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Abstract— This paper considers a wireless network where
multiple flows are delivering status updates about their respective
information sources. An end user aims to make accurate real-time
estimations about the status of each information source using its
received packets. As the accuracy of estimation is most impacted
by events in the recent past, we propose to measure the credibility
of an information flow by the number of timely deliveries in a
window of the recent past, and say that a flow suffers from a
loss-of-credibility (LoC) if this number is insufficient for the end
user to make an accurate estimation.

We then study the problem of minimizing the system-wide LoC
in wireless networks where each flow has different requirement
and link quality. We show that the problem of minimizing the
system-wide LoC requires the control of temporal variance of
timely deliveries for each flow. This feature makes our problem
significantly different from other optimization problems that only
involves the average of control variables. Surprisingly, we show
that there exists a simple online scheduling algorithm that is near-
optimal. Simulation results show that our proposed algorithm is
significantly better than other state-of-the-art policies.

I. INTRODUCTION

Many emerging applications, such as industrial Internet of
Things (IoT) and virtual reality (VR), require the real-time
delivery of information. From an end user’s perspective, the
performance of such applications are determined by their
ability to accurately estimate the real-time status of their
respective information sources, such as the temperature of a
machine in industrial IoT or the location of a monster in a VR
game. However, most existing network performance metrics,
ranging from traditional quality-of-service (QoS) metrics such
as throughput, delay, and jitter, to emerging ones like timely-
throughput and age-of-information, fail to directly capture
the accuracy of the users’ estimation. Therefore, network
algorithms aiming at optimizing these network performance
metrics may result in poor performance for these emerging
applications.

To address the need for these emerging applications, we
introduce the concept of credibility of information flows,
where an information flow is considered to be credible if its
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user can make an accurate estimate of the current status using
its delivered packets. Our model for credibility is based on two
important features of estimation algorithms: First, information
in the recent past is much more useful than that in the distant
past for making an accurate estimate. Second, most estimation
algorithms, even simple ones like linear extrapolation, require
multiple data points in the recent past.

Based on these observations, we propose a model to cap-
ture the credibility of information flows in real-time wireless
networks. In this model, we consider that each information
source, such as sensors generating readings or VR servers
generating video frames, generates real-time information pe-
riodically. Stale information is dropped in favor of the trans-
mission of new information. The credibility of an information
flow only depends on the number of packets that are delivered
on time in a window of recent past. If the number of timely
deliveries in this window of recent past is below a user-
specified threshold, then the estimation becomes inaccurate,
and the information flow suffers from a loss-of-credibility
(LoC). Our goal is to minimize the system-wide LoC in
a wireless network with multiple flows, each with different
threshold and channel reliability.

Using Brownian approximation and martingale theory, we
show that the problem of minimizing the system-wide LoC is
equivalent to an optimization problem that involves two sets
of constraints: One set of constraints are related to the average
of timely deliveries of each flow, and another set of constraints
are related to the variance of timely deliveries. The existence
of constraints about the variance of timely deliveries makes
this problem significantly different from other network utility
maximization (NUM) problems that only involve constraints
about the average of variables, and hence cannot be solved by
most existing techniques for NUM problems.

We propose a simple online scheduling algorithm for this
problem. We analytically prove that the timely deliveries under
our scheduling algorithm satisfy both the constraints on the
average and those on the variance in the optimization problem.
We also analytically prove that our algorithm is near-optimal
for the optimization problem in the sense that its performance
can be made arbitrarily close to a theoretical bound.

We further evaluate the performance of our algorithm by
comparing it against two other state-of-the-art policies, one of



them is provably optimal in terms of timely-throughput, and
the other achieves an approximation bound in terms of age-of-
information. Simulation results show that our policy achieves
much smaller LoC than these two policies. This result further
highlights that existing network performance metrics may be
misleading in capturing the credibility of information flow.
The rest of this paper is as following order: Section II
introduces our model for credibility in real-time wireless
networks. Section III shows that the problem of minimizing
LoC is equivalent to an optimization problem. Section IV
introduces our online scheduling algorithm. Section V ana-
lyzes the performance of our scheduling algorithm and shows
that it is near-optimal for the optimization problem. Section
VI presents our simulation results. Section VII reviews some
related work. Finally, Section VIII concludes this paper.

II. SYSTEM MODEL

We extended the model in [1], which focuses on the short-
term performance for wireless networks with homogeneous
links, to address the credibility of information flows in real-
time wireless network where different wireless links can have
different channel qualities.

We consider a real-time wireless network that serves N
clients. Time is slotted, and the duration of one time slot is
the amount of time needed by a whole transmissions, including
all overheads such as the transmission of poll packet or ACK.
Hence, the AP can transmit to at most one client at each
time slot, and it has the instantaneous feedback information
on whether the transmission is successful. We consider that
wireless transmissions are subject to effects of shadowing,
multi-path, fading, interference, etc., and different clients
experience different channel qualities as they are located at
different positions. Hence, we assume that each transmission
for client ¢ is successful with probability p;.

We consider that each client is associated with a real-time
information flow, and use flow ¢ to indicate the flow associated
with client ¢. Specifically, we assume that each real-time flow
generates one packet periodically every T slots, that is at time
slots 1, 7+ 1, 27 4+ 1, .... Each packet has a stringent delay
bound of 7 slots, and is removed from the system if it cannot
be delivered before its delay bound. In other words, each
packet in a real-time flow is only valid for transmission until
the next packet arrives. We thereby say that 7 time slots from
an interval. Packets arrive at the system at the beginning of
each interval, and have deadlines at the end of the interval.

We note that this model for real-time flows applies to many
emerging wireless applications. For example, consider multi-
user virtual reality (VR) or augmented reality (AR), where an
AP streams VR/AR contents to multiple VR/AR headsets. All
headsets play VR/AR contents at the same frame rates, and
therefore they generate traffic at the same frequency. Further,
as the AP should always transmit the newest VR/AR content
to a headset, packets that fail to be delivered on time should
be removed and replaced by newer packets. Likewise, one
can also consider industrial Internet of Things (IoT), where
an AP polls measurements from multiple sensors monitoring

different locations. Sensors have the same sampling frequency
and therefore generate traffic at the same frequency. Also, stale
measurements should be dropped when a new measurement is
generated.

An important feature of real-time application such as
VR/AR and industrial IoT is that each flow can typically
tolerate a small amount of sporadic packet losses, but is very
sensitive to a burst of packet losses. For example, in industrial
IoT, a controller can use various estimation techniques to
estimate the value of a lost sensor reading. However, the
accuracy of the estimate significantly degrades if there is a
burst a packet losses. Further, it is obvious that the accuracy
of the estimate only depends on the deliveries of recent sensor
readings, and readings in the distant past have negligible effect
on the estimation accuracy. We thereby say that an information
flow is credible if its delivered packets enable the controller
to make an accurate estimation.

The goal of this paper is to define and optimize the credi-
bility of an information flow that directly reflects the accuracy
of the resulting estimate by the controller. To capture the
aforementioned feature of real-time applications, we assume
that the credibility of a real-time flow at a given point of
time only depends on the packet deliveries in the window of
past T intervals. Specifically, let X;(¢) be the total number
of timely-deliveries for flow 7 in the first ¢ intervals. We then
have X;(t) — X;(t — 1) = 1 if a packet is delivered to client
i in interval ¢, and X;(t) — X;(¢ — 1) = 0 if not. The number
of timely-deliveries in the window of the last 7" intervals can
then be represented as X;(t) — X;(t—T'), and we assume that
the credibility of flow ¢ at the end of interval ¢ only depends
on the value of X;(t) — X;(t —T).

We assume that, to make an accurate estimate, each client
1 requires that there are at least ¢; 1" packets being delivered
in the past T intervals, i.e., X;(t) — X;(t — T) > ¢, T. The
value of ¢; depends on the context of the information flow. For
example, a sensor monitoring a high-frequency signal requires
a larger g; than one that is monitoring a low-frequency signal.

Due to the unreliable nature of wireless transmissions, it is
obvious that it is not possible to satisfy the requirements of all
clients at all time. When the AP fails to deliver ¢;T" packets
for a client 7, then the estimation of current state of client ¢
becomes less accurate, and therefore we say that flow ¢ loses
credibility.

We now formally define the measure of Loss-of-Credibility
(LoC). Suppose X,;(t) — X;(t —T) < ¢T for some i and
t. Recall that every transmission for client ¢ is successful
with probability p;. Hence, the AP would have needed to,
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on average, schedule o more transmissions
for client ¢ to make X;(t) — X;(t — T) = ¢T and flow 4
credible. We therefore define unbiased shortage of client i at
the end of interval ¢ as 6;(¢) := max{ q'iT_(Xi(t;fX'i(t_T)) ,0}.
At the end of each interval ¢, each client ¢ suffers from a LoC
of C(0;(t)) based on its unbiased shortage, where C(-) is a
strictly increasing, strictly convex, and differentiable function
with C(0) =0 and C’(0) = 0.

This paper aims to evaluate the long-time average to-




tal LoC of all clients in the system which is written as
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It also aims to propose an online scheduling policy' that

minimizes the total LoC.

III. THE FORMULATION OF THE OPTIMIZATION PROBLEM

In this section, we derive some fundamental properties
about the minimization of total LoC. We then formulate an
optimization problem.

Recall that X;(¢) is the total number of timely-deliveries for
client 7 in the first ¢ intervals. Obviously, {X;(1), X;(2),...}
is a sequence of random variables whose distribution is
determined by the employed packet scheduling policy. For
simplicity, we only focus on ergodic scheduling policies in
this paper. Thus, the random variable {X;(t) — X;(t — T)}
can be modeled by a positive recurrent Markov chain. By the
law of large numbers, we can define X; = limyeo X"(t)
Further followmg the central limit theorem of Markov chalns
[2], X; :=lim7_, X(T)TTX is a Guassian random variable
with mean O and some finite variance, which we denote by a?,
with o; > 0. Hence, we can approximate X;(t) — X;(t —T)
as a Gaussian random variable with mean 7'X; and variance
To? when T is reasonably large. Let ®(z) represents the
cumulative distribution function of a random variable under
standard normal distribution, then, under this approximation,
we have that the CDF of (X;(t) — X;(t — T)) — TX;) is
(I)(E/:ZT)'

he' long-term average total LoC can now be re-written as
below:
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Eq. (1) has two sets of control variables: [X;] and [o;].
Below, we derive the corresponding constraints of these two
sets of variables.

We first derive the constraints on [)_(i]. Previous work [3]
has shown that, under any work-conserving policy?, we have,
for all ¢,
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'An online scheduling policy is a policy that determines which packet to
transmit in each slot based on all system parameters and the entire history.

2A scheduling policy is called work-conserving if it always schedules a
transmission when there is at least one packet available for transmission.

and
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for any subset S C {1,2,... N}, where I is called the idle

time and has been shown to be the same under all work-
conversing policies. Therefore, we have
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We further assume that, similar to the total resource pooling

condition, the constraint ), s % Xi <7 — Ig is not tight and
can be ignored when S is not {1 2,...N}.

Now, we derive the constraint of [az]. By (2), the sequence
of random variables {ZN prf) 1 — I, Nyt =
1,2,...} is a martingale. By the martingale central limit
>N, X,,ET) T(r—I{1,2,..83)
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is a Gaussian random variable
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with mean 0, and its variance is
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whose value depends on the employed scheduling policy.
Recall that X; Xi(M)-TX,

* is a Gaussian random
variable with variance 2. Hence, we have X =y
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where Var(X) denotes the variance of X and Cov(X,Y)
denotes the covariance.

Although the value of oo may be different for different
scheduling policies, we first consider the special case of



minimizing the total LoC when oror is given and fixed. By
(1), (4), and (7), the optimization problem can be written as:

Min L= Z/C(,/J;fz _ K plq’)T)chJ(z) )
i=1"7 i v

N —
X
sty —=7-I1a.N5) ©)
i P
N
> % > oror-. (10)
— i

Theorem 1. Let [X;"] and [o}] be the optimal solution to (8)

~ (10). Then X;" = ("lozem 5N Ly and
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Proof. Since C(+) is a convex function, we have:
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Theorem 1 establishes the optimal {X;} and {o;} that
minimizes the total LoC when oo is given and fixed. Obvi-
ously, smaller oo leads to smaller total LoC. Therefore, we
seek to solve the optimization problem below, which aims to
minimizing oo while satisfying the results of Theorem 1:
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We note that the problem (11) — (13) involves both a
constraint on the average of X,(¢) (12) and a constraint on
the variance of X;(t) (13) for each i. Most existing studies on
network utility maximization (NUM) problem only addresses
constraints on the average of decision variables, and therefore
cannot be applied to solve (11) — (13). In fact, no stationary
randomized policies can optimally solve (11) — (13). In the
following sections, we will establish the surprising result that
there exists a simple online scheduling policy that is near-
optimal for the problem (11) — (13).

IV. AN ONLINE SCHEDULING POLICY

In this section, we propose a simple online scheduling
policy for the problem (11) — (13). We first provide a brief
outline of the construction of our algorithm. First, we remove

the constraint on variance (13) and focus on the following
optimization problem:

(14)
5)
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st.X; =XVl <i<N.

Obviously, this optimization problem is a lower bound to
the original problem (11) — (13). It is also a standard NUM
problem that only involves a constraint on the average of X (¢)
for each i. We can therefore derive a near-optimal online
scheduling algorithm using the Drift-Plus-Penalty approach
[5]. We further demonstrate the surprising result that, due to
the specific choice of our Lyapunov function, our algorithm
also satisfies the constraint on variance (13). Therefore, our
algorithm is near-optimal to the original problem (11) — (13).

We now introduce some notations that are necessary for the
design and analysis of our algorithm. Let d;(¢) := % — X;}—(t)
be the deficit of client ¢ in interval ¢. Obviously, we have X; =
limy oo 248 = X7 if and only if lim,_, o, “& = 0. We also
define Ad; (t) := d;(t+1) —d;(t) = 30 — X=X
D(t) = Zim b0,

We consider the Lyapunov function L(t) = 5 Zl (di(t
D(t)]?. The drift of the Laypunov function is AL( )
EIL(t +1) — L(t)][d:(1)])-

Given [d;(t)], we have, under any scheduling policy,

and

AL(t) = E[L(t + 1) — L(t)]
;; (di(t+1) = D(t +1))°

E[Zz 1]$di(t Z t))
N =1
<B+ Y E[Adi(t)] (di(t) — D()), (16)



where [ is a bounded positive number The last inequality
holds since Ad;(t) is bounded by 2= < Ad,(t) < ); and
N
Zi:l di(t) = ND(2).
Our scheduling algorithm is based on the Drift-Plus-Penalty
approach [5]. Let

B(t) := Z E[Ad; ()] (d;(t) — D(t))
NOXi(t+1) = X(8)
+eEK; - 2, an

where € is a positive number whose value can be arbitrary
determined by the system designer. We then have
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)21 < B+ B(t). (18)

We aim to design an online scheduling algorithm that
minimizes B(t). Note that the value of B(t) depends on
the scheduling decisions on all time slots within the interval
t, which consists of 7 time slots. Minimizing an objective
function over a finite horizon of 7 time slots typically requires
the usage of dynamic programming. However, we will show
that there exists a simple online scheduling algorithm that
minimizes B(t).

Our algorithm is called the Minimum-Drift-and-Variance-
First (MDVF) policy. Under the MDVF policy, the AP calcu-
lates the value of r;(t) := ei —d;(t) at the beginning of each
interval t. In each time slot within the interval, the AP finds the
undelivered packet with the smallest r;(¢) and transmits that
packet, as long as there is at least one packet to be transmitted.

Lemma 1. The MDVF policy minimizes B(t).

Proof. We prove this lemma by induction. First, we consider
the optimal scheduling decision in the last time slot of the in-
terval. At this time, some packets have already been delivered
in the previous 7 — 1 slots, and we use V' to denote the set of
clients whose packets have already been delivered. As this is
the last time slot of the interval, the scheduling decision of the
AP only consists of choosing one client u ¢ V' and transmit-
ting its packet. Given V' and u, we will calculate the value of
Yty B[Adi(8)] (di(t) = D) +eB[(CiL, T =402,

For this chosen client u, its packet will be delivered, that
is, X, (t+ 1) — X, (t) = 1, with probability p,, and X, (¢t +
1) — X, (t) = 0, with probability 1 — p,,. Hence, we have
E[Ady ()] = Se=pe

On the other hand, for each client ¢ € V, its packet has
already been delivered. We have X,,(t) — X,(t — 1) =1 and
E[Ad;(t)] = %=
Finally, for each client i ¢ V U {u}, its packet will not be

delivered, and we have X, (¢)—X;(t—1) = 0 and E[Ad,(t)] =
Xi
pi’

We now have, given V' and u,

N
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where A(V) := D(t) + Y0, S£[di(t) — D(t)]
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the same regardless of the choice of u. Therefore, it is clear
that an optimal scheduling algorithm that minimizes B(t¢) will
schedule the undelivered packet u with the smallest ep% —dy (1)
in the last time slot.

Now, assume that, starting from the (s+1)-th time slot in an
interval, scheduling the undelivered packet with the smallest
¢ — d,(t) in each of the remaining time slot is optimal.
We will show that, even in the s-th time slot, scheduling the
undelivered packet with the smallest e— dy, (t) is optimal.

We prove this claim by contradlctlon Let u* be the unde-
livered packet with the smallest GE — d,(t) in time slot s.
If the claim is false, then the optimal scheduling algorithm,
which we denote by A, would schedule another undelivered
packet v’ # u* in time slot s, and the value of B(t) under A
is strictly smaller than any policy that schedules «* in the s-th
time slot. By the induction hypothesis, A begins to schedule
the undelivered packet with the smallest e~ — d,,(¢) starting
from the (s + 1)-th time slot. As u* is not scheduled by A is
the s-th time slot, A needs to schedule u* in the (s + 1)-th
time slot. In summary, A schedules u in the s-th time slot,
and u* in the (s + 1)-th time slot.

Now, we can construct another algorithm B by simply
swapping the transmissions in the s-th time slot and the (s+1)-
th time slot. In other words, B schedules «* in the s-th time
slot, v/ in the (s+ 1)-th time slot, and then follows A starting
from the (s + 2)-th time slot. Obviously, the value of B(t)
under A and B is the same, which results in a contradiction.

We have established that, even in the s-th time slot, schedul-
ing the undelivered packet with the smallest ¢ — d,,(t) is
optimal. By induction scheduling the undelivered packet with
the smallest e— — dy(t) in each time slot is optimal, and
MDVF minimizes B(t (t). O

V. PERFORMANCE ANALYSIS OF THE MDVF POLICY

We now study the performance of the MDVF policy. We
will demonstrate the surprising result that the MDVF policy



satisfies both constraints on mean (12) and variance (13), and
the value of ¢%,; under the MDVF policy can be made
arbitrary close to a lower bound. Throughout this section, we
use ‘|n to denote the value of - under a scheduling policy 7.
For example, AL(t)|MDVF denotes the value of AL(¢) under
the MDVF policy.

We first establish the following property.

Theorem 2. Under the MDVF policy, the Markov process with
state vector {d;(t) — D(t)} is positive recurrent.

Proof. We prove this theorem by establishing an upper bound
of AL(t)[MDVEF. To simplify notations, we let {2 be the policy
that schedules the undelivered packet with the maximum value
of d;(t). We also sort all clients such that d;(t) > da(t) >

- > dpn(t). Then Q will only transmit a packet for client
¢ if, for each j < 1, the packet for flow j has already been
delivered. This is equivalent to the largest-debt-first policy in
[3], and we have, for all 1 < j < N:

ZE[Adi Q= ZX* ZXi(t-i'l)_Xi(t)HQ

Di
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By (4), we have Zi:l E[Ad,;(t)“Q = 0. Further, as we as-
sume that (5) is not tight when S # {1,2,..., N}, there exists
a positive number § > 0 such that Y7, E[Ad;(t)]|Q < —§
forall 1 < j < N — 1. We now have
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<=0 (di(t) = dja () = —6(da(t) — dn(t)). (D)
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Next, we study AL(¢)]MDVFE. By Lemma 1, the MDVF
policy minimizes B(t). Hence, we have

YO Xi(t 4+ 1) = Xi(t)
AL(t)MDVF + eE[(; o )2]|[MDVF
<6 + B(t)|MDVF (By (18) )
<B+ B(1)|2
N
<p+epyy. M= RO pq
—6(dy(t) — dn (1)) (By (17) and (21)) (22)

Since 0 < X;(t+ 1)
M such that

— X;(t) <1, there exists some constant

AL(t)]MDVF < —§(dy(t) — dn(t)) + M. (23)

Recall that we have sorted all clients such that d; (¢)
> dy(t) > .... Hence, (di(t) — dn(t)) > 0 and (di(t)
—dn(t)) = |di(t) — D(t)|, for all i. We have

AL(t)MDVF < —4,if |d;(t) — D(t)| > % + 1, for some 1,

and

AL(t)MDVF < M, otherwise. (24)

By the Foster-Lyapunov Theorem, the Markov process with
state vector {d;(t) — D(t)} is positive recurrent. O

Now we are able to show that the MDVF policy satisfies
both constraints (12) and (13).

Corollary 1. X;|MDVF = X} and o;|MDVF =
UTOT\]VIDVF v

X; X (t)
Pi pi

Proof. Recall that d;(t) :=
M_ By (4), we have:

and D(t) :=
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By Theorem 2, the vector {d;(t) — D(t)}|MDVF con-
verges to a steady state distribution as ¢ — oo. Hence, both
limr_, oo “O=LIIMDVFE and limr, o MND(THMDVF
converge to 0 in probability. We then have

i di(T)MDVF _ X’  X;MDVF
D(T)|MDVF
= lim D(D)MDVE _ 0, (26)
T—oo T

and hence X;[MDVF= X}.
Next, we study UZ\MDVF Recall that o2 is the variance of

X = limy_, % We then have:
. d;(T)MDVF  _ TX; — X;(T)[MDVF
lim —————— = lim
T— oo \/T T—o0 i \/T
__ X;|MDVF
Di ’

since X |MDVF X 7. This shows that the variance of
d; (T) |MDVF +2IMDVF
VT p;

mp_s s



Also, recall that O'TOT is the variance of XTOT =
Y Xi We have
pi

. D(T)MDVF SN | d;(T)|MDVF

lim —————— = lim

T— o0 \/T T— o0 Nf

i S\ TX; — X;(T)[MDVF _ Z X;|MDVF

= lim - ,

T—o00 Py Np7\/T sz
and the variance of limyp_, o D(T) ‘%DVF is U:‘).”OT‘AMDVF. As
limy_y o0 M\;TD(T”MDVF converges to 0 in probability, we
have o;]MDVF = Mpi. O

We have shown that the MDVF policy satisfies both
constraints (12) and (13). We now show that the value of
02.67|MDVF can be made arbitrarily close to a theoretical
lower bound.

Consider the problem (14) — (15), which ignores the con-
straint on variance (13). Since this problem only involves a
constraint on mean, there exists a stationary randomized policy
that is optimal, which we denote by w. Obviously, 02, r|w is a
lower bound of the problem (11) — (13). We have the following
theorem.

Theorem 3. 02, |MDVF < 02 ,p|w + £

Proof. Since w is a stationary randomized policy that satisfies
(15), we have E[Ad;(t)]lw = 0, for all ¢ and t. By (17), we
have

N

Bl = ey L= — oo

Now, recall that the MDVF policy minimizes B(t). Hence, for
every t, we have

N

AL(#)MDVF + eE[(> Xi(t) _fi(t ) )?]|[MDVF

B(t)[MDVF + 3
B(t)|w + B8 = eogop|w + B.

Summing the above inequality over ¢ = 1 to ¢ = T, and then
divide both sides by T yields

E[L(T +1)] -
T
<eotorlw + B.

E[L(0)]

IMDVF + ¢0%,7|MDVF
(27)

By Theorem 2, we have limp_, WH\/IDVF
=0, and hence 02,7 |[MDVF < 02,7 |w + £. O

We note that Theorem 3 holds for all e, which is a constant
that can be arbitrarily chosen by the system designer. By
choosing a large €, one can make o%,,|[MDVF arbitrarily
close to the lower bound o2, ,|w.

VI. SIMULATION RESULTS

We present our simulation results in this section. We have
implemented and tested our policy and two other state-of-
the-art policies in ns-2. All simulations are conducted using
the 802.11 MAC protocol with 54Mbps data rate. Simulations
show that the time needed to transmit a packet and to receive
an ACK is about 0.5ms. The duration of an interval is chosen
to be 10ms, or, equivalently, 20 time slots. The LoC function
is chosen to be C(0) = 6% when 6 > 0. All results presented
in this section are the average of 1000 runs.

We compare our MDVF policy against two other policies.
The first policy is the largest debt first (LDF) policy in [3],
[6]. In each interval ¢, the LDF policy sorts all clients in
descending order of ¢;t—X;(t), and transmit packets according
to this ordering. It has been shown that LDF guarantees to
deliver a long-term average timely-throughput of ¢; to each
client i, as long as it is feasible to do so. The second policy
is a Max-Weight type of policy that aims to reduce the total
age-of-information (Aol) in the network while guaranteeing
some average timely-throughput policy [7]. We call this policy
MW-Aol. Although the problem of minimizing Aol remains
an open problem, it has been shown that the MW-Aol policy
is 4-optimal in terms of Aol.

As for the network topology, we consider two different
settings. In the first setting, there are 12 wireless clients. The
channel reliability of client ¢ is set to be p; = 0.9 —0.05¢. We
set ¢; = 0.85 for the first 6 clients and ¢; = 0.75 for the last 6
clients. We call this setting the high-timely-throughput system.
In the second setting, there are 18 clients with p; = 1 —0.054.
We set ¢; = 0.5 for the first 9 clients and ¢; = 0.35 for the
last 9 clients. We call this setting the low-timely-throughput
system.

For each simulation run, we record the total LoC incurred
in the past second. Simulation results of the two systems are
shown in Fig. 1. Simulation results clearly show that our
MDVF policy achieves the smallest LoC for both systems.
A very surprising result is that the MW-Aol policy has the
highest LoC. The reason is that the MW-Aol policy focuses
on optimizing Aol, which only depends on the time of the most
recent packet delivery. However, most estimation techniques
require more than the most recent data to make an accurate
estimation. Even basic techniques like linear extrapolation
needs at least two data points to make an estimate. This
simulation result highlights that Aol may fail to completely
capture the accuracy of estimation. On the other hand, the LDF
policy only aims to optimize the long-term average timely-
throughputs and ignores temporal variance. This leads it to
also have suboptimal total LoC.

VII. RELATED WORK

Real-time wireless networks have gained a lot of research
interests. Hou, Borkar, and Kumar [3] have proposed a frame-
based model to describe delay requirements of real-time flows.
Under this model, the performance of each flow is determined
by its timely-throughput, which is the long-term average
number of timely deliveries. Jaramillo, Srikand, and Ying



500
400
300
200 MM@—WW(
100
| ->¢MDVF LDF MW-Aol |

0

2 4 6 8 10 12

Time (second)

(a) The high-timely-throughput system

14000
12000
10000
8000
6000
4000
2000

0
2 4 6 8 10 12
Time (second)

—>$<MDVF LDF MW-Aol

(b) The low-timely-throughput system

Fig. 1. The total LoC in the past second.

[8] have studied wireless flows with heterogeneous delay and
timely-throughput requirements. Kang et. al. [9] have studied
the performance of timely-throughputs in ad hoc wireless
networks with stochastic packet arrivals. Meko and Seid [10]
have proposed a randomized scheduling algorithm for real-
time flows. Zhang et. al. [11] have studied timely-throughputs
in heterogeneous cellular networks with mobile nodes. Lash-
gari and Avestimehr [12] have looked for the additive gap of
maximal timely throughput in a relaxed problem under the
time-varying channel states. However, all these studies focus
on the long-term average timely-throughput of each flow. As
demonstrated in this paper, the temporal variance of timely-
throughput can have significant impact on the credibility of an
information flow. Singh, Hou, and Kumar [13] have studied the
fluctuation of timely-throughput, but its results only hold for a
limiting scaled workloads. Hou [1] has proposed a scheduling
policy to optimize the short-term performance of real-time
flows, but the policy only applies to wireless networks where
all links have the same quality.

Age-of-information (Aol) is another metric that aims to
capture the short-term performance of information flows that
has gained a lot of research interests [7], [14]-[18]. Aol is
defined to capture the time of the most recent packet delivery.
As shown in this paper, it may not be sufficient to capture
the accuracy of estimation algorithms, which typically need
multiple data points to make an estimation.

VIII. CONCLUSION

We have studied the problem of minimizing the total Loss-
of-Credibility (LoC) in real-time wireless networks, where the
LoC of each flow only depends on the timely deliveries in a
window of the recent past. We have shown that, unlike most

existing network utility maximization (NUM) problem, the
problem of minimizing total LoC requires the precise control
of the temporal variance of timely deliveries. To solve this
problem, we have proposed a simple online algorithm called
the MDVF policy, and have proved that the MDVF policy is
near-optimal. Simulation results have further demonstrated that
the MDVF policy outperforms other state-of-the-art policies.
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