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Abstract— This paper considers a wireless network where
multiple flows are delivering status updates about their respective
information sources. An end user aims to make accurate real-time
estimations about the status of each information source using its
received packets. As the accuracy of estimation is most impacted
by events in the recent past, we propose to measure the credibility
of an information flow by the number of timely deliveries in a
window of the recent past, and say that a flow suffers from a
loss-of-credibility (LoC) if this number is insufficient for the end
user to make an accurate estimation.

We then study the problem of minimizing the system-wide LoC
in wireless networks where each flow has different requirement
and link quality. We show that the problem of minimizing the
system-wide LoC requires the control of temporal variance of
timely deliveries for each flow. This feature makes our problem
significantly different from other optimization problems that only
involves the average of control variables. Surprisingly, we show
that there exists a simple online scheduling algorithm that is near-
optimal. Simulation results show that our proposed algorithm is
significantly better than other state-of-the-art policies.

I. INTRODUCTION

Many emerging applications, such as industrial Internet of

Things (IoT) and virtual reality (VR), require the real-time

delivery of information. From an end user’s perspective, the

performance of such applications are determined by their

ability to accurately estimate the real-time status of their

respective information sources, such as the temperature of a

machine in industrial IoT or the location of a monster in a VR

game. However, most existing network performance metrics,

ranging from traditional quality-of-service (QoS) metrics such

as throughput, delay, and jitter, to emerging ones like timely-

throughput and age-of-information, fail to directly capture

the accuracy of the users’ estimation. Therefore, network

algorithms aiming at optimizing these network performance

metrics may result in poor performance for these emerging

applications.

To address the need for these emerging applications, we

introduce the concept of credibility of information flows,

where an information flow is considered to be credible if its
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user can make an accurate estimate of the current status using

its delivered packets. Our model for credibility is based on two

important features of estimation algorithms: First, information

in the recent past is much more useful than that in the distant

past for making an accurate estimate. Second, most estimation

algorithms, even simple ones like linear extrapolation, require

multiple data points in the recent past.

Based on these observations, we propose a model to cap-

ture the credibility of information flows in real-time wireless

networks. In this model, we consider that each information

source, such as sensors generating readings or VR servers

generating video frames, generates real-time information pe-

riodically. Stale information is dropped in favor of the trans-

mission of new information. The credibility of an information

flow only depends on the number of packets that are delivered

on time in a window of recent past. If the number of timely

deliveries in this window of recent past is below a user-

specified threshold, then the estimation becomes inaccurate,

and the information flow suffers from a loss-of-credibility

(LoC). Our goal is to minimize the system-wide LoC in

a wireless network with multiple flows, each with different

threshold and channel reliability.

Using Brownian approximation and martingale theory, we

show that the problem of minimizing the system-wide LoC is

equivalent to an optimization problem that involves two sets

of constraints: One set of constraints are related to the average

of timely deliveries of each flow, and another set of constraints

are related to the variance of timely deliveries. The existence

of constraints about the variance of timely deliveries makes

this problem significantly different from other network utility

maximization (NUM) problems that only involve constraints

about the average of variables, and hence cannot be solved by

most existing techniques for NUM problems.

We propose a simple online scheduling algorithm for this

problem. We analytically prove that the timely deliveries under

our scheduling algorithm satisfy both the constraints on the

average and those on the variance in the optimization problem.

We also analytically prove that our algorithm is near-optimal

for the optimization problem in the sense that its performance

can be made arbitrarily close to a theoretical bound.

We further evaluate the performance of our algorithm by

comparing it against two other state-of-the-art policies, one of



them is provably optimal in terms of timely-throughput, and

the other achieves an approximation bound in terms of age-of-

information. Simulation results show that our policy achieves

much smaller LoC than these two policies. This result further

highlights that existing network performance metrics may be

misleading in capturing the credibility of information flow.

The rest of this paper is as following order: Section II

introduces our model for credibility in real-time wireless

networks. Section III shows that the problem of minimizing

LoC is equivalent to an optimization problem. Section IV

introduces our online scheduling algorithm. Section V ana-

lyzes the performance of our scheduling algorithm and shows

that it is near-optimal for the optimization problem. Section

VI presents our simulation results. Section VII reviews some

related work. Finally, Section VIII concludes this paper.

II. SYSTEM MODEL

We extended the model in [1], which focuses on the short-

term performance for wireless networks with homogeneous

links, to address the credibility of information flows in real-

time wireless network where different wireless links can have

different channel qualities.

We consider a real-time wireless network that serves N
clients. Time is slotted, and the duration of one time slot is

the amount of time needed by a whole transmissions, including

all overheads such as the transmission of poll packet or ACK.

Hence, the AP can transmit to at most one client at each

time slot, and it has the instantaneous feedback information

on whether the transmission is successful. We consider that

wireless transmissions are subject to effects of shadowing,

multi-path, fading, interference, etc., and different clients

experience different channel qualities as they are located at

different positions. Hence, we assume that each transmission

for client i is successful with probability pi.
We consider that each client is associated with a real-time

information flow, and use flow i to indicate the flow associated

with client i. Specifically, we assume that each real-time flow

generates one packet periodically every τ slots, that is at time

slots 1, τ + 1, 2τ + 1, . . . . Each packet has a stringent delay

bound of τ slots, and is removed from the system if it cannot

be delivered before its delay bound. In other words, each

packet in a real-time flow is only valid for transmission until

the next packet arrives. We thereby say that τ time slots from

an interval. Packets arrive at the system at the beginning of

each interval, and have deadlines at the end of the interval.

We note that this model for real-time flows applies to many

emerging wireless applications. For example, consider multi-

user virtual reality (VR) or augmented reality (AR), where an

AP streams VR/AR contents to multiple VR/AR headsets. All

headsets play VR/AR contents at the same frame rates, and

therefore they generate traffic at the same frequency. Further,

as the AP should always transmit the newest VR/AR content

to a headset, packets that fail to be delivered on time should

be removed and replaced by newer packets. Likewise, one

can also consider industrial Internet of Things (IoT), where

an AP polls measurements from multiple sensors monitoring

different locations. Sensors have the same sampling frequency

and therefore generate traffic at the same frequency. Also, stale

measurements should be dropped when a new measurement is

generated.

An important feature of real-time application such as

VR/AR and industrial IoT is that each flow can typically

tolerate a small amount of sporadic packet losses, but is very

sensitive to a burst of packet losses. For example, in industrial

IoT, a controller can use various estimation techniques to

estimate the value of a lost sensor reading. However, the

accuracy of the estimate significantly degrades if there is a

burst a packet losses. Further, it is obvious that the accuracy

of the estimate only depends on the deliveries of recent sensor

readings, and readings in the distant past have negligible effect

on the estimation accuracy. We thereby say that an information

flow is credible if its delivered packets enable the controller

to make an accurate estimation.

The goal of this paper is to define and optimize the credi-

bility of an information flow that directly reflects the accuracy

of the resulting estimate by the controller. To capture the

aforementioned feature of real-time applications, we assume

that the credibility of a real-time flow at a given point of

time only depends on the packet deliveries in the window of

past T intervals. Specifically, let Xi(t) be the total number

of timely-deliveries for flow i in the first t intervals. We then

have Xi(t)−Xi(t− 1) = 1 if a packet is delivered to client

i in interval t, and Xi(t)−Xi(t− 1) = 0 if not. The number

of timely-deliveries in the window of the last T intervals can

then be represented as Xi(t)−Xi(t−T ), and we assume that

the credibility of flow i at the end of interval t only depends

on the value of Xi(t)−Xi(t− T ).
We assume that, to make an accurate estimate, each client

i requires that there are at least qiT packets being delivered

in the past T intervals, i.e., Xi(t) − Xi(t − T ) ≥ qiT . The

value of qi depends on the context of the information flow. For

example, a sensor monitoring a high-frequency signal requires

a larger qi than one that is monitoring a low-frequency signal.

Due to the unreliable nature of wireless transmissions, it is

obvious that it is not possible to satisfy the requirements of all

clients at all time. When the AP fails to deliver qiT packets

for a client i, then the estimation of current state of client i
becomes less accurate, and therefore we say that flow i loses

credibility.

We now formally define the measure of Loss-of-Credibility

(LoC). Suppose Xi(t) − Xi(t − T ) < qiT for some i and

t. Recall that every transmission for client i is successful

with probability pi. Hence, the AP would have needed to,

on average, schedule
qiT−(Xi(t)−Xi(t−T ))

pi
more transmissions

for client i to make Xi(t) − Xi(t − T ) = qiT and flow i
credible. We therefore define unbiased shortage of client i at

the end of interval t as θi(t) := max{ qiT−(Xi(t)−Xi(t−T ))
pi

, 0}.

At the end of each interval t, each client i suffers from a LoC

of C(θi(t)) based on its unbiased shortage, where C(·) is a

strictly increasing, strictly convex, and differentiable function

with C(0) = 0 and C ′(0) = 0.

This paper aims to evaluate the long-time average to-



tal LoC of all clients in the system, which is written as

lim
T→∞

T+T∑

t=T+1

N∑

i=1
C(θi(t))

T
= lim

T→∞

T+T∑

t=T+1

N∑

i=1
C(

qiT

pi
−Xi(t)−Xi(t−T )

pi
)

T
.

It also aims to propose an online scheduling policy1 that

minimizes the total LoC.

III. THE FORMULATION OF THE OPTIMIZATION PROBLEM

In this section, we derive some fundamental properties

about the minimization of total LoC. We then formulate an

optimization problem.

Recall that Xi(t) is the total number of timely-deliveries for

client i in the first t intervals. Obviously, {Xi(1), Xi(2), . . . }
is a sequence of random variables whose distribution is

determined by the employed packet scheduling policy. For

simplicity, we only focus on ergodic scheduling policies in

this paper. Thus, the random variable {Xi(t) − Xi(t − T )}
can be modeled by a positive recurrent Markov chain. By the

law of large numbers, we can define X̄i := limt→∞
Xi(t)

t .

Further, following the central limit theorem of Markov chains

[2], X̂i := limT→∞
Xi(T)−TX̄i√

T
is a Guassian random variable

with mean 0 and some finite variance, which we denote by σ2
i ,

with σi ≥ 0. Hence, we can approximate Xi(t) −Xi(t − T )
as a Gaussian random variable with mean TX̄i and variance

Tσ2
i when T is reasonably large. Let Φ(x) represents the

cumulative distribution function of a random variable under

standard normal distribution, then, under this approximation,

we have that the CDF of (Xi(t) − Xi(t − T )) − TX̄i) is

Φ( x√
σ2
i
T
).

The long-term average total LoC can now be re-written as

below:

lim
T→∞

T+T
∑

t=T+1

N
∑

i=1

C( qiTpi
− Xi(t)−Xi(t−T )

pi
)

T

= lim
T→∞

N
∑

i=1

E[C(
qiT

pi
− Xi(T)−Xi(T− T )

pi
)]

≈ lim
T→∞

N
∑

i=1

E[C(
qiT

pi
−

√
TX̂i(T ) + TX̄i

pi
)]

≈
N
∑

i=1

∫

z

C(

√

σ2
i T

p2i
z − (X̄i − qi)T

pi
)dΦ(z). (1)

Eq. (1) has two sets of control variables: [X̄i] and [σi].
Below, we derive the corresponding constraints of these two

sets of variables.

We first derive the constraints on [X̄i]. Previous work [3]

has shown that, under any work-conserving policy2, we have,

for all t,

E[

N
∑

i=1

Xi(t)−Xi(t− 1)

pi
] = τ − I{1,2,...,N}, (2)

1An online scheduling policy is a policy that determines which packet to
transmit in each slot based on all system parameters and the entire history.

2A scheduling policy is called work-conserving if it always schedules a
transmission when there is at least one packet available for transmission.

and

E[
∑

i∈S

Xi(t)−Xi(t− 1)

pi
] ≤ τ − IS , (3)

for any subset S ⊆ {1, 2, . . . N}, where Is is called the idle

time and has been shown to be the same under all work-

conversing policies. Therefore, we have

N
∑

i=1

X̄i

pi
= τ − I{1,2,...,N}, (4)

and

∑

i∈S

X̄i

pi
≤ τ − IS , ∀S ⊆ {1, 2, . . . N}. (5)

We further assume that, similar to the total resource pooling

condition, the constraint
∑

i∈S
X̄i

pi
≤ τ − IS is not tight and

can be ignored when S is not {1, 2, . . . N}.

Now, we derive the constraint of [σi]. By (2), the sequence

of random variables {∑N
i=1

Xi(t)
pi

− t(τ − I{1,2,...,N})|t =
1, 2, . . . } is a martingale. By the martingale central limit

theorem [4], X̂TOT := limT→∞

∑N
i=1

Xi(T)

pi
−T(τ−I{1,2,...N})√

T
=

limT→∞

∑N
i=1

Xi(T)

pi
−T(

∑N
i=1

X̄i
pi

)
√
T

is a Gaussian random variable

with mean 0, and its variance is

σ2
TOT := lim

T→∞

1

T
[

T
∑

t=1

(

N
∑

i=1

Xi(t)−Xi(t− 1)

pi
)2]

− (τ − I{1,2,...N})
2, (6)

whose value depends on the employed scheduling policy.

Recall that X̂i := limT→∞
Xi(T)−TX̄i√

T
is a Gaussian random

variable with variance σ2
i . Hence, we have X̂TOT =

∑N
i=1

X̂i

pi
,

and the variance of X̂i

pi
is (σi

pi
)2. By Cauchy-Schwarz Inequal-

ity, we have:

(

N
∑

i=1

σi

pi

)2
=

(

N
∑

i=1

√

V ar(
X̂i

pi
)
)2

=

N
∑

i=1

V ar(
X̂i

pi
)

+ 2

N
∑

l=1

N
∑

m=l+1

√

V ar(
X̂l

pl
)V ar(

X̂m

pm
)

≥
N
∑

i=1

V ar(
X̂i

pi
) + 2

N
∑

l=1

N
∑

m=l+1

Cov(
X̂l

pl
,
X̂m

pm
)

=V ar(
N
∑

i=1

X̂i

pi
) = σ2

TOT , (7)

where V ar(X) denotes the variance of X and Cov(X,Y )
denotes the covariance.

Although the value of σTOT may be different for different

scheduling policies, we first consider the special case of



minimizing the total LoC when σTOT is given and fixed. By

(1), (4), and (7), the optimization problem can be written as:

Min L =

N
∑

i=1

∫

z

C(

√

σ2
i T

p2i
z − (X̄i − qi)T

pi
)dΦ(z) (8)

s.t.

N
∑

i=1

X̄i

pi
= τ − I{1,2,...N} (9)

N
∑

i=1

σi

pi
≥ σTOT . (10)

Theorem 1. Let [X̄i
∗
] and [σ∗

i ] be the optimal solution to (8)

– (10). Then X̄i
∗
= (

τ−I{1,2,...N}

N −∑N
j=1

qj
Npj

+ qi
pi
)pi, and

σ∗
i = σTOT

N pi, for all 1 ≤ i ≤ N .

Proof. Since C(·) is a convex function, we have:

L =

N
∑

i=1

∫

z

C(

√

σ2
i T

p2i
z − (X̄i − qi)T

pi
)dΦ(z)

≥ N

∫

z

C(
1

N

N
∑

i=1

(

√

σ2
i T

p2i
z − (X̄i − qi)T

pi
))dΦ(z),

with equality occurs when
X̄∗

i

pi
− qi

pi
=

X̄∗
j

pj
− qj

pj
and

σ∗
i

pi
=

σ∗
j

pj

for any i, j ∈ {1, 2, . . . N}. By (9) and (10), we have X̄i
∗
=

(
τ−I{1,2,...N}

N −∑N
i=1

qi
Npi

+ qi
pi
)pi and σ∗

i = σTOT

N pi.

Theorem 1 establishes the optimal {X̄i} and {σi} that

minimizes the total LoC when σTOT is given and fixed. Obvi-

ously, smaller σTOT leads to smaller total LoC. Therefore, we

seek to solve the optimization problem below, which aims to

minimizing σTOT while satisfying the results of Theorem 1:

Min σ2
TOT := lim

T→∞

1

T
[

T
∑

t=1

(

N
∑

i=1

Xi(t)−Xi(t− 1)

pi
)2]

− (τ − I{1,2,...N})
2 (11)

s.t.X̄i = X̄∗
i , ∀1 ≤ i ≤ N (12)

σi =
σTOT

N
pi, ∀1 ≤ i ≤ N, (13)

where X̄∗
i := (

τ−I{1,2,...N}

N −∑N
j=1

qj
pjN

+ qi
pi
)pi.

We note that the problem (11) – (13) involves both a

constraint on the average of Xi(t) (12) and a constraint on

the variance of Xi(t) (13) for each i. Most existing studies on

network utility maximization (NUM) problem only addresses

constraints on the average of decision variables, and therefore

cannot be applied to solve (11) – (13). In fact, no stationary

randomized policies can optimally solve (11) – (13). In the

following sections, we will establish the surprising result that

there exists a simple online scheduling policy that is near-

optimal for the problem (11) – (13).

IV. AN ONLINE SCHEDULING POLICY

In this section, we propose a simple online scheduling

policy for the problem (11) – (13). We first provide a brief

outline of the construction of our algorithm. First, we remove

the constraint on variance (13) and focus on the following

optimization problem:

Min lim
T→∞

1

T
[

T
∑

t=1

(
N
∑

i=1

Xi(t)−Xi(t− 1)

pi
)2]

− (τ − I{1,2,...N})
2 (14)

s.t.X̄i = X̄∗
i , ∀1 ≤ i ≤ N. (15)

Obviously, this optimization problem is a lower bound to

the original problem (11) – (13). It is also a standard NUM

problem that only involves a constraint on the average of Xi(t)
for each i. We can therefore derive a near-optimal online

scheduling algorithm using the Drift-Plus-Penalty approach

[5]. We further demonstrate the surprising result that, due to

the specific choice of our Lyapunov function, our algorithm

also satisfies the constraint on variance (13). Therefore, our

algorithm is near-optimal to the original problem (11) – (13).

We now introduce some notations that are necessary for the

design and analysis of our algorithm. Let di(t) :=
X̄∗

i t
pi

− Xi(t)
pi

be the deficit of client i in interval t. Obviously, we have X̄i :=
limt→∞

Xi(t)
t = X̄∗

i if and only if limt→∞
di(t)
t = 0. We also

define ∆di(t) := di(t+1)− di(t) =
X̄∗

i

pi
− Xi(t+1)−Xi(t)

pi
and

D(t) :=
∑N

i=1 di(t)

N .

We consider the Lyapunov function L(t) = 1
2

∑N
i=1[di(t)−

D(t)]2. The drift of the Laypunov function is ∆L(t) :=
E[L(t+ 1)− L(t)|[di(t)]].

Given [di(t)], we have, under any scheduling policy,

∆L(t) = E[L(t+ 1)− L(t)]

=E
[1

2

N
∑

i=1

(

di(t+ 1)−D(t+ 1)
)2

− 1

2

N
∑

i=1

(

di(t)−D(t)
)2]

=E
[1

2

N
∑

i=1

(

di(t)−D(t) + ∆di(t)−
∑N

i=1 ∆di(t)

N

)2]

− E
[1

2

N
∑

i=1

(

di(t)−D(t)
)2]

=E
[1

2

N
∑

i=1

(

∆di(t)−
∑N

i=1 ∆di(t)

N

)2]

+

N
∑

i=1

E
[

∆di(t)
](

di(t)−D(t)
)

− E
[

∑N
i=1 ∆di(t)

N

]

N
∑

i=1

(

di(t)−D(t)
)

≤β +

N
∑

i=1

E
[

∆di(t)
](

di(t)−D(t)
)

, (16)



where β is a bounded positive number. The last inequality

holds since ∆di(t) is bounded by
X̄∗

i −1
pi

≤ ∆di(t) ≤ X̄∗
i

pi
and

∑N
i=1 di(t) = ND(t).

Our scheduling algorithm is based on the Drift-Plus-Penalty

approach [5]. Let

B(t) :=

N
∑

i=1

E
[

∆di(t)
](

di(t)−D(t)
)

+ εE[(

N
∑

i=1

Xi(t+ 1)−Xi(t)

pi
)2], (17)

where ε is a positive number whose value can be arbitrary

determined by the system designer. We then have

∆L(t) + εE[(

N
∑

i=1

Xi(t+ 1)−Xi(t)

pi
)2] ≤ β +B(t). (18)

We aim to design an online scheduling algorithm that

minimizes B(t). Note that the value of B(t) depends on

the scheduling decisions on all time slots within the interval

t, which consists of τ time slots. Minimizing an objective

function over a finite horizon of τ time slots typically requires

the usage of dynamic programming. However, we will show

that there exists a simple online scheduling algorithm that

minimizes B(t).

Our algorithm is called the Minimum-Drift-and-Variance-

First (MDVF) policy. Under the MDVF policy, the AP calcu-

lates the value of ri(t) := ε 1
pi
−di(t) at the beginning of each

interval t. In each time slot within the interval, the AP finds the

undelivered packet with the smallest ri(t) and transmits that

packet, as long as there is at least one packet to be transmitted.

Lemma 1. The MDVF policy minimizes B(t).

Proof. We prove this lemma by induction. First, we consider

the optimal scheduling decision in the last time slot of the in-

terval. At this time, some packets have already been delivered

in the previous τ − 1 slots, and we use V to denote the set of

clients whose packets have already been delivered. As this is

the last time slot of the interval, the scheduling decision of the

AP only consists of choosing one client u /∈ V and transmit-

ting its packet. Given V and u, we will calculate the value of
∑N

i=1 E
[

∆di(t)
](

di(t)−D(t)
)

+εE[(
∑N

i=1
Xi(t+1)−Xi(t)

pi
)2].

For this chosen client u, its packet will be delivered, that

is, Xu(t+ 1)−Xu(t) = 1, with probability pu, and Xu(t+
1) − Xu(t) = 0, with probability 1 − pu. Hence, we have

E[∆du(t)] =
X̄u−pu

pu
.

On the other hand, for each client i ∈ V , its packet has

already been delivered. We have Xv(t)−Xv(t− 1) = 1 and

E[∆di(t)] =
X̄i−1
pi

.

Finally, for each client i /∈ V ∪ {u}, its packet will not be

delivered, and we have Xi(t)−Xi(t−1) = 0 and E[∆di(t)] =
X̄i

pi
.

We now have, given V and u,

N
∑

i=1

E
[

∆di(t)
]

[di(t)−D(t)]

+ εE[(

N
∑

i=1

Xi(t+ 1)−Xi(t)

pi
)2]

=
X̄u − pu

pu
[du(t)−D(t)] +

∑

i∈V

X̄i − 1

pi
[di(t)−D(t)]

+
∑

i/∈V ∪{u}

X̄i

pi
[di(t)−D(t)]

+ ε[pu
(

∑

i∈V

1

pi
+

1

pu

)2
+ (1− pu)

(

∑

i∈V

1

pi

)2
]

= ε
1

pu
− du(t) + λ(V ), (19)

where λ(V ) := D(t) +
∑N

i=1
X̄i

pi
[di(t)−D(t)]

−∑

i∈V
1
pi
[di(t)−D(t)] + ε[

(
∑

i∈V
1
pi

)2
+ 2

(
∑

i∈V
1
pi

)

] is

the same regardless of the choice of u. Therefore, it is clear

that an optimal scheduling algorithm that minimizes B(t) will

schedule the undelivered packet u with the smallest ε 1
pu

−du(t)
in the last time slot.

Now, assume that, starting from the (s+1)-th time slot in an

interval, scheduling the undelivered packet with the smallest

ε 1
pu

− du(t) in each of the remaining time slot is optimal.

We will show that, even in the s-th time slot, scheduling the

undelivered packet with the smallest ε 1
pu

− du(t) is optimal.

We prove this claim by contradiction. Let u∗ be the unde-

livered packet with the smallest ε 1
pu

− du(t) in time slot s.

If the claim is false, then the optimal scheduling algorithm,

which we denote by A, would schedule another undelivered

packet u′ 6= u∗ in time slot s, and the value of B(t) under A

is strictly smaller than any policy that schedules u∗ in the s-th

time slot. By the induction hypothesis, A begins to schedule

the undelivered packet with the smallest ε 1
pu

− du(t) starting

from the (s+ 1)-th time slot. As u∗ is not scheduled by A is

the s-th time slot, A needs to schedule u∗ in the (s + 1)-th
time slot. In summary, A schedules u′ in the s-th time slot,

and u∗ in the (s+ 1)-th time slot.

Now, we can construct another algorithm B by simply

swapping the transmissions in the s-th time slot and the (s+1)-
th time slot. In other words, B schedules u∗ in the s-th time

slot, u′ in the (s+1)-th time slot, and then follows A starting

from the (s + 2)-th time slot. Obviously, the value of B(t)
under A and B is the same, which results in a contradiction.

We have established that, even in the s-th time slot, schedul-

ing the undelivered packet with the smallest ε 1
pu

− du(t) is

optimal. By induction, scheduling the undelivered packet with

the smallest ε 1
pu

− du(t) in each time slot is optimal, and

MDVF minimizes B(t).

V. PERFORMANCE ANALYSIS OF THE MDVF POLICY

We now study the performance of the MDVF policy. We

will demonstrate the surprising result that the MDVF policy



satisfies both constraints on mean (12) and variance (13), and

the value of σ2
TOT under the MDVF policy can be made

arbitrary close to a lower bound. Throughout this section, we

use ·|η to denote the value of · under a scheduling policy η.

For example, ∆L(t)|MDVF denotes the value of ∆L(t) under

the MDVF policy.

We first establish the following property.

Theorem 2. Under the MDVF policy, the Markov process with

state vector {di(t)−D(t)} is positive recurrent.

Proof. We prove this theorem by establishing an upper bound

of ∆L(t)|MDVF. To simplify notations, we let Ω be the policy

that schedules the undelivered packet with the maximum value

of di(t). We also sort all clients such that d1(t) ≥ d2(t) ≥
· · · ≥ dN (t). Then Ω will only transmit a packet for client

i if, for each j < i, the packet for flow j has already been

delivered. This is equivalent to the largest-debt-first policy in

[3], and we have, for all 1 ≤ j ≤ N :

j
∑

i=1

E[∆di(t)]|Ω =

j
∑

i=1

X̄∗
i

pi
− E[

j
∑

i=1

Xi(t+ 1)−Xi(t)

pi
]|Ω

=

j
∑

i=1

X̄∗
i

pi
− (τ − I{1,2,...,j}). (20)

By (4), we have
∑N

i=1 E[∆di(t)]|Ω = 0. Further, as we as-

sume that (5) is not tight when S 6= {1, 2, . . . , N}, there exists

a positive number δ > 0 such that
∑j

i=1 E[∆di(t)]|Ω ≤ −δ
for all 1 ≤ j ≤ N − 1. We now have

N
∑

i=1

E[∆di(t)]
(

di(t)−D(t)
)

|Ω

=

N
∑

i=1

E[∆di(t)]
(

di(t)− di+1(t) + di+1(t)

− di+2(t) + · · · − dN (t) + dN (t)−D(t)
)

|Ω

=

N
∑

i=1

E[∆di(t)]
(

dN (t)−D(t)
)

|Ω

+

j
∑

i=1

N−1
∑

j=1

E[∆di(t)]
(

dj(t)− dj+1(t)
)

|Ω

≤− δ
N−1
∑

j=1

(

dj(t)− dj+1(t)
)

= −δ
(

d1(t)− dN (t)
)

. (21)

Next, we study ∆L(t)|MDVF. By Lemma 1, the MDVF

policy minimizes B(t). Hence, we have

∆L(t)|MDVF + εE[(

N
∑

i=1

Xi(t+ 1)−Xi(t)

pi
)2]|MDVF

≤β +B(t)|MDVF
(

By (18)
)

≤β +B(t)|Ω

≤β + εE[(

N
∑

i=1

Xi(t+ 1)−Xi(t)

pi
)2]|Ω

− δ
(

d1(t)− dN (t)
) (

By (17) and (21)
)

(22)

Since 0 ≤ Xi(t+ 1)−Xi(t) ≤ 1, there exists some constant

M such that

∆L(t)|MDVF ≤ −δ
(

d1(t)− dN (t)
)

+M. (23)

Recall that we have sorted all clients such that d1(t)
≥ d2(t) ≥ . . . . Hence,

(

d1(t)− dN (t)
)

≥ 0 and
(

d1(t)
− dN (t)

)

≥ |di(t)−D(t)|, for all i. We have

∆L(t)|MDVF < −δ, if |di(t)−D(t)| > M
δ + 1, for some i,

and

∆L(t)|MDVF ≤ M, otherwise. (24)

By the Foster-Lyapunov Theorem, the Markov process with

state vector {di(t)−D(t)} is positive recurrent.

Now we are able to show that the MDVF policy satisfies

both constraints (12) and (13).

Corollary 1. X̄i|MDVF = X̄∗
i and σi|MDVF =

σTOT |MDV F
N pi, ∀i.

Proof. Recall that di(t) :=
X̄∗

i t
pi

− Xi(t)
pi

and D(t) :=
∑N

i=1 di(t)

N . By (4), we have:

lim
T→∞

D(T)|MDVF

T
= lim

T→∞

∑N
i=1 di(T)|MDVF

NT

=
1

N

N
∑

i=1

lim
T→∞

TX̄∗
i −Xi(T)|MDVF

piT

=
1

N

N
∑

i=1

X̄∗
i

pi
− 1

N

N
∑

i=1

X̄i(T)|MDVF

pi

=
τ − I{1,2,...N}

N
− τ − I{1,2,...N}

N
= 0. (25)

By Theorem 2, the vector {di(t) − D(t)}|MDVF con-

verges to a steady state distribution as t → ∞. Hence, both

limT→∞
di(T)−D(T)

T
|MDVF and limT→∞

di(T)−D(T)√
T

|MDVF

converge to 0 in probability. We then have

lim
T→∞

di(T)|MDVF

T
=

X̄∗
i

pi
− X̄i|MDVF

pi

= lim
T→∞

D(T)|MDVF

T
= 0, (26)

and hence X̄i|MDVF= X̄∗
i .

Next, we study σi|MDVF. Recall that σ2
i is the variance of

X̂i := limT→∞
Xi(T)−TX̄i√

T
. We then have:

lim
T→∞

di(T)|MDVF√
T

= lim
T→∞

TX̄∗
i −Xi(T)|MDVF

pi
√
T

= −X̂i|MDVF

pi
,

since X̄i|MDVF= X̄∗
i . This shows that the variance of

limT→∞
di(T)|MDVF√

T
is

σ2
i |MDVF

p2
i

.



Also, recall that σ2
TOT is the variance of X̂TOT =

∑N
i=1

X̂i

pi
. We have

lim
T→∞

D(T)|MDVF√
T

= lim
T→∞

∑N
i=1 di(T)|MDVF

N
√
T

= lim
T→∞

N
∑

i=1

TX̄∗
i −Xi(T)|MDVF

Npi
√
T

= −
N
∑

i=1

X̂i|MDVF

Npi
,

and the variance of limT→∞
D(T)|MDVF√

T
is

σ2
TOT |MDVF

N2 . As

limT→∞
di(T)−D(T)√

T
|MDVF converges to 0 in probability, we

have σi|MDVF = σTOT |MDVF
N pi.

We have shown that the MDVF policy satisfies both

constraints (12) and (13). We now show that the value of

σ2
TOT |MDVF can be made arbitrarily close to a theoretical

lower bound.

Consider the problem (14) – (15), which ignores the con-

straint on variance (13). Since this problem only involves a

constraint on mean, there exists a stationary randomized policy

that is optimal, which we denote by ω. Obviously, σ2
TOT |ω is a

lower bound of the problem (11) – (13). We have the following

theorem.

Theorem 3. σ2
TOT |MDVF ≤ σ2

TOT |ω + β
ε .

Proof. Since ω is a stationary randomized policy that satisfies

(15), we have E[∆di(t)]|ω = 0, for all i and t. By (17), we

have

B(t)|ω = εE[(
N
∑

i=1

Xi(t+ 1)−Xi(t)

pi
)2]|ω = εσ2

TOT |ω.

Now, recall that the MDVF policy minimizes B(t). Hence, for

every t, we have

∆L(t)|MDVF + εE[(

N
∑

i=1

Xi(t)−Xi(t− 1)

pi
)2]|MDVF

≤B(t)|MDVF + β

≤B(t)|ω + β = εσ2
TOT |ω + β.

Summing the above inequality over t = 1 to t = T, and then

divide both sides by T yields

E[L(T+ 1)]− E[L(0)]

T
|MDVF + εσ2

TOT |MDVF

≤εσ2
TOT |ω + β. (27)

By Theorem 2, we have limT→∞
E[L(T+1)]−E[L(0)]

T
|MDVF

= 0, and hence σ2
TOT |MDVF ≤ σ2

TOT |ω + β
ε .

We note that Theorem 3 holds for all ε, which is a constant

that can be arbitrarily chosen by the system designer. By

choosing a large ε, one can make σ2
TOT |MDVF arbitrarily

close to the lower bound σ2
TOT |ω.

VI. SIMULATION RESULTS

We present our simulation results in this section. We have

implemented and tested our policy and two other state-of-

the-art policies in ns-2. All simulations are conducted using

the 802.11 MAC protocol with 54Mbps data rate. Simulations

show that the time needed to transmit a packet and to receive

an ACK is about 0.5ms. The duration of an interval is chosen

to be 10ms, or, equivalently, 20 time slots. The LoC function

is chosen to be C(θ) = θ2 when θ > 0. All results presented

in this section are the average of 1000 runs.

We compare our MDVF policy against two other policies.

The first policy is the largest debt first (LDF) policy in [3],

[6]. In each interval t, the LDF policy sorts all clients in

descending order of qit−Xi(t), and transmit packets according

to this ordering. It has been shown that LDF guarantees to

deliver a long-term average timely-throughput of qi to each

client i, as long as it is feasible to do so. The second policy

is a Max-Weight type of policy that aims to reduce the total

age-of-information (AoI) in the network while guaranteeing

some average timely-throughput policy [7]. We call this policy

MW-AoI. Although the problem of minimizing AoI remains

an open problem, it has been shown that the MW-AoI policy

is 4-optimal in terms of AoI.

As for the network topology, we consider two different

settings. In the first setting, there are 12 wireless clients. The

channel reliability of client i is set to be pi = 0.9−0.05i. We

set qi = 0.85 for the first 6 clients and qi = 0.75 for the last 6

clients. We call this setting the high-timely-throughput system.

In the second setting, there are 18 clients with pi = 1−0.05i.
We set qi = 0.5 for the first 9 clients and qi = 0.35 for the

last 9 clients. We call this setting the low-timely-throughput

system.

For each simulation run, we record the total LoC incurred

in the past second. Simulation results of the two systems are

shown in Fig. 1. Simulation results clearly show that our

MDVF policy achieves the smallest LoC for both systems.

A very surprising result is that the MW-AoI policy has the

highest LoC. The reason is that the MW-AoI policy focuses

on optimizing AoI, which only depends on the time of the most

recent packet delivery. However, most estimation techniques

require more than the most recent data to make an accurate

estimation. Even basic techniques like linear extrapolation

needs at least two data points to make an estimate. This

simulation result highlights that AoI may fail to completely

capture the accuracy of estimation. On the other hand, the LDF

policy only aims to optimize the long-term average timely-

throughputs and ignores temporal variance. This leads it to

also have suboptimal total LoC.

VII. RELATED WORK

Real-time wireless networks have gained a lot of research

interests. Hou, Borkar, and Kumar [3] have proposed a frame-

based model to describe delay requirements of real-time flows.

Under this model, the performance of each flow is determined

by its timely-throughput, which is the long-term average

number of timely deliveries. Jaramillo, Srikand, and Ying




