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This paper provides a practical connection between the Strehl ratio as an optical performance metric and manu-
facturing parameters for diamond-machined optics. The choice of fabrication parameters impacts residual mid-
spatial frequency groove structures over the part’s surface, which reduce optical performance. Connections between
the Strehl ratio and the fabrication parameters are studied using rigorous Rayleigh–Sommerfeld simulations for
a sample optical system. The connections are generalized by incorporating the shape of diamond-machined groove
structures and the effects of optical path differences for both transmissive and reflective optics. This work validates
the analytical representation of the Strehl ratio as a Fourier transform of a probability density that relates to surface
errors. The result is a practical tool that can be used to guide the choice of machining parameters to achieve
a targeted optical performance. © 2019 Optical Society of America

https://doi.org/10.1364/AO.58.003272

1. INTRODUCTION

The development of computer-controlled sub-aperture fabrica-
tion techniques has opened new perspectives to the future of
optics as well as new challenges [1,2]. Aspheric and freeform
surfaces fabricated with such deterministic turning, milling,
grinding, and polishing methods leave structured mid-spatial
frequency (MSF) surface errors with “signatures” that can be
identified with the specific fabrication processes [3,4].
Studies show that MSF errors can cause image artifacts and oth-
erwise degrade optical performance [5–8]. In this paper, we ad-
dress surface errors resulting from diamond machining
processes, which appear primarily as cusp-shaped grating-like
patterns, as shown in Fig. 1.

The specification of MSF errors on optical surfaces is some-
times overlooked by optical designers. This is partially due to
limitations of commonly used surface specs for these types of
errors [9], and partially because the impacts of MSF errors on
optical performance are often underestimated or not well
understood. Such errors can cause confusion between designers
and manufacturers when a part does not perform as expected,
even though it meets the requested surface specifications [10].
Therefore, to avoid poor performance, optical surfaces are often
over-specified, which unnecessarily adds to manufacturing
cycle times and costs. This motivates the present work, which
uses a semi-empirical approach to connect the Strehl ratio (SR)
directly to fabrication parameters for well-structured MSF er-
rors from diamond machining processes.

A recent theoretical approach [11,12] expressed the SR and
the optical transfer function (OTF) in terms of the Fourier
transform of a probability density that is related to the statistics
of the MSF structures. For the cases of diamond turned or
milled surfaces, the circular cusps typically left behind are ap-
proximated as parabolic segments in order to attain an analytic
expression for the SR, which can be written as

SR � π

4ϕ
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������1� i�

ffiffiffiffi
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2

r �����
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2

: (1)

Here ϕ is the maximum optical phase difference resulting from
the groove structures, and erf is the error function. This analytic
expression is useful for further theoretical analysis; the goal in
these prior works was to provide intuition on the behavior of
the SR. In contrast, in this paper we provide prescriptive rules
of thumb for optical manufacturers to optimize fabrication
parameters based on SR. The semi-empirical approach proposed
here also demonstrates a useful method to establish connections
for additional surface error types that are difficult to describe ana-
lytically, providing a baseline for further work in this area. We
now discuss a semi-empirical approach for connecting the SR to
fabrication parameters for diamond-machined optics.

2. MODEL AND APPROACH

As a first step toward understanding behavioral changes in the
SR with respect to fabrication parameters, we solve the problem
for a case-specific situation. We developed a MATLAB toolbox
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with three main operations: (1) synthesizing a lens model with
desired form; (2) synthesizing a MSF texture (from either turn-
ing or milling) based on the input fabrication parameters and
adding it to the surface of the lens; and (3) calculating the point
spread function (PSF), OTF, and the SR of the resulting
composite structure using rigorous Rayleigh–Sommerfeld sim-
ulations (RSS). The SR is defined as [13]

SR ≡

RR
OTF�fx , fy�dfxdfyRR

OTFperfect�fx , fy�dfxdfy
: (2)

Toolbox calculations were tested and compared to Rayleigh–
Sommerfeld-based simulations within VirtualLab with excel-
lent agreement. Standardized results are obtained by evaluating
the performance of a diffraction-limited optic (prior to adding
MSF errors) located at the aperture stop, similar to performance
evaluation assumptions within Zygo’s Mx software.

This toolbox enables us to assess changes in optical perfor-
mance with respect to fabrication parameters. Our goal is to
find general connections for reflective or transmissive optics
for any wavelength or material without the need for more rig-
orous simulations. To this end, we first explore a specific case
and then generalize the results.

In the case study, we assume a 4 mm diameter f ∕25 PMMA
(n � 1.4934) lens at the pupil with plane wave illumination at
λ � 532 nm. The diamond tool’s tip radius, R, is set to 1 mm
in this example. The machining feed per revolution (for dia-
mond turning) or step-over (for diamond raster milling), col-
lectively represented as Λ, is kept variable. A pixel size of
δx � 0.3 μm was used for the RSS to enable SR values accurate
to three decimal points. Figure 2 compares the simulation re-
sults of the SR versusΛ for both diamond-milled and diamond-
turned surfaces. As we will discuss later in the paper, the
differences between the performance of diamond-milled and
diamond-turned surfaces are not reflected in SR simulations.

From a manufacturing perspective, increasing Λ is desirable
as doing so reduces the required manufacturing time and cost.
However, as expected, Fig. 2 shows that increasing Λ leads to a
lower SR. In practice, Λ is normally chosen to be small enough

to meet a required root mean square (RMS) surface deviation
that guarantees the smooth surface requirements.

We now generalize our results. Surface imperfections create
wavefront distortions since an unwanted surface height leads to
an undesired optical phase difference. An optical path differ-
ence of one wavelength, λ, results in a phase difference of
2π. Therefore, for a surface height of h�x, y�, the optical phase
difference ϕ�x, y� equals

ϕ�x, y� � kAh�x, y�, (3)

where k � 2π∕λ, A � ns − n0 (in transmission) or 2n0 (in re-
flection), with ns being the refractive index of a transmissive
material, and n0 the ambient refractive index.

For diamond-machined surfaces, it is straightforward to de-
termine the relationship between the peak-to-valley (PV) of the
residuals and the machining parameters:

PV �R −
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where the approximation using the Taylor series expansion is
valid for R ≫ Λ. It is obvious that an increase in groove spacing
results in a surface error with larger PV, which imparts a larger
optical phase difference on the incident wavefront and lowers
the SR, as seen in Fig. 2. By substituting PV in Eq. (4), for h �
PV∕cos θi in Eq. (3), where θi is the incident angle, we cal-
culate the maximum optical phase difference imparted on
the wavefront to be

ϕ � kA
cos θi

 
R −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 −
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4

r !
≈

kAΛ2

8R cos θi
: (5)

Equation (5), although conceptually intuitive, is an important
outcome that enables a connection between the manufacturing
parameters and optical performance. We note that the coordinate-
dependent height function, h�x, y�, has been replaced with a

Fig. 1. Primary MSF residuals resulting from (a) diamond turning,
(b) diamond raster milling, (c) cross section of the assumed MSF re-
siduals. Λ represents the spacing between groove structures, R is the
radius of the diamond tool tip, and PV is the peak-to-valley of the
residual surface structure.
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Fig. 2. Impact of diamond-machined MSF errors on the SR with
respect to groove spacing for the specific case study. Simulation results
indicate similar SR values for diamond-milled and diamond-turned
optics (RMSE � 0.000172).
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constant PV. This is justified since the diamond cusp surface
shape is implicitly contained within the optical performance sim-
ulations shown in Fig. 2.

Next, we substitute the application parameters used in the
case-specific example of Fig. 2 into Eq. (5), with no approxi-
mation, and perform a Gaussian fit [14] over the new dataset to
obtain Eq. (6), which gives a general relation between the SR
and ϕ for diamond-machined surfaces:

SR ≈ exp

�
−

�
ϕ

3.24

�
2
�
: (6)

We note from Fig. 3 that the fit is excellent for ϕ < 4.7 rad
with a root mean square error (RMSE) of 0.0036. We assert
that this limit is sufficient for practical purposes since larger
errors correspond to rough surfaces which fail basic RMS sur-
face requirements and SR < 0.125. However, higher-order
polynomial fits can be performed for larger values of ϕ if re-
quired. Figure 3 shows the resulting plot of the SR versus ϕ.

To provide a predictive tool we must invert Eq. (6):

ϕ ≈ 3.24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−loge�SR�

p
: (7)

This expression presents ϕ as a function of SR. Equation (7)
provides a useful predictive tool for designers to quantify re-
quired surface specifications and for manufacturers to guide
the choice of machining parameters based on the target SR.

We now present three example applications of the semi-
empirical models. We note that SR values are given to several
decimal places only to enable comparison of the model results.

Example 1: Predicting the SR from machining parameters for a
lens. Consider a 5 mm diameter f ∕10 focusing element made
of germanium (n � 4.0242) for use at λ � 4 μm. The lens is
diamond-turned with Λ � 50 μm and R � 1.5 mm. Table 1
compares the on-axis prediction with simulation results.

As you can see from Table 1, after simulating the per-
formance (δx � 0.3 μm) and calculating the SR, Δ �
jSRRSS − SRpredictedj is negligible. Therefore, Eq. (6) predicts
SR without the need for more rigorous simulations.

Example 2: Predicting the SR from machining parameters
for a mirror. Assume a 3 mm diameter f ∕15 focusing mirror

operating at λ � 480 nm. The mirror is diamond-milled with
Λ � 25 μm and R � 1 mm. In Table 2, we compare the pre-
dicted SR with the Rayleigh–Sommerfeld simulated SR
(δx � 0.3 μm) for three different field angles.

In Table 2, predicted results are in excellent agreement with
more rigorous, time-consuming simulations for all field angles
with negligible differences.

Example 3: Determination of machining parameters for a re-
quired SR value. Consider an 8 mm diameter f ∕5 diamond-
turned PMMA (n � 1.4883) lens working at λ � 650 nm.
Assuming a diamond tool with R � 0.5 mm, we would like
to find the maximum groove spacing Λ that results in an optic
with on-axis SR � 0.9. Solving Eq. (7) for SR � 0.9 gives the
maximum permitted optical phase difference of ϕ � 1.05 rad.
Substituting this value into Eq. (5) predicts Λ≈29.82 μm. To
facilitate the performance simulation of this optic within
MATLAB, we slightly modify Λ to 29.85 μm to generate an in-
teger number of cusp errors per aperture and reduce the simula-
tion resolution from δx � 0.3 μm to δx � 0.6 μm to overcome
computational challenges. PSF and SR simulations confirm the
accuracy of the semi-empirical model with simulated SR �
0.899 ≈ 0.9. In practice, the groove spacing could be rounded
downward slightly (for example, to 29 μm) to provide additional
performance margin and to simplify manufacturing setup.

3. DISCUSSION

The presented models can be used as tools to guide both the
quantification of MSF surface specifications by optical design-
ers and the choice of diamond machining parameters by man-
ufacturers. As discussed previously, determination of the
maximum groove spacing Λ for a given tool radius R that will
still provide the required optical performance is desirable, as
doing so reduces required manufacturing cycle time and cost.

For example, in diamond turning the groove spacing is de-
termined by both the rotation rate of the machining spindle
and the velocity (feed rate) of the diamond tool orthogonal
to the axis of rotation. The resulting feed per revolution is then
given by [4]

Λ � Feed�mm∕min�
Spindle Speed�rev∕min� : (8)

Table 3 illustrates a range of representative manufacturing
parameters for diamond turning the lens in Example 3
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Fig. 3. SR versus optical phase difference (ϕ). The red curve rep-
resents Eq. (6).

Table 1. Predicted SR Versus Simulated SR
for Example 1

Λ (μm) R (mm) ϕ (rad) SRPredicted SRRSS Δ
50 1.5 0.990 0.910 0.914 0.004

Table 2. Predicted SR Versus Simulated SR
for Different Field Angles

θi (deg) ϕ (rad) SRPredicted SRRSS Δ
0 2.05 0.670 0.669 0.001
21 2.19 0.633 0.630 0.003
30 2.36 0.588 0.583 0.005
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compared to a mirror with the same f ∕# and application
parameters. The approximation in Eq. (5) helps to simplify
these types of calculations. The differences in parameters for
the lens and “equivalent” mirror result from the optical phase
differences between the transmissive and reflective cases. Note
that we have rounded the groove spacing down to the nearest
integer value, which simplifies manufacturing setup and pro-
vides additional performance margin.

We note that there are other sources of MSF errors that oc-
cur in diamond-machined optical surfaces besides the “cusp”
shapes that we have considered, including, for example, asyn-
chronous error motions, external and self-induced vibration,
thermal drift, materials effects, and so on [4,15–18]. These ad-
ditional error sources are also connected to the feed rate and
spindle speed. With the guidance of the presented models, a
manufacturer can use their expertise to select the best combi-
nation of tool radius, feed rate, and spindle speed that gives the
required result at minimal time and cost while also minimizing
other sources of error.

The use and limitations of the SR as an optical performance
metric for diamond-machined optics is worthy of additional
consideration. Figure 2 suggests that the optical performance
of diamond-turned and diamond-milled components with
equivalent groove spacing Λ will be quite similar. While this
is generally true for very high-quality optics, the performances
of turned and milled components deviate as the groove spacing
increases due to the difference in symmetry of the residual

surface structures [10,12]. For such cases, other performance
measurements, such as a 2D modulation transfer function,
would represent optical performance more effectively than
the SR. Such relationships and performance metrics are cur-
rently being studied and will be considered in more detail
in future publications.

Figure 4 compares the semi-empirical model of Eq. (6) with
the analytic model of Eq. (1) and a fifth-order polynomial fit
over the full range of ϕ values. This figure shows that the semi-
empirical approach developed in this paper agrees very well
with the analytic model based on prior work [11,12]. The close
agreement supports the validity of both approaches. However,
Eq. (6) is designed to be more succinct, user-friendly, and
invertible to Eq. (7) to enable a predictive model for both
manufacturer and designer, which is not the case with Eq. (1).
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