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Abstract: Specification and tolerancing of surfaces with mid-spatial frequency (MSF) errors
are challenging and require new tools to augment simple surface statistics to better represent
the structured characteristics of these errors. A novel surface specification method is developed
by considering the structured and anisotropic nature of MSF errors and their impact on the
modulation transfer function (MTF). The result is an intuitive plot of bandlimited RMS error
values in polar coordinates which contains the surface error anisotropy information and enables
an easy to understand acceptance criterion. Methods, application examples, and the connection
of this surface specification approach to the MTF are discussed.
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1. Introduction

Mid-Spatial Frequency (MSF) surface errors are found between low-spatial frequency ‘form’
errors, and high-spatial frequency ‘roughness’ errors generally modeled with scattering theory
[1-3]. MSF errors are inherent to deterministic sub-aperture fabrication techniques [4—11] and
can appear on the surface with different structured signatures (e.g. turned, milled, spiral) arising
from the manufacturing method. Pseudo-random toolpaths [7] can provide a means to reduce the
impacts of MSF errors. While ‘roughness’ errors are often random in distribution and scatter the
light at large angles, MSF errors can be more structured and diffract the light at angles small
enough to directly illuminate the image plane [12].

From an optical characterization perspective, early statistical approaches and models for
studying the impact of MSF errors required small perturbations, and errors were assumed to be
random with no structured spatial frequencies in the Power Spectral Density (PSD) [13]. Marioge
and Slansky [14], and more recently Tamkin [15,16] considered the impacts of structured MSF
errors on optical performance. We recently published on characterization of the impacts of
anisotropic MSF errors on the 2D modulation transfer function (2D MTF) [17,18]. The impacts
of structured MSF errors, as discussed in the literature, can be complex and difficult to implement,
so simple methods for estimating these impacts are desirable and of use from an engineering
perspective. Youngworth and Stone [1] previously developed simple estimates for the effects of
MSF errors on image quality under the assumption that the errors are isotropic. We build upon
their work in this paper to provide similar tools for estimating the impacts of anisotropic MSF
surface errors. We note that, for isotropic surfaces, our results converge to the estimates provided
in [1].

There are multiple surface specification methods, with the root mean square (RMS) of surface
height errors and Power Spectral Density (PSD) as the most common. Bandlimited RMS of
surface height errors is widely used within the metrology, manufacturing, and optical design
communities for specification of optical surfaces [1,2,19]. Since the RMS calculation is not
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sensitive to the shape or distribution of data and MSF signatures may have different anisotropic
characteristics, MSF errors may not be sufficiently specified by a surface RMS value; surfaces
with the same RMS error but different manufacturing signatures can have different optical
performance [20]. Surfaces that pass a required RMS specification may not yield the expected
optical performance, which leads to confusion between designer and manufacturer. To overcome
this issue, surfaces are often over-specified, which adds considerably to fabrication costs and
cycle times. Hence, while RMS error is an effective specification for high-frequency errors [21],
it is not a reliable method for MSF errors with anisotropic signatures.

Power spectral density (PSD) is another powerful method of surface specification. In optics,
PSD has been used for specifying high-frequency surface errors to predict scattering properties
of a surface [21-25] and has been applied to quantify the full spectrum of surface errors [26,27].
The details of the PSD calculations are outside the scope of this paper but are well covered in
the literature (e.g. [28,29]). The 2D PSD retains information on surface anisotropy, but these
data are not easily connected to an optical performance criterion. The more commonly used 1D
PSD representation is typically averaged over an orientation (e.g. horizontal, vertical, azimuthal),
which loses information on anisotropy. Therefore, current methods of PSD specification are not
conducive for use with anisotropic MSF errors [20]. We note that there are other ways that we
benefit from the PSD in this work. In particular, PSD bandpass filters can be effectively utilized
to separate MSF errors from form and roughness, and to calculate bandlimited RMS values from
the volume underneath the 2D PSD of the surface within a given band [30].

In this paper, we propose a novel surface specification method for MSF errors to address
the issues identified above. We quantify directional bandlimited RMS errors along different
surface orientations in a polar representation and demonstrate connections to optical performance
through the modulation transfer function (MTF) [31]. The proposed tool helps to facilitate a
simple acceptance criterion to guarantee the performance of a manufactured part, which is highly
desirable but currently lacking for surfaces with anisotropic MSF errors.

In section 2, we describe the calculation methodology for the proposed surface specification.
In section 3, we discuss the connection between the proposed surface specification to the MTF as
an optical performance metric. Section 4 discusses methods for designers to define acceptance
criteria after tolerancing. In this paper we focus on the MTF of optical components in a system
and do not consider impacts of sensors or detectors.

2. Methodology of polar RMS specification

MTF is an effective optical performance metric for quantifying the impacts of MSF errors. In
general, a surface RMS error leads to an optical phase difference from the perfect wavefront and
reduces the average MTF of the system.

In order to establish a practical specification method for anisotropic surfaces with connections
to optical performance, we seek to capture the directional RMS values that cause the largest
reduction in MTF. To this end, we first calculate the individual RMS errors over multiple linear
cross-sections on the surface error map at a specific orientation 6, as shown in Fig. 1. Note that
this approach differs from taking the RMS over the entire error map at once. The directional
calculations are repeated at different angles on the error map to capture the anisotropy. We choose
to do this from O to 27 (rather than O to 7) to generate a symmetric and more intuitive final plot
in polar coordinates. We note that the calculation procedures must accommodate experimental
data, which will normally be captured as rectangular grids through, for example, interferometric
surface measurements. Processing and analyzing these data in a polar format will unavoidably
require masking and interpolation, which could introduce numerical artifacts. In particular, the
analysis may be sensitive to local artifacts near the edge of the aperture where the data record is
shorter. This issue could be mitigated, for example, by apodization, but such an approach also
removes data and could introduce other numerical errors.
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Fig. 1. Calculating directional RMS values on a surface.

We then determine the maximum RMS value at a given orientation and plot this value as a
function of 6 in polar coordinates. The resulting Polar RMS Plot (PRP) captures both RMS error
and anisotropy information. The word ‘Polar’ is chosen because results are plotted from O to 27
and should not be confused with an azimuthal analysis over an error map. Calculation procedures
and assumptions for the PRP are discussed in more detail in Appendix I.

To demonstrate the PRP methodology, we consider two MSF errors with the same RMS error
values (53 nm), but different signatures. Figure 2 shows two diamond-machined surfaces (turned
and milled) synthesized in MATLAB using the same fabrication parameters: a tool-tip radius of
1 mm and A=5 um, where A represents feed/rev for turning and step-over for milling. A sinusoidal
error with 150 nm peak to valley (PV) and 0.4 mm period was added to the resulting ‘cusp-shaped’
tool errors to approximate thermal drift effects from the tool chiller during manufacturing. A
conventional RMS specification does not distinguish between the two surfaces, but their different
anisotropy leads to different optical performance [18]. While the surface RMS values for both
surfaces are equal, comparing the PRPs in Fig. 2(c) clearly shows differences between the two
surfaces. We note that the directional periodic errors in Fig. 2(a) appear as distinctive peaks on
the PRP in the same direction (in blue), while the PRP appears as a circle without any clear peaks
(in solid red) for the rotationally symmetric errors in Fig. 2(b). We also note that for the turned
texture (Fig. 2(b)) the incident light only sees a rotationally symmetric texture when on-axis;
a directional texture is seen for off-axis field points or when the part is not positioned at the
aperture stop.

Based on the PRP algorithm, it is expected to see peaks on the plots in the directions of the
surface error periodicities. These peaks will appear wider for lower spatial frequency errors
because longer spatial periods extend over several rotation angles, while higher frequency errors
appear as sharper peaks. Thus, a quick look at the PRP can provide useful information about
problematic surface errors.

In the next section, we discuss connections between the PRP and the MTF by making use
of prior work by Youngworth and Stone in estimating the impacts of isotropic MSF errors on
optical performance [1], and our recent introduction of the concept of a Minimum Modulation
Curve (MMC) [17,18].
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Fig. 2. (a) Raster-milled MSF error with RMS =53 nm. (b) Turned MSF error with
RMS =53 nm. (c) Comparing PRPs for milled, turned, and isotropic surfaces with the same
RMS.

3. Connecting the PRP with the MTF

3.1. Estimates of the impacts of isotropic MSF errors on optical performance

Historically, MSF errors have been primarily treated as random and isotropic. Youngworth and
Stone [1] adopted a ray-based model to predict the effects of MSF errors on imaging systems at or
near the diffraction limit. Despite its name, a ray-based model can include diffraction effects by
tracing the rays from an object point to specific points in the exit pupil where a phase map of the
wave front is constructed. The wavefront can then be used to calculate the point spread function
(PSF), optical transfer function (OTF), and other performance measures. Additionally, they
employed perturbation methods to estimate the additional path lengths of rays due to the presence
of MSF errors, introduced concepts from statistical optics, and made multiple assumptions about
the nature of the MSF errors to enable simple estimates of the impacts of these MSF errors on
image quality. The end result enables the wavefront variance to be approximated for a desired
object field point as:

R

27\?
2 2 2
o—cp _(7) (A}’l) g, (1)
where o is the RMS surface error over the clear aperture, A is the wavelength, and An is
the difference between the refractive indices of the surface and the surrounding medium [1].
Therefore, the impacts of MSF errors on Strehl ratio (SR) and MTF can be estimated for isotropic
surfaces as:

SR(c) = Q(0) SRay = O(0) (2)

MTF (o) = Q(0) MTF gi5. 3)
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where

2 2
0(c") = exp [—(7) (An)zcrzl , @

and SRy (=1) and MTF 47 represent diffraction-limited performance for these two metrics.

We have introduced the idea of the PRP to better represent the impacts of anisotropic MSF
errors on optical performance. In the following, we build on the work and assumptions of
Youngworth and Stone [1] to demonstrate how substituting PRP,,,, (the amplitude of the largest
PRP peak) instead of o in Egs. (1)—(4) connects the PRP to optical performance. Note that for an
isotropic surface, PRP,,,, =0 and therefore our estimates converge to those from Youngworth
and Stone. However, we must first briefly review key concepts of the Minimum Modulation
Curve (MMC).

3.2. The MMC and PRP for determining the impacts of anisotropic MSF errors

We recently introduced a new approach for 2D MTF analysis through the Minimum Modulation
Curve (MMC) [17,18]. The MMC is a practical tool that summarizes key information from a 2D
MTF in a more familiar 1D format. The MMC is defined as:

MMC(p) = . g[loirzln]{M TF(p, $)}, 3

where MTF(p,¢) is the MTF in polar coordinates, p is the radial spatial frequency, and ¢ is the
azimuth angle measured from the horizontal. The minimum modulation values are chosen since
MTF requirements are often given as the minimum acceptable modulation at specific spatial
frequencies [16]. The MMC summarizes information from all orientations and is thus suitable
for analyzing the impacts of anisotropic MSF structures. To illustrate the correlation between the
MMC and the MTF estimated from the PRP, we substitute PRP,,,, in place of o in Egs. (3)-(4)
to obtain:

MTFprp = Q(PRPmax) MTF gy57. (6)

As an example, we consider a 2 mm diameter /5 PMMA (n=1.4971) lens at wavelength A
=486.1 nm. We impose the MSF texture in Fig. 2(a) with o =53 nm on one side of this lens
and simulate the PSF and MTF of the system via Fraunhofer diffraction theory [32]. Figure 3(a)
compares the PRP of this surface (in solid blue) with the PRP of an isotropic surface (in dashed
red) with the same RMS (oo =53 nm). The blue PRP shows peaks up to PRP,,,, = 76 nm. As
expected, the peaks are in the same direction as the periodicities of surface errors.

MTF simulation results in Fig. 3(a) confirm that the lens is not performing as predicted by
Eq. (3) but does match the predictions from Eq. (6) based on the PRP. This simple example
illustrates how overlooking the anisotropic nature of MSF errors could lead to an inaccurate
specification. Note that both the MMC and the sagittal MTF drop below the red dashed acceptance
line predicted for an isotropic MSF error. In Fig. 3(b), the PV of the sine error in Fig. 2(a) is
reduced to 104 nm while keeping everything else the same. As a result, the PRP peak shrinks
such that it just touches the dashed red circle representing an isotropic MSF surface error (so
PRP,,, =0), and therefore the MMC and sagittal MTF of the lens are coincident with the MTF
estimation lines. In Fig. 3(c), further reduction of the sine PV to 80 nm shrinks the PRP so that
PRP . < o, which further improves the MTF. These results suggest that the PRP can serve as
an intuitive, easy to understand tool for determining an acceptance criterion.

The demonstrated relationship between PRP and MTF suggests that the PRP can provide a
practical means to assign effective specifications and acceptance criteria for optical surfaces with
MSF errors. The following section presents additional examples and proposes a simple method
for estimating a required PRP,,,, for an optical specification.
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Fig. 3. Comparison of PRP and MTF for simple lens with surface errors of the form
in Fig. 1(a) with different amplitudes. (a) o =53 nm and PRP,4x = 76 nm; (b) Effects of
reducing the PV of the sinusoidal error to 104 nm (0o =37 nm and PRP,4x =53 nm); and (c)
Effects of reducing the PV of the sinusoidal error to 80 nm (o = 28 nm and PRPy;,x =41 nm).

4. PRP,,, as a surface specification

Optical designers are required to provide specifications on surface form, waviness (MSF errors),
and roughness to manufacturers. In this section, we propose a method for calculating a PRP,;,,
criterion for MSF errors after tolerancing a surface.

To this end, we again consider Eq. (2) and Eq. (4) and note that the Strehl ratio in Eq. (2)
equals the multiplicative factor Q(c) in Eq. (4) since SRyyr = 1. The SR is defined as the ratio of
the central irradiance of an aberrated PSF to that of the unaberrated PSF. The SR can also be
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related to the Optical Transfer Function (OTF) [33]. For small aberrations (with negligible phase
transfer functions), the OTF is equivalent to the MTF and we can write:

_ [ MTFGfdfdfy
[ MTEag(fe fy)dfdfy
which is the ratio of the volume under the surface of the 2D MTF of an aberrated system to the

volume under the 2D MTF of a diffraction-limited system. Equation (7) can be represented in
polar coordinates as:

™)

MTF(p,¢) pdpd
o I/ MTF(p.¢) pdpd¢ ; @®
J MTFug(p.9) p dp d¢
We propose to use Eq. (8) with Eq. (5) to calculate a new value SR’ that is analogous to SR but
based on the MMC instead of MTF. We emphasize that SR’ is not the traditional Strehl ratio:

_ [ MMC(p) dp
[ MTFag(p) dp

’

()

The new performance parameter SR’ is connected to the maximum wavefront variance and
maximum RMS surface error (0,4 ), since the MMC indicates the lowest modulation at each
spatial frequency. Comparing Eq. (2), Eq. (4), and Egs. (8)—(9) suggests that we can set:

SR’ = exp

2n ? 2 2 ’
—(7) (An) Omax = Q s (10)

and thus: 1
Omax = 2An y-log,(Q'), (11)

where Q’ is a new multiplicative factor analogous to Eq. (4) and which, considering Eq. (6),
suggests that 0,5y ® PRPy,q. Note that 0, is calculated via the MMC where modulation
equals one at zero spatial frequency, while PRP,,,, is connected to a linear estimate of the MTF
through Eq. (6). As discussed below, this can cause differences between the values of 0., and
PRP,,.x, but the values are close empirically when the performance is close to diffraction-limited.

To better illustrate this point, we now consider several examples of MSF errors on the
aforementioned lens used in Fig. 3 and compare the resulting MTF performances with predictions
based on the methods discussed above. As shown in Fig. 4, Cases I and II correspond to simple
sinusoidal signatures from raster milling and turning, respectively, while Cases III and IV contain
multiple sinusoidal errors with different amplitudes and orientations. For each of these examples,
we calculate the PRP from the MSF surface data and calculate the MMC following Eq. (5). We
then calculate the acceptance line for MTF based on the isotropic assumptions of Youngworth
and Stone [1] using Eq. (3), as well as MTF acceptance lines calculated based on PRP,,,, using
Eq. (6), and based on 4, from Eq. (11) in place of PRP,,,, in Eq. (6). The PV, period (A), and
direction (@) of the sinusoidal errors on each of surfaces are listed in Table 1. The calculated
surface specifications for each example are listed in Table 2, and the corresponding MSF surfaces,
PRPs, and MTF comparisons are shown in Fig. 5.

We note that all four cases have the same o, but do not have the same optical performance. For
the rotationally symmetric example (Case II), the performance predicted by all methods is very
close to that expected for an isotropic surface. However, the performance of surfaces with more
anisotropy (Cases I, II, and IV) are consistently below the expectation for an isotropic surface.
We also note that the MTF lines predicted via o4y and PRP,,,, are very close and track well
with the MMC.
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Fig. 4. Surface errors from Table 1: (a) Case 1. (b) Case II. (¢) Case III. (d) Case IV.

Table 1. List of sinusoidal errors for example surfaces in Fig. 4.

PV (nm) Aj(mm) 6 (deg) PVy(nm) A;(mm) 6;(deg) PV3(nm) Az (mm) 63 (deg)
Case I 200 0.25 0 - - - - i .

Case II 200 0.25 No - - - - - -
Case III 150 0.25 90 130 0.5 0 - - -
Case IV 100 0.25 90 75 0.5 0 150 0.4 60

Table 2. Calculated specification for example surfaces in Fig. 4.

o (nm) O max (nm) PRP, 4 (nm) 0=SR Q' =SR’
Casel 70 100 100 0.84 0.71
Case IT 70 70 74 0.84 0.84
Case I1I 70 93 100 0.84 0.75
Case IV 70 93 101 0.84 0.75

We now consider an additional example that demonstrates application to an experimental data
set and also illustrates potential limitations of the proposed methodology. Figure 6(a) shows data
from an experimental interferometric measurement of a surface created through a raster grinding
process. It can be argued [2] that the low-spatial frequency sinusoidal errors in the vertical
direction should be considered to be form errors, rather than MSF errors; thus, the measurement
result can be thought of as a ‘non-ideal’ surface with residual form errors after filtering the data.
Figure 6(b) shows the PRP for this experimental surface, with large, wide peaks and large PV in
the vertical direction corresponding to the low-spatial frequency errors. The measured RMS (o)
and PRP,,,, for this surface are 7 nm and 11 nm, respectively.

For optical simulations, we impose this surface error onto a f/10 mirror with 0.418 mm clear
aperture at a wavelength of 4 =157 nm. We note that An=2n=2 in Eq. (4) for the reflective
case in air since light reflects back into the same medium. Use of Eq. (9) and Eq. (11) results
in 0 e = 8.7nm. The corresponding MTF simulations for this example are for the reflective
caseshown in Fig. 6(c).
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Fig. 5. PRP and MTF simulations for (a) Case I, (b) Case II, (c) Case III, and (d) Case IV.
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Fig. 6. (a) Example of experimental surface error from raster grinding on a mirror surface,
and corresponding (b) PRP, and (c) MTF calculations for system operating at 4 = 157 nm.

Multiple useful observations can be made from the simulations in Fig. 6(c). The MTF
prediction from the experimentally determined PRP,,,, value from Fig. 6(b) tracks well with
the MMC; the connection between the measured PRP and the MMC holds true even with the
presence of the low-spatial frequency errors in the experimental surface data. However, the MTF
line resulting from the calculated o, value shows a significant deviation from the MMC. This
illustrates that the assumptions used in setting PRP,,,x & 0 qy are not valid in the presence of
low-spatial frequency errors with PV values that are large in comparison to the MSF contributions.
This makes sense, as such errors lead to drops in the MMC that introduce a bias in Eq. (9),
resulting in 0,4 < PRPp,,. This bias is also observable at a lesser level in Figs. 5(c) and 5(d).
However, we note that the predictions using o, still provides better estimates than values
calculated via Eq. (3) for an isotropic surface.

To conclude this section, we note that Eq. (11) provides a simple method for designers to
estimate PRP,,,, as an acceptance criterion after tolerancing optical system performance based
on the MMC, subject to the assumptions and limitations discussed above. For example, if the
aforementioned lens in Fig. 3 is required to have an MMC above 80% of the diffraction limit at
all spatial frequencies, then Q’ =0.8. For this value of Q’, Eq. (11) can be used to estimate o x
~ PRP,,,x = 73 nm. Even more simply, we assert that it would be reasonable for a designer who
calculated a required value of o (assuming an isotropic MSF error distribution) to provide that
same numerical value as the PRP,,,, to the manufacturer as an acceptance criterion.
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5. Discussion and conclusion

We have proposed a novel method for specification of optical surfaces with anisotropic MSF
surface errors based on the maximum RMS surface error in a given direction. Presenting the
resulting data in polar coordinates results in a Polar RMS Plot (PRP) that enables a simple, intuitive
acceptance criterion for anisotropic MSF surface errors. We have demonstrated connections
between the maximum PRP value and the minimum optical modulation (MMC). The proposed
methods provide a means to specify and set acceptance criteria for surfaces with anisotropic MSF
errors. We note that, in the case of isotropic MSF surface errors, the proposed methods simplify
to previously reported results [1]. In summary:

* The impacts of anisotropic distributions of MSF errors are captured by the MMC.
The MMC can be estimated using Eq. (6) for a given PRP,,,;.

* Designers can estimate an acceptable PRP,,,, value for a surface via Eq. (11) and
provide this value to manufacturers as a specification for MSF surface errors. This
is in contrast to methods that provide a surface RMS value assuming isotropic error
distributions and give unexpected performance results when anisotropic MSF errors
are present.

e Manufacturers can use the PRP as a measurement tool and the PRP,,,, value as an
acceptance criterion.

The intuitive PRP could also provide insights to manufacturers for process refinement and
improvement. Since the PRP provides visual information on the orientation of surface errors
and the widths of the peaks in the PRP are related to the spatial frequencies of those errors, the
PRP and PRP,,,, may be useful in diagnosing processing issues that have the largest impacts on
optical performance.

Appendix I: Procedures for calculating the polar RMS plot (PRP)

(1) Filter the desired mid-spatial frequency band using a PSD band-pass filter and save the
new error map for processing.

(2) Apply an aperture to the error map to select the analysis area.

(3) Consider the surface height error map, H(i, j), to be an Ny x Ny, matrix. Calculate the RMS
of real and non-zero values for each column of this matrix according to Fig. 1. Then pick
the maximum RMS value between all columns.

(4) Rotate the surface error map by a small angle (A6). In this paper, we chose one-degree
angular increments and the nearest-neighbor interpolation method using the imrotate.m
function in MATLAB.

(5) Repeat Steps 3 and 4 for each angle (6) across the desired angular range. We chose to
perform this calculation from 0 to 27 to enable an intuitive, symmetric final plot.

(6) Plot the maximum RMS value captured at each rotation angle of the surface error map
with respect to each angle in polar coordinates.

Depending on the shape of incident beam footprint on the part, the user can apply a circular
or rectangular aperture to the error map to select the analysis area. Although we have used a
circular aperture in our calculations, the choice of aperture has not shown an impact on the
overall PRP properties or its connection to optical performance. Choice of a circular aperture is
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straightforward, but to apply a rectangular aperture, it is safer to crop down the surface area to
N/+/2 size, where N =min{N,, N, }. This is suggested to avoid any noise leakage from the edges
into the PRP data caused by the required matrix rotations in step (4).

The PRP resolution depends on the choice of angular increment (A#) in rotating the surface
error map. Surface resolution and the accuracy of the interpolation method used for rotating
the surface matrix are other limiting factors. Similar to other surface specification methods,
it is a good practice to mask large localized amplitude spikes within measured data to avoid
unnecessary over-specification.

Itis also important to remember that the position and diameter of the analysis on a measured part
should be chosen based on the expected beam footprint within the design. It could be necessary to
specify a part at different field angles. This helps to establish an effective specification connected
to optical performance.
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