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A comprehensive theory encompassing the kinetics of the sol-to-gel transition is yet to be formulated due
to break-down of the mean-field Smoluchowski Equation. Using high temporal-resolution Monte Carlo
simulation of irreversible aggregation systems, we show that this transition has three distinct regimes
with kinetic exponent z 2 1½ ;2Þ corresponding to aggregation of sol clusters proceeding to the ideal gel
point (IGP); z 2 2½ ;5:7Þ for gelation of sol clusters beyond IGP; and z 2 2½ ;3:5Þ for a hitherto unidentified
regime involving aggregation of gels when monomer-dense. We further establish universal power-law
scaling relationships that connect the kinetics of these three regimes. Improved parameterizations are
performed on the characteristic timescale parameters that define each regime.

� 2019 Elsevier Inc. All rights reserved.
1. Introduction versibly stick together to form larger clusters. Provided the
Aggregation is a phenomenon ubiquitous in colloidal and aero-
sol systems [1–5]. Upon dispersion, particles collide and often irre-
monomer-monomer contact is non-coalescent, the aggregates
manifest a scale-invariant, fractal-like morphology quantifiable
with a mass fractal dimension (Df ) [1–3,6]. Prolonged aggregation
leads to the phenomenon of gelation – a process involving the jam-
ming together of ramified aggregates and the formation of volume-
spanning networks with a characteristic Df � 2.5 [7–11]. Gelation,
as a phenomenon, has opened many avenues for synthesis of mate-
rials with unique properties [5,12–14]. The contemporary applica-
tion of gelation theory extends to a broader context, for example,
predicting the influence of wild fire emissions on climate change
[15–17] and counteracting the formation of online extremist group
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supports [18]. Despite its wide-ranging applicability, the theory of
gelation still grapples with the fundamental questions ‘‘How fast
does a sol system gel and what are the associated critical time scales?”
The difficulty in formulating a comprehensive kinetic theory stems
from the break-down, at the onset of gelation, of the mean-field
assumption which lies at the core of the governing Smoluchowski
Equation (SE) [6,8–10,19–21]. That is, SE, which tracks the time
evolution of the system can only go so far in predicting the pre-
onset of gelation, but not gelation itself [8,9]. An alternate success-
ful interpretation of the sol-gel phenomenon is the percolation the-
ory, which is a static model and hence, cannot predict the kinetics
[22–24]. In this study, we address this long-standing problem by
establishing a set of system-independent kinetic expressions cap-
able of predicting the complete evolution of the sol-to-gel process.
We do so by performing high temporal-resolution analysis on the
evolution of diffusion limited cluster-cluster aggregation (DLCA)
systems, which have been recently shown to produce gels that
share identical morphologies with those produced via the percola-
tion model [25].

This paper is organized as such: In Sections 1.1 and 1.2, we
briefly revisit the traditional interpretations of the gelation ten-
dency and kinetics, respectively. Concepts regarding the critical
conditions that define the transition regimes are introduced. In
Section 2, we describe the numerical methods used in simulating
the irreversible DLCA process. In Section 3, we present the main
results of this study, along with discussion on the time-evolution
of cluster mass distribution, the power-law scaling relationships
of the transition kinetics, and important characteristic timescales.
We conclude this paper with Section 4.
1.1. Tendency of sol-to-gel transition

The tendency of gelation stems from the simple fact that theDf of
non-coalescent aggregates is always smaller than the spatial dimen-
sion (for example, d ¼ 3 in three-dimensional space) [8,9]. As a
result, when aggregates growwith Df < d, the increase in their aver-
age size outruns their average nearest-neighbor separation. That
said, the system inevitably evolves to crowded states [8,9]. When
the total effective volume of all sol clusters reaches the system vol-
ume (V), the system is said to reach ideal gel point (IGP) [8,12]. Note
that the effective cluster volume here is the perimeter volume (Vp),
which could be visualized as volume of an isotropic sphere caging
the cluster [26]. One should not be confused with the solid volume
(Vm) of the cluster, which is the sumof the volumes of its constituent
monomers. Visually, the IGP is the point atwhich sol clusters start to
interdigitate [8,12], and it precedes the physical occurrence of the
first gel cluster that spans the entire system volume. The point cor-
responding to the occurrence of such system-spanning gel is called
physical gel point (PGP) or percolation point [8].

Past research has also outlined other methods to identify the
onset of gelation in aggregation systems. For example, the occur-
rence of gel can be experimentally determined by observing the
appearance of non-zero elasticity [21,27,28]. Theoretically, 1% of
effective cluster volume fraction has also been shown as an indica-
tor of imminent gelation [29], consistent with the onset of the
cluster-dense regime [9], beyond which the aggregation system
deviates from the SE dynamics.
1.2. Kinetics of sol-to-gel transition

The existing kinetic theory discusses the sol-to-gel transition
within two major regimes [8–10,30]. Prior to IGP (hereafter Regime
I), the transition is driven by the random collision and aggregation
of particles that freely diffuse in system space, and the mean-field
assumption holds valid [8–10,30]; Beyond the IGP (hereafter
Regime II), the free space in the system is largely taken, and as a
result, the motion of clusters is significantly restricted. From this
point on, the interconnection among neighboring sol clusters starts
to form, eventually leading to the onset of the gelling network [8–
10,30]. When all aggregates in the system are incorporated into
one single volume-spanning particle, the system is said to reach
final gel state (FGS) [8].

The transition kinetics in Regime I is governed by the SE param-
eterized with aggregation kernels which depend on factors such as
the relative motion between colliding particles and the cluster
internal structure [6,8,19]. Solution to SE with homogeneous ker-
nel leads to the scaling relationship between total number of clus-
ters in the system (ntot) and inverse time (t�1), ntot / t�z, where the
kinetic exponent (z) quantitatively measures how fast aggregation
proceeds [8,9,26]. Regime I is further divided into two sub-regimes
– cluster-dilute and dense – per the value of z [8]: Cluster-dilute
regime describes the initial aggregation stage, during which Brow-
nian kernel holds, yielding z ¼ 1 [8,9,26]. Subsequently, the kinet-
ics of aggregation tend to speed up as the system evolves to the
cluster-dense regime, along with an increase in the value of z to
about two near IGP [8,9]. A past theoretical modeling study found
that the mean-field kinetics still holds valid although the kinetics is
enhanced due to system crowding [9]. This finding is in good
agreement with later experiments conducted on a reaction-
limited system, wherein the second order kinetics is observed to
prevail, even in extremely dense system very close to the gel point
[21]. The kinetic modeling in Regime II remains an active research
direction. Fry et al. empirically mapped the values of increasing z
with respect to t for the DLCA systems transitioning between IGP
and FGS (i.e. the Post-IGP Regime) [9]. Rottereau et al. quantitated
the late-stage process using the concepts as evolution of connectiv-
ity between clusters [10]. However, no explicit kinetic expression
has been formulated for Regime II to our knowledge. Purely math-
ematical based analysis – an application of SE while disregarding
the breaking down of mean-field assumption – has led to the
advent of mathematical gelation [31]. Such a model, however,
has been shown to ultimately fail on real world colloidal systems
[30]. Lushnikov introduced a truncated model by immediately
removing heavy particles (gels) with mass greater than a cutoff
value, which reconciles the paradoxical behavior of SE, at a cost
of violating mass conservation [32].

2. Methods

Our off-lattice DLCA model follows that introduced in previous
publications [33,34]. The model algorithm starts out by generating
a cubic simulation box with three-million randomly placed mono-
mers. The monomer volume fraction (f vm) is controlled by specify-
ing the V of the simulation box,

f vm ¼ 4
3
pa3 ntot;0

V
ð1Þ

where a is a monomer radius in arbitrary units, and ntot;0 denotes
the total number of particle (cluster) at t ¼ 0, which is equal to
the conserved total number of monomers in the system. The simu-
lation proceeds by randomly picking a cluster of mass N (number of
constituent monomers, and N ¼ 1 for monomer) and moving it by
2a in a random direction with probability N�1=Df per Stokes-
Einstein diffusion [19]. The algorithm tracks the total number of
clusters (ntot), and once every ntot clusters have been picked, t is
incremented by unit simulation time ts. We define ts as the time-
interval during which monomers move by a root-mean-squared-
displacement of 2a (See Supplementary Sect. I for derivation):

ts ¼ 4pla3

kBT
ð2Þ



Fig. 1. Time-evolution of the aggregate mass distribution for DLCA systems with
f vm = 0.001 (a), 0.005 (b), 0.01 (c), 0.02 (d), 0.05 (e), and 0.1 (f). The solid lines
represent the analytical solution values to the characteristic cluster mass at the IGP,
log10NIGP, which follows Eq. (3). The dashed lines represent the geometric mean
values of cluster mass, hlog10Ni. In panels (b)–(f), triangles and circles, respectively,
represent tIGP and tFGS , which are determined from the simulations. Squares indicate
the time when sol clusters deplete, tIGP þ td , and td is solved using Eq. (4). All
timescales are presented in units of ts .
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where kB, T , and l respectively represent the Boltzmann constant,
temperature, and viscosity of the surrounding gas [19]. During the
process, if two clusters collide, they are joined together forming a
new cluster, and ntot decreases by one. The above procedure was
repeated until ntot ¼ 1, that is, the FGS was attained, and the corre-
sponding time tFGS was recorded. By the end of each run, the algo-
rithm outputted a list for cluster N for every t which incremented
by ts in the range between 0 and tFGS. We next calculated, from
the list, the cluster mass frequency distribution (hereafter, mass
distribution), written as n log10N; t=tsð Þ=ntot t=tsð Þ where n denotes
the number of clusters having N monomers at time t.

3. Results and discussion

3.1. Evolution of cluster mass distribution

Fig. 1 shows the contour plots of aggregate mass distributions in
the log10N � t=ts space for systems of various f vm. Panel (a) demon-
strates the mean-field growth of sol clusters which is typically seen
in Regime I, during which the kinetics could be described with the
exact solution to SE [8,9,19,26].

Next, we discuss the onset of gelation and the subsequent
Regime II by comparing the cluster mass distributions with the
analytical solution values of average cluster mass at the IGP
(written as NIGP):

NIGP ¼ k0 Rg;IGP=a
� �Df ð3:1Þ

with Rg;IGP ¼ a f�1
vmk0

Df

Df þ 2

� �3=2
" #1= 3�Dfð Þ

ð3:2Þ

where Rg;IGP is the average radius of gyration (a linear size) of aggre-
gates at the IGP and k0 is the fractal prefactor in the scaling relation.
Eq. (3.1) follows mass scaling power-law relationship with k0 ¼ 1:3
and Df ¼ 1:8 describing the morphology of DLCA. Eq. (3.2), origi-
nally introduced in Ref. [35], is reached when one equalizes the sys-
tem V to the total cluster VP .

Panel (b)–(e) show that when sol clusters grow, their geometric
mean mass value, represented by hlog10Ni (red dashed lines),
asymptotes to the log10NIGP value (red solid lines) predicted by Eq.
(3). Subsequently, the IGP could be identified at the point when
hlog10Ni reaches log10NIGP (See Supplementary Sect. II), and the cor-
responding time is regarded as the ideal gel time (tIGP). In Fig. 1 we
mark the IGP at the points ðN ¼ NIGP; t ¼ tIGPÞ using triangle sym-
bols. One could observe that immediately after IGP, the mass distri-
bution (in Fig. 1(b)–(e)) becomes bimodal, indicating the onset of a
separate phase, the gel. Subsequently, the gel clusters in the sys-
tems continuously grow by scavenging the remaining sol clusters
whose mass distribution stays invariant with hlog10Ni closely
matching log10NIGP . In the dilute systems with f vm = 0.005, 0.01,
and 0.02, the gel clusters grow in a rapid manner and the biggest
gel reach a mass of about 106 at t=tIGP � 1.5, 1.7, and 2.3, respec-
tively. One could infer the onset of the system spanning gel (the
PGP) when the mass of the biggest gel cluster reaches the order-
of-magnitude of ntot;0. In the denser system with f vm = 0.05 and
0.1, counter-intuitively, the mass of the biggest gel cluster reaches
�106 atmuch later times, t=tIGP � 10.2 and 28.8, respectively, which
are very close to the FGS (N ¼ ntot;0; t ¼ tFGS, circle symbols in Fig. 1).
This observation implies that gel clusters in the denser systems
tend to form in a local manner. Those freshly produced gel clusters
percolate a sub-volume of the system, instead of the entire system.
The system-spanning gel is formed near the very end of the transi-
tion, when the all local gel clusters are assembled together.

Another important observation from the evolution of mass-
distribution is that beyond IGP, a considerable amount of time is
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always needed for the total conversion of sol clusters to gel phase,
as shown in Fig. 1. We next discuss how to quantify the length of
the time interval between IGP and the total conversion of sol clus-
ters, which is written as td in the context of this paper. Recall that
IGP is the point where the perimeter volume fraction of sol clusters
reaches unity [8,35]. Such a condition, however, does not guaran-
tee the immediate formation of the interconnection among neigh-
boring sol clusters (hence td exists). This seemingly contradictory
observation can be explained by the fact that fractal clusters only
partially fill the Euclidean space. In other words, free spaces within
the Vp always exist, so that the neighboring sol clusters at IGP
could remain interdigitating, instead of forming connections (such
configuration is qualitatively described by the schematic diagram
in Fig. 2). Quantitatively, we measure the free spaces with
Vp;IGP � Vm;IGP (subscripts indicating parameters at IGP). This vol-
ume difference, when raised to power of 2/3, yields a square of a
length scale whose square root approximately measures the aver-
age distance by which clusters need to travel in order to connect
with their neighbors. Write the diffusivity of cluster at IGP as
DIGP , and the rearrangement of diffusion equation in three dimen-

sional space yields to td ¼ Vp;IGP�Vm;IGPð Þ2=3
6DIGP

. We show a step-by-step

derivation in Supplementary Sect. III that td, after being normalized
by ts, is a function of f vm only, written as:

td
ts

¼ 1
4

4
3
p 1� f vmð Þ

� �2=3 Df

Df þ 2

� � 2Dfþ3ð Þ= 6�2Dfð Þ
k0f

�1
vm

� 	3= 3�Dfð Þ ð4Þ

In Fig. 1 we mark the critical points corresponding to the total
conversion of sol clusters at ðN ¼ NIGP; t ¼ tIGP þ tdÞ using square
symbols. Good agreements between the predictions by Eq. (4)
and the simulations are seen for systems with different f vm.
Another important inference from our scaling analysis is that td
is inversely related to the f vm. Qualitatively, this is because a den-
ser system (with higher f vm) reaches IGP with average sol clusters
of smaller NIGP , which are in turn characterized with smaller
Vp;IGP � Vm;IGP , and simultaneously larger DIGP . One could also
observe such inverse correlation between td and f vm in Fig. 1(b)–
(e). For example, when a system is sufficiently dilute
(f vm ¼ 0:005 and 0:01), the total conversion of sol clusters occurs
at a timescale comparable to that of the FGS, formally tIGPþ
td � tFGS. With a further increase in f vm (from 0.02 to 0.05), td
decreases, the total conversion of sol clusters precedes FGS, and
the time interval between tIGP þ td and tFGS becomes non-trivial.
Such tendency reaches an extremity when f vm ¼ 0:1, as shown in
Fig. 1(f), where tIGP þ td � tFGS and the system evolves with a uni-
modal cluster mass distribution throughout the entire process.
This unimodality implies that sol clusters and gels no longer co-
exist. For these extremely dense systems (f vm ¼ 0:05 and 0:1),
the transition process beyond the tIGP þ td is defined as Regime
III, which differs fundamentally from the classical picture of sol-
to-gel transition [8].

3.2. Scaling law for aggregation and gelation kinetics

We next demonstrate that the kinetics within Regimes I, II and
III could be unified on coherent power-law relationships, when the
transition is observed with two timescales, first, the characteristic
time for Brownian aggregation (tc), and second, the tIGP . In Regime
I, solving SE with homogeneous Brownian kernel provides the scal-
ing law with z ¼ 1 [8,19]:

ntot

ntot;0
¼ 1þ t

tc

� ��1

ð5Þ

and; tc ¼ 3lV
4kBTntot;0

ð6Þ
According to Eq. (5) we empirically determine tc from DLCA
simulations at the time when ntot decreases to half of the initial val-
ues (See Supplementary Sect. IV).

Fig. 3(a) shows that when t is normalized per 1þ t=tc , the early
stages of the transition are unified and the trends of ntot=ntot;0

follow Eq. (5) with z ¼ 1, indicating the dominance of Brownian
aggregation mechanism. This is especially true for f vm ¼ 0:001,
whereas the behavior becomes more rapid than Eq. (5) for progres-
sively larger f vm. This deviation from Eq. (5) indicates subsequent
cluster-dense conditions, and the kinetics speed up with the
kinetic exponent z taking on values larger than unity, during which
the driving mechanism of aggregation becomes ballistic-limited as
the interdigitating aggregates have no more free space to diffuse
[8,9,36].

Fig. 3(b) shows the late-stages of the transition are unified upon
normalizing t according to 1þ t=tIGP . A universal power-law rela-
tionship manifests as,

ntot

ntot;IGP
¼ 2zFGS 1þ t

tIGP

� ��zFGS

ð7Þ

where zFGS � 5:7 is the kinetic exponent reported at the FGS [9]. The
z takes on a terminal value because only when t � tIGP (that is, FGS)
could Eq. (7) be reduced to ntot / t�z. The prefactor takes up the
expression of 2zFGS , satisfying ntot ¼ ntot;IGP when t ¼ tIGP . The two
power-law relationships, Eq. (5) and the new Eq. (7) provide a com-
plete description for the full so-to-gel transition within regimes I
and II.

Regime III occurs in system f vm ¼ 0:1 with a counterintuitively
slower kinetics. Fig. 3(c) shows that the decrease in ntot=ntot;0 for
f vm ¼ 0:1 falls behind that for f vm ¼ 0:05. When observed with
1þ t=tIGP , a less steep decreasing trend of ntot=ntot;IGP is seen (Panel
(d)) when f vm ¼ 0:1. Eq. (7) still holds valid while a zFGS � 3:5 fits
the data best, per the red solid line in panel (d). This slower rate
– in a denser system – could be due to the abundance gel clusters
which are considerably less mobile. Qualitatively speaking, the
extremely dense system facilitates almost an instantaneous gela-
tion of sol clusters, but the resultant abundance of gels slows down
the system progressing from IGP to FGS. Fig. 3(d) shows that the
decreasing trend of ntot=ntot;IGP for the system with f vm ¼ 0:05 orig-
inally follows Eq. (7) with zFGS � 5:7 until reaching an inflection
point indicated by the arrow in (d). Beyond the inflection, the trend
asymptotes to the less steep one governed by zFGS � 3:5. Note that
this inflection occurs approximately at tIGP þ td of the system (see
Fig. 1(e)), indicating that a slowing down of kinetics is indeed a
characteristic of the system in which only gel clusters exist. These
dense gelation systems near f vm ¼ 0:1 are traditionally discussed
in the frame work of static percolation and thermodynamics [22–
25] and here we emphasize that the kinetic aspect should not be
overlooked.

3.3. Improved parameterization on characteristic timescales

We next evaluate the existing analytical expressions for the
important characteristic timescales that are involved in the sol-
to-gel transition process. Combining Eq. (6) with (1) and (2) yields
the analytical expression for tc in units of ts:

tc
ts

¼ 1
4
f�1
vm ð8Þ

Fig. 4 compares the prediction of Eq. (8) with the tc=ts deter-
mined from simulations. The exponent �1 fails at large f vm, indi-
cating that the aggregation in these extremely dense systems
deviates from the Brownian kernel at a very early point. The
enhanced kinetics lead to the tc being smaller than what Eq. (8)
predicts. The upper limit for f vm is the percolation threshold, at



Fig. 2. Schematic diagrams showing the interdigitating (a) and connected (b) fractal clusters. Individual clusters are colored differently. Dashed circle represents the effective
volume of the clusters. In (a), fractal clusters highly interdigitate. Although the effective volume of clusters saturates the system, connections among clusters are not
guaranteed. In this case, clusters could still move around freely until they connect with their neighbors. (b) shows the condition at which all clusters are connected, resulting
in the onset of gel.

Fig. 3. (a) and (c) show that early stages of aggregation are unified by Eq. (5) when observed with normalized time 1þ t=tc . (b) and (d) show that the late stages of transitions,
when observed with normalized time 1þ t=tIGP , are unified by Eq. (7). Dashed line in (d) has a slope of �3.5, and the arrow indicates an inflection in transition kinetics.
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which point the volume-spanning gel is instantaneously formed,
and so that both tc and tIGP decrease to zero. Ref [37] reports the
critical volume fraction (UP) to be about 0.18 (black line in Fig. 4)
at which a system of randomly packed hard spheres reaches perco-
lation threshold in three-dimensional space. We introduce a semi-
empirical expression of tc for the dense DLCA systems near the per-
colation threshold as

tc
ts

¼ 1
4

f�1
vm �U�1

P

� 	
ð9Þ
The prediction by Eq. (9) is plotted in Fig. 4 and it captures the
dramatic decrease in the tc=ts near UP . Similarly, we provide an
improved parameterization of tIGP for these dense DLCA systems,

tIGP
ts

¼ 1
4

f�1
vm �U�1

P

� 	
b�1

z f

Df

Df �3ð Þz
vm

Df

Df þ 2

� � 3Df

6�2Dfð Þzk
3

3�Dfð Þz
0 � 1

2
4

3
5 ð10Þ

where b originates from a power-law relationship hNi ¼ b 1þ t=tcð Þ z
quantifying the aggregate growth when cluster-dense condition
sets in [26]. The step-by-step derivation of Eq. (10) is outlined in



Fig. 4. Characteristic timescales tc , tIGP and tFGS as functions of f vm . The timescale
parameters determined from DLCA simulations are compared with their analytical
solution values.

Fig. 5. The kinetics of full sol-to-gel transition.
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Supplementary Sect. V. The determination of the values for b and z
from DLCA is discussed in Sect. VI. Fig. 4 also compares the predic-
tion of Eq. (10) (solved with Df ¼ 1:8, k0 ¼ 1:3, z ¼ 1:5 and b ¼ 0:2)
to the tIGP=ts determined from simulations. The traditionally used

expression [8,12] for tIGP is also evaluated here: tIGP � a3K�1f�2:5
vm ,

which after being combined with Eq. (2) yields to:

tIGP
ts

¼ 3
16p

f�2:5
vm ð11Þ

Fig. 4 shows that Eq. (11) overestimates tIGP by a factor less than
two.

The summation of Eq. (10) (or (11)) and (4) provide analytical
solution values for tIGP þ tdð Þ=ts, which are compared with the
tFGS=ts determined from simulations. We again observe that a dilute
system reaches FGS when the total conversion of sol clusters is
attained (tIGP þ td � tFGS), but whenmonomer dense, the time inter-
val between tIGP þ td and tFGS becomes significant, during which
regime III takes over the kinetics. Fig. 4 and Eqs. (4), (8)–(11) also
show that the timescale parameters – tc , tIGP , and td – are functions
of f vm only. Those parameters are scale-independent. Their values
are not sensitive to changes in system size V , as long as f vm is fixed.
Note that the parameters, ntot and tFGS, however, are scale-
dependent. Their values are sensitive to system size and hence
they are functions of both f vm and V . We show in Supplementary
Sections VII that ntot / V , and tFGS / V1=ZFGS . The dependence of
tFGS on V is rather insignificant when system is dilute, because
zFGS takes a value as large as 5.7. The influence of system scale
becomes pronounced when system is dense. At last, we need to
emphasize that the entire discussion of scale-independence is built
upon an important prerequisite – that the system should be at
least large enough, such that for any given f vm, the ntot;0 is always
much larger than NIGP . This condition guarantees that statistically
significant amount of clusters exist in the system beyond IGP.

4. Conclusion

We conclude the paper with Fig. 5 which schematically illus-
trates the comprehensive picture. The transition Regimes I-III and
the corresponding kinetic formulations (Eqs. (5) and (7)) are pre-
sented with the characteristic timescales, tc , tIGP , and tIGP þ td serv-
ing as milestones. Please note that the regime I and II are separated
per tIGP at which point SE breaks down, but kinetics 1 fails at t � tc
when Brownian aggregation kernel no longer holds valid (the
cluster-dense condition sets in) [8,9]. Regime II and III start out
simultaneously at IGP, but II tends to dominate over III because
number of gel clusters in a system is typically negligible compared
to that of the sol clusters. Regime III only takes precedence after II
reaches its completion, that is tIGP þ td < t < tFGS, which only man-
ifests when monomer-dense. The latest study [38] on the gelation
in DLCA system with f vm ¼ 0:1 reveals a breakdown of the invari-
ance between the mass and surface fractal dimension values for
monomer-dense gels. This observation indicates that Regime III is
indeed a distinct transition process, with regard to both kinetics
and the morphologies of resultant gel particles. Future research
on this topic should be directed toward experimental studies on
the late-stage Regime III in the dense aggregation systems, with
an emphasis placed on the kinetic perspective. Another interesting
topic for future research is to investigate the gelation kinetics in
the systems with f vm varying as a function of t. For example, chang-
ing system V as aggregation proceeds, which has been shown crit-
ical in studying more realistic aggregation systems with
polydispersed constituent monomers [39].
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