,...,0k) cREW D), (3)

Note that the degrees of freedom of © are K (0.5p? + 1.5p), including K sets of p means, p
variances, as well as p(p — 1)/2 covariances.

In some cases, there may also exist some common structure across K precision matrices.
Danaher et al. (2014) formulated the joint estimation of heterogeneous graphical models as

K
argmax » > log fr(x;Or) — P(Q, ..., ), @
1,0 -0 70 e,

where P(€21,...,Qk) is an entry-wise penalty which encourages both sparsity of each in-
dividual precision matrix and similarity among all precision matrices.

In practice, the cluster label is not always available. A probabilistic model is thus needed
to accommodate the latent structure in the data. Assume the observation x;;i =1,...,n,
from unlabeled heterogeneous population has the underlying density

K
f(@,0) = m.fr(z; Op), (5)
k=1

where 7, is the probability that an observation x; belongs to the k-th subpopulation. Here,
for simplicity we assume the number of cluster K is identifiable. In order to ensure the
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identifiability of fixed-dimensional Gaussian graphical models, some sufficient conditions
such as the strong identifiability condition was imposed on the density functions. However
these conditions are hard to verify in practice. In fact, the identifiability issue for high
dimensional mixture model is still an open problem (Ho and Nguyen, 2015) and is beyond
the scope of this paper.

Consider the penalized log-likelihood function for the observed data

log L(©]X) : Zlog (Zﬁkfk<$zaﬂkv(ﬂk) )> - R(O).

Our Simultaneous Clustering And estimatioN (SCAN) method aims to solve

max_log £(®]X). (6)
Thosbbie, g

For an illustration, we take

K »p K K
= MDY gl 22D D il +as YO w2, (7)

k=1 j=1 k=1 i#£j i£] k=1

P1(O) P2(O) P3(©)

where P1(0©) and P, (®) impose sparsity of the estimated cluster mean and precision matrix,
and P3(@®) encourages similarity among all estimated precision matrices. The above three
tuning parameters can be tuned efficiently via adaptive BIC. More details can be found in
Section 4.1.

Remark 1 [t is worth mentioning that our SCAN method is applicable to penalty functions
other than (7). For instance, the cluster mean penalty can be replaced by the group lasso
penalty in Sun et al. (2012) or the {y-norm penalty in Shen et al. (2012). The group
graphical lasso penalty for the precision matrix estimation can be substituted by the structural
pursuit penalty in Zhu et al. (2014) or the weighted bridge penalty in Rothman and Forzani
(2014). As shown in Section 2.2, only a slight modification of our algorithm is needed to
accommodate other penalty functions. We also note that SCAN reduces to the reqularized
model-based clustering (Pan and Shen, 2007) when Ay = A3 = 0, reduces to the method
by Zhou et al. (2009) when A3 = 0, and reduces to the method by Gao et al. (2016) when
A1 = 0. Consequently, the technical tools developed for the SCAN estimator in Section 3
are also applicable to these special cases.

2.2 ECM Algorithm

In this subsection, we introduce an efficient ECM algorithm to solve the general non-convex
optimization problem in (6). The ECM replaces each M-step with an conditional maxi-
mization (CM) step in which each parameter 7y, py, Q) is maximized separately, by fixing
other parameters.

Denote the latent cluster assignment matrix as L, where L, = 1(x; € Ag); i =1,...,n,
k=1,..., K. If the cluster label L;; is available, the penalized log-likelihood functlon for
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the complete data can be formulated as

log £(©|X, L) ZZsz[logmlogfk(m“ek) ~R(O).
i=1 k=1

In the expectation step, the conditional expectation of the penalized log-likelihood function
is computed as

Egx.001 | 108L(O]X, L) = Q.(0]0) — R(O), (8)

where R(@®) is the penalty in (7) and

Qn(©|01) ZZL@a 1)k<xz>[1ogwk+1ogfk<wz,®k> 9)
=1 k=1

with the class label being computed based on the parameter Ot and W,(f_l)

the previous iteration, that is,

obtained at

(i ©7Y)
S e 0 )

In the conditional maximization step, maximizing (8) with respect to g, px, Q2 yields
the update of parameters. In particular, the update of 7 is given as

L@(t—l)Jg(xi) - (10)

—~ Leu-1 (i)
m) = 7 SO (11)

i=1 "
and the update of py is given in the following Lemma.

Lemma 2 Let p,(f) = argmax,, Q,(©|@F1)-R(®) and denote ny, := >, Le-1 (i)
We have, for j =1,...,p,

o Jos@ef ™) = —msion(uV) |, ga(@i ©F )| > A

,uk] - ki
0 otherwise,
where
(t—1) (t—1) (t—1)
@)(t 1) Z?:lLG)(t*U,k(wi)(Zl 1$zlwkzg ) 11 Mg Wiij (t—1)
91.5(; )= (t—1) - (t—1) Prg
“rij Tk “kij
p
t—1 t—1 t—1 t—1
g2,5(:; O} ))ZL@@—l),k(wz’)( ) (wa — p ))wl(glj )t aijw ,(m ))-
I=1,l%j

Note that if the lasso penalty is replaced with other penalty functions, then the update
(t)

formula of p;;” in Lemma 2 can be modified accordingly. Given the pseudo sample covariance
matrix Sk, we are able to develop an update formula for € by establishing its connection

with joint estimation of heterogeneous graphical models (4).
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Lemma 3 The solution of maximizing (8) with respect to (21, ...,Qk) is equivalent to
K ~
(Qgt), . ,Q?) = arg  max an [log det(Q) — trace(SkQ) | — R(O), (12)
Q1,.., Qx>0 1

where S is a pseudo sample covariance matrix defined as

n -1 -1
& S Lew vl —m ) @i p)
> i LG)(t*U,k(mi) '

The solution for (12) can be solved efficiently via the ADMM algorithm by slightly
modifying the joint graphical lasso algorithm in Danaher et al. (2014). Since Danaher et al.
(2014) do not impose the symmetry condition for precision matrix update, {(Z/I(Q.T)}f:1 in
general is not necessarily symmetric. Following the symmetrization strategy in Cai et al.
(2011) and Cai et al. (2016a), we symmetrize Q,(f) by

wl(cz)j IE:?]IUWMJ < wkzy|) + wk]z (|wk’lj > IE:Z)]D (13)

where cu,(C ) s the ij-th entry of Q;) and I(-) is the indicator function. This step will not
affect the convergence rate of the final estimator, which is illustrated in Cai et al. (2011)
and Cai et al. (2016a). We summarize the high-dimensional ECM algorithm for solving the
SCAN method in Table 1. Our algorithm is computationally efficient due to fast sparse
learning routines shown in Lemmas 2 and 3.

Table 1: The SCAN Algorithm
Input: xq,...,x,, number of clusters K, tuning parameters A, Aa, As.
Output: Cluster label L, cluster mean py and precision matrix Q.

Step 1: Inltlahze cluster mean u( )

and setﬂ *1/K for each k € [K].
Step 2: Untll some termination conditions are met, for iteration t =1,2,...
(a) E-step. Find the cluster assignment Lgu—1) k(:cl) as in (10).

(b) CM-step. Given Lg-1) j(x;), update 7'(',(:), p,k , and Q(t in (11), Lemma
2, Lemma 3, respectively. Symmetrize Q;Ct) by (13).

positive definite precision matrix Q( )

(0)

In all of our experiments, we obtain (g, ,Q,(CO)) by random initialization, which is com-
putationally efficient and practically reliable. In the theoretical study, we require the ini-
tialization to be of a constant distance to the truth. See Remark 14 for more discussions.
Moreover, in the implementation, ECM step in Step 2 is terminated when the updated
parameters are close to their previous values:

K (t) (t) (tfl)
_ Q) -
Z { Hl‘/k #k ”2 i | ||F} < 0.01.
2 o3 ||

f=1 s
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Remark 4 In the existing high-dimensional EM algorithms where the covariance matriz is
assumed to be an identity matriz (Wang et al., 2015b; Yi and Caramanis, 2015), sample-
splitting procedures have been routinely used in the M-step in order to facilitate the theoretical
analysis. Although it simplifies theoretical developments, such a sample-splitting procedure
does not take advantage of full samples in the M-step and is hard to implement in practice.
Our Algorithm 1 is able to avoid this sample-splitting step but still enjoys nice theoretical
properties. See Corollary 18 for more discussions on its statistical guarantee.

3. Statistical Guarantee

In this section, we establish statistical guarantee for the SCAN estimator based on sample-
based analysis of (9) and population-based analysis of (16). Here, we consider the high-
dimensional setting where p > n and K is allowed to diverge with n.

We start by introducing some useful notation. Denote the index set of diagonal compo-
nents of K precision matrices by

K
G = |J Gk with G = (k(p + 1), k(2p + 2)....,k(p* + 1)), (14)
k=1

that is, @g = (w111, .., Wipp, -+, WK11; - - - WKpp) € REP. Let O be the complete index set
of ® and G° = O\ G be the complement set of G. Denote Uy, := {i : uj; # 0} where pj
is the true mean parameter, Vy, := {(i,7) : i # j,w};; # 0} where ©} is the true precision
matrix and & = Uszl Uy, So = Uszl Vi. Define = C RE(®*+P) a5 some non-empty convex
set of parameters. Denote the support space M as

M = {VeE\uki=0fora11z'¢Sl, (15)
wrij = 0 for all pairs (i, j) ¢ Sa,k = 1...,K},
where V' follows the same definition style used for @ in (3). Denote the sparsity parameters:

si=#{(i,)) rw; 0,0, =1...p,i #j,k=1,..., K},
d:=#{i:p; #0,i=1,....p,k=1,...,K}.

3.1 Population-Based Analysis

We define a corresponding population version of @,, in (9) as

Q(®'®) :=E

K
3" Low(X)log my + log fk<X;@;>1] . (16)
k=1

Without loss of generality, we assume the true prior probability 7} = 1/K for each k =
1,..., K. Recall that the update of weights in (11) is independent of the updates of other pa-
rameters. Consequently, according to (2), maximizing Q(©'|®) over (p;, Q) is equivalent
to maximizing

i 1 1
> E | Les(X) { § togder(sty) - (X — ) "X - i) }. (17)
k=1

10
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Clearly, the update of (p,€2;) is independent of the update of (g, €2) for any t # L.
This enables us to characterize the update of each pair of parameters separately. For any
k=1,..., K, define

M, () := argmax Q(®'|©) and My () := arg max Q(®'[©).
k / k !
K 2

We show in Lemma 5 that the population update of u;g is independent of Q;C, while the
population update of Q;f is a function of u;g.

Lemma 5 Forany k=1,..., K, we have
M, (@) = [ElLex(X))]'ElLes(X)X], (18)
My (1) = ElLo 1(X)] [ElLos(X)(X —m)(X —u)T]| - (19)

The difficulty of simultaneous clustering and estimation can be characterized by the follow-
ing sufficiently separable condition. Define B, (©*) := {@ €E: H@ - @*H2 < a}.

Condition 6 (Sufficiently Separable Condition) Denote W = max; W;, W' = max; W]/-,
W' = max; W; with Wj,W;,WJ{/ defined in (S.4), (S.7) and (S.8), respectively. We as-

sume K clusters are sufficiently separable such that given an appropriately small parameter
v >0, it holds a.s.

' Y
Lek(X)- Le;(X) < 24(K — 1)\/max{W, W', W"}’ .

for each pair {(j,k),j,k € [K|,j # k} and any © € B,(©*).

Condition 6 requires that K clusters are sufficiently separable in the sense that X belongs
to the k-th cluster with probability either close to zero or close to one such that Leg ;(X) -
Le ;(X) is close to zero. In the special case that K = 2 and Q] = Q3 = 1,,, Balakrishnan
et al. (2016) requires ||p] — p3]|2 is sufficiently large. Our Condition 6 extends it to general
K and general precision matrices. Note that the condition (20) is related with the number of
clusters K. As K grows, the clustering problem gets harder and hence a stronger sufficiently
separable condition is needed.

The next lemma guarantees that the curvature of Q(-|®) is similar to that of Q(-|©®*)
when © is close to ®*, which is a key ingredient in our population-based analysis.

Lemma 7 (Gradient Stability) Under Condition 6, the function {Q(:|®),® € =} satisfies,

HVQ(G)*|G))—VQ(®*\®*)H2 <7 |©-6r (21)

[

with parameter 7 < /12 for any © € By(©*). The gradient VQ(O*|®) is taken with
respect to the first variable of Q(-]-).

11
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3.2 Sample-Based Analysis

In this section, we analyze the sample-base function @),, defined as the objective function
in (9). The statistical error comes from the approximation by using sample-base function
Q. to population-base function ). We need one regularity condition to ensure that @), is
strongly concave in a specific Euclidean ball.

Condition 8 There exist some positive constants 51, B such that 0 < B < mingc g omin(£27) <
maXye(k] Omax(2)) < Ba.
Lemma 9 verifies the restricted strong concavity condition of @,,. Note that (22) corresponds

to the restricted eigenvalue condition in sparse linear regression (Negahban et al., 2012).

Lemma 9 (Restricted Strong Concavity) Suppose that Condition 8 holds. Then for any
O € B,(0*), with probability at least 1 — §, each ®" € C := {@" | ||©®" — O*||2 < 2a}
satisfies

Qu(©']8) ~ Qu(0"18) — (VQ,(©"10),0' ~ 0)< - |le’ - o z (22)

with sufficiently large n, where v = c - min{fB1,0.5(f2 + 2a) "2} is the strong concavity
parameter for some constant c.

Define P(®) = M1 P1(O)+MaP2(©O)+M3P3(O) for some positive constants My, My, Ms.
Let P* be the dual norm of P, which is defined as P*(®) = supp(g/)<1(®’, ®). For sim-
plicity, write || - ||p+ = P*(-).

Condition 10 For any fized © € B, (©*), with probability at least 1 — dy,

|vau©e) - vaerie)

e < €1, (23)

and with probability at least 1 — §o, we have

|[van(©le) - vaerie)

11 < 24
| gH2 =2 (24)
where G is the diagonal index set defined in (14). Here e, and ey are functions of n, p, K, 61, d2.

Intuitively, €1 and €2 quantify the difference between the population-based and sample-
based conditional maximization step. Note that P does not penalize diagonal elements of
each precision matrix, thus

|vau©e) - vaeEe)| = |[va.ee) - vaerie)

gc 'P*

Our analysis makes use of the property of dual norm to bridge the SCAN penalty term and
the targeted error term in Ly norm. Note that our SCAN penalty does not penalize diagonal
terms of precision matrices, and hence it can be treated as a norm only if it is applied to the
parameter ® without diagonal terms of precision matrices. Otherwise, it is a semi-norm.
For this purpose, we separate all the diagonal terms from ®. Therefore, our statistical error
is split by two parts: one from the sparse estimate of cluster means and non-diagonal terms
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in precision matrices, and another from the estimate of diagonal terms of precision matrices.
In Lemma S.1, €1 and 5 will be specifically calculated for our proposed SCAN penalty. In
the high dimensional ECM algorithm, there is no explicit form for the CM-step update due
to the existence of the penalty term. This is a crucial difference from the low-dimensional
EM algorithm in Balakrishnan et al. (2016). Fortunately, the decomposability of SCAN
penalty enables us to quantify statistical errors by evaluating the gradient of Q-function.

3.3 Statistical Error versus Optimization Error

In this section, we provide the final theoretical guarantee for the high-dimensional ECM
algorithm by combining the population and sample-based analysis.

Definition 11 (Support Space Compatibility Constant) For the support subspace M C
RE®*+P) defined in (15), we define

v(M)= sup P(Q).
ecm\{0} 1©]l2

(25)
Remark 12 The support space compatibility constant v(M) is a variant of subspace com-
patibility constant originally proposed by Negahban et al. (2012) and Wainwright (2014).
Actually, v(M) can be interpreted as a notion of intrinsic dimensionality of M. In order
to bound the statistical error, we need some measures for the complexity of parameter ©
reflected by the penalty term. One possible way is to specify a model subspace M and require
© lie in the space. By choosing the support space M of parameter of interest @, the support
space compatibility constant v(M) can measure the complezity of © relative to the penalty
term P and square norm. The larger v(M) is, the more samples are needed to guarantee
statistical consistency. For examples, if the penalty P is L1 penalty with s-sparse coordinate
support space M’, then we have v(M') = /s. In the context of group lasso penalty, we have
v(M') = \/|S|, where S is the index set of active groups. For our SCAN penalty, v(M) is
specifically calculated by MyvKd + (Mg\/f + M3)+/s, where d, s are the common sparsity
parameters for single cluster means and precision matrices accordingly and My, Mo, M3 are
some absolute constants.

We first provide a general theory that applies to any decomposable penalty, such as the
group lasso penalty in Sun et al. (2012) and fused graphical lasso penalty in Danaher et al.
(2014). The theoretical result of our SCAN penalty will be discussed in Corollary 18.

Theorem 13 Suppose Conditions 6, 8, 10 hold and ©* lies in the interior of =. Let k =
67 /7, where T, are calculated in Lemma 7 and Lemma 9. Consider our SCAN algorithm
in Table 1 with initialization ®©) falling into a ball B, (©*) for some constant radius o > 0

and assume the tuning parameters satisfy Ay = M1A£f), Ay = MQAS), Ag = MgASf), and

A =y H@“—U _ e (26)

v(M)

.
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If the sample size n is large enough such that € < (1 — r)ya/(6v(M)), then O satisfies,
with probability at least 1 — td’,

6v(M)
27 (1—kK)y
Statistical Error(SE) Optimiation Error(OE)

H@W — e , (27)

+ Kt H@<0> _ e

2

where 8 = & + 81 + O with &, 81, Oo defined in Lemma 9 and Condition 10 and & =
€1+ 62/V(M).

The above theoretical result suggests that the estimation error in each iteration consists
statistical error and optimization error. From the definition of 7 in Lemma 7, x is less
than 0.5 so that it is a contractive parameter. With a relatively good initialization, even
though ECM algorithm may be trapped into a local optima after enough iterations, it can
be guaranteed to be within a small neighborhood of the truth, in the sense of statistical
accuracy. In addition, with a proper choice of ¢’, the final probability 1 — ¢4’ will converge
to 1; see Corollary 18 for details.

Remark 14 To our limited knowledge, there is no existing literature to guarantee the global
convergence of ECM algorithm in a general case. Compromisingly, we have to require some
constraints on the initial value. In our framework, the only requirement for the initial value
is to fall into a ball with constant radius to the truth. Such a condition has also been imposed
in EM algorithms (Balakrishnan et al., 2016; Wang et al., 2015b; Yi and Caramanis, 2015)
and can be fulfilled by some spectral-based initializations (Zhang et al., 2014).

Remark 15 In Theorem 13, we introduce an iterative turning procedure (26) which ap-
peared in high dimensional reqularized M -estimation (Negahban et al., 2012), and was also
applied in Yi and Caramanis (2015) to facilitate their theoretical analysis.

The error bound in (27) measures the estimation error in each iteration. Here, opti-
mization error decays geometrically with the iteration number ¢, while the statistical error
remains the same when ¢ grows. Therefore, this enables us to provide a meaningful choice of
the maximal number of iterations 7" beyond which the optimization error is dominated by
the statistical error such that the whole error bound is in the same order of the statistical
error.

In the following corollary, taking the SCAN penalty as an example, we provide a closed
form of the maximal number of iterations T and also an explicit form of the estimation
€rror.

Condition 16 The largest element of cluster means and precision matrices are both bounded,
that is, for some positive constants ¢1 and co,

* ‘= ma X < ¢ and ||* := max ||Q} < c9.
" oo max lpklloo < c1 12" | max pax €25 [[max < c2

Condition 17 Suppose that the number of clusters K satisfies K? = o(p(logn)™1).

14
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Corollary 18 Suppose Conditions 6, 8, 16 and 17 hold. If sample size n is sufficiently
large such that

N (6(CK||Q*||OO + C'KY9)(VEd+ VEs + VE) + O K5 fp 21
n = ogp,
(T~ o

and the iteration step t is large enough such that

|0 —e,
o(n,p,K) ’

where (n, p, K) = 6C((1—£)7) || oo (VEd + Ks + p)\/K3log p/n for some positive

constant C, the optimization error in (27) is dominated by the statistical error, and

(Jo - )

12C . K5dlogp . K3(Ks+p)logp
S — | I —— + 19" ,
(1—kK)y n n

vV Vv
Cluster means error Precision matrices error

tZ Tzlogl/li

M=

< lo o

b
Il

with probability converging to 1.

Remark 19 If K is fixed, the above upper bound reduces to

= (7)
;(H“k M F)

. dlogp . (s+p)logp
S 1€/ - + €2 Hoo\/T :

Cluster means error Precision matrices error

<l e

(28)

Consider the class of precision matriz Q := {2 : @ = 0,[|Q||cc < Co} as in Cai et al.
(2016b). When Cgq does not depend on n,p, our rate /(s + p)logp/n in (28) is minimax
optimal for estimating s-sparse precision matriz under Frobenius norm (see Theorem 7 in
Cai et al. (2016b)). The same rate has also been obtained in Saequsa and Shojaie (2016)
for multiple precision matriz estimation when the true cluster structure is assumed to be
given in advance. Moreover, our cluster mean error rate v/dlogp/n is minimaz optimal for
estimating d-sparse cluster means; see Wang et al. (2015b). In short, Corollary 18 indicates
that our procedure is able to achieve optimal statistical rates for both cluster means and
multiple precision matrices even when the true cluster structure is unknown.

Remark 20 As a by-product, we establish the variable selection consistency of QIET), which

ensures that our precision matrix estimator can asymptotically identify true connected links.
Assume || Qf||ec s bounded and the minimal signal in the true precision matriz satisfies
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Wmin 1= MiNG jyey, k=1,...K Wij > 2n, where ry = (VK5d+ \/K3(Ks + p))\/logp/n. The
latter condition is weaker than that assumed in Guo et al. (2011), where they require a
constant lower bound of wmin. To ensure the model selection consistency, we threshold the
precision matriz estimator Q,(CT) such that Wy;; = w,g;.) 1{|w,(£)| > 1} as in Bickel and
Levina (2008) and Lee and Liu (2015). See Theorem S.2 in the online supplementary for
some results on the selection consistency result.

4. Numerical Study

In this section, we discuss an efficient tuning parameter selection procedure and demonstrate
the superior numerical performance of our method. We compare our algorithm with three
clustering and graphical model estimation methods:

e Standard K-means clustering (MacQueen, 1967).

e Algorithm in Zhou et al. (2009) which applies graphical lasso for each precision matrix
estimation.

e A two-stage approach which first uses K-means clustering to obtain the clusters and
then applies joint graphical lasso (Danaher et al., 2014) to estimate precision matrices.

For a fair comparison, we assume the number of clusters K is given in all methods.

4.1 Selection of Tuning Parameters

In our simultaneous clustering and graph estimation formulation, three tuning parameters
A = {A1, A2, A3} need to be appropriately determined so that both the clustering and
network estimation performance can be optimized. In our framework, the tuning parameters
are selected through the following adaptive BIC-type selection criterion. For a set of tuning
parameters A := {\1, A2, A3}, the adaptive BIC criterion is defined as

BIC(A) = —2log L(A) + log(n)dfa (p) + 2dfa (£2), (29)

where L(A) is the sample likelihood function and {dfy (), dfs(€2)} is the degrees of freedom
of the model. Here, {dfs(p),dfr(€2)} can be approximated by the size of selected variables
in the final estimator. Therefore, according to the Gaussian mixture model assumption, the
adaptive BIC criterion in (29) can be computed as

K

n K
—2) log (Z ki <wi3 i, (Qk)_1)> +Y {logn - sip + 250},
i=1 k=1

k=1

where s1 = Card{i : fig; # 0}, sox = Card{(4,7) : f\lkij #0,1 <i<j<p}and %k,ﬁk,ﬁk
are final updates from Algorithm 1. We choose a smaller weight for the degrees of freedom
of precision matrices as suggested in Danaher et al. (2014). The mixing weight 7 is not
counted into the degrees of freedom since it only contributes a constant factor.

In our experiment, we choose the optimal set of parameters minimizing the BIC value
in (29). In the high-dimensional scenario where p is very large, calculation of BIC over a
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grid search for all A1, Ao, A3 may be computationally expensive. Following Danaher et al.
(2014), we suggest a line search over A1, A2 and A3. In detail, we fix A9 and A3 at their
median value of the given range and conduct a grid search over A\;. Then with tuned \;
and median value of A3, we conduct a grid search over Ao. The line search for A3 is the
same. In our simulations, we choose the tuning range 10~22/1% with ¢ = 0,1,...,15 for
all /\1, )\2, )\3.

4.2 Tllustration

In this subsection, we demonstrate the importance of simultaneous clustering and estima-
tion in improving both the clustering performance and the estimation accuracy of multiple
precision matrices.

The simulated data consists of n = 1000 observations from 2 clusters, and among them
500 observations are from A (1, X) and the rest 500 observations are from N'(p2, 3) with

H1 = (07 1)T7 M2 = (07 _1)Ta and
1 0.8
> = < 08 1 ) |

The standard K-means algorithm treats the data space as isotropic (distances unchanged
by translations and rotations) (Raykov et al., 2016). This means that data points in each
cluster are modeled as lying within a sphere around the cluster centroid. A sphere has the
same radius in each dimension. However, the non-diagonal covariance matrix in the mixture
model makes the cluster structure highly non-spherical. Thus, the K-means algorithm is
expected to produce an unsatisfactory clustering result. This is illustrated in Figure 2 where
K-means clustering clearly obtains wrong clusters. On the other hand, by incorporating
the precision matrix estimation into clustering, our method is able to identify two correct
clusters.

Figure 2: The first plot represents the true clusters shown in red and black in the example
of Section 4.2. The middle and right plots show the clusters obtained from the
standard K-means clustering (Kmeans) and our SCAN method.

True Kmeans SCAN

Figure 3 illustrates the estimation performance of precision matrices based on the clus-
ters estimated from the K-means clustering and our method. Clearly, our SCAN method
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delivers an estimator with improved accuracy when compared to the two stage method
which applies joint graphical lasso (JGL) to the clusters obtained from the K-means clus-
tering. This suggests that an accurate clustering is critical for the estimation performance
of heterogeneous graphical models.

Figure 3: The true precision matrix and the estimated precision matrices from the two stage
method (Kmeans + JGL) and our SCAN method in the example of Section 4.2.

True Kmeans + JGL SCAN

4.3 Effect of Sample Size and Dimension

We investigate the effect of sample size and dimension in terms of the estimation error and
computational time. First, we empirically demonstrate the derived upper bound (28) for
the estimation error by drawing the error pattern of our precision matrix estimator against
sample size and dimension. The setting is the same as Section 4.2 except that we consider
a tri-diagonal convariance structure. The results are summarized in Figure 4. In the first
plot, we fix the dimension to be 10 and vary the sample size from 400 to 2000. In the
second plot, we fix the sample size to be 5000 and vary the dimension from 5 to 50. The
box plot refers to the the actual numerical values of precision matrix estimation errors, and
the red dot is the theoretical error rate in each scenario. These results demonstrate that
the empirical errors match very well with the theoretical error bound.

Second, we compare the average running time of our SCAN algorithm with varying
sample sizes and dimensions. Figure 5 shows that our algorithm scales linearly with the
sample size and roughly linearly with the dimension. This illustrates the efficiency and
scalability of our proposed algorithm.

4.4 Simulations

In this subsection, we conduct extensive simulation studies to evaluate the performance
of our algorithm. To assess the clustering performance of various methods, we compute
the following clustering error (CE) which calculates the distance between an estimated
clustering assignment 12 and the true assignment 1 of the sample data X;,..., X, (Wang,
2010; Sun et al., 2012),

~1
cn@o) = () [ 1006) = 5060 # 1010 = w53 < )
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Figure 4: Comparison of the numerical error and the theoretical error rates of our SCAN
method. The left panel displays the precision matrix estimation error with varying
sample sizes. The right panel displays the precision matrix estimation error with
varying dimensions.
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Figure 5: Running time of our algorithm. The left panel is the running time with varying
sample sizes and fixed dimension p = 10. The right panel is the running time
with varying dimensions and fixed sample size n = 5000.

© - 8 g
—_—
- T 8 —
g - = g —
“8, - E § <]
< : 5 —
E == c =
o — o
£ T == £ o
é N H T 'é, @
5 m—] = —
€ . = €
2 2o =1
——
o~ === o
H : —— =
= ° -
- - _—
T T T T T T T T T T T T T T T T T T T
400 600 800 1000 1200 1400 1600 1800 2000 5 10 15 20 25 30 35 40 45 50
sample size dimension

where |A| is the cardinality of set A. To measure the estimation quality, we calculate the
precision matrix error (PME) and cluster mean error (CME)

K K
1 ~
PME % kg_l HQ Q - CME := kE_ ,

Finally, to compare the variable selection performance, we compute the true positive rate
(TPR, percentage of true edges selected) and the false positive rate (FPR, percentage of

19



Hao, Sun, Liu AND CHENG

false edges selected)

K —~
TPR := L Z Zz'<j L(wgij # 0,05 # 0)’
K= Yicj Lwrij #0)

FPR := — i Dicj Hwrij = 0,05 # 0)
k=1 >ici Hwkij = 0)

K

In the simulation, a three-class problem is considered. We illustrate three different
types of network structures. In the first scenario, the network is assumed to have some
regular structures. We generate a 5-block tridiagonal precision matrix with p features for
the precision matrix. To allow the similarity of precision matrices across clusters, we set the
off-diagonal entry of €21, s, Q3 as 1, 0.997, and 1.01n, respectively. The diagonal entries of
01,9, and Qg are all 1.

In the second and third scenarios, followed by Danaher et al. (2014), we simulate each
network consisting of disjointed modules since many large networks in the real life exhibit
a modular structure comprised of many disjointed or loosely connected components of rel-
atively small size (Peng et al., 2009). Thus, each of three networks is generated with p fea-
tures, which has ten equally sized unconnected subnetworks. Among the ten subnetworks,
eight have the same structure and edge values across all the three classes, one remains the
same only for the first two classes and the last one appears only for the first class. For the
cluster structure of subnetwork, we consider two scenarios: power-law network and chain
network, which are generated using the algorithm in Peng et al. (2009) and Fan et al. (2009).
The detail construction is described as below.

Power-law network. Given an undirected network structure above, the initial ten-block
precision matrix (wilj)pxp is generated by

1 i # 7
wh = 0 i # j, no edge;
Unif([-0.4,—0.1] U [0.1,0.4]) i # j, edge exits;

To ensure positive definiteness and symmetry, we divide each off-diagonal entry by
0.9 times the sum of the absolute values of off-diagonal entries in its row and average
this rescaled matrix with its transpose. Denote the final transformed matrix by A.
The covariance matrix corresponding to the first class is created by

A
Shij = dij—p—t— (30)
V A;; Ajj
where d;; = 0.9 for non-diagonal entry and d;; = 1 for diagonal entry. For the

covariance matrix corresponding to the second class, we create ¥ be identical to
31 but reset one of ten block matrix to the identity matrix. Similarly, we reset one
additional block matrix for Xs.

Chain network. In the scenario, each of ten blocks of the first covariance matrix X
is constructed in the following way. The ¢j-th element of each block has the form
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oij = exp(—als; — sj]), where 51 < s3 < -+ < sp/10 for some a > 0. This is
related to the autoregressive process of order one. In our case, we choose a = 1 and
si — si—1 ~ Unif(0.5,1) for ¢ = 2,...,p/10. Similarly, we create ¥y be identical to
31 but reset one of ten block matrix to the identity matrix and reset one additional
block matrix for X3.

After the networks are constructed, the samples are generated as follows. First, the
cluster membership Y;’s are uniformly sampled from {1,2,3}. Given the cluster label, we
generate each sample X; ~ N (u(Y;), X(Y;)). Here, the cluster mean u(Y;) is sparse, where
its first 10 variables are of the form

(15, —p15) " 1(Yi = 1) + plio 1(Yi = 2) + (—pl5 , —plg) | 1(Y; = 3),

with 15 being a 5-dimensional vector of all ones, and its last p — 10 variables are zeros. For
the first scenario, we consider 3 simulation models with varying choices of p and n:

e Model 1: ¢ = 0.8 and n = 0.3,
e Model 2: =1 and n = 0.3,
e Model 3: p =1 and n = 0.4.

Here p controls the separability of the three clusters with larger u corresponding to an
easier clustering problem, and 7 represents the similarity level of precision matrices across
clusters. For the second and third scenarios, we considered three simulation models with
sequential choices of u:

e Models 4,7: = 0.7,
e Models 5,8: = 0.8,
e Models 6,9: u=0.9.

The number of features p is equal to 100 and sample size is equal to 300. The results are
averaged over 50 experiments. The code is written in R and implemented on an Intel Xeon-
E5 processor with 64 GB of RAM. The average computation time for SCAN of a single run
took one and half minute.

In the experiment, our method selected the tuning parameters via the BIC criterion
in Section 4.1. For a fair comparison, we also used the same tuning parameters A, A9 in
Zhou et al. (2009), and the same A2, A3 in the joint graphical lasso penalty of the two-
stage approach. We repeated the procedure 50 times and reported the averaged clustering
errors, estimation errors, and variable selection errors for each method as well as their
standard errors. Table 2 is for regular network, Table 3 is for power-law networks and
Table 4 is for chain networks. As shown in Table 3 and Table 4, the standard K-means
clustering method has the largest clustering error due to a violation of its diagonal covariance
matrix assumption. This will result in poor estimation for multiple precision matrices. The
method of Zhou et al. (2009) improves the clustering performance of the standard K-
means by using a graphical lasso in the precision matrix estimation. However, it obtains
a relatively large precision matrix estimation error and very bad false positive rate since it
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ignores the similarity across different precision matrices. In contrast, our SCAN algorithm
achieves the best clustering accuracy and best precision matrix estimation accuracy for
both scenarios. This is due to our simultaneous clustering and estimation strategy as well

as the consideration of similarity of precision matrices across clusters.

This experiment

shows that a satisfactory clustering algorithm is critical to achieve accurate estimations of
heterogeneous graphical models, and alternatively good estimation of the graphical model
can also improve the clustering performance. This explains the success of our simultaneous
method in terms of both clustering and graphical model estimation.

Table 2: Simulation results of regular network. The clustering errors (CE), cluster mean
errors (CME), precision matrix errors (PME), true positive rates (TPR) and false
positive rates (FPR) of precision matrix estimation of four methods. The minimal
clustering error and minimal estimation error in each simulation are shown in bold.

Models Methods CE CME PME TPR /FPR
K-means 0.1660.011 2.2560.108 NA NA /NA
Model 1 | K-means + JGL | 0.166¢.011 2.2560.108 8.2060.090 0.9850.001 /0.0230.001
n = 0.8 Zhou et al. (2009) 0.1040‘007 1.1900.052 10.4580.0509 0.9600.002 /0.1070.001
n=0.3 SCAN 0.071g.007 1.1209.063 7.6200.072 0.9930.001 /0.022¢.001
K-means 0.2100,009 3.4280,114 NA NA/NA
Model 2 K-means + JGL 0.2100.009 3.4280.114 12.0990.317 0.9890.001 /0.0390.003
n = 1 Zhou et al. (2009) 0.1250,012 1.8600,118 12.8330,253 0.9930,001 /0'1190.006
n=0.3 SCAN 0.0580.012 1.476¢0.145 10.301g.332 0.9970.001 /0.0360.002
K-means 0.0210.002 1.2890.013 NA NA /NA
Model 3 | K-means + JGL 0.021¢ 002 1.2890.013 7.6390.061 0.9930.001 /0.029¢ 002
n = 1 Zhou et al. (2009) 0.021(]‘002 0.9680_018 10.1150.047 0.9680.001 /0.1060.001
n= 0.4 SCAN 0.014¢9.001 0.956¢.018 7.6149.061 0.9930.001 /0.0290_002
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Table 3: Simulation results of power-law network. The clustering errors (CE), cluster mean
errors (CME), precision matrix errors (PME), true positive rates (TPR) and false
positive rates (FPR) of precision matrix estimation of four methods. The minimal
clustering error and minimal estimation error in each simulation are shown in bold.

Models Methods CE CME PME TPR /FPR
K-means 0.3310,007 3.2820,047 NA NA /NA
Model 4 K-means + JGL 0.3310.007 3.2820.047 49.5160.159 0.575()‘002 /0.0340.002
m = 0.7 Zhou et al. (2009) 0‘3110.006 2.4940,055 50~9450.164 0.5780,002 /0.1340,002
SCAN 0.2830.008 2.3850.065 48.845¢.146 0.5770.003 /0.0320,002
K-means 0.2280.010 2.7770.111 NA NA/NA
Model 5 | K-means + JGL 0.2280.010 2.7770.111 48.6010.132  0.582¢.002 /0.0440 003
n = 0.8 Zhou et al. (2009) 0.186(]‘011 1.8370.113 49.2890.122 0.5840.001 /0.1310.001
SCAN 0.1560.012 1.7890.119 47.729¢.118 0.583¢.002 /0.0410 002
K-means 0.0830,010 1.6240,120 NA NA /NA
Model 6 K-means + JGL 0.0830.010 1.6240.120 46.8790.093 0.5890.002 /0.0700.003
@ =0.9 | Zhou et al. (2009) | 0.0500.002 1.0030.018  47.5030.003  0.5910.001 /0.1280.001
SCAN 0.0450.002 1.003¢p.018 46.3560.086 0.5890.001 /0.0680.003

Table 4: Simulation results of chain network. The clustering errors (CE), cluster mean
errors (CME), precision matrix errors (PME), true positive rates (TPR) and false
positive rates (FPR) of precision matrix estimation of four methods. The minimal
clustering error and minimal estimation error in each simulation are shown in bold.

Models Methods CE CME PME TPR /FPR
K-means 0.2770.005 2.7050.070 NA NA /NA
Model 7 | K-means + JGL | 0.277p005  2.7050.070  25.608p.183  0.9950.000 /0.0330.001
n = 0.7 Zhou et al. (2009) 0.267(]‘006 1.8150.075 29.3410.109 0.9910.001 /0.1310.002
SCAN 0.2310.007 1.652p.087 25.1100.106 0.9910.001 /0.0310.001
K-means 0‘2000.008 2. 1240.098 NA NA/NA
Model 8 | K-means + JGL 0.2009.008 2.124¢.098 24.499¢.127  0.996¢.000 /0.0420.001
n = 0.8 Zhou et al. (2009) 0.1680.004 1'0550.076 27.4940_121 0.9950,001 /0.1310_001
SCAN 0.140¢.004 1.046¢.038 23.804¢.085 0.9960.000 /0.0399.001
K-means 0.1230.005 1.4650.040 NA NA /NA
Model 9 | K-means + JGL | 0.123p005  1.4650.040  23.6630.007  0.9970.000 /0.0440.001
n = 0.9 Zhou et al. (2009) 0.116(]‘003 1.0310_022 26.4760_090 0.9960.001 /0.1310,001
SCAN 0.0980.003 1.0250.022 23.425¢.083 0.9989.000 /0.0430.002

4.5 Glioblastoma Cancer Data Analysis

In this section, we apply our simultaneous clustering and graphical model estimation method
to a Glioblastoma cancer dataset. We aim to cluster the glioblastoma multiforme (GBM)
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patients and construct the gene regulatory network of each subtype in order to improve our
understanding of the GBM disease.

The raw gene expression dataset measures 17814 levels of mRNA expression of 482 GBM
patients. Each patient belongs to one of four subgroups of GBM: Classical, Mesenchymal,
Neural, and Proneural (Verhaak et al., 2010). Although they are biologically different, these
four subtypes share many similarities since they are all GBM diseases. For our analysis,
we considered the 840 signature genes established by Verhaak et al. (2010). Following
the preprocess procedures in Lee and Liu (2015), we excluded the genes with no subtype
information or the genes with missing values. We then applied the sure independence
screening analysis (Fan and Lv, 2008) to finally include 50 genes in our analysis. These 50
signature genes are highly distinctive for these four subtypes. In the analysis, we pretended
that the subtype information of each patient was unknown and evaluated the clustering
accuracy of various clustering methods by comparing the estimated groups with the true
subtypes. In all methods, we fixed K = 4. Moreover, we set the tuning parameters
A1 = 0.065, A\ = 0.238, and A3 = 0.138 in our SCAN algorithm. For a fair comparison, we
also used the same A1, A2 in Zhou et al. (2009), and the same A9, A3 in the joint graphical
lasso of the two-stage method.

Table 5 reported the clustering errors of all methods as well as the number of informative
variables in the corresponding estimated means and precision matrices. The standard K-
means clustering has the large clustering error due to its ignorance of the network structure
in the precision matrices. Therefore, the consequent joint graphical lasso method of the
network reconstruction is less reliable. The method in Zhou et al. (2009) performed even
worse. This is because their method estimates each precision matrix individually without
borrowing information from each other. In this gene network example, all of the four
graphical models share many edges due to the commonality in the GBM diseases. Zhou
et al. (2009)’s method may suffer from the small sample size. Our method is able to
achieve the best clustering performance due to the procedure of simultaneous clustering
and heterogeneous graphical model estimation.

Table 5: The clustering errors and the number of selected features in cluster mean and
precision matrix of various methods in the Glioblastoma Cancer Data.

Methods Clustering Error >, [|a® (o 32, [|2%M]|o
K-means 0.262 200 NA
Zhou et al. (2009) 0.336 106 1820
K-means + JGL 0.262 200 1360
SCAN 0.222 128 1452

To evaluate the ability of reconstructing gene regulatory network of each subtype, we
report the four gene networks estimated from our SCAN method in Figure 1. The black lines
are links shared in all subtypes, and the color lines are uniquely presented in some subtypes.
Clearly, most edges are black lines, which indicates the common structure of all subtypes.
For instance, the link between ZNF45 and ZNF134 is significant across all the four subtypes.
Those two genes belong to ZNF gene family. They are known to play roles in making
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zinc finger proteins, which are regulatory proteins that are functional important to many
cellulars. As they play roles in the same biological process, it is reasonable to expect this link
is shared by all GBM subtypes. There are two links that shared by three subtypes except
neural subtype: TNFRSF1B<~TRPM2, PTPRC<+ TRPM2. One link uniquely appears
in Proneural subtype: ACTR1A +DWED and one link FBXO3+HMG20B is uniquely
shown in neural subtype. These findings agree with the existing results in Verhaak et al.
(2010). It has been shown that the PTPRC is a well-described microglia marker and is
highly exposed in the set of murine astrocytic samples which are strongly associated with
the Mesenchymal group. In addition, TRPM2 and TNFRSF1B are shown frequently in the
GOTERM category of Mesenchymal group but less likely to appear in Neural group. And
FBXO3 is only significant in the cell part of neural subtype. Furthermore, ACTRI1A is only
found in the intracellular non-membrane-bound organelle and protein binding of Proneural
subtype in the supplemental material of Verhaak et al. (2010). It would also be of interest
to investigate unique gene links that were not discovered in existing literatures for better
understanding of GBM diseases.

5. Discussion

In this paper, we propose a new SCAN method for simultaneous clustering and estimation
of heterogeneous graphical models with common structures. We describe the theoretical
properties of SCAN and we show that the estimation error bound of our SCAN algorithm
consists of statistical error and optimization error, which explicitly addresses the trade-off
between statistical accuracy and computational complexity. In our experiments, the tuning
parameters can be chosen via an efficient BIC-type criterion. For future work, it is of
interest to investigate the model selection consistency of these tuning parameters and study
the distributed implementation of ECM algorithm based on the work in Wolfe et al. (2008).

APPENDIX

In this section, we provide detailed proofs of key results: Theorem 13 and Corollary 18.
The proofs of other lemmas and theorems are deferred to the online supplementary.

Appendix A. Proof of Theorem 13

First we introduce some notation. Recall the definition of support space M in (15). The
orthogonal complement of support space M, namely, is defined as the set

Mt ={@ €= |(V,0)=0frall VeM}.
The projection operator IIp((®) : 2 — E is defined as
Mpm(O) := in [V -0|,.
Mm(©) = arg min || I
To simplify the notation, we frequently use the shorthand O = IIy(®) and O 1 =
In order to efficiently solve the high-dimensional regularized problem, we explore some

good properties enjoyed by SCAN penalty in Lemma 21 and Lemma 22. Similar properties
can be derived by any decomposable penalty.
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Lemma 21 The SCAN penalty P is convex and decomposable with respect to (M, M™L).
In detail,
P(O) + Oy) = P(O)) + P(Oy), for any ©1 € M, 0y € Mt

The dual norm of SCAN penalty P is given by

K 1/2
* . 2
PH(O) = i,ﬁ%};j M /,uzj,Mg wizj,Mg (;wki]) . (31)

Proof of Lemma 21: The convexity of SCAN comes from the convexity of lasso penalty
for cluster means and the convexity of group graphical lasso penalty for precision matrices.
The decomposability and derivation of dual norm is obvious from the definition. Also see
Wainwright (2014). [ ]

Lemma 22 For all vectors © belonging to support space M, P(@ nq) satisfies the following
inequality:

P(OM) < v(M)[[Oumll, (32)

where v(M) = MiVKd + (MaVK + M3)y/s is the support space compatibility constant
defined in (25) .

Proof of Lemma 22: The detailed proof of Lemma 22 is discussed in S.V. |

Next lemma is a key step to establish our main theorem. It quantifies the estimation
error in one iteration step. According to this lemma, one can precisely understand how the
statistical error and optimization error accumulate with more and more iterations.

Lemma 23 Suppose ®F lies in the interior of Z. If O~ ¢ B (©*), with choice of /\,(f) =
e+ 7)©1) — @*||2/v (M), final estimation error satisfies ||©) — ©*||; < 6V(M))\£Lt)/7
with probability at least 1—¢" for allt = 1,2,.... Here 7, A and v(M) are defined in Lemma
7, Lemma 9 and Lemma 22 accordingly.

Proof of Lemma 23: Proof is postponed to section B.1. |

Equipped with Lemmas 23, we are able to precisely quantify the final estimation error
after ¢ iteration steps. This can be achieved by mathematical induction. For simplicity,
define k := 67 /7. When t = 1, we have ©(©) € B,(0@*). Applying Lemma 23 yields that

1
H@)(” — e 6 v(M)
2 ’Y

_ M) ‘9@ — e ‘ .

vy 2

Suppose the following inequality is true for some t > 1,
ot

H@)(t) _er| <=M L ‘(9(0) —e|

27 11—k 7 2
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with probability at least 1 —td". We need to verify when ¢ = ¢+ 1, the above inequality still
holds. First, we show that ©) is within a ball of ©* with radius a. Under the assumption
that ¢ < (1 — k)ay/(6v(M)) for sufficient large n, we have

1 — k' 6v(M) (1 — K)ay
2 T 11—k v 6v(M)
< (1-rYa+ra=a.

o

4kt H@<0> _ e

2

Consequently, we have @) ¢ B.(©*). Applying Lemma 23 with ¢ 4+ 1 implies that

H@)(Hl) _ e < 6v(M)e + K H(_)(t) _ e
2 v 2
it
< 6v(M)e p (1 k' 6v(M)e A HG(O) _ o >
¥ 1-k ¥ 2

_ 1— /q;t—‘rl 61/(M>€ 4 K]t+1 H(")(O) _ e
1-k Y

I

2

with probability at least 1 — (¢ + 1)d’. Therefore, we reach the conclusion that

ot
H@)(t)_@* < 1—% Ms—i—ﬁtH@(o)—@*
2 11—k 2
< GvM)e | ACEECH
(1—k)y 2
with probability at least 1 — t4’. This concludes the proof of Theorem 13. |

A.1 Proof of Corollary 18

It is worth to notice that sufficiently large iterations ensure that the optimization error will
be dominated by statistical error finally as k < 1/2. First we provide a stopping rule 7.
Plugging 1,5 from (S.14) & (S.15) into statistical error part and letting 6 = 1/p, we have:

SEzl_ [(FH\FH)\[)(CKHQ*HOOJFC’KLE')),/]‘)?]

1

e

K3 logp]

Note that under Condition 17, K = o(p). Then SFE is simplified by

SB< o )||n*||oo(F+\/W)\/K31°gp

for some constant C. For simplicity, let’s denote

P, K) = )||ﬂ*||oo(F +m)¢m
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Therefore, the bound (27) suggests a reasonable choice of the number of iterations. In
particular, when

t>T = log, M (33)
- "\ e(n,p, K) )7
the optimization error is dominated by statistical error. Final estimation error will be upper
bounded by
. 12C Kb5dlo . K3(Ks+p)lo
lo® - e < [0 FELOER e BB ) 0B
2= (1—k)y n n

with probability at least 1 — T(26 K2 4+ 8K + 1) /p. Plugging in the expression of 7" in (33),
the probability term is bounded by:

T(26K2 + 8K +1) logy /. (n/ ((\/m + m) m)) K?

p p
K? logy ;10

p

N

Under Condition 17, T'(26 K2 +8K +1)/p goes to zero as K and p diverging. Putting pieces
together, we have

12C K5dlogp K3(Ks+p)logp
< 19 \f ———— + 127]|o ,
2= (1—k)y n n

oo

which implies

K
T * T *
> (" il + " - <]
k=1
12C Kb5dlogp K3(Ks+p)logp
< 1o\ —— + 1] ;
(1—k)y n n
with probability converging to 1. It ends the proof of Corollary 18. |

Appendix B. Proof of Key Lemmas
B.1 Proof of Lemma 23

We first consider an unsymmetrized version of ®®. Our proof makes use of the function
f 2 — R given by:

F(A) = Qu(@" + A0 ) — (€10 V) A (P(O" + A) — P(6)).
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This function helps us evaluate the error between the iterative estimator @® and the true
parameter ®*. In addition, we exploit the following fact:

f(0)=0
{f(ﬁ) >0 when A = ©() — @~ (34)

The second property is from the optimality of O©® in terms of the sample version objective
function. In detail,

ol — argrrngR(G’]@(t_l)) _ )\g)p((-)/). (35)

Correspondingly, there is a classical result named self-consistency property for population
version objective function in McLachlan and Krishnan (2007), which in detail is

oF = argnga/x@(@'\@*). (36)

The whole proof follows two steps. In Step I, we show that f(A) <0 if [|Allz = €. Next in
Step II, we show that the error term A must satisfy ||All2 < & under the result in Step I
Step I: we begin to establish an upper bound on f(A) over the set C(§) := {A :

|All2 = &} for the chosen radius £ = 6)\25)1/(/\/1)/7. From the assumption on n, when n is
large enough,

(1-Kar _ (2= ray

6v(M) — 6v(M)
6v(M)e
Y

€<

<(2—kK)a.

On the other hand, as |@¢~Y — @*||; < a, ¢ satisfies,

6v(M)e
Y

&=

+ K H(—)(t_l) - O

< 2a.
2

It is sufficient to show that C(¢) C C = {A|||All2 < 2a}. According to Lemma 9, replacing
®'—O* by A, then any A € C(§) enjoys restricted strong concavity property, which implies:

Qu(© +41017) - Q,(©7101) < (VQ, (€70~ 1), A)-T A3,

with probability at least 1 — §. Subtracting AD (P(®* + A) — P(©*)) from both sides, we
construct an upper bound of f(A) in the right side,

F(8) < (VQu(©7[01 1), A) -\D (P(O" + A) — P(&") ~1|IA].
() (i)

Bounding (i): Note that @, is a sample version @Q-function but ®* comes from population
version Q-function (36). So we use VQ(©®*|@*~1) as a bridge to connect the sample-based
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analysis and population-based analysis together.
(i) < (VQu.(©7e! V) -ve©r|e!)
+VQ(e*|8! ) - vQ(e|e7),A)|
< [(VQn(©7[0")) — V(e ),A)|

N~

Statistical Error(SE)
+[(VQ(e'181™Y) — vQ(e]e), A)).

Optimization Error(OE)

Note that ©* lies in the interior of =. According to the self-consistency property (36),
VQ(®*|®*) = 0 which implies the first inequality holds. This decomposition for (i) leads
to the optimization error part and statistical error part.

For simplicity, we write h(@*@(¢1) = VQ,(0*@¢1D) - vQ(@*|®~1). Since the
group graphical lasso penalty does not penalize the diagonal element, it is a semi-norm.
Recall that both A and h(©*@®~1) are K(p? + p) dimensional vectors. Then by the
definition of G and G¢ in (14), statistical error can be decomposed further by:

SE. < [(h(©7101V)ge, Age)| +|(h(©7101V)g, Ag)
< ||p@18 g - P(age) + In(©* 1O Mgl - A2
< W@ 18 ) p- - P(A) + [A(©* 1O D)g]l> - | A2

The second inequality comes from the generalized Cauchy-Schwarz inequality. After ex-
cluding the diagonal terms from precision matrices, P(Age) can be treated as a norm. The
last inequality is because both the penalties P and P* do not penalize the diagonal term of
precision matrices. Under statistical error Condition 10,

SE <&1P(A) + e2[|All2, (37)

with probability at least 1 — (41 + d2).
On the other hand, from the assumption that @¢~1) is in the B,(@*), we are able to
apply the Gradient Stability condition in Lemma 7 to bound OE.
OE < [[VQ(©*|8! ) - vQ(©*|e):- A, (38)
< 7@ — ;- Al

Therefore, putting (37) and (38) together, (i) is upper bounded by
(i) < e1P(A) + el Allz + 7O — @2 - |A ]2, (39)

with probability at least 1 — (1 + d2).
Bounding (7i): The decomposability of SCAN penalty in Lemma 21 implies P(@* + A) =
P(O* + Anm) + P(A ). By triangle inequality, it is sufficient to bound (i),
(i) = PO +Apm)+PAyL) —P(OF) (40)
> P(OF) —P(Am)+P(Ap) —P(OF)
= P(Bpe) ~ PlB).
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Combining (39) and (40), f(A) is upper bounded by:
F(A) < erP(A) +eof| Al + 704 — |2 - [|A ]2
— M) (P(Apa) = P(Aw)) — S IAJ3:

Triangle inequality implies P(A) < P(Apn) + P(Ap r). After combining some terms, the
right hand side above could be further bounded by:

f(a) < —%IIAH% + A 4+ e)P(Am) + (61 = AD)P(A ) (41)
+eol|Allz + 70V — ©%||2 - A2,

with probability at least 1 — (§ + 01 + d2). Let 0’ = § + 61 + d2. According to Lemma 22,
we have the inequality P(Ax) < v(M)||Apm]|2. By the definition of Iy (A), we have

[Amllz = Tae(A) = T (0)[l2 < A = Ol]2 = |A]l2.
Then P(A ) is further bounded by
P(Am) < v(M)[|A]2. (42)
Substituting (42) into (41), we obtain:

g9 + 7@ — ©F||, Va2
f(A) < (51 + M) v(M)A]z = S lIA]2

FAVVM) A2 + (61 = A)P(Ape),

with at least probability 1 — ¢§’. Recall that we choose

n TH@(tfl) — (")*HQ . €9

(t) — =
Ay =€ o) ,€ 61+1/(M)'

From the construction of )\,(f), the inequality €1 — )\gf) < 0 always holds. Therefore, the

upper bound for f(A) can be simplified by

FA) < =ZIIAI + 22D v(M) Al

(t) 2
L

where the above equality is due to A € C(£). Now we reach the conclusion that f(A) < 0
for all vectors A € C(¢).

Step II: Now we start to prove the following statement: if for some optimal solution
©® in (35), the corresponding error term A = ©) — @* satisfies the inequality HAHQ > &,
there must exist some vectors A which belong to C(£) such that f(A) > 0. Before our
forward proofs, let’s state a lemma which describe the curvature of function @, (-|@*1).
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Lemma 24 Q,(-|@%Y) satisfies the following inequality a.s.:
0.0V [et-1) _ g, (@(m,@(t—l)) < <in (@(m‘@(t—l)) el _ @<2>> .
when (@, 02) = (©W 01 4 (1 — t)©*) or (O, "0 + (1 — t*)©*).
Proof of Lemma 24: The detailed proof of Lemma 24 is discussed in S.VI. |

The lemma tells us that we only require sample-based Q-function to be point-wise
concave rather than global concave. If ||Alls > &, then the line joining A to 0 must intersect
the set C(£) at some intermediate points t*A, for some t* € (0,1). According to Lemma
24

Qn(@101Y) — Qu (e + (1 - 18|01 Y)
< <VQn(t*®(t) + (1 —t)eret ) (1-t) el — @*)>
0.0 0Dy _, (t*@w +(1- t*)e*\e“*l))
< <vc2n (t*®(t) +(1- t*)@*|@(t_1)) (e _ @*)> .
Adding the above two inequalities together with proper scaling, we can get
Q@@ ) + (1 - 1)@, (070" ) < Q, ("0 + (1 - t")©*|@ ).
According to the convexity of P(@®),
P (@* + t*ﬁ) _PO) =P (t*@)(t) +(1- t*)@*) —P(O)
< POW) + (1 — t)P(O%) — P(O) = t* (73(@“)) - 73(@*)) :
Putting the above pieces together, it is shown that
FERA)  =Qn (t*e“) +(1- t*)®*|®(t’1)) —Qn (@*|@<H>)
A (PO +A) - P(O%)
>t (Qu(0V10)) - g, (071!

=t*f(A).

)
)=\ (PO©) - P(O"))

On the other hand, the optimality property (34) guarantees f(ﬁ) > 0, and hence f(t*ﬁ) >0
as well. Thus, we have constructed a vector A = t*A with the claimed properties. This
proves the statement in the beginning of Step II. Therefore, combining with the result in
Step I, the contradiction of the statement in Step II implies that

6AY)
2 Y
with probability at least 1 — ¢’. This concludes the proof of Lemma 23. |
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Online Supplementary

This supplementary contains supporting lemmas and their proofs for the theoretical
developments in the main paper.

Appendix A. Proof of Several Lemmas and Selection Consistency
S.I Proof of Lemma 5

The result follows by setting the derivative of Q(©'|®) with respect to u}c or Q;g as zero.
In particular, solving
0Q(0'|e ) ,
PO _ RiLe (X)X ~ )] =0,
Opy,
implies that

(2] 'ElLox(X)2X] _ E[Lex(X)X]
E[lLe x(X)] ElLex(X)] -

argmax Q(0'|®) =
e

Similarly, solving

oQe'e) 1 A | : /
e = 5ELe s - SE[Lek(X)(X — m)(X — ) '] =0,
o, 2 2
implies (19). This ends the proof of Lemma 5. |

S.IT Proof of Lemma 7
We consider k-th group first
|Ver QUi 21107 - Vo Qui. 210)| < 710 - 07, (8.1)

for any ® € B,(©®*). Remind that C-');ﬁ = vec(pg, ) € RP°HP. According to the derivation
in the proof of Lemma 5, we have

E [Le,k(X)Q;f(X - u;)}
/ ! ! T
vee {E[Lo 1 (X)) — §E[Lox(X)(X — ) (X — )]}

Define Dr,(©*,0) = Lo+ (X) — Le 1 (X). Therefore, the square of the left hand side of
(S.1) can be simplified to

* * * * * 2
HVG;CQ(P%? kl©7) = Vg Qluy, 1O)];
~ [EIDL(©", ©)95(X — )]}

1

Ve Q(O4]©) =

1 * *— 1 * * * ’
+|3EDLer, @0 - JEIDL(©" ©)0X — i) (X — )]

F

11
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If we can show I < 71]|® — ©*||3 and I < 75||© — ©*||3, then we have 7 = /71 + 72 since
|Ver Qi 2110 ~ Vey Quuii, 2510) | < v T 72110 - 7.

Bounding I: We apply Taylor expansion to simplify Dy (©* ©). Remind that, by
assumption, 7, = 1/K, and hence we have

Ler(X)= mefo(X3O8) 1|2 exp { —1(X — ) TRU(X — i)} .
| ko mRfe(X5Ok) DT (]2 exp { = 3(X — ) T (X — i)}

Then, Taylor expansion of Le (X ) around ©j leads to
Lokx(X) =Lei(X) + [VoLe,x(X)] (6 — ©%), (S.2)

where ®; = ©* +tA with ¢t € [0,1] and A = ©® — ©*. Here the derivative of Lg ;(X) with
respect to ® = (0q,...,0k) can be written as

VoLex(X) = (Ve Lox(X)]T,. ., [v@KL@,k(X)]T)T , (S.3)

where
o _L@,k(X) . L@J(X) . 5@(X) when j 7& k‘;
Ve, Lex(X) = {L@JC(X)[l — Lox(X)] - o, (X) when j = k,

and, for j =1..., K, and ©; = vec(u;, 2;),

Q;(X — ;)
0,09~ e 71~ () - )7}

Next we apply this Taylor expansion to bound I. According to (S.2), we have
2
I = [E[2ixX - m)VeLe (X)) (© - ©9)]||

= |[e[oix - wpiveLexx)]| 10— e 13

IN

s E[I9X  wl - [VoLok (X)I] 1© - 73
S ’

T1

By the definition of Vg Le, 1(X), which equals to (S.3) with ® = ©;, we have

IVeLek(X)l; = ) [Lews(X)Le. (X)) e, (X)]"de,, (X)
ik

A
+ [Lo,x(X)(1 - Lo,x(X))]* - Do, (X)) do,, (X).

Aa
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For each j =1,..., K, we define

W;i= sup E{lbe,, (X)) 0o, (X) - 194X - u)l3}, (S4)
te(0,1]
Then
< sup B[ I94(X — ) I3 (A1 + 42)| (S.5)
te(0,1]

Under Condition 6, it is sufficient to get an upper bound for 7,

no< sup E Q)X - mp)l3 A + sup E [[95(X — )3 A2

t€[0,1] t€[0,1]
72 Y ?
< -W; K-1 - Wg.
- ; 242(K — 1)2M; * (24(K - 1)\/Mk( )) g
It implies that
~2
< —. .
=988 (5.6)
Bounding ITI: We can apply similar trick above to bound II. By triangle inequality, we
have
1 2
II < HE[DL(G)*,@)Qzl]
2 F
I
2
1 * * *\ T
" H2E[DL<9 O)X — (X — )]
F
Il
Apply Taylor expansion in (S.2), we obtain
1 f— *
I < SE||[VeLe,(X)I3 1271} € — 73
721
I < E Lo (X)12]lx = wyx —w) ™| | -1© - @12
s < 5B |IVeLe (X)X —up)x —ut)T|[}| -l €72,
Y22
Analogously to (S.4), we define
r T *—1]|2
W, = sup E {[5@tj(X)] Se, (X) || HF}, (S.7)
tel0,1]
” N T 2
W ts%g]E{[a@txX)Faem(X)H(X—ukxx—uk) [ S
€10,
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for each j = 1,..., K. Under Condition 6, we have that,
2 2 2
91 < %, Tog < 57%, and hence 7 < %

This together with (S.6) implies that 7 = /71 + 72 < /12, namely

* * * * * ,7
HV@;Q(M@’ 1O — V@;Q(llk,QM@)HQ SETh
Now we take the summation
K >
> | Vo Qi 210" - Vo QUi 1O)| < L0 - €7, (8.9)
k=1
for any © € B, (©®*). This ends the proof of Lemma 7. [

S.ITIT Proof of Lemma 9

In order to compute 7y, we consider each @y, = {ug, 2} individually. That means we prove
the following part first:

Qn(©}/©) — Qu(©}10) — (VQ.(8]]0). 8} — ©]) < —1 ||&} - &j;.

where Q,(0|®) means we set ©; i # k to zero.
It is sufficient to compute 7y, in (22). Remind that @, = vec(p, Q) € RP*+P_ There-
fore,

Ve @n(©4]©) = (V1 Qn(©4|O)], [vee(Vy Qn(©4]©))]) ", (S.10)
with

/ 1 i / !
YV, Qu(©410) = = [Leu(@) (@i - uy)
i=1

n

Vo Qn(011) = o= llex()e; !
i=1
S e - )]
i=1
Denote h(p, Q) := (x; — p) ' Q(z; — p). According to the definition in (9), we have
Q1(6410) - Qu©10) = 13- [Lout(lsdeish)

1 * * *
—5log det () + h(p, Q) — (g, Q%)}}
This together with (S.10) implies that
Qn(©4]©) — Qu(B}|®) — (Vg Qn(©]]©),0, - 8)) = I + 11,
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where
1 - * * *

I=— > [L@,k(wz') {h(“kv Q) - h(ﬂkvﬂk)”

i=1
(i~ 1)V, Qu(©F]O1),

1 & 1 py 1 *
IT = - Z {L(-),k(wi){§log det(£2;) — B) log det(£2)

i—1

Fh(ph, ) = huh, ) }| = [vee(S, — Q1)) Vo Qu(©;100).

By a little algebra, we can show that

1 n
= —?ZLe,k(mi) Hk)TQk( — M%)
i=1

Due to the positive definiteness of €2 , it is shown the following inequality

(% = 1) T (= omin(Q) [) (1, — pi) > 0

* 2
(e, — 1) "y, — 1) > (1 — 25) " omin () I (2, — 7) > Bu ||, — mi]]; -

Substituting the above bound, it is shown that

I'< —7ZL®I€ ;)| ey, — Hk;||2 (S.11)

Therefore, it remains to show that
1 - L@ kT * (]2
PN S lveel %, — I (5.12)

Note that, in order to show (S.12), it is equivalent to deriving the strong concavity parameter
of g(€), where

n

o) = > [L@,k(xn {; log det(S2) — (4, nk)}] -

i=1

To see it, finding the strong concavity parameter of g(€2x) aims to compute py such that,
for any €, Q5 € B, (2}),

9(%) — g(2) — (vee (Vg(%)) , vee( — Q) < —pi/2 - % — AT,

where the left hand side is exactly I1. According to Taylor expansion, we can expand g(£2},)
around 27 and obtain

9( Q) = 9(Q) + (vee(Vg (), vec(, — Q)
+% [vec($2, — 95)] ' V29(Z) [vec(€2 — )],
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where Z = ¢t + (1 — t)Q; with ¢ € [0,1]. For any two matrices A, B, we write A > B if
A — B is positive semi-definite. We denote 1, as the identity matrix with dimension p x p.
And o;(A) is the i-th eigenvalue of matrix A. Therefore, if we can show that —V?2g(Z) >
m 1,, i.e., the minimal eigenvalue value Omin(—V?2g(Z)) > m, for some positive m € R, then
we have the strongly concavity parameter p = m. By the definition, we have VQg(Q;;) =
— S Leox(z:)[Qf] ' @ [Qf] 1. Denote A = ), — Q. We obtain

_V2y(Z) = % znj Lo i) (0 + tZ)A o (0 + t&)*l .
=1

According to Theorem 4.2.1 2 in Horn and Johnson (1988), for any two matrices A, B, the
minimal eigenvalue value of A ® B equals the products of the minimal eigenvalue values of
A and B. Therefore, we have ouin (A1 @ A1) = [omin(A )] = [omax(A)] 72 = |A[l5 2,
where ||A || refers to the spectral norm of matrix A. Hence,

1 « . vl
omin(—V?9(Z)) = o Z Le k(i) ||} + tA|[;?
i=1
I « . ~ 12
> -3 Lew(@) 19l + Al
i=1
As [|©' — OF|| < 2a, ||, — Q]2 < [|©" — O[]z < 2a. Therefore,
1 n
2 * -2
omin(=V7g(2)) = o ;L&k(wz‘) (11212 + 20/
1O )
2 5 ; Lo k(xi) (B2 + 2a)~,
which implies (S.12). Putting the upper bound of I and IT together,

1 — 1
< - N . mi - - I _ @*2. .
I+11< ™ ;:1 Le i(x;) - min {517 2(6s + 2@)2} |©% k3 (S.13)

~~

(a)

However, (a) is a random term but we require a non-random strong concavity parameter.
Thus a concentration bound will be applied on it. {Le k(x;),i =1,...,n} are independent
random variables with 0 < Lg ;(x;) < 1. After applying a basic Hoeffding’s inequality, we

have
]P) (

3" Lox(@:) - ElLos(X)
i=1

)" Lok(@:) ~ ElLe k(X))
=1

< t) > 1 — 2720

< T T
=V sV

which implies
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with probability at least 1 —0/K. As /log(2K/d)/2n = o(1), there exists some constant ¢
such that
log 2K

20m
when 7 is large enough. Then plugging it into (S.13),

—E[Le 1(X)] < —c,

1

1
I+ 1< —Z¢-mi -
+ < 20 mm{ﬁl’2(ﬁg—l—2a)2

by - o2
with probability at least 1 — §/K, where

. 1
Y= len{ﬁl,w}.

Once the individual strong concavity parameter is computed, we can simply take the
summation from 1 to K:

ZQn Qu(©}10) - (VQ.(8}©), 8} - ®k><—vaH®’ il
which implies

Qu(©']8) ~ Qu(©7]8) — (VQ.(670), 0’ ~ ©°) < — 5[ — & ]

with probability at least 1 — §. This ends the proof of Lemma 9. |

S.IV A Key Lemma for Proving Corollary 18

The next lemma computes the statistical errors in Condition 10 for our SCAN penalty and
provides explicit forms of the corresponding e1,e5 and 4y, ds.

Lemma S.1 Suppose that Condition 16, 17 hold, then Condition 10 is satisfied for SCAN
penalty with

— (CK||9]|w + C’K1'5)\/ logp *;Og(e/ 9 5 = (18K2+6K)5,  (S.14)
11 3
e =C f\/ K (log p Z log(€/9) 5, — (8K? + 2K)s, (S.15)

for some absolute constant C,C'",C" > 0. Here |Q*||s is the overall maz induced norm
defined as ||| = maXye (k] 1925 | 0o -

In Lemma S.1, the number of clusters K is allowed to grow with the sample size n
and the dimension p. The diverging rate of K controls the convergence probability at
each iteration and is upper bounded to ensure that the statistical errors hold with a high
probability tending to 1 with a proper choice of 6, e.g., 6 = 1/p.
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Proof of Lemma S.1: For the first part of this proof, we focus on the upper bound of
IVQr(©*]®) — VQ(O©*|®)| .. Recall that

Veo;@n(0%0) — Ve;Q(0%(O)
VQ,.(070) - VQ(e'e) = :
Ve Qn(0%|0) — Ve: Q(0%|O)

Vi Qn(©%]0) — V,: Q(©%(O)
vee {V:Q,(0%0) — Vo:Q(©%(@)}
- : .(S.16)
V115, @n(©7]0) — V. Q(©°|O)

.
vec {VQ%Q,L(@*\@) - VQ}Q(@*\@)}

For simplicity, we define h, (©%) = V .+ Qn(07]0) =V - Q(©*|O) and hq: (©*) = Va: Q,(0*|O)—
Va:Q(©*®). Then from the definition of dual norm P* (31), we can have

IVQn(©7]©) = VQ(O7|®)]p. < M max ||, (©7)]o
€[K] ~e—_——

I
+ ZI?GI?KX} Qk( ) max-i— 311113)( { Qk( )LJ { ﬂk( )]w ,
17 ;IFI

which are corresponding to the penalty on element-wise cluster means, element-wise preci-
sion matrices and group structures of multiple precision matrices, respectively.

Bounding Statistical Error for k-th Cluster Mean: Referring to the proof in Lemma
9,

hu; (@) = % > Low(@)Q(xi — pf) —E[Lep(X)(X — pp)].
=1

Note that [|€2} |« is a scalar. By using triangle inequality, we simplify I by two parts:

* 1 - * *
I < 9], - ZLG),k(‘Bi)(xi — i) — E[Lex(X)(X — p)]
=1 00
* 1 .
< 9% - Z Lex(xi)z; — E[Le k(X)X]
=1 00
Iy
* 1 S *
+ 1192l (nZL@,k(:ci) —E[Le,k(X)]> I
=1 o)

Ip)

Bounding I;: Denote

¢ = % ; Lo (zi)x; — E[Lex(X)X]
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For ¢ € RP, we consider the j-th coordinate (; of ¢

1 n
Cj = E z; L@,k(a:i)xij —E [L@,k(X)X]] . (817)
-
We introduce a set of missing data {¢;,s = 1,...,n}, which are independent copies of random

variable ¢. The pair (x;,¢;) are the independent copy of (X, ¢). Here ¢ takes a value from
the set {1,..., K}, where ¢ = k' indicates that X was generated by the k’-th mixture
component. In another word, the conditional distribution of X is defined below:

X|C = k/ NN(HZ/,2}Z/)

K
P(c = k,) = T/, Zﬂ'k/ = 1.
k/

This is the usual choice of missing data in EM approaches to mixture modeling. The
quantity (x;,¢;) is referred to as the completed data. Now by the assumption, the j-th
coordinate x;; of &; can be rewritten as the form below:

K

zij = Y Heo = K}y + Viey), J € [p] (S.18)
k=1

where pg,; is the j-th coordinate of the true cluster mean py, and Vi, ~ ./\/'(O,Ez,jj).
Plugging (S.18) into (S.17), it suffices to bound (.

n K K
1 . .
Glo= YD Les(@i){ci =K}y —E | Y Lox(X){c= k/}uk’j]
=1 k’'=1 k=1
1 n K K
+ |- Y Lew@)I{ci =K}V —E | Lex(X)I{c =K}V,
=1 k'=1 k'=1

1 = * *
=3 Lew(@i)I{e = K huiy; — E[ Lo x(X)I{c = '}y,
k=1 i=1

(]

G 1

K n

1 X *

+ Y| Lew(@) e = K3Vis; — E| Lo s(X)He = K1V |
k'=1 =1

ng
We bound (j, first. Based on the fact that [Le k(xi)I{c; = k" }uji| < |ug] < llpgslloo
almost surely it can show that Le(x:)I{c; = k'}uj; is a sub-gaussian random variable
with norm ||p},||c. Following the Example 5.8 in Vershynin (2012), ||Le i(x;)I{c; =

K} g illgs < [lpglloc where || - [y, is defined as sub-Gaussian norm. According to sup-
porting Lemma S.5

HLe,k(wz‘)I{Ci = k'}ui; — E [Leop(X)I{c =K }up,] Hw = QHNZI
2

o)
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The standard concentration result in supporting Lemma S.6 yields that for every ¢t > 0 and

Dlnt2 )
Alp Iz )

some constant D1,
P16 2 ) < coxp -

which implies that, with probability at least 1 — 6,

4 1 0
Gl < oo L2 (519

Now we start to bound (j,. The fact that Le y(x;)I{c; = k'} < 1 shows that it is a
sub-gaussian random variable with norm |[Le x(xi)I{c; = k'}|y, < 1. Vji, is a Gaussian
random variable so that it is also a sub-gaussian random variable with norm |[Vy,[ly, <

(|I2% |lmax) 2. Then using the result in supporting Lemma S.4, Le j(x:)I{c; = k’}Vk*,j is
sub-exponential random variable. Moreover, there exists constant Do such that

HL@JC(:Bi)I{Ci — KV,

) <D ( 3 )1/2
’lf)l — 2 || k’”max N
Supporting lemma S.5 implies
1/2
HL@,k(xi)I{ci =K'}V —E [Lex(X)I{c =K}V, Hw < 2D2(H2*,Hmax> .
1

Following the concentration inequality of sub-exponential random variables in supporting
Lemma S.7, there exists some constant D3 such that the following inequality

12 l
P(C' Zt) < 2exp <—D3min{ " , }n>>
|G | AD2|=7 lmax” 2D2(|[Z5, [lmax) /2

holds every t > 0. For sufficient small ¢, it reduces to

P(yg | > t) <2 D i
. ex _ -
2= o P 34D2H2*/Hmax ’

Gl < | B2 1 ) log(2/9) (5.20)

n

which implies that

with probability at least 1 — 4.
Adding (S.19) and (S.20) together, we have

log(e/d) 4D N log(2/6

Gl 16l < \fu k/noo\/v (15 2 D)
log(e/d)
D Y 00 S max 1/2 —_—
\/;(nuku + (154 mase) ) e,

by taking D = min{D;, D3/D5}, with at least probability 1 — 2§. Therefore, it’s sufficient
to bound |(;| by

IN

1 )
|<]|<\f S (Il + (1) 72) 2L

k'=1
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with at least probability 1 — 2K 4. Taking the union bound over p coordinates, we obtain

B2y E 5 (Il + (12 w2) 2L s, s21)

k'=1

with at least probability 1 — 2K4.
Bounding Is: Recall that

I, = H( ZL(-)k () [Le,k(X)]) M

1 .
< EZLQ’k(mi)_E[LQ’k(X)] 2%l o
=1

{Ler(xi)|i =1,...n} are bounded independent random variables within interval between
0 and 1. Then it follows Hoeffding’s inequality in supporting Lemma S.8 that

1 n
p<
n

=1

Z L(..)Jc(il}i) — E[L(-B,k(X)]

< t) > 1 — 2720

| Toe oI o

with probability at least 1 — ¢. Combining with the reminder term ||pe||,

1 2 1
<y /=log =/ =|l1k]|co- .
By fbioe2 Ll (5.23)

Note that the bound in (S.21) is Op((log p/n)'/?) while the bound in (S.23) is Op((1/n)'/?),
there exists some constant D, such that I < D4I;. Consequently, we conclude that I is
upper bounded by

log(e/é —Hogp
I 0 DRy S S (Il + (1 ) 7) LD

k'=1

which implies

1 n
- > Lex(x:) —E[Le (X
i=1

with probability at least 1 — (2K + 1)J. For simplicity, let

K

* * 4(1 + D4)2
o= (I#illoo + (1B lma)/2) €1 = | =5 (5:24)
k=1
Applying union bound,
1 1 )
max I < C1 || . @K\/ ogp +log(e/d) (S.25)
ke[K] n

with probability at least 1 — K (2K + 1)0.
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Bounding Statistical Error for k-th Precision Matrix: Referring to the proof in
Lemma 5,

hey(©7) = o > Le k()2 — o > Len(mi) (i — pi)(wi — pj) "
i=1 =1
1 * 1 * *
— SE[Les(X)) B + 5E | Los(X)(X — mi) (X — i)

Now we get an explicit from for hgz(@*). Then I7 is decomposed as below:

11 . .
I < |3 (n;[f@,k(mi)zk_E[LG),k(X)Ek]>
1=

max

11

(; Z Le k(@) (@; — pj)(zi — pj) | —E [LG,k(X)(X — ) (X — MZ)TD
=1

N | —

max

11

The first term is easy to deal with: since 2 > | Lg x(w;) — E [Le (X)) is scalar by the
definition of Leg ;(X) we can pull it out of the norm. Combining with the result in (S.22),
the first term is upper bounded by

* 1 2 1
InL < HEkaax B} logg : \/;7 (8.26)

with probability at least 1 — 4.
For the second term I, it can be decomposed as four following terms:

11
I, < |3 (nZL@,k(xi)mimI—E[L@JC(X)XXTD
= max
113
1 T T
+ 2( ZL@,k(mi)xmk —E{L@,k(X)Xuk ])
1 max
1122
n
+ 2 lzLek(wi)M}ZwT—E{L@k(X)MZXT}
2\n ’ ¢ g
i=1 max
1123
11 o T
+ 3 ;ZL@,k T; Mkﬂk —E [LG,k(X)l"fkﬂk }
i=1 max

1124
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For the bound of 1133 and 1133, we can just simply pull the p} out, which implies

11
I = |3 (n Y Lex(wi)w; —E [L@,k(X)XO i (5.27)
i=1 max
11
< 3 (n Z Lo k(xi)z; —E [Le,k(X)XO el o

i=1
(@ /4 \/log(e/5) +logp
< . *
= D | /’l’kHoo PK n )

with probability at least 1 — 2K, where (a) follows (S.21).
Next we turn to bound I15;. Expand avlac;r to matrix form for convenient use

Ti1xi1 .- a;ﬂa?ip

TipTil .- TipTip
Since we require a matrix max norm here, it suffices to bound 115 individually, namely

1

1 n
Gt = 2 (n ZLe,k(iﬂi)ltijxij/ —E [L@,k(X)Xij’]> )
i=1

Recall in (S.18) the j-th coordinate of x; could be expressed as

K
Tij = Z I{Ci = k/}(uz/j + Vk’j)-
k=1
By straightforward algebra,
K K
k'=1 k'=1
@ \
a *
= Z I{CZ = k/}Z(MZ/] + Vk,j)(lu’k"j’ + Vk/j/)
k'=1
K
= Z H{c; = k/} (,u;;/j,uzle + Mz/jvk/j/ + Vk’j:U’Z’j’ + Vk/ij/j/) ,
k'=1

where (a) follows the fact that I{c; = k}I{c; = k'} = 0 for any k # k’. Consequently, we
divide (j;;s into four parts:

K
1 * * * *
CJJ/ = 5 Z (C]J/(:uk’]:u‘k’j’) =+ C]j/(:uk’]vk’]’) + C]j’(Vk/]/-Lk’]/) + C]]/(Vk/_]vk/]/)) ,
k'=1
where
1 n
Gy (Whgtiy) = — D Lew(@i)I{ei = Kby
=1

~E [Lox(X)I{c= K} pjjmjyr] -
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Taking the supreme over set [p] in terms of p,p’,

K K
sup (G| <) ( sup |Gy (Ko 1) ’) +y < sup |G (pger Vi )!)

J,5'€[p] =1 \J.J'ElPp] =1 \JJ'ElPp]
(i) (i)
K
+ Z < sup |G (Vk’]ﬂk’ i’ >+ Z ( sup |Gy (Viri Vi )|>
k=1 JJ G[P] k=1 JJ E[p]

(iid) (iv)

We will bound (i), (i), (iii) and (iv) sequentially. Lek(x:i)I{ci = k' }uj;pp ;0 is a
sub-gaussian random variable with
1Lex(@i)I{ei = K}k jitiorllve < llmiullZ-

According to supporting Lemma S.5,

| Lo k(@) I{ci = k" Yk iy — ElLox (X)I{e = K"} g i 51]

2
o <2l

Applying concentration inequality in supporting Lemma S.6 yields that

D4nt2 )

2
e (5.28)

P (IG5 (a1 ) < ) > 1 — eexp <_

for any ¢ > 0 and some constant Dy. After properly choosing t,

A \/logp+10g(e/5)
<] .
)<\ ool [y B2 08D, (8.29)

with probability at least 1—d. Note that both Leg i (x;)I{c; = k’},uz,ij/j/ and Le i (x;)I{c; =
K"} Vi jo s ; are sub-exponential random variables with norm || g, [|oo (|25, || max) /2. Similar
to the step in (S.20),

|G (i Vi )| < \/; (1 oo 1 ) /2) 4/ 22,

n

with at least probability 1 — §. Taking the union bound, it is shown that

00, 60) £\ (i1 ) 72) 22 BCID g

n

with probability at least 1 — § for sufficient large n.

Lastly, the fact that both Leg y(x;)I{c; = k'}Vjs; and Vj/j are sub-gaussian random
variables implies Lg i (x;)I{c; = k'}Vj/jVisjr is sub-exponential random variable with pa-
rameter |27, |lmax- Applying concentration result, there exists some constant Dg such that
the following inequality

Dent2 >

P (IG5 (Vi Vijr)| = t) < 2exp ( s

’”max
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holds for sufficiently small ¢ > 0. Therefore,

Dgnt?
P sup [y (Vir;Virjs )| 2 t ] < 2p*exp ( 6) :
73" €p] 4”2 /Hmax

When n is sufficiently large, with probability at least 1 — ¢

2logp+1og 2/9
(v) <)/ — ||Ek,||max\/ 2/ ) (S.31)

Putting (S.29), (S.30) and (S.31) together and after some adjustments, Iy is upper

bounded by
. 210gp—|—log(e/5)
Ih </ 5 Z o + (1= ) 2) ,

with probability at least 1 — 4K¢§. D7 = min(Dy, D5, Dg). For simplicity, we denote

K
2
e = D (i lloo + (1% ) 2)

k'=1

2 I 1
II5 </ SO,K\/ o8P+ og(e/5)7 (5.32)
D7 n

with probability at least 1 — 4K4.
For the last, it remains to bound II54. Recall that

Therefore,

11 - -
Il = 2<nZL®,k($i)Hkﬂk —]E[L(B,k(X)Hkﬂk D
=1 max
11 o uT
< 5152 Lowl@) ~ElLen(X)] )| [uini ||
=1

Applying the result in (S.22), we have

. LT 1. 2 /1
Iloy < ||pg ey, IImax\/Qlogé-\/; (5.33)

with probability at least 1 — 4.
Putting (S.27), (S.32) and (S.33) together, now we can have a upper bound for I/s.

1 . logp + log(e/é
1< o Cluillegs + 910y ), (5.3

n

for D7 < D/2 with at least probability 1— (8K +1)d§. The upper bound in (S.26) is of order
Op(n~1/?) while the upper bound in (S.34) is of order Op((logp/n)'/?). Thus there exists
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some constant Dg such that Iy < Dglly. Let Cy = ((1 + D8)2/D7)1/2. Applying union
bound,

1 +1 1)
mas I < G (2] e + i) | 2R LoBle/0) (5.35)

with at least probability 1 — K (8K + 2)0.
Bound the Group Structure Part of Precision Matrix:
Recall that

111 = ma | [Va;Qu(©10) - Vs (©10)] .

[vai.@10) - vare10)] |

‘ o0

<mafo Va;Qn(©718) - V;Q(07()]

, [Vﬂ;Qn(@*@) - VQ}Q(®*|®)}

]

< \/E;gf% H [Vn;Qn(®*\@) - VQ;Q(®*|®)} ‘

max

According to the result in (S.35) and applying union bound over [K],

P (III > CyVE (2] pfl|sotpx + £) \/logp—l—}zog(e/(s)) < K(8K +2)0.

Thus, 111 is upper bounded by

I < CoVE (2|u |sopr + @) \/ logp + logle/4) (S.36)

n

with at least probability 1 — K (8K + 2)0.
Finally, putting the upper bound (S.25), (S.35) and (S.36) together, we have a upper
bound for the following statistical error

IVQ.(070) — VQ(©*|e)|,

< C ((||Q*||oo + (VK +1)|p*[|ls0) e + 2(VE + 1)<le> \/IOgIH- 10g(e/6)7

n

with probability at least 1 — (18 K + 6)d, where C' = max(M;C1, M2Cs, M3Cs3). Under
regularity Condition 16, ¢k < (¢1 —i—c;/z)K, e < (a1 —1—01/ )2K. Let C = C(ey —1—05/2) and

C'=c+ 6162/ +2(c1 + ¢ 1/2 )2. Consequently, the upper bound for statistical error can be
written as:
% % N log p + log(e/d
IVQn(©71©) = VQ(O7[®)||p- < (CK[|Q"[loc + C'K™?) \/ " o)
with probability at least 1 — (18K + 6)0. [
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For the second part of Lemma S.1, we are aiming to bound the statistical error arising
from the estimation for diagonal term. The definition of G in (14) implies that [VQ, (©*|®)—
VQ(®*0®)]g is a Kp-dimensional vector. Following the same derivation before, it suffices
to have:

I[VQn(©*©) — VQ(©*1©)]4,
< VEp|[[VQ.(©*1©) - vQ(e*|e) .

a

i} logp + log(e/d
< VKp-Cy (2|p HoocpKJrsO'K)\/ /o)

n

VR -Gy (2l o + i) P22 0B/,

—
=

with probability at least 1 — (8K2 + 2K )& where (a) comes from (S.36). Now combining
two parts together, we end the proof of Lemma S.1. |

S.V Proof of Lemma 22
For any ® € M,
PO) _ PiO)  PiO)  Py®)
1©]]2 ©fz |8l  ©]:
My S gl Mo Sy S lwnih Yy Ma (o wiy)t?

= K + K + K
o I VI Il S 93

By Cauchy’s inequality, we can have

P(Om)
1© ]2

Recall that d and s are the sparse parameter for a single cluster mean and precision matrix,
respectively. This ends the proof of Lemma 22. |

< MiVKd+ MyvVEKs+ Msy/s.

S.VI Proof of Lemma 24

First we consider each @y = { g, Q} individually. That means we prove the following part
first:

Qn(@’(gl)|@(t—1)) _ Qn(@](f”@(t_l)) _ <V@an((~),(€2)|®(t_1)), @’(gl) . @l(f)> <0,

where Q,(0|®) means we set ©; i # k to zero.
Following the same technique we use in the proof of Lemma (9), the decomposition can
be made as below:

Q01181 ) — Q07100 ) — (Ve,Qu(07 181 V), 01 —0) = 1+ 11,
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where

ii rosten 042,06 - 1) )}

- Hk; ) Man( |®(t_1))7
1L )y _ 1 (2)
= z; [L®,k(93i){§ log det(€2;7) — 3 log det(€;”)

a0 = n(u, Q)] - vee(@Y - Q)] TVa, Q000 D),

Bounding /: By a little algebra, we can show that
1 < 1 2 2), (1 2
—5 S Low(@) () — p) TP (ug” — 1)
i=1

Plugging in (@™, +*@®) 4 (1 — t*)©*), we have

n

1_t* * * * *
[=- ZL@kml V- un) (e + (- 009) (1 - i),

Recall that ®® is the solution of the optimization problem (35). The algorithm guarantees

that Q](f) is positive definite. Thus, from the positive definiteness of Q](f) and QF, it is
sufficient to show that

I <0 holds a.s.. (S.37)

When plugging in (©*,t*@® + (1 — t*)©*), we have the same conclusion.
Bounding II: Define

o)=Y [L@,uwi) {; tog det(2?) — b (. ) H -

1 2 2 1 2
g() - 9(@f) = (vec (Vg(2) ) ,vee (2 - 7)),
According to Taylor expansion, we can expand g(Qg)) around Qf) and obtain

g@M) = g(@?) + (vee(Vg(QP), vec(") — )

1 T
+§ [Vec(ﬂ,(:) — Q](f))} VQQ(Z) [Vec(ﬂl(j) — Q,(f))] ,
where Z = tﬂ,(cl) +(1- t)ﬂ,(f) with ¢t € [0,1]. So an equivalent expression for IT is given
below:

.
I = % vee(@ — )| V29(2) [vec(f” - )]
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By the definition of function g we construct, the negative Hessian matrix of function ¢ is
1 n
2 - = N7—1 -1
~V29(2) = 5 ;L@,k(xz)z ®Z L.
1=

According to the analysis in the proof of Lemma 9, omin (Z_1 ® Z_l) = [amin(Z_l)]2 > 0.
Therefore, V2g(Z) is a negative semi-definite matrix, which implies that 17 < 0 holds a.s.
for any pair of points (@), ©®?)). Incorporating with the fact that I < 0, it implies that

Qu(©}187) - Q.(©710) - (Ve,Qu(@718¢ V), 6} - ©;) <0,

holds a.s. for pair points (©®), t*@®) 4+ (1 —t*)©*), (@YW, *@® 4 (1 —t*)@*). After doing
the summation from 1 to K, we finish the proof of Lemma 24. |

S.VII Variable Selection Consistency

Theorem S.2 Denote the final precision matriz estimator as ﬁk and the set of its nonzero
off-diagonal elements as Vi. Under minimal signal condition, we have, with probability
tending to 1, Vi, = Vi forany k=1,... K.

Proof: We prove it in two steps. In Step 1, we show that 17;; D Vg, and in Step 2, we
show that Vj C Vi, both with high probability.

Step 1: In order to prove Vi D Vg, it is sufficient to show that for any (i,7) € Vi with
any k=1,..., K, w;; # 0. Note that

T
|wl(cij)| > ‘wzij| - |wl(m'j wkz]| > |wkz] Z wkw _wk” 7

Moreover,

Z w,m wii)? < 107 — @7, (S.38)

According to Corollary 18 and minimal signal condition we have
T
Wil > 7o

Therefore, we see that wy;; # 0, which implies ]7;9 D V.
Step 2: In order to show Vj C Vi, we need to check that, for any (i,5) € Vi, the
estimator wy;; = 0. Note that, the estimator before the thresholding step satisfies,

‘wkw | = |wk52j o wklﬂ| = Z wkl] N wk%J)Q’
4,J

From (S.38), it is known that ]ng) | < rp. Therefore, the thresholding step will set wWy;; =
w,g;.) 1{|@kij| > rn} = 0 with high probability. This ends the proof of Theorem S.2. [ |
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Appendix B. Updates steps of our SCAN algorithm
S.I Proof of Lemma 2:

The KKT conditions for j; to be a maximizer of Q(@|@*~1) — R(®) are

1 ¢ - :
- > Leu-vy ( > (i - ,Ukl)wklj) = Asign(ug;), when py; # 0,
— =1

1 o &
-~ ZL@(t—m,k( Z Ty — pg1)Wrij + ngwk3]> < A1, when py; = 0.
= =11

(t) .

Therefore, the update of [k is given as:

P
t—1 t—1
If —ZL@@ 1)k x; ( Z Tl —ukl w,(dj )—I—xz]w,(m )> < A,
=1 I=1,l#j

then ,ugj) = 0; Else

t-1) 1
,U;(CJ ( k]] ) ZL@(t 1)k il?z) { ZL@(t Dk iL‘Z Za},lwkl]

1 1) -1) (t-1 : —1
ZLe(f ey (Zﬂt )w,(c';j —,u,(fj )w,(éj )> —)\181gn(ul(fj ))}

Using the definitions of gq j(z; @,(f_l)) and go j(x;; G)E:_l)), we finish the proof of Lemma 2.
|

S.IT Proof of Lemma 3:

Recall that in (8)

n

K
_ 1
Qn(®@" 1) = - d ) Lew- i(@i)[log mi + log fi(xi; ©)] — R(O),
=1 k=1
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Then,

n K
max — Y Y Leu (@) logm + log fi(wi; Or)] — R(O)
=1 k=1

n

K
1 p 1
= max -— E E Leg-1) y(i)[log mp, — B log(2m) + 5 log det ()

Qo Qe N
1 - 1
—5(331 — ) Qi — pg)] — 573(@)
1 (1
= ﬂina:)s%K - ; {n ;L@(t_1>7k(xi)[log det(ﬂk) — (:l?z — /J/k)TQk(:IZZ‘ — Nk)]} — R(@)
K

= max 1 Zn [log det(€2;) — trace(S,€2)] — R(O)

ol n 2 k k k82 )

where the last equality is because

1 n
- > L p(@) (@i — pi) " Qi — )
=1

= - trace((@; — ) (@i — pi) " Qi)
x; €A
1
= —trace( Z (i — pi) (s — uk)TQk).
n
x; €A
Then plugging in the last update of uj leads to the desirable result. |

Appendix C. Supporting Lemma

Lemma S.3 Consider a finite number of independent centered sub-gaussian random vari-
ables X;. Then Y, X; is also a centered sub-gaussian random variable. Moreover,

b

where C is an absolute constant.

2
2
<Cy X3,
P2 i
Lemma S.4 Let X,Y be two sub-Gaussian random variables. Then Z = X -Y is sub-
exponential random variable. Moreover, there exits constant C such that

121y, < ClUX My, - 1YLy, - (S.39)

Lemma S.5 Let X be sub-Gaussian random variable and Y be sub-exponential random
variables. Then X —E[X] is also sub-Gaussian; Y —E[Y] is also sub-exponential. Moreover,
we have

X = E[X][ly, <201X]ly,, 1Y =E}X]l, <2[Y],, -
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Lemma S.6 Suppose X1,Xo,..., X, are n iid centered sub-Gaussian random wvariables
with | X1]|y, < K. Then for every t >0, we have

1 o Cnt?
(s En]z) 2o (-5,

=1
Lemma S.7 Suppose X1, Xa,..., X, are n iid centered sub-expoential random wvariables
with || X1]|y, < K. Then for every t > 0, we have

1< 2t
P ( ﬁz_:XZ Zt> > 2-exp (—Cmin{K,Q,K}n) ,
Lemma S.8 Hoeffding’s inequality Suppose X1, Xs...X, are independent random vari-
1
> (X - EX))

i=1
able, a1 < X; <b;, then we can have
—92ne?
Pl|— >e| <2exp .
( i ) { %Z?:l(bi - a;)? }

Moreover, if a; = 0 and b; = 1, then we have
> > 11— 2e 2",

( iX EX;)

where C is an absolute constant.

where C is an absolute constant.

n

3\*—‘
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