


in practice. As an example shown in Figure 1, for the

diving game, when the athlete finishes his action with the

difficulty degree of 3.8, seven judges give their scores as

{9.0, 8.5, 9.0, 8.0, 9.0, 8.5, 9.0}. After eliminating the top-

two and bottom-two scores, the final score is calculated as:

sfinal = (9.0 + 9.0 + 8.5) × 3.8 = 100.70. This sug-

gests the inherent uncertainty of the final score caused by

different judges. Moreover, the subjective appraisal of each

individual judge might also bring uncertainty into the final

score. Besides the diving game, these phenomena exist in

many other sports like gymnastic vaults, figure skiing, etc.

The complicated score uncertainty makes an accurate AQA

pretty difficult. Hence, it is desirable to design a robust

model to deal with the uncertainty for AQA.

To address this, we propose an uncertainty-aware score

distribution learning (USDL) method which utilizes a dis-

tribution of different scores as the supervisory signal rather

than a single score. The adopted score distribution can

depict the probability of the AQA score better so that the

aforementioned uncertainty issue can be well handled. As

illustrated by the top-left of Figure 1, we generate the

ground-truth score distribution based on the widely used

Gaussian function, of which the mean is set to be the score

label. Meanwhile, an action video is fed into a 3D ConvNets

to produce its predicted score distribution. Then we opti-

mize the Kullback-Leibler divergence between the ground-

truth score distribution and the predicted one. Recall Fig-

ure 1, once the fine-grained score labels are available (e.g.,

difficulty degree of an action or multiple scores from dif-

ferent judges), we further design a multi-path uncertainty-

aware score distributions learning (MUSDL) method to

fully explore these disentangled components of the final

score. Strictly abided by the rule of the game, we fuse the

multiple predicted scores to obtain the final score during

inference. Through this objective process, we are able to

obtain more accurate results. To our best knowledge, this is

the original effort to leverage the finer-level score annota-

tion for AQA problem. In order to verify the effectiveness

of our approach, we conduct extensive experiments on the

AQA-7 [17], MTL-AQA [19] and JIGSAWS [8] datasets.

Experimental results show the superiority of our methods

compared with the state-of-the-arts, and demonstrate the ad-

vantage of utilizing fine-grained labels.

2. Related Work

Action Quality Assessment: In the past years, there have

been a variety of works dedicated to different AQA tasks,

such as health care [40], instructional video analysis [3, 4],

sport video analysis [1,18,19,22] and many others [12,13].

For example, Pirsiavash et al. [22] explored this task firstly

based on hand-crafted features on several specific actions,

they took the first step to apply the learning approach on

the underlying task and trained a linear SVR model to

regress the score of the videos. Parmar et al. [18] pro-

posed C3D-SVR and C3D-LSTM to predict the score of

the Olympic events. Additionally, incremental-label train-

ing method was introduced to train the LSTM model based

on the hypothesis that the final score is an aggregation of

the sequential sub-action scores. [17] and [19] aimed to im-

prove the scoring performance and the generalization ability

of the model simultaneously by exploring all-action models

and multi-task learning respectively. Meanwhile, both of

them released a new AQA dataset with a larger scale. Xu et

al. [37] designed two new LSTM-based models to learn the

multi-scale information of the video. A little different from

the works focusing on extracting the whole-scene features,

Pan et al. [16] presented a graph-based model to sufficiently

exploit the athletes’ pose information. Their approach well

balanced the role of the movement of body parts and the co-

ordination among different joints. Different from the afore-

mentioned regression-based AQA methods, our proposed

USDL method aims to predict the score distribution for the

input action video instead of a single score number so that

the severe score uncertainty which largely limits AQA per-

formance can be well handled.

Label Distribution Learning: Label distribution learning

(LDL) is a general learning paradigm, which describes an

instance with distribution rather than the original single la-

bel or multiple labels. As a pioneering work, Geng et al.

[11] proposed an LDL framework for facial age estimation,

which assigned an age distribution to each face image, and

learned from such distribution with two algorithms called

IIS-LLD (Improved Iterative Scaling-Learning from Label

Distributions) and CPNN (Conditional Probability Neural

Network). Motivated by the success of [11] which was

based on the hand-crafted features, the following amelio-

rated works have been proposed for LDL by leveraging the

power of deep learning models such as deep convolutional

neural network [7] or LDL forest [25]. In recent years,

LDL has also shown its effectiveness for various computer

vision tasks, including head pose estimation [10], beauty

sensing [24], facial landmark detection [27] and many oth-

ers [36,39,41]. For video analysis, Geng et al. [9] proposed

a soft grammar parsing method for video parsing, where

the video segments are described by the degrees of different

sub-action classes. Ling et al. [15] utilized a mixture of

Gaussian distribution to model the gradual change of crowd

numbers in different video frames for indoor crowd count-

ing. For our proposed method, by transferring the given

single score label to a Gaussian-like score distribution for

learning, we are able to directly estimate the score distri-

bution of an action video that provides more accurate AQA

results than only predicting a single score.

Multi-Label Learning: Multi-label learning [33] is in-

creasingly required by more and more computer vision ap-

plications including AQA. Recently, A novel MTL-AQA
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Figure 2. Pipeline of our proposed method for uncertainty-aware score distribution learning. The input video frames are divided into N

segments and fed into an I3D backbone to extract features. After passing three fully-connected layers, the obtained features are fused by

temporal pooling and passed through softmax layer to generate the predicted distribution. Then we optimize the KL-Loss between the

predicted distribution and a Gaussian distribution generated from the score label.

dataset containing fine-grained action labels was proposed

by [19]. Besides the final score label of each sequence, the

action class and commentary labels are also provided for the

usage of multi-label learning. In this work, instead of us-

ing extra label information from other tasks, the individual

score labels from all judges and the action difficulty label

are utilized by our method for multi-label learning with the

expectation of a better AQA performance.

3. Approach

3.1. USDL

Pipeline Overview: For a given input video with L frames

V = {Fl}Ll=1
, we utilize a sliding window to segment it into

N overlapped clips where each clip contains M consecutive

frames. The collected clips are further sent into a backbone

of Inflated 3D ConvNets (I3D) [2] followed by three fully

connected layers, resulting in N features as {f
1
, f

2
, ...fN}.

The weights of the fully connected layers are shared among

different clips. As shown in Figure 2, to deal with the ex-

tracted features, a straightforward way adopted by the most

existing AQA approaches is to fuse them by average pooling

or max pooling, and regress it to a final score prediction. In

this work, different from those methods, we utilize a USDL

framework to deal with the intrinsic ambiguity in the AQA

scores, which will be detailed as below.

Score Distribution Generation: During the training phase,

given a video associated with the labeled score s, we first

generate a Gaussian function with the mean of s and stan-

dard deviation of σ as follow:

g(c) =
1√
2πσ

exp(− (c− s)2

2σ2
). (1)

Here σ is a hyper-parameter which serves as the level of

uncertainty for assessing an action. By uniformly discretiz-

ing the score interval into a set of scores c = [c1, c2, ..., cm],

a vector is utilized to describe the degree of each score as

gc = [g(c1), g(c2), ..., g(cm)]. The final score distribution

label pc = [p(c1), p(c2), ..., p(cm)] is generated by normal-

izing gc as below:

p(ci) = g(ci)/

m
∑

j=1

g(cj), i = 1, 2, ...,m. (2)

Learning from Score Distribution: In order to learn from

the obtained distribution pc, we map the N learned features

{f
1
, f

2
, ..., fN} into N predicted scores as {s1, s2, ..., sN},

where sn has the same size with the pc. Then, the temporal

average pooling is performed to {sn}Nn=1
for an output vec-

tor s′. After the softmax activation on s′, we obtain the final

predicted score as spre = [spre(c1), spre(c2), ..., spre(cm)].
Finally, the learning loss is calculated as the Kullback-

Leibler (KL) divergence between spre and pc:

KL{pc||spre} =

m
∑

i=1

p(ci) log
p(ci)

spre(ci)
. (3)

Inferring from Score Distribution: During the inferring

stage, we forward the input testing video into our optimized

model to obtain the corresponding predicted score distribu-

tion spre. The final assessment is obtained by selecting the

score with the max probability:

sfinal = argmax
ci

{spre(c1), spre(c2), ..., spre(cm)}. (4)

3.2. MUSDL

In most existing works on AQA, the network is designed

and optimized based on the single score supervision. How-

ever, in many Olympic games (e.g., diving, figure skiing,

etc.), the final score is calculated based on multiple scores
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Figure 3. Multi-path uncertainty-aware score distributions learn-

ing. During the training phase, we model the scores from K judges

as different Gaussian distributions and utilize a similar strategy to

train the model containing K sub-networks. During the testing

phase, we obtain the final assessment based on the K predicted

scores and the rule of the game.

from several judges according to a certain rule. Thanks to

the recently released MTL-AQA dataset, the raw annotation

of different judges and the difficulty degree are available as

the intermediate components. In this subsection, we further

introduce a multi-path architecture to leverage these inter-

mediate components for AQA.

Learning from Multi-path Score Distributions: As

shown in Figure 3, for each single-path, we use the same

pipeline as our USDL approach. The fully connected lay-

ers of different paths are separately trained while the I3D

backbone is shared among paths. In the training phase, sup-

pose we have a set of scores {sjudgek }Kk=1
from K differ-

ent judges. We first sort the scores in increasing order in

order to train the sub-networks representing judges of dif-

ferent rigor. Following Eqn (1), we generate K Gaussian

distributions as {p
judge
c,k }Kk=1

. Given a training video, we

first feed it through the I3D backbone and obtained the N
features as {f

1
, f

2
, ...fN}. The features are then fed into

K sub-networks to obtain K final predicted distributions

{s
judge
pre,k }Kk=1

as follow:

s
judge
pre,k = φk(f1, f

2
, ...fN ), k = 1, 2, ...K. (5)

Then the total training loss is calculated as:

Jmulti =

K
∑

k=1

KL{p
judge
c,k ||sjudgepre,k } (6)

=

K
∑

k=1

m
∑

i=1

p(cjudgei,k ) log
p(cjudgei,k )

sjudgepre,k (c
judge
i,k )

.

Rule-based Multi-path Inference: During the inferring

phase, we forward each testing video through our multi-path

model and obtain K final predicted scores as {sjudgefinal,k}Kk=1
.

According to the rule specific to the diving game, we can

obtain the final score as:

sfinal = DD ×
∑

k′∈U

sjudgefinal,k′ . (7)

Here U denotes a subset of {1, 2, ..,K} (e.g., the diving

game would discard the judges giving the top 2 and the last

2 scores), and DD denotes the difficulty degree of the input

action video which will be released in advance. In fact, even

the DD is not provided during inference time, we can still

train a model to predict DD by introducing a side-network

branch for it during training. The predicted DD is directly

used for Eqn (7) during inference. We will report the results

of these two cases (DD is available or unavailable during

testing) in the Experiment Section.

4. Experiment

4.1. Datasets and Experiment Settings

AQA-7 [17]: The AQA-7 dataset contains totally 1189 sam-

ples from 7 sports: 370 from single diving - 10m platform,

176 from gymnastic vault, 175 from big air skiing, 206 from

big air snowboarding, 88 from synchronous diving - 3m

springboard, 91 from synchronous diving - 10m platform

and 83 from trampoline. We followed the setting in [17] and

excluded the trampoline category in which the videos are

much longer than those in the other categories [16]. There

were 803 clips for training and 303 clips for testing.

MTL-AQA [19]: The MTL-AQA dataset is the currently

largest dataset for AQA. There are 1412 fine-grained sam-

ples collected from 16 different events with various views

in MTL-AQA. This dataset covers the events of both in-

dividual & synchronous divers, both male & female ath-

letes, both 3m springboard & 10m platform settings. In this

dataset, different kinds of annotations are provided to en-

able the study for different tasks consisting of action qual-

ity assessment, action recognition and commentary genera-

tion. Furthermore, the raw annotations of the scores from

seven judges and the difficulty degree (DD) are available

for each action. We followed the evaluation protocol sug-

gested in [19] to divide the dataset into a 1059-sized training

set and a 353-sized test set.
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JIGSAWS [8]: Besides sport events, we further evalu-

ate our methods on the JIGSAWS [8] dataset which con-

tains surgical activities. There are 3 tasks as “Suturing

(S)”, ”Needle Passing (NP)” and “Knot Tying (KT)” in this

dataset. Since each video is annotated with multiple annota-

tion scores assessing different aspects of a video (e.g., flow

of operation, quality of final product, etc.) and the final

score is defined as the sum of these sub-scores, we could

easily extend our MUSDL based on this rule. There are

stereo samples recorded by left and right cameras in this

dataset, and we only used the videos from the left view due

to the high similarity between the paired captures. We adopt

a similar four-fold cross validation [3, 16]. Since the con-

crete splits are not public available for [16], and the splits

in [3] are specifically designed for pair-wise rank evalua-

tion, which are not suitable for our work and [16], we sim-

ply divided the dataset into four folds randomly. Concretely,

our splits are released at the project page.

Evaluation Protocols: To keep alignment with existing lit-

eratures [16], we used Spearman’s rank correlation (ranging

from -1 to 1, the higher the better) to measure the perfor-

mance of our methods between the ground-truth and pre-

dicted score series. Spearman’s correlation is defined as:

ρ =

∑

i(pi − p̄)(qi − q̄)
√
∑

i(pi − p̄)2
∑

i(qi − q̄)2
. (8)

Here p and q represent the ranking of two series respec-

tively. Fisher’s z-value [17] is used to measure the average

performance across actions.

4.2. Implementation Details

Our proposed methods were built on the Pytorch tool-

box [20] and implemented on a system with the Intel(R)

Xeon(R) E5-2660 v4 CPU @ 2.00Ghz. We trained our

model with two Nvidia GTX 1080 Ti GPUs. We uti-

lized the I3D model pretrained on Kinetics dataset as a

feature extractor. It took action sequences containing 16

frames as inputs and output a feature with 1024 dimensions.

In AQA-7 and MTL-AQA, the videos are all 103 frames

long. We divided each video into ten segments under a cer-

tain rule2. The MLP block, containing two hidden layers

FC(256, ReLU) and FC(128, ReLU), together with tem-

poral pooling layer and softmax layer, built the score dis-

tribution for each video. We performed temporal pooling

at feature-level on MTL-AQA and JIGSAWS for better re-

sults. Adam [14] was adopted for network optimization. In

our experiments, we normalized the final total score in both

datasets and seven judge scores in MTL-AQA. For the final

total score, since it was a float number, we normalized it as:

Snormalize =
S − Smin

Smax − Smin

× 100. (9)

2We took No. [0, 10, 20, 30, 40, 50, 60, 70, 80, 87] frame as the

beginning frame for ten segments. See supplementary material for details.

Here Smax and Smin indicate the maximum and mini-

mum score in the dataset. For judge scores in MTL-AQA

dataset, since these scores are inherently discrete but not an

integer, so we normalized them by doubling the value of

original score to get an integer. After generating normal-

ized score Snormalized, we produced a Gaussian function

with a mean of Snormalized. Note that the produced Gaus-

sian is defined within x ∈ (−∞,∞) in first. In practice,

we truncated this initial distribution by the score range, and

then discretized and renormalized this distribution function

as described in Section 3.1.

We report the performance of the following baseline

methods and different versions of our approach. Note that

some of them are not evaluated on the AQA-7 dataset due

to the absense of multiple scores.

• Regression: Most existing works adopted this strategy.

We modified the dimension of the last fc layer in our

USDL to produce a single prediction score. During

the training phase, we optimized the L2 loss between

predicted score and ground-truth score.

• USDL: The proposed method in Section 3.1.

• MUSDL and MUSDL∗: The proposed methods in

Section 3.2, which used the ground-truth and the pre-

diction of difficulty degree during testing respectively.

• USDLDD: During the training phase, we used scores

from seven judges. According to the scoring rules

of diving, the top-two and bottom-two scores will be

eliminated. We summed the remaining three judge

scores to obtain a new score label, and applied USDL

to learn this new label. In the inference period, we

multiply the predicted score with the ground-truth of

difficulty degree DD to generate the final result.

4.3. Results on AQA­7 Dataset

Table 1 shows the experiment results of our methods

and the comparison with other AQA approaches. The sim-

ple yet effective regression model achieves competitive per-

formance compared with the state-of-the-art C3D-LSTM,

C3D-SVR and JRG models. The proposed USDL approach

obtains significant improvement for all action classes ex-

cept Sync. 10m compared to the JRG model, which also

utilizes optical flow. The average correlation of our USDL

approach gains improvement of 6.3% and 2.5% compared

to our baseline regression model and the JRG model respec-

tively. It is also noticed that in action class Snowboard, our

proposed model surpasses state-of-the-art models by a large

margin about 17%, showing the strong effectiveness of the

USDL approach in AQA problems.

Study on Different Distributions: We conduct 3 paral-

lel experiments with only the type of distribution changed.
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Figure 7. Case study with qualitative results, which present the comparisons of MUSDL, MUSDL* and ground-truth.

Table 5. Comparisons of action quality assessment accuracy on the

JIGSAWS dataset.

Method S NP KT Avg. Corr.

ST-GCN [16, 38] 0.31 0.39 0.58 0.43

TSN [16, 35] 0.34 0.23 0.72 0.46

JRG [16] 0.36 0.54 0.75 0.57

Ours-USDL 0.64 0.63 0.61 0.63

Ours-MUSDL 0.71 0.69 0.71 0.70

effectiveness of using DD for learning better distributions.

Then we choose the Regression, USDL and MUSDL

methods and plot the scatter diagram to make a further com-

parison, as shown in Figure 5. The predicted scores are plot-

ted in scatter points and the ground-truth scores are plotted

in dotted line. From the results, we can see that the proposed

MUSDL obtains a very satisfactory performance since the

predicted points converge well to the ground-truth line.

We also conduct a case study to analyze the behavior

of our network, as shown in Figure 7. The first case is a

successful case where the final score predicted by MUSDL

fully matchs with ground-truth, and final score predicted by

MUSDL* network is a little higher than ground-truth. The

second case is a failure case, with the ground-truth label of

the video being zero. This time both of our MUSDL net-

work and MUSDL* network give the score far higher than

the ground-truth label. The results indicate that when as-

sessing videos with extreme scores, i.e., too far from the

normal score level, the proposed method may not be able to

get satisfactory results. This is because the samples with ex-

treme scores are scarce and also because the intrinsic prop-

erty of our method makes it harder to give extreme results.

4.5. Results on the JIGSAWS dataset

We finally conduct experiments on the JIGSAWS dataset

for surgical activities. Because the lengths of each videos

are much longer that those in AQA-7 and MTL-AQA

datasets, we uniformly sampled 160 frames of each videos

and divided them into 10 segments as the inputs of our mod-

els. Table 5 presents the results of our methods compared

with the state-of-the-arts. Our MUSDL achieves best per-

formance of 0.71 (S), 0.69 (NP), 0.70 (Avg. Corr.) and

comparable result of 0.71 (KT), which demostrates its ef-

fectiveness for action quality assessment.

5. Conclusion

In this paper, we have proposed a new uncertainty-aware

score distribution learning (USDL) method for action qual-

ity assessment, which aims to address the inherent ambigu-

ity in the score label. Moreover, we have devised a multi-

path uncertainty-aware score distribution (MUSDL) frame-

work to take advantage of additional fine-grained score la-

bels. The experiments on three AQA datasets have demon-

strated the effectiveness of our approach. In the future, we

plan to apply our methods for instructional video analy-

sis [28, 30]. Besides, it is an interesting direction to explore

the interpretability of AQA models (e.g., understanding how

the network gains the score for a certain action), which is

virtually important for real-world applications.
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