1906.06247v2 [cs.LG] 6 Jan 2020

arxiv

Explaining Landscape Connectivity of Low-cost Solutions for
Multilayer Nets

Rohith Kuditipudi Xiang Wang Holden Lee
Duke University Duke University Princeton University
rohith.kuditipudi@duke.edu xwang@cs.duke.edu holdenl@princeton.edu
Yi Zhang Zhiyuan Li
Princeton University Princeton University
y.zhang@cs.princeton.edu zhiyuanli@cs.princeton.edu
Wei Hu Sanjeev Arora
Princeton University Princeton University and Institute for Advanced Study
huwei@cs.princeton.edu arora@cs.princeton.edu
Rong Ge

Duke University
rongge@cs.duke.edu

Abstract

Mode connectivity (Garipov et al., 2018; Draxler et al., 2018) is a surprising phenomenon in the loss
landscape of deep nets. Optima—at least those discovered by gradient-based optimization—turn out to
be connected by simple paths on which the loss function is almost constant. Often, these paths can be
chosen to be piece-wise linear, with as few as two segments.

We give mathematical explanations for this phenomenon, assuming generic properties (such as dropout
stability and noise stability) of well-trained deep nets, which have previously been identified as part of
understanding the generalization properties of deep nets. Our explanation holds for realistic multilayer
nets, and experiments are presented to verify the theory.

1 Introduction

Efforts to understand how and why deep learning works have led to a focus on the optimization landscape of
the training loss. Since optimization to near-zero training loss occurs for many choices of random initialization,
it is clear that the landscape contains many global optima (or near-optima). However, the loss can become
quite high when interpolating between found optima, suggesting that these optima occur at the bottom of
“valleys” surrounded on all sides by high walls. Therefore the phenomenon of mode connectivity (Garipov
et al., 2018; Draxler et al., 2018) came as a surprise: optima (at least the ones discovered by gradient-based
optimization) are connected by simple paths in the parameter space, on which the loss function is almost
constant. In other words, the optima are not walled off in separate valleys as hitherto believed. More
surprisingly, the paths connecting discovered optima can be piece-wise linear with as few as two segments.
Mode connectivity begs for theoretical explanation. One paper (Freeman and Bruna, 2016) attempted
such an explanation for 2-layer nets, even before the discovery of the phenomenon in multilayer nets. However,
they require the width of the net to be exponential in some relevant parameters. Others (Venturi et al., 2018;
Liang et al., 2018; Nguyen et al., 2018; Nguyen, 2019) require special structure in their networks where the
number of neurons needs to be greater than the number of training data points. Thus it remains an open

problem to explain mode connectivity even in the 2-layer case with realistic parameter settings, let alone for
standard multilayer architectures.

At first sight, finding a mathematical explanation of the mode connectivity phenomenon for multilayer
nets—e.g., for a 50-layer ResNet on ImageNet—appears very challenging. However, the glimmer of hope is
that since the phenomenon exists for a variety of architectures and datasets, it must arise from some generic
property of trained nets. The fact that the connecting paths between optima can have as few as two linear
segments further bolsters this hope.

Strictly speaking, empirical findings such as in (Garipov et al., 2018; Draxler et al., 2018) do not show
connectivity between all optima, but only for typical optima discovered by gradient-based optimization.
It seems an open question whether connectivity holds for all optima in overparametrized nets. Section 5
answers this question, via a simple example of an overparametrized two-layer net, not all of whose optima are
connected via low-cost paths.

Thus to explain mode connectivity one must seek generic properties that hold for optima obtained via
gradient-based optimization on realistic data. A body of work that could be a potential source of such generic
properties is the ongoing effort to understand the generalization puzzle of over-parametrized nets—specifically,
to understand the “true model capacity”. For example, Morcos et al. (2018) note that networks that generalize
are insensitive to linear restrictions in the parameter space. Arora et al. (2018) define a noise stability property
of deep nets, whereby adding Gaussian noise to the output of a layer is found to have minimal effect on the
vector computed at subsequent layers. Such properties seem to arise in a variety of architectures purely from
gradient-based optimization, without any explicit noise-injection during training—though of course using
small-batch gradient estimates is an implicit source of noise-injection. (Sometimes training also explicitly
injects noise, e.g. dropout or batch-normalization, but that is not needed for noise stability to emerge.)

Since resilience to perturbations arises in a variety of architectures, such resilience counts as a “generic’
property for which it is natural to prove mode connectivity as a consequence. We carry this out in the current
paper. Note that our goal here is not to explain every known detail of mode connectivity, but rather to give
a plausible first-cut explanation.

First, in Section 3 we explain mode connectivity by assuming the network is trained via dropout. In fact,
the desired property is weaker: so long as there exists even a single dropout pattern that keeps the training
loss close to optimal on the two solutions, our proof constructs a piece-wise linear path between them. The
number of linear segments grows linearly with the depth of the net.

Then, in Section 4 we make a stronger assumption of noise stability along the lines of Arora et al. (2018)
and show that it implies mode connectivity using paths with 10 linear segments. While this assumption is
strong, it appears to be close to what is satisfied in practice. (Of course, one could explicitly train deep nets
to satisfy the needed noise stability assumption, and the theory applies directly to them.)

)

1.1 Related work

The landscape of the loss function for training neural networks has received a lot of attention. Dauphin et al.
(2014); Choromanska et al. (2015) conjectured that local minima of multi-layer neural networks have similar
loss function values, and proved the result in idealized settings. For linear networks, it is known (Kawaguchi,
2016) that all local minima are also globally optimal.

Several theoretical works have explored whether a neural network has spurious valleys (non-global minima
that are surrounded by other points with higher loss). Freeman and Bruna (2016) showed that for a two-layer
net, if it is sufficiently overparametrized then all the local minimizers are (approximately) connected. However,
in order to guarantee a small loss along the path they need the number of neurons to be exponential in
the number of input dimensions. Venturi et al. (2018) proved that if the number of neurons is larger than
either the number of training samples or the intrinsic dimension (infinite for standard architectures), then
the neural network cannot have spurious valleys. Liang et al. (2018) proved similar results for the binary
classification setting. Nguyen et al. (2018); Nguyen (2019) relaxed the requirement on overparametrization,
but still require the output layer to have more direct connections than the number of training samples.

Some other papers have studied the existence of spurious local minima. Yun et al. (2018) showed that in
most cases neural networks have spurious local minima. Note that a local minimum need only have loss no

larger than the points in its neighborhood, so a local minimum is not necessarily a spurious valley. Safran
and Shamir (2018) found spurious local minima for simple two-layer neural networks under a Gaussian input
distribution. These spurious local minima are indeed spurious valleys as they have positive definite Hessian.

2 Preliminaries

Notations For a vector v, we use ||v]| to denote its ¢3 norm. For a matrix A, we use ||A|| to denote its
operator norm, and ||A||r to denote its Frobenius norm. We use [n] to denote the set {1,2,...,n}. We use
I,, to denote the identity matrix in R™*™. We use O(-),Q(-) to hide constants and use O(-),Q(-) to hide
poly-logarithmic factors.

Neural network In most of the paper, we consider fully connected neural networks with ReLLU activations.
Note however that our results can also be extended to convolutional neural networks (in particular, see
Remark 1 and the experiments in Section 6).

Suppose the network has d layers. Let the vector before activation at layer i be x%, i € [d], where z
is just the output. For convenience, we also denote the input z as z°. Let A; be the weight matrix at
i-th layer, so that we have x' = A;¢(2x'~1) for 2 < i < d and ' = A;2°. For any layer i, 1 < i < d,
let the width of the layer be h;. We use [4;]; to denote the j-th column of A;. Let the maximum width
of the hidden layers be hyay := max{hi, ha,...,hq—1} and the minimum width of the hidden layers be
hmin = min{hl,]’LQ, ey hdfl}.

We use O to denote the set of parameters of neural network, and in our specific model, © = R1*"0 x
Rhzxh1 5 ... x Rhaxha-1 which consists of all the weight matrices {4;}’s.

Throughout the paper, we use fy, 0 € © to denote the function that is computed by the neural network.
For a data set (z,y) ~ D, the loss is defined as Lp(fy) := E(z)~p[l(y, fo(z))] where [is a loss function. The
loss function I(y, §) is convex in the second parameter. We omit the distribution D when it is clear from the
context.

d

Mode connectivity and spurious valleys Fixing a neural network architecture, a data set D and a loss
function, we say two sets of parameters/solutions #4 and 7 are e-connected if there is a path 7(¢) : R — ©
that is continuous with respect to ¢t and satisfies: 1. 7(0) = 04; 2. «(1) = 0% and 3. for any t € [0,1],
L(fr@)) < max{L(fgpa),L(fgs)} + €. If ¢ =0, we omit € and just say they are connected.

If all local minimizers are connected, then we say that the loss function has the mode connectivity
property. However, as we later show in Section 5, this property is very strong and is not true even for
overparametrized two-layer nets. Therefore we restrict our attention to classes of low-cost solutions that
can be found by the gradient-based algorithms (in particular in Section 3 we focus on solutions that are
dropout stable, and in Section 4 we focus on solutions that are noise stable). We say the loss function has
e-mode connectivity property with respect to a class of low-cost solutions C, if any two minimizers in C
are e-connected.

Mode connectivity is closely related to the notion of spurious valleys and connected sublevel sets (Venturi
et al., 2018). If a loss function has all its sublevel sets ({6 : L(fp) < A}) connected, then it has the mode
connectivity property. When the network only has the mode connectivity property with respect to a class of
solutions C, as long as the class C contains a global minimizer, we know there are no spurious valleys in C.

However, we emphasize that neither mode connectivity or lack of spurious valleys implies any local search
algorithm can efliciently find the global minimizer. These notions only suggest that it is unlikely for local
search algorithms to get completely stuck.

3 Connectivity of dropout-stable optima

In this section we show that dropout stable solutions are connected. More concretely, we define a solution 6
to be e-dropout stable if we can remove a subset of half its neurons in each layer such that the loss remains

steady.

Definition 1. (Dropout Stability) A solution 0 is e-dropout stable if for all i such that 1 < i < d, there
exists a subset of at most |hj/2] hidden units in each of the layers j from i through d — 1 such that after
rescaling the outputs of these hidden units (or equivalently, the corresponding rows and/or columns of the
relevant weight matrices) by some factor r' and setting the outputs of the remaining units to zero, we obtain
a parameter 0; such that L(fp,) < L(fg) + €.

Intuitively, if a solution is e-dropout stable then it is essentially only using half of the network’s capacity.
We show that such solutions are connected:

Theorem 1. Let 64 and 68 be two e-dropout stable solutions. Then there exists a path in parameter space
7 :[0,1] — © between 04 and 68 such that L(fr) < max{L(fpa),L(fes)} + € for 0 <t < 1. In other
words, letting C be the set of solutions that are e-dropout stable, a ReLU network has the e-mode connectivity
property with respect to C.

Our path construction in Theorem 1 consists of two key steps. First we show that we can rescale at
least half the hidden units in both #4 and % to zero via continuous paths of low loss, thus obtaining two
parameters 7' and 0F satisfying the criteria in Definition 1.

Lemma 1. Let 0 be an e-dropout stable solution and let 0; be specified as in Definition 1 for 1 < i < d.
Then there exists a path in parameter space m : [0,1] — © between 6 and 6, passing through each 0; such that
L(frt)) < L(fg) +€ for 0 <t < 1.

Though naively one might expect to be able to directly connect the weights of € and 6; via interpolation,
such a path may incur high loss as the loss function is not convex over ©. In our proof of Lemma 1, we rely
on a much more careful construction. The construction uses two types of steps: (a) interpolate between two
weights in the top layer (the loss is convex in the top layer weights); (b) if a set of neurons already have
their output weights set to zero, then we can change their input weights arbitrarily. See Figure 1 for an
example path for a 3-layer network. Here we have separated the weight matrices into equally sized blocks:

Az = [Ls ‘ R3], Ay = [ZI)QZ gz } and A = [éi } The path consists of 6 steps alternating between

type (a) and type (b). Note that for all the type (a) steps, we only update the top layer weights; for all the
type (b) steps, we only change rows of a weight matrix (inputs to neurons) if the corresponding columns
in the previous matrix (outputs of neurons) are already 0. In Section A we show how such a path can be
generalized to any number of layers.

We then show that we can permute the hidden units of 7' such that its non-zero units do not intersect
with those of #7, thus allowing us two interpolate between these two parameters. This is formalized in the
following lemma and the proof is deferred to supplementary material.

Lemma 2. Let 0 and 0’ be two solutions such that at least [h;/2] of the units in the i'" hidden layer have
been set to zero in both. Then there exists a path in parameter space 7 : [0,1] — © between 6 and 0’ with 8

line segments such that L(fr)) < max{L(fs), L(fo')}.

Theorem 1 follows immediately from Lemma 1 and Lemma 2, as one can first connect 84 to its dropout
version 67! using Lemma 1, then connect 67 to dropout version #f of 7 using Lemma 2, and finally connect
68 to 7 using Lemma 1 again.

Finally, our results can be generalized to convolutional networks if we do channel-wise dropout (Tompson
et al., 2015; Keshari et al., 2018).

Remark 1. For convolutional networks, a channel-wise dropout will randomly set entire channels to 0
and rescale the remaining channels using an appropriate factor. Theorem 1 can be extended to work with
channel-wise dropout on convolutional networks.

INote our results will also work if r is allowed to vary for each layer.

0 [nin] [pe] (5

@ [rLs]0] [fg g} f; (a)
® (o] 2] |3
@ [0l |22t [5] @
(5) [0]rLs] ;E; 8- éi (b)
© [ralo) 2] [5] @
M [rislo] [0} [R e

Figure 1: Example path, 6 line segments from a 3-layer network to its dropout version. Red denotes weights
that have changed between steps while green denotes the zeroed weights that allow us to make these changes
without affecting our output.

4 Connectivity via noise stability

In this section, we relate mode connectivity to another notion of robustness for neural networks—noise
stability. It has been observed (Morcos et al., 2018) that neural networks often perform as well even if a
small amount of noise is injected into the hidden layers. This was formalized in (Arora et al., 2018), where
the authors showed that noise stable networks tend to generalize well. In this section we use a very similar
notion of noise stability, and show that all noise stable solutions can be connected as long as the network is
sufficiently overparametrized.

We begin in Section 4.1 by restating the definitions of noise stability in (Arora et al., 2018) and also
highlighting the key differences in our definitions. In Section 6 we verify these assumptions in practice. In
Section 4.2, we first prove that noise stability implies dropout stability (meaning Theorem 1 applies) and
then show that it is in fact possible to connect noise stable neural networks via even simpler paths than mere
dropout stable networks.

4.1 Noise stability

First we introduce some additional notations and assumptions. In this section, we consider a finite and
fixed training set S. For a network parameter 6, the empirical loss function is L(6) = ﬁ Y eyes Ly, f@).
Here the loss function I(y,¢) is assumed to be S-Lipschitz in §: for any §,4’ € R" and any y € R, we
have |I(y,9) — l(y,9")| < B||§ — ¢'||. Note that the standard cross entropy loss over the softmax function is
\@—Lipschitz.

For any two layers i < j, let M ©J be the operator for the composition of these layers, such that
2l = M (). Let J7! be the Jacobian of M J at input 2. Since the activation functions are ReLU’s, we
know M4 (z%) = J;;jxi.

Arora et al. (2018) used several quantities to define noise stability. We state the definitions of these
quantities below.

Definition 2 (Noise Stability Quantities). Given a sample set S, the layer cushion of layer i is defined as

[|Aig(z’
pi = Miees a7 e -

(Bl
1727 Mt
Furthermore, for any layer i the minimal interlayer cushion is defined as® p;— = min;<j<q fli ;.

The activation contraction c is defined as ¢ = maxges, 1<i<d—1 Hrzlj(zll‘)l\

For any two layers i < j, the interlayer cushion y; ; is defined as p; ; = mingcg

Intuitively, these quantities measures the stability of the network’s output to noise for both a single layer
and across multiple layers. Note that the definition of the interlayer cushion is slightly different from the
original definition in (Arora et al., 2018). Specifically, in the denominator of our definition of interlayer
cushion, we replace the Frobenius norm of J ; i by its spectral norm. In the original definition, the interlayer
cushion is at most 1/v/h;, simply because J;’f = Ip, and p;; = 1/+/h;. With this new definition, the interlayer
cushion need not depend on the layer width h;.

The final quantity of interest is interlayer smoothness, which measures how close the network’s be-
havior is to its linear approximation under noise. Our focus here is on the noise generated by the
dropout procedure (Algorithm 1). Let 6 = {A1, A, ..., Aq} be weights of the original network, and let

={A,, Ay, .. A, Ait1,...,Aq} be the result of applying Algorithm 1 to weight matrices from layer 2 to
layer i.> For any input z, let #(t) and 2! _,(t) be the vector before activation at layer i using parameters
Ot + 6*(1 — t) and 0t + 0°"1(1 — t) respectively.

Definition 3 (Interlayer Smoothness). Given the scenario above, define interlayer smoothness p to be
the largest number such that with probability at least 1/2 over the randomness in Algorithm 1 for any two
layers i, j satisfying for every2 <i<j<d,x €S, and0 <t <1

i (4 i.j 125() — *[[l]27]]
1252 (&5 (8) — T (@) < Tl
1251 (8) — 2"l[|27]

pll=]

)

1M (@5 (1)) = T (54 (8)] <

If the network is smooth (has Lipschitz gradient), then interlayer smoothness holds as long as ||2%(¢) —
2], |2t _,(t) — 2%|| is small. Essentially the assumption here is that the network behaves smoothly in the
random directions generated by randomly dropping out columns of the matrices.

Similar to (Arora et al., 2018), we have defined multiple quantities measuring the noise stability of a
network. These quantities are in practice small constants as we verify experimentally in Section 6. Finally,
we combine all these quantities to define a single overall measure of the noise stability of a network.

Definition 4 (Noise Stability). For a network 6 with layer cushion p;, minimal interlayer cushion p;—,,

activation contraction c and interlayer smoothness p, if the minimum width layer b, is at least ﬁ(l) wide,
p>3d and ||¢(2L(t))]|oo = O(1/Vhi)||6(2E(2))| for 1 <i<d—1,0<t <1, we say the network 6 is e-noise
stable for

_ Bed®? maxges(||.fo(=)]])

hal2 ming<i<a(pimiss)

The smaller €, the more robust the network. Note that the quantity € is small as long as the hidden
layer width Ay, is large compared to the noise stable parameters. Intuitively, we can think of € as a single
parameter that captures the noise stability of the network.

4.2 Noise stability implies dropout stability

We now show that noise stable local minimizers must also be dropout stable, from which it follows that noise
stable local minimizers are connected. We first define the dropout procedure we will be using in Algorithm 1.

2Note that J;’ii = Iy, and p;; = 1.
3Note that A; is excluded because dropping out columns in Ay already drops out the neurons in layer 1; dropping out

Algorithm 1 Dropout (4;,p)

Input: Layer matrix A; € R"*"-1_dropout probability 0 < p < 1.

Output: Returns A; € RMixhi-1,

1: For each j € [h;_1], let 0; be an i.i.d. Bernoulli random variable which takes the value 0 with probability
p and takes the value ﬁ with probability (1 — p).

2: For each j € [h;_1], let [A;]; be §;[A;];, where [A;]; and [A4;]; are the j-th column of A; and A; respectively.

The main theorem that we prove in this section is:

Theorem 2. Let 84 and 08 be two fully connected networks that are both e-noise stable, there exists a
path with 10 line segments in parameter space w : [0,1] — © between 64 and 0F such that* L(fr@) <

max{L(fpa), L(f55)} + O(e) for 0 <t < 1.

To prove the theorem, we will first show that the networks #4 and 67 are 5(6)—dropout stable. This is
captured in the following main lemma:

Lemma 3. Let 0 be an e-noise stable network, and let 61 be the network with weight matrices from layer
2 to layer d dropped out by Algorithm 1 with dropout probability Q(1/hmin) < p < %. For any 2 <i <d,
assume ||[A];]| = O(/D)||Aillp for 1 < j < hi—1. For any 0 <t <1, define the network on the segment from
0 to 01 as 0, := 0+ t(6h — 0). Then, with probability at least 1/4 over the weights generated by Algorithm 1,

L(fs,) < L(fs) + O(y/pe), for any 0 < t < 1.

The main difference between Lemma 3 and Lemma 1 is that we can now directly interpolate between the
original network and its dropout version, which reduces the number of segments required. This is mainly
because in the noise stable setting, we can prove that after dropping out the neurons, not only does the
output remains stable but moreover every intermediate layer also remains stable.

From Lemma 3, the proof of Theorem 2 is very similar to the proof of Theorem 1. The detailed proof is
given in Section B.

The additional power of Lemma 3 also allows us to consider a smaller dropout probability. The theorem
below allows us to trade the dropout fraction with the energy barrier € that we can prove—if the network is
highly overparametrized, one can choose a small dropout probability p which allow the energy barrier ¢ to be
smaller.

Theorem 3. Suppose there exists a network 0* with layer width h} for each layer i that achieves loss L(fo~),
and mintmum hidden layer width b}, = ﬁ(l) Let 04 and 08 be two e-noise stable networks. For any dropout
probability 1.5 maxi<j<q—1(hj/hi) < p < 3/4, if for any 2 <i <d, 1 < j < hi_q, [[[Ad;]l = OG/D)IAillr
then there exists a path with 13 line segments in parameter space 7 : [0,1] — O between 04 and 68 such that

L(fr()) < max{L(fga) + O(\/pe), L(fo) + O(/pe), L(fo-)} for 0 <t < 1.

Intuitively, we prove this theorem by connecting 84 and 62 via the neural network 6* with narrow hidden
layers. The detailed proof is given in Section B.

5 Disconnected modes in two-layer nets

The mode connectivity property is not true for every neural network. Freeman and Bruna (2016) gave a
counter-example showing that if the network is not overparametrized, then there can be different global
minima of the neural network that are not connected. Venturi et al. (2018) showed that spurious valleys can
exist for 2-layer ReLU nets with an arbitrary number of hidden units, but again they do not extend their result

columns in A; would drop out input coordinates, which is not necessary.
4Here O(-) hides log factors on relevant factors including |S|,d, ||z||, 1/e and h;||A;|| for layers i € [d].

to the overparametrized setting. In this section, we show that even if a neural network is overparametrized—in
the sense that there exists a network of smaller width that can achieve optimal loss—there can still be two
global minimizers that are not connected.

In particular, suppose we are training a two-layer ReLU student network with h hidden units to fit a
dataset generated by a ground truth two-layer ReLU teacher network with h; hidden units such that the
samples in the dataset are drawn from some input distribution and the labels computed via forward passes
through the teacher network. The following theorem demonstrates that regardless of the degree to which the
student network is overparametrized, we can always construct such a dataset for which global minima are not
connected.

Theorem 4. For any width h and and convez loss function l : R X R — R such that l(y,q) is minimized when
y =7, there exists a dataset generated by ground-truth teacher network with two hidden units (i.e. hy =2)
and one output unit such that global minimizers are not connected for a student network with h hidden units.

Our proof is based on an explicit construction. The detailed construction is given in Section C.

6 Experiments

We now demonstrate that our assumptions and theoretical findings accurately characterize mode connectivity in
practical settings. In particular, we empirically validate our claims using standard convolutional architectures—
for which we treat individual filters as the hidden units and apply channel-wise dropout (see Remark 1)—trained
on datasets such as CIFAR-10 and MNIST.

Training with dropout is not necessary for a network to be either dropout-stable or noise-stable. Recall
that our definition of dropout-stability merely requires the existence of a particular sub-network with half
the width of the original that achieves low loss. Moreover, as Theorem 3 suggests, if there exists a narrow
network that achieves low loss, then we need only be able to drop out a number of filters equal to the width
of the narrow network to connect local minima.

1.0 1.0 1.0
z z z
© 0.8 w© 0.8 © 0.8
3 3 3
Q06 —— loss Q06 —— loss Q06 —— loss
g 04 accuracy g 04 accuracy g 04 accuracy
w w w
& 02 & 02 & 02
— — —

0.0 0.0 e 0.0

05 06 07 08 09 00 02 04 06 08 1.0 2 4 6 8 10
1 - dropout probability (1- p) path parameter (t) Hidden layer width (# of filters)

Figure 2: Results for convolutional networks trained on MNIST.

First, we demonstrate in the left plot in Figure 2 on MNIST that 3-layer convolutional nets (not counting
the output layer) with 32 3 x 3 filters in each layer tend to be fairly dropout stable—both in the original
sense of Definition 1 and especially if we relax the definition to allow for wider subnetworks—despite the
fact that no dropout was applied in training. For each trial, we randomly sampled 20 dropout networks
with ezactly |32(1 — p)| non-zero filters in each layer and report the performance of the best one. In the
center plot, we verify for p = 0.2 we can construct a linear path 7 (¢) : R — O from our convolutional net
to a dropout version of itself. Similar results were observed when varying p. Finally, in the right plot we
demonstrate the existence of 3-layer convolutional nets just a few filters wide that are able to achieve low loss
on MNIST. Taken together, these results indicate that our path construction in Theorem 3 performs well in
practical settings. In particular, we can connect two convolutional nets trained on MNIST by way of first
interpolating between the original nets and their dropped out versions with p = 0.2, and then connecting the
dropped out versions by way of a narrow subnetwork with at most |32p| non-zero filters.

=
(=

0.8
=
B
0.100 0.125 0.150 0.175 1.1 1.2 1.3 1.4 1.5 lj
layer cushion w; contraction c o] 06 — loss
m
= accuracy
@
n 0.4
5
0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 o 10 20 it
interlayer cushion ;- = interlayer smoothness ps path parameter ()

Figure 3: Left) Distribution of layer cushion, activation contraction, interlayer cushion and interlayer
smoothness of the 6-th layer of a VGG-11 network on the training set. The other layers’ parameters are
exhibited in Section D.3. Right) The loss and training accuracy along the path between two noise stable
VGG-11 networks described in Theorem 3.

We also demonstrate that the VGG-11 (Simonyan and Zisserman, 2014) architecture trained with channel-
wise dropout (Tompson et al., 2015; Keshari et al., 2018) with p = 0.25 at the first three layers® and p = 0.5
at the others on CIFAR-10 converges to a noise stable minima—as measured by layer cushion, interlayer
cushion, activation contraction and interlayer smoothness. The network under investigation achieves 95%
training and 91% test accuracy with channel-wise dropout activated, in comparison to 99% training and 92%
test accuracy with dropout turned off. Figure 3 plots the distribution of the noise stability parameters over
different data points in the training set, from which we can see they behave nicely. Interestingly, we also
discovered that networks trained without channel-wise dropout exhibit similarly nice behavior on all but the
first few layers. Finally, in Figure 3, we demonstrate that the training loss and accuracy obtained via the
path construction in Theorem 3 between two noise stable VGG-11 networks 64 and 6p remain fairly low
and high respectively—particularly in comparison to directly interpolating between the two networks, which
incurs loss as high as 2.34 and accuracy as low as 10%, as shown in Section D.2.

Further details on all experiments are provided in Section D.1.

Acknowledgments

Rong Ge acknowledges funding from NSF CCF-1704656, NSF CCF-1845171 (CAREER), the Sloan Fellowship
and Google Faculty Research Award. Sanjeev Arora acknowledges funding from the NSF, ONR, Simons
Foundation, Schmidt Foundation, Amazon Research, DARPA and SRC.

References

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. (2018). Stronger generalization bounds for deep nets via a
compression approach. arXiv preprint arXiv:1802.05296.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2015). The loss surfaces of
multilayer networks. In Artificial Intelligence and Statistics, pages 192—-204.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y. (2014). Identifying and
attacking the saddle point problem in high-dimensional non-convex optimization. In Advances in neural
information processing systems, pages 2933-2941.

5we find the first three layers are less resistant to channel-wise dropout.

Draxler, F., Veschgini, K., Salmhofer, M., and Hamprecht, F. A. (2018). Essentially no barriers in neural
network energy landscape. arXiv preprint arXiv:1803.00885.

Freeman, C. D. and Bruna, J. (2016). Topology and geometry of half-rectified network optimization. arXiv
preprint arXiv:1611.01540.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., and Wilson, A. G. (2018). Loss surfaces, mode
connectivity, and fast ensembling of dnns. In Advances in Neural Information Processing Systems, pages

8789-8798.

Kawaguchi, K. (2016). Deep learning without poor local minima. In Advances in neural information processing
systems, pages 586—594.

Keshari, R., Singh, R., and Vatsa, M. (2018). Guided dropout. arXiv preprint arXiv:1812.03965.

Liang, S., Sun, R., Li, Y., and Srikant, R. (2018). Understanding the loss surface of neural networks for
binary classification. In International Conference on Machine Learning, pages 2840—2849.

Morcos, A. S., Barrett, D. G., Rabinowitz, N. C., and Botvinick, M. (2018). On the importance of single
directions for generalization. arXiv preprint arXiv:1803.06959.

Nguyen, Q. (2019). On connected sublevel sets in deep learning. arXiv preprint arXiv:1901.07417.

Nguyen, Q., Mukkamala, M. C., and Hein, M. (2018). On the loss landscape of a class of deep neural networks
with no bad local valleys. arXiv preprint arXiw:1809.10749.

Safran, I. and Shamir, O. (2018). Spurious local minima are common in two-layer relu neural networks. In
International Conference on Machine Learning, pages 4430-4438.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.

Tompson, J., Goroshin, R., Jain, A., LeCun, Y., and Bregler, C. (2015). Efficient object localization
using convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 648—656.

Tropp, J. A. (2012). User-friendly tail bounds for sums of random matrices. Foundations of computational
mathematics, 12(4):389-434.

Venturi, L., Bandeira, A. S., and Bruna, J. (2018). Spurious valleys in two-layer neural network optimization
landscapes. arXiv preprint arXiv:1802.0638.

Yun, C., Sra, S., and Jadbabaie, A. (2018). A critical view of global optimality in deep learning. arXiv
preprint arXiw:1802.03487.

10

A Proofs for connectivity of dropout-stable optima

Proof of Lemma 1. Without loss of generality, suppose for each 6; that the subset of | h;/2] non-zero
hidden units in each layer are all indexed between 1 and |h;/2]|. For 1 < i < d, we can partition A; into

L. 2

quadrants such that A; = [TZ‘%} . (Here, L; € RLAi/2)%1hi /2] 1f p; is odd, when we write L; in the
K3 1

other quadrants we implicitly pad it with zeros in a consistent manner.) Similarly, we can partition A; such

Ly
that Al = |: Bl
the value of A; at a given point on our path, while A? will always refer to the value of A; at §. We now
proceed to prove via induction the existence of a path from 6 to 6; for all ¢ whose loss is bounded by L(fy) + e,

from which the main result immediately follows.

} and A, such that A; = [Ly ‘ Ry] We will sometimes use the notation A; to refer to

Base case: from 6 to 6;_;1 As a base case of the induction, we need to construct a path from 6 to 64_1,
such that the loss is bounded by L(fy) + e. First, note that setting a particular subset of columns (e.g. the
right half of columns) in A; to zero is equivalent to setting the corresponding rows (e.g. the bottom half of
rows) of A;_1 to zero. So from the fact that L(fs, ,) < L(fo) + € it follows that we can equivalently replace
Ag with [TLZ ‘ 0] without increasing our loss by more than e.

In fact, because our loss function is convex over A; we can actually interpolate A; between Ag and
[TLZ ‘ 0] while keeping our loss below L(fp) + € at every point along this subpath.

Then, because Ry = 0 we can modify both D;_; and R;_1 any way we’d like without affecting the output
L, | Cl

0 0 } while keeping

of our network. In particular, we can interpolate A4_1 between A§—1 and [

our loss constant long this subpath, thus arriving at 6,_;.
From 6, to 0,_;

0
Suppose we have found a path from 6 to), such that (1) Ag"‘ =[rL|0], (2 Al = { rL; |0] for

0 |0
0 0
Ly | Gy
0O
L(fp) + €. Note that 64— satisfies all these assumptions, including in particular (2) as there are of course no
A; between Ay_1 and Ay. Now let us extend this path to 6,_1.
First, because the rightmost columns of A; are zero for k < i < d, we can modify the bottom rows of A;
6 6
Ly | Ck
rLy | 0 |

k<i<d, (3) Az’“ = [} and (4) Af’c = AY for i < k, such that the loss along the path is at most

for k < i < d without affecting the output of our network. In particular, we can set Ay to [

rL? | 0

0 | rL;
L(fo,_,) < L(fy) + ¢, it then follows that we can set Aq to [0 | 7LY | via interpolation while keeping our
loss below L(fy) + €. In particular, note that because the off-diagonal blocks of A; are zero for k < i < d,
interpolating between the leftmost columns of Ay being non-zero and the rightmost columns of Ay being
non-zero simply amounts to interpolating between the outputs of the two subnetworks comprised respectively
of the first |h;/2] and last |h;/2] rows of A; for k < i < d.

Once we have the leftmost columns of Ay set to zero and A; in block-diagonal form for k < i < d, we
can proceed to modify the top rows of Ay however we’d like without affecting the output of our network.
rLi 0
rLy | 0
without affecting our loss since the weights of our two subnetworks are equivalent—and afterwards set Dy, to
zero and R; to zero for k < i < d—again without affecting our loss since the rightmost columns of A, are
now zero, meaning that the bottom rows of A; have no affect on our network’s output.

as well as A; to { } for £ < i < d. From the fact that the loss is convex over A; and that

Specifically, let us set Ay to { . We can then reset Ay to [rLY ‘ 0] via interpolation—this time

L?
Following these steps, we will have A; = 7’02 8 for k <i<dand Ay = [TLZ ‘ 0] And so we are
now free to set the bottom rows of Ax_1 to zero without affecting our loss, thus arriving at 6;_1. O

11

Lemma 4. Let 6 be a parameter such that at least [h;/2] of the units in each hidden layer have been set to
zero. Then we can achieve an arbitrary permutation of the non-zero hidden units of 0 via a path consisting of
just 5 line segments such that our loss is constant along this path.

Proof. Let 7 : [h;] — [h;] be some permutation over the units in layer i. Without loss of generality, suppose
all non-zero units in layer ¢ are indexed between 0 and |h;/2], and define 7’ : [|h;/2]] — [hi] \ [[h:/2]] as
any one-to-one mapping such that 7’(7) = m(¢) if 7(¢) € [h;] \ [[h:/2]]. Note that when we refer to a unit j as
“set to zero”, we mean that both row j of A; and column j of A;;; have been set to zero.

To permute the units of layer i, we can first simultaneously copy the non-zero rows of A; into a subset of
the rows that have been set to zero. Specifically, for j € [|h;/2]] we can copy row j of A; into row 7/(j) via
interpolation and without affecting our loss, due to the fact that column 7/(j) in A;1; is set to zero. We
can then set column j of 4,11 to zero while copying its value to column 7’/(j), again via interpolation and
without affecting our loss since rows j and 7/(j) of A; are now equivalent.

Following these first two steps, the first | h;/2] columns of A;;; will have been set to zero. Thus, for all
j € [|hi/2]] such that 7(j) € [h;/2] we can copy row 7'(j) of A; into row 7(j) without affecting our loss. We
can then set column 7'(j) of A;y1 to zero while copying its value into column 7(j) via interpolation and
without affecting our loss since rows 7/(j) and 7(j) of A; are now equivalent. Setting row 7’(j) to zero—again
for all j € [|h;/2]] such that 7(j) € [h;/2]—completes the permutation for layer i.

Note that because we leave the output of layer ¢ unchanged throughout the course of permuting the units
of layer 1, it follows that we can perform all swaps across all layers simultaneously. And so from the fact that
permuting each layer can be done in 5 steps—each of which consists of a single line segment in parameter
space—the main result immediately follows. O

Proof of Lemma 2. Without loss of generality, suppose for 6 that the subset of | h;/2| non-zero hidden
units in each layer ¢ are all indexed between 0 and |h;/2]. Note that when we refer to a unit as “set to zero",
we mean that both the corresponding row of A; and column of A;; have been set to zero. Adopting our
notation in Lemma 1, we can construct a path from 6 to ¢’ as follows.

First, from the fact that the second half of units in each hidden layer i have been set to zero in 6 we have

0 0
that Af = [L }, Al = [L; 8 } for 1 <i<d,and A% = [Lj | 0 |. Similarly, half the rows of A{ are

0 0

zero, half the rows and columns of A?l are zero for 1 < ¢ < d, and half the columns of Ag/ are zero. Note that
the indices of the non-zero units in #’ may intersect with those of the non-zero units in #. For 1 < i < d, let
B; denote the submatrix of A; corresponding to the non-zero rows and columns of Af/.

Because A? are block-diagonal for 1 < i < d and the rightmost columns of A9 are zero, starting from 6 we
can modify the bottom rows of A; for 1 <1i < d any way we'd likeewithout affecting our loss—as done ineour
Loi Bf] for 1 <i<dand A; to [?%%!7}
Then, from the fact that our loss function is convex over A, it follows that we can set A, to [0 ‘ Bgl]
via interpolation while keeping our loss below max{L(fy), L(fo:)}. Finally, from the fact that the leftmost
columns of A, are now zero and A; are still block-diagonal for 1 < i < d, it follows that we can set L; to zero

01 0
for 1 <i < d without affecting our loss—thus making A; equal to {T’Fﬁ} for 1 <i < dand A; equal to

path construction for Lemma 1. In particular, let us set A; to [

0
e

To complete our path from 6 to # we now simply need to permute the units of each hidden layer so as to
return the elements of BY " to their original positions in A; for each i. From Lemma 4 it follows that we can
accomplish this permutation via 5 line segments in parameter space without affecting our loss. Combined
with the previous steps above, we have constructed path from 6 to 6" consisting of a total of 8 line segments
whose loss is bounded by max{L(fy), L(fp')}- O

Proof of Theorem 1. First, from Lemma 1 we know we can construct paths from both #4 to 67" and 6%
to OF while keeping our loss below L(fya) + € and L(fys) + € respectively. From Lemma 2 we know that we

12

can construct a path from 67! to P such that the loss along the path is bounded by max{L(fpa), L(fo5)}.
The main result then follows from the fact that L(fya) < L(fpa) + € and L(fpz) < L(fp5) + € due to 64 and
6% both being e-dropout stable. O

B Proofs for connectivity via noise stability

In this section, we give detailed proofs showing that noise stability implies connectivity. In the following
lemma, we first show that the network output is stable if we randomly dropout columns in a single layer
using Algorithm 1.

Lemma 5. For any layer 2 <i <d, let G = {(UD,z0)} be a set of matriz/vector pairs of size m where

U € RPraxhi gnd x c Rhi-1 satzsfy@ng ||x||oo =0 <\/|h¢> . Given Ai, let /L‘ € RMixhi-1 pe the output Of
i1

Algorithm 1 with dropout probability 0 < p < 3. Assume ||[4;];]| = O(/D)||Aillp for 1 < j < hi—1. Given

m

any 0 < d <1, lete =0 (W) , with probability at least 1 — &, we have for any (U,z) € G that

|U(A; — A)x|| < €Al | Uzl Further assuming hupi, = Q2 (W), we know with probability at least

1—19, no less than %p fraction of columns in A; are zero vectors.

Intuitively, this lemma upper-bounds the change in the network output after dropping out a single layer.
In the lemma, we should think of x as the input to the current layer, A; as the layer matrix and U as the
Jacobian of the network output with respect to the layer output. If the activation pattern does not change
after the dropping out, UA;z is exactly the output of the dropped out network and HU(A, — A;)x|| is the
change in the network output.

Proof of Lemma 5. Fixing 2 < i < d and one pair (U,z) € G, we show with probability at least 1 — %,
|U(A; — A)z| < €] Aillp||U |||z Let Uy be the k-th column of U. Then by definition of A; in the algorithm,

we know

=> (Z UkMz‘]kj) z(0; — 1),

where d; is an i.i.d. Bernoulli random variable which takes the value 0 with probability p and takes the value
ﬁ with probability (1 — p). [

Let [A;]; be the j-th column of A;. Because p < 2, ﬁ = O(1) (any p bounded away from 1 will work).
Hence the norm for each individual term can be bounded as follows.

UilA; K2 5j—1 <0 U Aij

[l)
<O Ul|IIlA:];
< (T U ITA:L;
® \/13|U||||A¢||F||x>
<0

N (thin 7

where (*) uses the assumption that ||z]. = O(H;-” > and (f) holds because we assume |[|[4;];] =
O(/p)||Ail|F for 1 < j < hi_y.

For the total variance, we have

2

Y KgﬁM&m>%@—n
7 %

<Z||U 1511|212 ((1)2><p+<11pl>2><(1p)>
S A0 (';'f'f) »(152;)

< IUAqll%

211 4. 2
§O<mv|yAﬂmy

[l

where inequality () uses the assumption that ||z||.. = O (\/h—> Then, by the vector Bernstein inequality
i—1

(Lemma 8), we know given 0 < § < 1, there exists ¢ = O (\ / plogh(m_hd/é)), with probability at least 1 — 2

we have R
1U(A; — Aj)z|| < €| Al plIUl]|]]-
Taking the union bound over all (U, x) pairs in G, we know that with probability at least 1 — d, for any
(U,z) € G, |U(A; — Ap)z|| < €| A [| U] 2]]-
Suppose hpin = €2 (W); then by the Chernoff bound, we know with probability at least 1 — §, the
dropped out fraction is at least %p. Taking another union bound concludes our proof. (|

Now we are ready to prove Lemma 3. The idea is similar to (Arora et al., 2018), but we give the proof
here for completeness.

Lemma 3. Let 0 be an e-noise stable network, and let 01 be the network with weight matrices from layer
2 to layer d dropped out by Algorithm 1 with dropout probability Q(1/hmin) < p < %. For any 2 <1 <d,
assume ||[A;];]] = O(/D)||Aillr for 1 < j < hi—1. For any 0 <t <1, define the network on the segment from
0 to 0y as 0, := 0+ t(6h —). Then, with probability at least 1/4 over the weights generated by Algorithm 1,

L(fo,) < L(fs) + O(\/pe), for any 0 < t < 1.

Proof of Lemma 3. We first bound the difference between the dropped out network 6; and the original
network 6.

Bounding || fo(z) — fo,(x)||: We first show that with probability at least 1/2 — 0, || fo(z) — fo,(x)|| =
lz¢ — 2| < €| fo(z)||, where € will be specified later. For any layer i > 1 and letting 27 be the vector before

activation at layer j if the weights Ao, ..., A; are replaced by Ao, ..., A;.

According to Lemma 5, for any layer 2 <i < d, given 0 <§ < 1,let ¢ = O < W), with
min i (k747

probability at least 1 — §/d over A;, we have
A ¢ Mz/f‘z
IU(A; — Ai)z|| < =AU]| (1)

for any (U, z) € {(J’ "9 ¢(2i71))|z € S,i < j < d}. By taking a union bound over i, we know inequality (1)
holds with probability at least 1 — § for every i. Recall that the interlayer smoothness holds with probability

14

at least 1/2. Taking another union, we know with probability at least 1/2 — ¢, interlayer smoothness holds
and inequality (1) holds for every 2 < i < d. Next, conditioning on the success of these two events, we will
inductively prove for any 1 <+¢ <d, for any ¢ < j <d,

1] = 27|| < (i/d)€ [l
For the base case i = 1, since we are not dropping out any weight matrix, the inequality is trivial. For any
1<i—1<d—1,suppose ||#_, — x| < =||27| for any i — 1 < j < d; we prove the induction hypothesis

holds for layer 1.
For any ¢ < j < d we have

&7 = 9|l = @] = &]_y) + @]y — &) < NI3] = &yl + 18]y — 7).

By the induction hypothesis, we know the second term can be bounded by (i — 1)€’||z?||/d. Therefore,

in order to complete the induction Step, it suffices to show that the first term is bounded by €||z7||/d. For

simplicity, we also denote m’ i as 271, Let A; = A; — A;. We can decompose the error into two terms:

I = &1 = MY (Aio@) = MY (Ao) |
= [(Aig @) = MY (0@) + T (Ao) = T (el)|
< I (Ao @) + 1M (A1) = MY (Ag() - T (A@E) (@)

The first term of (2) can be bounded as follows:

1737 A (@)
< (€ pinis [6¢d)| 17 1 Asl Fll 62| Lemma 5
< (¢ ,ulu,_>/6(:d)||J; 1 Aall 2 1252 ¢ (ReLU) is 1-Lipschitz
< (¢ uiui_,/?)cd)HJwi = Induction hypothesis,
; 1| i1
Fi-1 —xi_1|| < (i 1)€d”m I < HOJHH
(e’uiuiﬁ/?)d)HJ;’-j (= H]l Activation Contraction
< (€ pins /3)||,7 ||\|A2¢(HI Layer Cushion
= (i /3|17 | |12 ot = Aip(x'™1)
< (¢/3d)||27 || Interlayer Cushion (3)

The second term of (2) can be bounded as:

I (i) = M (6™ = S (Beota

= [[(M"7 — Tai D(Aip(@ 1)) — (MM — T (Aig(@)|

< MY = T (Aig(@)+ 1M = T37) (A (@)l (4)
Both terms of (4) can be bounded using the interlayer smoothness condition. For the second term of (4),
notice that A;¢(2°~!) = #¢_,. Thus by the induction hypothesis, we know

[Aip(2" ™) = &'l = ||3i_y — 2| < (@ = De [l /d < €| ()
Now, by interlayer smoothness,

[0 = TE) (A @) = (M =) + (Aig(a) — 2|
< I) — il
G
@ elaflllal] _ ¢lad]

sdlf] 3d (6)

15

where in (¥) we use (5) and the assumption p > 3d. For the first term of (4), we know A;¢(i*~ 1) =
21 |+ A;p(2°71). Therefore by the induction hypothesis and (3) for i = 7,

[Aip(@"71) = a'|| < |2y — 2| + [Aid(E)| < (@ = 1)e'||2*[|/d + €| 2"[|/3d < ¢'||27]],
so again we have
(M5 = T (Aig(@)| < (€/3d) 7. (7)

Together, (7) and (6) show that (4) is < 2d [|[27]|. Together with (3) we obtain from 2 that |27 —&/ || < < S @ |,

and hence that [|#] — 27| < e ” dl , completing the induction step.
Conditioning on the success of mterlayer smoothness and inequality (1), we’ve shown,

12} = 27|| < (i/d)e[l27]),
for any ¢ < j < d. Recall that with probability at least 1/2 — 0, interlayer smoothness holds and inequality (1)

holds for every 2 < i < d. Thus, let ¢ = O %(mdhdéé) , we know with probability at least 1/2 — 6,

Amin min p2 p?
min Wi W

1fo(@) = fo ()]l = lla? = &gl < €| fo()Il

Bounding || fo(z) — fo,(z)|| for any fixed ¢: The proof for a fixed network on the path is almost the same
as the proof for the end point. Instead of considering #7, now we consider #(¢), which is the vector before

activation at layer j if the weights As, ..., A; are replaced by As + t(A2 — Ag), LA+ 15(121Z — A;). We can
still use Lemma 5 to bound the noise produced by replacing the weight matrix at a single layer because

U (A + #(A; = Ai) = Apz|| = U (A; — A))all < JU(A; — Az

Amin min p2p?
min 2SiSdH1M1‘)

Thus, we can still use the above induction proof to show that for any fixed 0 < ¢ < 1,let ¢ = O < TM"M) ,

with probability at least 1/2 — ¢,
1fo(@) = fo.(@)]| < €[l fo(2)]-

Bounding || fo(z) — fo, (z)|| for every t: Finally, we show that || fo(x)— fo, (z)|| is bounded for every point on

e maxze s ([fo(@)[[2) log(mdha/5)

Amin min 2,2
min 2§i5d(l‘1 wi)

)

the path via an €’-net argument. Similar to previous steps, letting ¢ = O \/

we know that with probability at least 1/2 — 4,

1fo(x) = fo, ()| < €'/2.

Next, we show that on the path, the network output is smooth in terms of the parameters. According to
Algorithm 1, we know for any 2 < i < d, we have HAzH < 4| Ay]|, so || A; — A;|| < 5| A For any 2 <i <d,
let A;p = A; +t(A; — Ai). Note || A;]| < (1 —t)|| A + t]| Al < 4||A;]]. For any ¢,¢ and any 2 <3 < d, let
9 v be 0 with the weight matrix at every layer 2 < j < replaced by (AT + t’(/ij A7)). For convenience,
we also denote 6, as 6} v+ Given 7 < 1/2, for any 7 <t < 1 -7 and for any —7 < k < 7, we can bound

| for.,. () — fo.(x)| as follows

1 fousn (@) = fo. (@ < D Mor,, (@) = for (@)]

tt+r
2<i<d

16

The output of layer ¢ — 1 is the same for the two networks, of norm < ||z| H;;ll |Aj t4+x|. Hence the

output of layer i differs by at most «|z||||4; — A H;;ll | Aj.i4x]l and the output differs by rl|z||||A; —
i—1 d d

A T2 A ewl Tl (Al < 5712 TT5=; 1A Hence

[fora (@) = fo, () < D 5%zlls [T 11451
2<i<d 1<j<d
< 5%kl T 114l
1<j<d

’
€

i < <t<1-— —7 < <
Thus, given 7 < 25“‘3@;‘”“"“ T, AT we know for any 7 <t <1 — 7 and for any —7 < a < 7,

1 forra (@) = fo(2)]l < €'/2. (8)

There exists a set Q@ = {0;} with size O(1/7) such that for any network on the path, the distance to
the closest network in @ is no more than 7. If we can prove for any 0; € Q, || fo(x) — fo,(2)| < €'/2, we
immediately know for any network 6, on the path || fo(z) — fo,, (2)|| < € by inequality (8).

mdh
pe2d? max s (|| fo(2)2) log (s

. 3 2,2
Rmin 2?11£d(”i l"i_>)

By a union bound over Q, letting ¢ = O <\/

) > , we know with probability
at least 1/2 — 4,

1fo(x) = fo, ()]l < €/2,

for any 6; € Q.
Setting 6 = 1/4, we know there exists

7

ped masaes (| fo(2)) log (

Amin mi 202

mdhgq max el TT<j<a |Aj|>
€

€ =0

such that with probability at least 1/4,

| fo(x) = fo. ()] < €

for any « € S and any 0 < ¢ < 1. Since the loss function is 8-Lipschitz, we further know that for any 0 <¢ < 1:

L(fs,) < L(fo) + B = L(fo) + O(y/pe).

O
Now, we are ready to prove the main theorem.

Theorem 2. Let 84 and 08 be two fully connected networks that are both e-noise stable, there exists a
path with 10 line segments in parameter space m : [0,1] — O between 64 and 08 such that’ L(frx@)) <

max{L(fga), L(fg5)} + O(€) for 0 <t < 1.

Proof of Theorem 2. Setting dropout probability p = 3/4, by Lemma 5 and Lemma 3, if Ay, = Q (1), we
know there exist 7' and 67 such that

1. in both networks, each weight matrix from layer 2 to layer d has at least half of columns as zero vectors;

2. L(fsp) < L(fpa) + O(€) and L(fyn) < L(fgz) + O(e), for any 0 < t < 1, where 671 = 04 + (01! — 04)
and 87 = 68 4 t(6F — 6P).

6Here 5() hides log factors on relevant factors including |S|, d, ||z||,1/€ and h;||A;|| for layers i € [d].

17

Since the dropout fraction in both #* and #F is at least half, we can connect 07 and 67 as we did in
Lemma 2, while ensuring the loss doesn’t exceed max{L(fpa), L(f5z)} + O(c). Connecting 64 to 67 and
connecting 5 to OF each take one line segment. By the construction in Lemma 2, connecting two dropped-out
networks 07 and 67 takes 8 line segments. Thus, overall the path between 4 and 67 contains 10 line
segments. O

Next, we show that if there exists a “narrow” neural network achiving small loss, we can get a lower energy
barrier using a smaller dropout probability.

Theorem 3. Suppose there exists a network 0* with layer width h} for each layer i that achieves loss L(fo~),
and mintmum hidden layer width b}, = Q(1). Let 04 and 6B be two e-noise stable networks. For any dropout
probability 1.5 maxi<i<a—1(hj/hi) < p < 3/4, if for any 2 <i <d, 1 <j < hi_q, [[[Ad;ll = OG/D)I|AillF
then there exists a path with 13 line segments in parameter space 7 : [0,1] — O between 04 and 6 such that

L(fr()) < max{L(fga) + O(\/Pe), L(for) + O(/Pe), L(fo-)} for 0 <t < 1.

Proof of Theorem 3. Since Anyin-maxi<i<q—1(h}/hi) > hl,, = ﬁ(l), we have hpin = Q (é) .

min maxi<i<d—1(h}/hs)

By Lemma 5 and Lemma 3, there exist 6 and 62 such that

1. in both networks, each weight matrix from layer 2 to layer d has at least h] columns set to zero;

2. L(fop) < L(feA)—f—é(\/f)e) and L(fyz) < L(fQB)—&-é(\/ﬁe), for any 0 < ¢ < 1, where 0" = 04 +t(07 —64)
and 0F = 08 + (68 — 6P).

From the fact that at least h} units in layer i of both 67! and #f have been set to zero for 1 < i < d—
meaning that the corresponding rows of A; and columns of A;;; are zero—it follows from Lemma 2 that
we can connect 67! to an arbitrary permutation of #* using 8 segments while keeping the loss on the path
no more than max{L(fya), L(fo~)}. By choosing this permutation so that the non-zero units of 6* do not
intersect with those of 6, we can then connect #* to 67 using just 3 segments as done in the first step of
our path construction in Lemma 2 seeing as there is no need to permute 6* a second time. Combining these
paths together with the paths that interpolate between the original parameters 4 and #” and their dropout
versions ;' and 0P, we obtain a path in parameter space 7 : [0,1] — © between #4 and 67 with 13 line

segments such that L(fr)) < max{L(fga)+ O(\/pe), L(fgr) + O(/pe), L(fo~)} for 0 <t < 1. O

C Proofs for disconnected modes in two-layer nets

Proof of Theorem 4. Define our loss over parameter space such that L(fy) = L > I(y;, fo(x;)), where
x; € R"2 is our i*" data sample, y; € R the associated label, and fy(x;) = w’ ¢(Ax;) for = (w, A) €
R(H2)xh R We can represent the data samples as rows in a matrix X € R"*("+2)__with f; denoting the
ith “feature” (i.e. column) of X—and the labels as elements of y € R"*!, as illustrated in Figure 4.

Choose k,l,m,n such that k <l <m <n where k> h,l—k>h, m—1>2andn—m > h.

When i <1, let

i, j=1
i1, j=2
Zij =41, i=7 (mod h)
-1, i#j (modh), i<l
0, iZ£j (modh), k<i<l.
When | <7 < m, let
-1, j<2,i=j (mod 2)

=10, j<2,i#j (mod2)
0, j>2,1l<i<m.

18

When i > m, let

0, j<2
rij=4-1, j>2i=j (modh)
0, j>2i%#j (modh).

Finally, let y; = 1 when ¢ <[and 0 otherwise.

fi o fs 4 fh+2
x1 10 | 1 —1 .o 17 1
Xo |2 1 -1 1 :
-1
—1 —1 1
Xk
1,
X = X l -1 - y= "
-1 0 0
Xm
0 —1Iy
x, L: o T] Yn L-]

Figure 4: Our dataset.

From the fact that ¢(f1) — ¢(fa) = 2?232 o(f;) =y it follows that there exist networks with both two
active hidden units and h active hidden units that achieve minimal loss, with the former corresponding to the
ground truth teacher network which generated our dataset.

Note in particular that the output layer weight corresponding to ¢(f2) in the network with two active
hidden units is negative, whereas in the network with A active hidden units the output layer weights are all
positive. Thus, any path between the two networks must pass through a point in parameter space where
at least one output layer weight is zero while the other h — 1 are positive. However, as shown in Lemma 6,
there does not exist such a point in parameter space that achieves minimal loss. It follows that there exists a
barrier in the loss landscape separating the original networks, both of which are global minima. Moreover, by
adjusting k, [, and m we can somewhat arbitrarily raise or lower this barrier. O

Le}fnma 6. There does not exist a set of h — 1 positive weights w; and vectors h; € span X such that
-1

Z¢:1 w;p(h;) =y.

Proof. We can think of each h; as the output a particular hidden unit over all n samples in our dataset

and w; as the output layer weight associated to this hidden unit. We then have h; =) a; ;f;, where the
coefficients a; ; are elements of A.

First, if there did exist w; and h; such that Z?;ll w;¢(h;) =y, then it must be the case for all ¢ that
h; = 3" a; ;f; where a;; > 0 for all j. Otherwise, there would be non-zero elements in some h; between

indexes [+ 1 and n that would be impossible to eliminate in Z?;ll w;d(h;) given that w; > 0 for all i.

19

Second, any linear combination of f; and f5 with positive coefficients would result in a vector whose first [
elements are positive and increasing. In contrast, the first [elements of Y are constant. And so from the
fact that there does not exist a; ; > 0 such that the first elements of Y a; ;f; are decreasing—in particular
because the first k elements and next [— k& elements of E;ﬁ; a;;z; are periodic with length h—it follows
that Q1,052 = 0 for all hi-

Thus, we need only consider linear combinations of f3 through fj, 15 with positive coefficients as candidates
for h;. To this end, note that if a particular f; has zero coefficient in all of h; through hy_;, then Z?;ll w;o(hy)
will have zeros in every index congruent to j mod h and therefore cannot equal y. Hence by the pigeonhole

principle, in order to have E;:ll w;¢(h;) =y there must be some ¢ such that h; = Z?:? a; ;f; with at least

two coefficients being non-zero. However, in any linear combination Z?ig a; ;f; where a; j,a; ;> 0 for at
least two distinct j, 5/, the elements in indexes k + 1 to [will be greater than the elements in indexes 1 to k
that are congruent to j mod h and j° mod h. In contrast, the first | elements of y are constant. Hence,
similar to the case of f; and f5, there cannot exist h; = E?i; a; ;f; and positive coefficients w; such that

2?2_11 wip(hy) =Y. O

D Experimental details and further results

D.1 Experimental details and hyperparameters

For all experiments on MNIST, we used a convolutional architecture consisting of 3 convolutional layers
followed by a fully-connected output layer. Each convolutional layer consisted of 32 3 x 3 filters and used
sufficient padding so as to keep the layer’s output the same shape as its input. All networks were trained on
an NVIDIA Tesla K20c GPU for 5000 iterations with a batch size of 64 using stochastic gradient descent with
an initial learning rate of 0.1 and a decay rate of 1E~5. No significant hyperparameter tuning was applied.
Images were normalized.

For the left and right plots in Figure 2, we report results averaged over 5 random trials and error bars
corresponding to the standard deviation over these trials. For the center plot we simply computed the loss
and accuracy over a linear path between a particular convolutional net and a single dropout version of itself.
Specific to Figure 2, in applying dropout with probability p we randomly sample a subset of [32(1 — p)| units
and rescale these units by 1/(1 — p) while setting the remaining units to zero. In the left plot, each trial
consisted of sampling 20 such dropout networks and reporting the performance of the network achieving the
lowest loss. Losses and accuracies in all plots were computed on a random batch of 4096 training images.

On CIFAR-10, we trained VGG-11 networks on an NVIDIA Titan X GPU for 300 epochs with SGD
with a batch size of 128, with weight decay 5e-4, momentum 0.9, and an initial learning rate of 0.05 which
is decayed by factor of 2 every 30 epochs. We used channel-wise dropout at all convolutional layers. The
dropout rates are p = 0.25 at the first three layers and are p = 0.5 at the others. Ordinary dropout with
p = 0.5 is used at every fully-connected layers except for the last one (the softmax layer).

20

D.2 Straight interpolation between two models

As demonstrated in Figure 5, a straight line interpolation between two noise stable model may incur large
losses and poor accuracies. The models are the same as used in Figure 3.

20
)
515
g — |58
E 10 accuarcy
L
0.5
0.0

0.0 0.2 0.4 0.6 0.8 1.0

path parameter (t)

Figure 5: Loss and accuracy from directly interpolating between two noise stable models.

D.3 Verification of noise stability conditions

D.3.1 Layer cushion

layer 1 layer 2 layer 3
0.2 0.4 0.6 0.30 0.35 0.125 0.150 0.175 0.200 0.225

layer cushion p; layer cushion ; layer cushion ;

layer 4 layer 5 layer 6

0.14 0.16 0.18 0.20 0.22 0.08 0.10 0.12 0.14 0.100 0.125 0.150 0.175
layer cushion y; layer cushion u; layer cushion p;
layer 7 layer 8
0.15 0. 0.25 0.200 0.225 0.250 0.275 0.300
layer cushion u; layer cushion u;

21

D.3.2 Interlayer cushion

layer 1 layer 2 layer 3
0.000 0.025 0.050 0.075 0.100 0.000 0.025 0.050 0.075 0.100 0.00 0.05 0.10
interlayer cushion u;j— = interlayer cushion p; - = interlayer cushion u; - =
layer 4 layer 5 layer 6
0.00 0.05 0.10 0.15 0.0 0.1 0.2 0.0 0. 0.4
interlayer cushion p;_ - interlayer cushion p; — -~ interlayer cushion y; — =

layer 7 layer 8

0.2 0.4 0.6 0.8 0.4 0.6 0.8
interlayer cushion p;— - interlayer cushion p;— -~

D.3.3 Activation contraction

layer 1 layer 2 layer 3

A

1.25 1.50 1.75 2.00
contraction c

layer 4 layer 5 layer 6

1.0 1.5 2.0

contraction c

1.5 2.0 1.5
contraction ¢ contraction c

p-

1.1 1.2 1.3 1.4 1.5
contraction c

1.0 2.0

contraction c

layer 7 layer 8

1.00 1.25 1.50 1.75
contraction c contraction ¢

1.0 1.2 1.4 1.6

22

D.3.4 Interlayer smoothness

layer 2 layer 3 layer 4
o 5 10 15 20 o 10 30 o 10 20
interlayer smoothness ps interlayer smoothness ps interlayer smoothness ps
layer 5 layer 6 layer 7
o 10 20 30 40 o 10 20 30 o 5 10 15 20
interlayer smoothness ps interlayer smoothness ps interlayer smoothness ps
layer 8
o 5 10 15 20

interlayer smoothness ps

E Tools

We use matrix concentration bounds to bound the noise produced by dropping out one single layer (Lemma 5).

Lemma 7 (Matrix Bernstein; Theorem 1.6 in (Tropp, 2012)). Consider a finite sequence {Zy} of independent,
random matrices with dimension di X do. Assume that each random matrix satisfies

E[Zr] = 0 and || Zk|| < R almost surely.

> EZi 2| }-
k

Define

)

o= max{” ZE[Z}CZZ]
k
Then, for allt >0,

Pr{||§k:zk|| > 1} < (A +dy)exp ((ﬂ‘fg/g)

As a corollary, we have:

Lemma 8 (Bernstein Inequality: Vector Case). Consider a finite sequence {vy} of independent, random
vectors with dimension d. Assume that each random vector satisfies

lve — E[vg]|| < R almost surely.

Define
%= ZE[H% — Efv]|I?]-
k
Then, for allt > 0,
—t2/2
— > < . — .
Pr{Il Y (on ~ Blou)ll 2 ¢} < @+ 1) e (52

k

23

	1 Introduction
	1.1 Related work

	2 Preliminaries
	3 Connectivity of dropout-stable optima
	4 Connectivity via noise stability
	4.1 Noise stability
	4.2 Noise stability implies dropout stability

	5 Disconnected modes in two-layer nets
	6 Experiments
	A Proofs for connectivity of dropout-stable optima
	B Proofs for connectivity via noise stability
	C Proofs for disconnected modes in two-layer nets
	D Experimental details and further results
	D.1 Experimental details and hyperparameters
	D.2 Straight interpolation between two models
	D.3 Verification of noise stability conditions
	D.3.1 Layer cushion
	D.3.2 Interlayer cushion
	D.3.3 Activation contraction
	D.3.4 Interlayer smoothness

	E Tools

