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Abstract—Host-Aware/Drive-Managed Shingled Magnetic Recording (SMR) drives can accept non-sequential writes using a buffer
called media cache. Data in the media cache will be migrated to its designated location by a cleaning process if the buffer is full
(blocking cleaning) or the drive is idle (idle cleaning). However, blocking cleanings can severely extend the /O response time.
Therefore, it is crucial to fully understand the cleaning process and find ways of mitigating the caused performance degradation. In this
article we further evaluate the cleaning process and propose a potential remedy scheme called /dleron Host-Aware SMR drives. Idler
adaptively induces idle cleanings based on dynamic workload characteristics and media cache usages to reduce the severity of
blocking cleanings. Our evaluations show that in the workloads with a small non-sequential write ratio (about 10 percent), Idler can
reduce the tail response time and the workload finish time by 56-88 and 10-23 percent, respectively, compared with those without such
control. With the help of an external write buffer on an SSD, the tail response time of SMR drives with Idler can be closer to that of

conventional disk drives.

Index Terms—Storage systems, shingled magnetic recordings, tail response time, workload characterizations

1 INTRODUCTION

HINGLED Magnetic Recording (SMR) is a technology to

increase the areal density of spinning drives by overlap-
ping data tracks [1]. In an SMR drive, overlapped data tracks
are grouped into zones, and each zone has a write pointer to
indicate the current write location. An update is considered a
non-sequential write if it does not begin at the write pointer
in a zone. A non-sequential write may destroy the existing
content in its adjacent tracks if it writes directly in its location.
To avoid impacting the overlapped data, Host-Managed
SMR (HM-SMR) drives prohibit non-sequential writes. That
means existing applications need to be modified if we intend
to use HM-SMR drives or a log-structured file needs to be
used to support applications.

Device-Managed SMR (DM-SMR) and Host-Aware SMR
(HA-SMR) drives implement a Shingled Translation Layer
(STL) to handle non-sequential updates. STL includes an on-
device persistent cache called Media Cache and an Extent
Mapping Table. A non-sequential write will be buffered in the
media cache first, and later migrated to its designated location
by a cleaning process. Data can be either stored at the media
cache or its designated location. Any data access needs to
check with the mapping table to identify its current location.
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The cleaning process can be triggered by either an idle dura-
tion (i.e., a duration without any requests) called idle cleaning,
or by depleted STL resources (e.g., media cache free space or
free entry slots in the mapping table) called blocking cleaning.
HM-SMR drives can only be used in workloads without any
non-sequential writes like data archives and backups or with
the support of a log-structured file. DM-SMR and HA-SMR
drives can be deployed in many more scenarios since they
both can handle non-sequential writes with the help of STL [2].

In the modem storage infrastructure, the tail response
time of a system becomes significant. Applications require
a low and predictable tail I/O response time [3], [4], [5],
[6]. The 99.9th percentile (P99.9) response time is used as a
useful statistical metric to evaluate the tail response time
[4], [5], [6], [71, [8], [9]. However, HA/DM-SMR drives suf-
fer from a long tail response time caused by the blocking
cleaning. Evaluations [2], [10] show that during a blocking
cleaning, an SMR drive spends up to seconds to serve a
single I/O request.

Although workloads has burstiness, an SMR drive can-
not rely on idle cleaning only to clean the media cache. An
idle cleaning requires a relatively long idle duration to trig-
ger and will be interrupted by any newly arrived requests.
Therefore, the data cleaning efficiency of idle cleaning is
degraded and blocking cleaning is still triggered. Moreover,
the beginning time and the lasting duration of a blocking
cleaning are unpredictable. The unpredictable performance
with a long tail response time limits the usage of SMR drives
to sequential workloads. Therefore, in this paper, we further
evaluate the cleaning process of HA-SMR drives and
explore ways of mitigating the caused performance degra-
dation to extend the application scenarios of SMR drives.
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Fig. 1. Internal structure of HA-SMR drives.

We choose HA-SMR drives to evaluate since HA-SMR
drives provide interfaces with Zoned Block Command
(ZBC) [11] to check the current states of its internal struc-
tures. The internal information is helpful for our design and
evaluations. By conducting evaluations, we find an idle
cleaning triggered by a minimal idle duration has limited
impacts on the drive performance since it stops cleaning
once new requests are issued. While a blocking cleaning
considerably degrades the drive performance and increases
the I/O response time significantly.

Inspired by the different influences on the drive perfor-
mance from idle cleanings and blocking cleanings, we pro-
pose a scheme called Idler to decrease the long tail response
time of an HA-SMR drive caused by the blocking cleaning.
Idler considers both the resource utilization of the media
cache and the current workload characteristics to induce idle
durations adaptively. With the induced idle duration, data
in the media cache can be cleaned in a controllable way by
idle cleanings without increasing the 1/O response time
significantly. It can also be implemented in the firmware of
DM-SMR drives. We evaluate Idler with real-world work-
loads. Our evaluations show that Idler can avoid blocking
cleanings in workloads with a non-sequential write ratio
of 10 percent. The tail response time and the workload finish
time are reduced by 56-88 and 10-23 percent respectively
compared with those without such control. With the help
of an external write buffer on an SSD, the tail response
time of Idler can be further reduced. However, the perfor-
mance of Idler is still worse than that of a conventional
disk drive.

In the rest parts of the paper, Section 2 evaluates the data
cleaning process. Section 3 discusses the performance impro-
vements of artificially triggered idle cleanings. Then we pres-
ent the proposed Idler in Section 42. We evaluate Idler in
Section 5. Section 6 discusses the existing work. Section 7
offers conclusions and the future work.
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Fig. 2. Service latencies of an HA-SMR drive.
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2 MebDIA CACHE CLEANING AND EVALUATION

We evaluate the media cache cleaning using HA-SMR
drives whose internal structure is shown in Fig. 1. It
includes STL and SMR zones. An SMR zone is a collection
of overlapped data tracks [11]. STL consists of a media cache
and a mapping table. The buffered data in the media cache
are log-structured since the media cache also consists of
shingled tracks. Each shingled zone has a writing position
called a write pointer. Any write beginning with the posi-
tion pointed by the write pointer is considered as a Sequen-
tial SMR Write and can be issued directly to its designated
location. The position of the write pointer will also be
updated accordingly after a sequential write. A write with
its targeted address not beginning at the write pointer is
called a Non-Sequential SMR Write. A non-sequential write
will be re-directed to media cache by STL. Its designated
zone will be changed from a sequential state to a non-
sequential state. The write pointer is no longer valid in a
non-sequential zone. All the following write requests to a
non-sequential zone will be buffered in the media cache [2].

STL utilizes a cleaning process to migrate the buffered
data from the media cache to its designated locations in a
Read-Modify-Write fashion [10]. A zone will be switched
back to a sequential state after being cleaned. The cleaning
process will be triggered once one of the resources (either
free space in the media cache or free entry slots in the map-
ping table) is depleted [10].

In the rest of this section, we investigate how both the
blocking cleaning and the idle cleaning affect the drive per-
formance. We use fio to benchmark a raw HA-SMR drive
(Seagate ST8000AS0022, 8TB Capacity) with direct I/O. In
this drive, the size of the media cache is 28GB, and the maxi-
mum number of mapping entries is 182,000.

Fig. 2 shows the influences on the I/O response time by
idle and blocking cleanings respectively. In this experiment,
we use a single I/O thread. Since an ongoing cleaning
increases the I/O response time and decreases the count of
non-sequential zones, we use the change of the I/O
response time (right y-axis) and the count of non-sequential
zones (Cysz, left y-axis) to indicate when the cleaning starts.
Csz can be checked by Zoned Block Commands [11].

Fig. 2a shows the impact of idle cleanings on the I/O
response time. We issue a set of non-sequential SMR writes
(NSSWs) and then idle for a duration. Once we detect an
idle cleaning starts, i.e., the number of non-sequential zone
decreases at around 100s on z-axis, we issue more requests
including non-sequential SMR writes, sequential SMR writes
(SSWs), and reads. The I/O response time of the following
requests is not increased. It indicates an idle cleaning has
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limited impacts on the I/O response time since it will stop
if any I/O requests are issued. For the blocking cleaning
(Fig. 2b), we issue a set of NSSWs to trigger a blocking clean-
ing. At about 650s, a blocking cleaning is triggered since the
I/O response time is increased. Then we issue more SSWs,
Reads, and NSSWs. The response time of the following
requests is increased due to blocking cleaning. The response
time of all requests after a blocking cleaning triggered is lon-
ger than that in Fig. 2a.

I/0 dependencies influence the I/O response time since
an I/O request may wait in the I/O queue before submitted
to the device. When there is only 1 I/O thread, i.e., most of
the I/O requests are dependent, subsequent requests may
need the results of the previous requests. The waiting time
in the I/O queue will be short because a new I/O request is
only generated after the last request finishes. However, the
drive may have multiple I/O threads. I/O requests from
various applications are independent and submitted to the
I/0 queue concurrently. An SMR drive has only one disk
head to serve I/O requests one by one. The I/O wait time of
concurrent 1/O requests will be increased since a request
has to wait until the drive finishes all of the previous
requests. If a blocking cleaning is ongoing on an SMR drive,
the I/O wait time of a later request will be increased signifi-
cantly due to the enlarged I/O response time of the previ-
ous requests. Therefore, in the next experiment, we study
the influences from a blocking cleaning on the I/O response
time under different I/O dependencies.

Fig. 3 shows the average I/O response time under differ-
ent I/O dependencies when a blocking cleaning is ongoing.
We emulate the I/O dependencies by issuing requests with
varying numbers of threads. We assume only the I1/O
requests in the same thread are dependent. In this experi-
ment, we first trigger a blocking cleaning by issuing enough
non-sequential writes. Then we start different numbers of
threads to issue I/O requests including non-sequential SMR
writes (NSSW), sequential SMR writes and reads. From the
results, we find that when the number of threads increases,
the I/O response time are enlarged more severely. The rea-
son is that with more independent threads, more I/O
requests submitted to I/O queue concurrently. With the
increased response time of previous requests, the wait time
of the later I/O requests are largely increased. As a result,
the total I/O response time will be increased to an
extremely large value with multiple independent threads
due to the enlarged I/O wait time.

Anidle cleaning utilizes the idle duration to clean the media
cache. It is critical to find its minimum trigger time. In this
experiment, we choose 8 zones and issue one non-sequential
write to each with a given idle time between two subsequent
requests. After 8 non-sequential writes, we check the number

TABLE 1
Time Durations to Trigger an Idle Cleaning

10 size Idle Time Non-sequential Zone
4KB 240 ms 88,8

245ms 88,8

250 ms 7,6,6

260 ms 0,0,0

of non-sequential zones right away. We repeat the experiment
three times for the same idle duration.

Table 1 shows the number of non-sequential zones. It
should be 8 if an idle cleaning is not triggered by this idle
time. We only show the results of 4 KB IO size here even
though we perform the experiments with 4 KB, 64 KB, 256 KB,
512 KB, and 1 MB I/O sizes since they have similar results.
When the idle time reaches 250 ms, the number of non-
sequential zones is less than 8 in all tests indicating an idle
cleaning is triggered by a 250 ms idle time. Note that it takes
some time to clean even one zone. The real minimum trigger-
ing time may be a bit shorter than 250 ms.

3 IMPROVING DRIVE PERFORMANCE WITH
ARTIFICIALLY TRIGGERED IDLE CLEANINGS
(AT-IC)

3.1 AT-IC
A blocking cleaning can largely increase the I/O response
time. Although an idle cleaning has less impact on drive
performance, it needs some minimal trigger time and stops
with any newly arrived I/O requests. Idle cleanings may
work well in a workload with burst 1/O requests and rela-
tively long idle time between bursts. However, in a work-
load with a short idle time smaller than minimal triggered
time, idle cleanings might not even be triggered.

Inspired by the different performance influences from
idle cleanings and blocking cleanings, we explore a poten-
tial concept of reducing the large tail response time caused
by blocking cleanings using Artificially Trigger Idle Clean-
ings (AT-IC). AT-IC mitigates the performance degradation
caused by a blocking cleaning with a way of invoking idle
cleanings. AT-IC artificially creates idle durations when
executing a workload. The I1/0 requests issued during an
induced idle duration are stalled and served in the next exe-
cution duration. With these artificially created idle dura-
tions, idle cleanings are invoked to conduct cleaning and
will not be interrupted for a fixed idle duration. With the
invoked idle cleanings, a drive can clean the data in the
media cache in a controllable manner which does not signif-
icantly enlarge the I/ O response time.

The benefits of AT-IC is highly related to idle configura-
tions and the characteristics of a workload. For a given
workload, two configuration parameters, idle ratio and idle
length, have the most significant impacts. The idle ratio
means the proportion of total idle time in the duration of
executing the whole workload. The idle length means the
duration of each idle period. A higher idle ratio means we
create longer idle time such that an idle cleaning can clean
more buffered data. However, it also means that the total
execution time will be longer. If the idle ratio is fixed, an
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Fig. 4. CDF of the response time with different idlle ratios.

idle cleaning can be triggered frequently with a smaller idle
length or less frequently with a larger idle duration. Since
I/0 requests are delayed during an idle duration, with a
shorter and frequent idle length, I/O requests will have a
shorter response time. However, triggering idle cleanings
more frequently with a smaller idle duration is inefficient
since an idle cleaning needs some minimal idle duration,
250 ms based on our previous evaluations, to trigger.

Besides, characteristics of a workload including request
arrival speeds, non-sequential write ratios, I/O request sizes,
and the number of non-sequential zones may also influence
the performance of AT-IC. The request arrival speed repre-
sents the intensity of a workload. It determines the number of
requests delayed during an idle duration. A higher arrival
speed makes AT-IC delays more I/O requests during a given
idle duration leading to a larger I/O response time. The non-
sequential write ratio represents the consuming speed of
media cache resources. A higher non-sequential write ratio
means we may fill up the media cache more frequently.
The 1/O request size may also influence the time duration
to fill up the media cache. With a larger I/O request size,
the media cache is filled up in a shorter duration, and
blocking cleaning may be triggered by the depleted free space.
While with a smaller 1/O request size and a lower non-
sequential write ratio, the media cache can serve for a longer
time before a blocking cleaning is triggered. However, a high
non-sequential write ratioand a smaller I/O request size may
trigger a blocking cleaning due to the depleted mapping
entries. At last, a lower number of non-sequential zones repre-
sents a shorter time to clean the media cache by either block-
ing cleanings or idle cleanings.

AT-IC can reduce the performance degradation caused
by blocking cleanings. It makes the I/O response time more
predictable and provides much better performance than
that without such control. However, all of the above factors
influence the effects of AT-IC. Therefore in the next subsec-
tion, we validate the performance improvement achieved
by AT-IC and discuss the impacts from the idle configura-
tion and workload characteristics.

3.2 AT-IC Validation

We implement AT-IC as a block I/O replay engine with
libaio [12]. AT-IC issues block I/O requests respecting the
time intervals between I/O requests. Beside, AT-IC can also
periodically add a user-defined idle duration.

3.2.1 Idle Configurations

Since SMR drives are generally deployed with workloads of
low non-sequential write ratios, we first evaluate AT-IC

Response Time (s) -- 16 Threads

Response Time (s) -- 128 Threads

with workloads of low ratios of non-sequential writes. We
vary the two parameters in the idle configuration: idle ratios
and idle lengths. We synthesize traces consisting of 1/0O
requests of 1 MB size. Here we use a large I/O size since a
larger request size fills up the media cache sooner. And it
will negatively influence the performance of AT-IC. How-
ever, it has less impact on the total cleaning time since it is
the distance between the update offset and the write pointer
position that dominates the cleaning time [2]. The request
intervals are evenly distributed in the range from 10 ms to
100 ms. 10 percent of the requests are non-sequential writes
with a total of 35 GB non-sequential writing size that spread
over 1,024 zones. Another 10 percent of requests are sequen-
tial writes, and the remaining 80 percent of requests are
reads. To study the conditions of different I/O dependen-
cies, we partition the same trace into different numbers of
subtraces (1, 16, 128). The I/O requests will be distributed
evenly among subtraces based on their timestamps. Finally,
we replay every subtrace with a separate thread. Only the
requests within the same thread are dependent.

Idle Ratio. In this experiment, we intend to discover the
influence of various idle ratios on the performance of AT-IC.
AT-IC replays a workload with different idle ratios while
keeping the same idle length. Here we set the idle length to 2s
since it is close to the largest service latency when a blocking
cleaning is ongoing on a drive. Fig. 4 shows the Cumulative
Distribution Function (CDF) probability of the I/O response
time with different idle ratios. The line marked with “No”
means we replay the trace with an idle ratio of 0 percent. The
others marked with the Execution :Idle like < 20:2 >
means the drive serves requests for 20s and then idle for 2s
and theidle ratio is about 2/22=9.09 percent. We measure I/0O
response time with different idle ratios under different num-
bers of I/O threads (1, 16, 128). We also display the tail (P99.9)
response time and the workload finish time in Fig. 5.

With only 1 thread (Fig. 4), all requests are dependent.
The distribution of the response time of AT-IC is similar
with that of “No”. The reason is that the idle length, 2s, is
close to the largest response time when a blocking cleaning
is ongoing. The current idle length blocks the subsequent
request for a time duration same with blocking cleanings.
Better results can be achieved with a shorter idle length
which will be discussed later. However, the P99.9 response
time with 1 thread in Fig. 5a shows that with a too-small
idle ratio, .e.g 20 : 2, AT-IC even increases the tail response
time since it can not avoid blocking cleanings and introdu-
ces extra delay by the idle duration.

When the number of I/0O threads increases (Column 2
and 3 in Fig. 4), i.e., more independent requests are issued
concurrently, AT-IC can achieve a better tail response time
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Fig. 5. P99.9 response time and total finish time of different idle ratios.

than no controls. The P99.9 response time of AT-IC with
< 5:2 >and < 2:2 > isreduced by over 90 percent with
16 and 128 threads respectively compared to the results of no
controls since blocking cleanings are not triggered when using
AT-IC. Even though the concurrent requests wait in the I/O
queue during an idle duration, they are satisfied in a short
time after the idle duration. While if a blocking cleaning is
triggered, the drive spends up to seconds to serve a request.
The I/O response time will be increased to a huge value due
to the extended waiting time, as we discussed in Section 2.
The results of < 20:2 > shows that with a too-small idle
ratio, AT-IC only has limited benefits since it does not clean
enough data. As a result, BCis still triggered.

The median (P50) response time of AT-IC is larger than
that of the no control in all cases. The reason is that with
fixed configurations, AT-IC is triggered from the beginning
of the workload although there are still plenty available
resources in the media cache. For no control, the response
time will be only enlarged during a blocking cleaning. The
number of requests with enlarged response time is smaller
than that of AT-1Cs.

Fig. 5b shows workload completion time. The results of
< 20 :2 > indicate that with a too-small idle ratio, AT-IC
can not finish the workload earlier. While as the idle ratio
increasing (< 5:2 >), the workload completion time can
be reduced by 10-15 percent compared to those without
any controls. The reason is that AT-IC avoids the large
response time increased by the blocking cleaning. However,
if the idle ratio is too large, e.g., 2 : 2, the total completion
time will be enlarged due to the excessive idle duration,
even though the blocking cleaning can be avoided.

Idle Length. In this experiment, we discuss the perfor-
mance influences from different idle lengths while keeping
the same idle ratio (about 28.75 percent). Fig. 6 shows the
distribution of the response time. Fig. 7 displays the P99.9
response time and the workload finish time. Comparing the
resultsof < 2.5:1 > and < 5:2 >, we find that by short-
ening the idle length, the tail response time of AT-IC can be

80000
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40000 r

20000 |
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0 Vo Uk
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Replay Threads
(b) Total finish time

further reduced. However, if the idle length is too short,
AT-IC may have no effects. The distribution of the response
time of < 1.25:0.5 > is close to that of no control. Since an
idle cleaning needs about 250 ms to trigger, almost half of
the idle time is wasted without cleaning data. The total fin-
ish time of < 1.25:0.5 > is also larger than those of
< 25:1 >and < 5:2 > asshown in Fig. 7b.

3.2.2 \Workload Characteristics

We have investigated the following factors of a workload
including request arrival rates (Arrival Interval), ratios of
non-sequential SMR writes (NSSW ratio), counts of non-
sequential zones (NSZ) with I/O sizes of 1 MB and 8 KB
respectively. We only show the results of 1 MB I/O size in
Table 2. The evaluations with 8 KB I/O size have similar
results since the cleaning efficiency of the media cache is
determined by the distance between the update offset and the
write pointer location [2]. Since we have discussed the
detailed results in Section 3.2.1, in this evaluation, we demon-
strate the tail (P99.9) response time and the completion time
of the workload (Comp. Time). In Table 2, we synthesize
workloads with 35 GB total NSSW which is enough to fill up
the media cache (28 GB). For each workload, we execute the
workload with AT-IC (< Ezecution: Idle >=< 5:2 >)
using independent 16 threads. We compare the P99.9
response time and workload finish time of AT-IC with those
of no control (No).

Request Arrival Speed. We use the time interval between
requests (Arrival Interval) in Table 2 to represent the request
arrival rate. In this experiment, the non-sequential writes
spread over 1,024 zones. We set the NSSW ratio to 10 percent
(10 percent sequential writes and 80 percent read) and vary
the Arrival Interval among 30 ms, 50 ms, and 100 ms. A
smaller Arrival Interval means a higher request arrival rate,
i.e., the workload is more intense.

In the results of different Arrival Intervals, both of the tail
response time and completion time for no control become
larger for the smaller Arrival Intervals. In a more intense
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Fig. 6. CDF of the response time with different idle lengths.
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workload, e.g., 20 ms request arrival interval, the filling
speed of media cache is faster than the cleaning speed of
AT-IC. Therefore, AT-IC can not avoid blocking cleaning.

AT-IC can achieve better performance with larger Arrival
Intervals. When the Arrival Interval becomes 50 ms, AT-IC
can reduce the tail I/O response time and the total completion
time by 72.2 and 8.1 percent respectively. When the Arrival
Interval is 100 ms, AT-IC still reduces the P99.9 response time
of no control by 47.1 percent. Therefore, we argue that work-
load intensity (Arrival Interval) can significantly influence the
effect of AT-IC. AT-IC works better in light-weight workloads.
With a very intensive workload, AT-IC may need to be recon-
figured for alonger idle duration or a higher idle ratio to clean
the media cache more efficiently.

NSSW Ratio. In the “NSSW Ratio” of Table 2, we generate
workloads with different NSSW ratios (10, 20, and 40 per-
cent). We keep the same ratios of SSW (10 percent) and
Read (80, 70, and 50 percent) with 100 ms request arrival
intervals. NSSW spread among 1,024 zones. In the results
without control, a higher NSSW ratio results in a worse
drive performance since more write requests are blocked
during a BC. The service latency of a write is increased
more than that of a read based on our previous evaluations
(Fig. 2b). The blocked I/0O requests accumulate a larger I/O
response time with more non-sequential writes.

By comparing the results of no control to that of AT-IC,
we find that with 10 and 20 percent NSSW ratios, AT-IC can
reduce the tail response time by 50.9 and 55.3 percent

TABLE 2
Workload Characteristics (1 MB I/O Size)

Arrival Interval

Value P99.9 (s) Comp. Time (s)
No AT-IC | No AT-IC
20ms 1299 | 14.37 7617 8832
50ms 9.22 2.56 24559 | 22546
100ms | 4.32 212 40375 | 38861
NSSW Ratio
Value P99.9 (s) Comp. Time (s)
No AT-IC | No AT-IC
10% 4.32 212 40375 | 38861
20% 6.78 3.03 22112 | 19356
40% 12.32 | 10.22 11018 | 11128
NSZ Count
Value P99.9 (s) Comp. Time (s)
No AT-IC | No AT-IC
8 1.1 2.23 36037 | 38066
1024 432 212 40375 | 38861
2048 4.66 257 41003 | 39230
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respectively. The workload completion time of AT-IC is
also closer to that of a CMR drive comparing with the com-
pletion time without controls. However, with a large NSSW
ratio like 40 percent, AT-IC with the current configuration
cannot achieve enough benefits since it can not avoid BCs.
Therefore, we confirm that NSSW ratio significantly influen-
ces the AT-IC performance. AT-IC may need to be config-
ured with a longer idle duration for workloads with higher
NSSW ratios to achieve higher cleaning efficiency.

Counts of Non-Sequential Zones. In the “NSZ Count” in
Table 2, we keep the workloads with the same NSSW ratio
(10 percent), and request arrival speed (100 ms). However,
we spread the non-sequential writes among different num-
bers of zones (8, 1,024, and 2,048). When the NSZ count is 8,
a blocking cleaning can be finished in a short time. There-
fore, the drive does not have exceptionally long I/O
response times. When the non-sequential writes spread
among more zones, a higher I/O response time is produced
because a blocking cleaning will last longer. The drive will
suffer a bad performance for a longer duration. I/O
Requests thereby accumulate a longer I/O response time.

By comparing the results of AT-IC to those without con-
trol, we find that AT-IC is able to reduce the I/O response
time when the requests are distributed among more zones.
When the count of non-sequential zones is very small, e.g.,
8, the P99.9 response time of AT-IC is more than twice of
that without controls since the response time is enlarged by
the induced idle duration. Therefore, for workloads with a
small count of non-sequential zones, AT-IC may not be
helpful. A blocking cleaning can finish in a very short time
without influencing the drive performance significantly.

Conclusions. We have validated that AT-IC can signifi-
cantly reduce the tail response time of HA-SMR drives.
Both idle configuration and workload characteristics signifi-
cantly influence the effects of AT-IC. Carefully configuring
the idle length and idle ratio is required if AT-IC wants to
achieve excellent performance benefits. However, the char-
acteristics in a real workload will dynamically change from
time to time. They are harder to handle by AT-IC with a
fixed idle configuration. Besides, as we discussed, AT-IC
with fixed configurations has a long median (P50) response
time, indicating AT-IC blocks more requests than no con-
trols. The reason is that AT-IC does not consider the current
utilization of the media cache and starts idle duration from
the beginning of the workloads. Therefore, in the next sec-
tion, we will discuss how to improve the drive performance
by using artificially triggered idle cleanings with adaptive
idle configurations considering both the utilization of the
media cache and workload characteristics.
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4 IDLER: ARTIFICIALLY TRIGGERING CLEANINGS
WITH ADAPTIVE IDLE DURATIONS

4.1 Basic Principle

Idler can trigger idle cleaning using adaptive idle durations
based on the current media cache resource utilization as well
as real-time workload characteristics. Typically, Idler needs
to decide when to trigger an idle duration and how long the
idle duration should be. Based on the previous evaluations in
Section 3.2.2, Idler considers the following parameters: U is
the media cache resource utilization including free space and
mapping slots. We set two thresholds, Uy, and Upg, (0 <
Uow < Upigh < 100%). T, is the average time interval
between consecutive requests. Tj,; is the average request
latency. V,,, and V. represent the consuming and cleaning
speeds of media cache resources respectively. L is the length
of the duration to trigger idle cleaning.

These parameters are continuously monitored, and the
conditions are periodically evaluated. Both media cache
space utilization and the usage of mapping entry slots are
monitored and evaluated with two thresholds U, and
Uhign- Since blocking cleanings can be triggered either by
depleted space or mapping entry slots, U will consider the
resource, space or mapping entry slots, closer to be depleted
to represent the media cache utilization. When U < Up,,
Idler will not trigger an idle duration since a good amount
of resources are still available in media cache. When
Uiw < U < Upign, we start to trigger an idle duration. The
idle duration length L is decided based on Equation (1).
Since media cache still has a certain amount of resources,
Idler will not trigger a long idle duration to avoid introduc-
ing a large I/O response time. We calculate the average
latency of the requests Tj,; and compare Tj,; with the aver-
age time interval between requests T,. If T, < T}, it means
the requests are issued relatively intensively. In this case,
Idler will not trigger an idle duration (L = 0) since any idle
duration may block a large number of requests. When
T, > Tju, there are some time intervals between requests.
In this condition, Idler triggers the idle duration with a min-
imal length to limit the maximal I/O response time. We set
the minimum length to 0.3s here to make sure that idle
cleanings will be triggered.

0,
L= { 0.3s,

When U > Uyig, Idler has to clean the media cache more
aggressively. In this condition, L is determined by Equa-
tion (2). If the workload is not intensive (7, > Tj,), Idler
will trigger an idle duration with a maximal length to
achieve a higher cleaning efficiency. We set the maximal
length to 2s which is equal to the largest service latency
when a blocking cleaning is triggered to limit the maximal
I/0O response time. If T, < Tj,, it means the current work-
load is intensive. A large number of requests will be delayed
during an idle duration. To clean the media cache more effi-
ciently and minimize the I/O response time, Idler will fur-
ther compare the consuming speed V,,, to the cleaning speed
V. of the media cache resource. If V,, > V, it means U will
keep increasing. Idler has to increase L to achieve better
cleaning efficiency. When V,, > V., Idler can decrease U

T < T

T,> T M

with the current L. Therefore, Idler reduce the L to reduce
the I/O response time further.

L —01s, T, <Tu & Vi, < Vo
L=< L + 01s, T, <Tj &V, > V.. (2)
28, Tf > Thf

4.2 Idler Implementation

Media Cache Resource Monitoring. Monitoring media cache
resources is challenging. There are no available interfaces to
check the media cache resource utilization directly. The only
useful interface is the report_zone interface in libzbc [11], [13]. Tt
can check the states of zones (sequential or non-sequential) and
the write pointer location of each zone. The report_zone is an
intrusive command incurring a relatively large performance
overhead. Therefore, it cannot be called frequently. However,
we do not need the precise values of these parameters.

To reduce the performance overhead, we only estimate
the media cache resource utilization U instead of getting an
accurate value. Idler maintains a ghost media cache which
records the total amount of consumed resources (both space
and mapping entries). It also remembers the media cache
resources used by each zone and the write pointer location
of each zone. For non-sequential writes directed to media
cache, Idler keeps updating U. For sequential writes, Idler
will also update the location of write pointers. Since data is
buffered in media cache with a log structure [10], repetitive
updates to the same address will also be counted.

We periodically update the information in the ghost media
cache by checking the current zone states using report_zone
(every 10 minutes). By comparing the set of non-sequential
zones in ghost media cache with that from the drive media
cache, we identify the cleaned zones and the cleaning speed
(V,) during the last period. U can be updated by eliminating
the resources used by the cleaned zones.

Workload Characterization. Idler calculates request inter-
vals T;, the average latency of requests 7j,; and the consum-
ing speed of the media cache resource V;, during the
execution duration. After an idle duration, both of the
blocked requests and newly issued requests will be served
during the execution duration. Since the blocked requests
are issued in an intensive way without following their origi-
nal time intervals, the calculations of 7. and V,, are only per-
formed after we finish all of the delayed requests. For the
un-delayed requests, Idler samples 10 consecutive requests
to calculate T, Tj,; and V,,. T, and T},; will be counted for
each new request, while V},, will be counted for only non-
sequential writes.

Idle Frequency. The idle frequency is determined by both
idle duration and execution duration. In Idler, the execution
duration is not fixed. The length of an execution duration is
long enough to serve all blocked requests from the previous
idle duration plus some number of new requests such that
enough new requests can be sampled to determine the next
idle duration. If Idler decides not to trigger an idle duration,
anew execution duration will start right away.

4.3 Integrating Idler With a Write Buffer
In many scenarios, storage systems may include a high-
speed write buffer to speed up the writes. The difference
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between an external write buffer and the on-device media
cache is that writing to the external buffer will not interrupt
the data cleaning on SMR drives. Although writes to and
reads from an write buffer may create idle durations, the
triggered idle cleaning may not clean enough data in media
cache since uncontrolled buffer evictions and buffer-missed
reads will interrupt the idle cleanings. Idler can also be
helpful when it is integrated with a write buffer to control
the page evictions and buffer-missed reads. Besides, this
write buffer also provides opportunities to reduce the I/O
response time introduced by the triggered idle durations
since it can temporarily hold writing requests during the
idle duration. The data temporarily buffered at the write
buffer will eventually migrate to SMR drives.

Designing an efficient write buffer for SMR drives is not
the primary contribution of this paper. Existing studies
have discussed multiple designs to write buffers for SMR
drives [2], [14], [15], [16]. Our goal here is to study how Idler
designed for SMR drives can work together with a write
buffer in SSD to further improve the performance of SMR
drives. To simplify our discussion, we make the following
assumptions for a write buffer.

The write buffer is a page-based write buffer on SSD. Here
we set the page size to 4 KB. A read request will check the
buffer first and then go to SMR drives if they cannot be satis-
fied from the buffer. We assume a simple eviction policy-the
Zone-based Least Recently Used (ZLRU). ZLRU remembers
the access time for all of the zones who have data buffered.
The victim zone will be selected by LRU. All of the buffered
data from the same zone will be evicted together. We have
two data paths when evicting data from the write buffer to
SMR drives. If we have more than 400 pages (ie., 1.6 MB) to
be cleaned for a zone, we write the data back to its designated
zone directly by read-merge-writes. Otherwise, we evict the
data to the media cache. We choose 400 pages as a threshold
since we assume the average service latency for a 4 KB writeis
about 10 ms, and it takes about 4-6s to read a zone out, reset
the write pointer and write data back.

The write buffer consists of a free page pool and a page
map. We load the map into memory and persist it in a
reserved region on SSD. The write buffer allocates new
pages from the free page pool to buffer new writes. For
SMR drives, a victim zone list is maintained based on
ZLRU. If not enough free pages are available, page evictions
will be triggered. The reclaimed pages will be returned to
the free page pool.

We integrate Idler with a write buffer in the following
way. During an idle duration, the write buffer will tempo-
rarily hold both non-sequential writes and sequential writes
if it has free space. Reads will not be delayed if they can be
read from the buffer. At the meantime, we set up a wait
queue to receive requests during an idle duration under
two conditions. First, if the buffer is full and the data to be
written are not in the buffer, the writes will be put into the
wait queue. Second, reads will also be put into the queue if
they cannot be satisfied from the buffer. In the next execu-
tion duration, we will issue the delayed reads and SSWs in
the wait queue to SMR drives. The delayed NSSWs will be
buffered in the write buffer after zone evictions.

The basic principle discussed in Section 4.1 is still applied.
That is, both workload characteristics and media cache
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TABLE 3
Characteristics of Traces
trace write counts & sizes ZOnes write%
proj_1 2,496,935 & 25.576 GB 1,475 10.56%
prn_1 2,769,610 & 30.785 GB 1,222 24.66%
usr_1 3,857,714 & 56.127 GB 1,886 8.52%
usr_2 1,994,612 & 26.469 GB 926 18.87%
proj_2 3,624,878 & 168.686 GB 1,474 12.39%

resource utilization will be considered when deciding the
length of an idle duration. We still use the ghost media cache,
as discussed in Section 4.2, to estimate the media cache
resource utilization. However, instead of increasing media
cache resource utilization for each non-sequential writes, we
update the used media cache resource information during the
eviction. If the data is evicted, we increase the media cache
resource utilization accordingly in the ghost media cache. We
still periodically (every 10 minutes) check the zone states by
report_zone interface and adjust media cache resource utiliza-
tion(U) and the cleaning speed (V,).

We characterize the workload during the execution dura-
tion. The average request interval and the average request
latency are counted only for the buffer-missed requests
(including non-sequential writes, sequential writes, and
reads) since buffer-missed requests will probably be delayed
during an idle duration. When calculating the consuming
speed of the media cache resource V;;, we only count the non-
sequential writes that do not have a hit in the buffer. The non-
sequential writes will not increase the media cache utilization
if they can be served from the buffer.

5 IDLER EVALUATION

We implement Idler as a block I/O replay engine and evalu-
ate it by executing real-world traces [17]. To emulate the dif-
ferent I/O dependencies, we still partition the traces into
different numbers of sub-traces and replay with separate
threads. Again the requests in the same partitions are
dependent. Precisely finding I/O dependencies from block
traces is hard without extra information. HFReplayer [18]
can approximately estimate I/O dependencies in block
traces based on the latency information. Therefore, we use a
similar algorithm when partitioning a trace.

When executing the traces, we respect the request inter-
vals between the requests to emulate their characteristics.
We run the traces on an HA-SMR drive using No Control
(regular operation without idle durations), AT-IC, and Idler
respectively. After we try multiple times, we configure AT-
IC with < 5 :2 > since it provides a better result. For Idler,
we set < Ulgy, Upigh > to < 0.1,0.8 > to allow the media
cache to buffer enough data before an idle cleanings is trig-
gered. And after Uy, is reached, the media cache still has
available resources. We also execute the traces on a Conven-
tional Magnetic Recording (CMR) drive and compare the
workload completion time.

The characteristics of the workloads are shown in Table 3
including the counts of writes, the total write sizes, counts
of non-sequential zones, and the write ratio. The traces are
captured from scenarios of user home directories (usr_1,
usr_2), project directories (proj_1, proj_2) and print servers
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Fig. 8. The variation of the request intensity in proj_1.

(prm_1) [19]. I/O response time is significant for those
scenarios. Traces are captured on a CMR drive. Almost all
of the writes are non-sequential. Blocking cleanings are
triggered by depleting the mapping entry slots, although
the writing sizes of traces are not significantly larger than
the size of media cache. During a workload, requests are
not issued with a unified rate. Fig. 8 uses the trace proj_1 as
an example to show the variation of I/O counts for every
100 seconds within an hour. The intensity of the workload
varies a lot with time. We partition the trace into 1, 16 and
128 sub-traces to emulate different conditions of I/0
dependencies.

Fig. 9 shows the response time of three designs in non-
cleaning condition (the first 1,000s) of the workload under
128 /0 threads. During the first 1,000s, No Control has the
shortest response time since there are no artificially trig-
gered idle durations delaying the subsequent requests.
However, with a fixed configuration, the response time of
AT-IC varies a lot. When the workload is I/O intensive, the
predefined execution time may not be able to finish all of
the blocked requests from the previous idle duration. Thus,
AT-IC accumulates a long response time. The proposed
Idler can adjust its idle length and execution length dynami-
cally. When the workload is intensive, Idler will keep the
idle duration short if the media cache still has a lot of avail-
able resources. Even with a longer idle duration, Idler can
make sure that the next execution duration will finish all of
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Fig. 9. Response time of proj_1 before BC starts with 128 threads.

the blocked requests from the previous idle duration. There-
fore, Idler can keep the response time in a small value
(mostly under a second) even though they are still longer
than those of No Control when no blocking cleaning is
triggered.

Fig. 10 shows the CDF plot of the response time. We also
compare the P99.9 response time and workload finish time
in Fig. 11. The results of no control indicates that the block-
ing cleaning is triggered although the workload may have
some burstiness. The idle cleanings triggered by the natural
idle duration cannot clean the media cache efficiently. Idler
is able to provide better response time than AT-IC and no
control since Idler only triggers minimal required idle dura-
tions to avoid blocking cleanings with limited performance
overheads. Under a single thread, Idler reduces the P99.9
response time and workload finish time by 56 and 23 per-
cent compared with those of without a control. The
improvement is more significant if having more indepen-
dent 1/O requests for Idler. The P99.9 response time is
reduced by 83.2 and 88.8 percent with Idler compared to the
results without control under 16 and 128 threads respec-
tively. However, the tail response time of Idler is still not
comparable with that of a CMR drive, even though the total
completing time of the workload with Idler is closer, about
8-10 percent longer, to that of a CMR drive. Results in
Fig. 11b indicate Idler can finish the workload in a shorter
time. Since we issue the requests according to their
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timestamp when replay the trace and no blocking cleaning
is triggered, the total finish time of Idler under different
numbers of I/O threads is close to each other.

Idler needs extra memory and computing resources for buff-
ering the delayed requests during an idle duration and updat-
ing the ghost cache information. Therefore, we measure the
memory and CPU overheads of no control, AT-IC, and Idler
while replaying the trace proj_1 with different numbers of
threads. The maximum memory consumption is similar under
different I/O threads which are about 3.9 MB (no control),
42 MB (AT-IC) and 5.1 MB (Idler). Idler does not introduce a
significant memory overhead since it keeps the idle duration
small and will not buffer too many requests. However, Idler
needs some memory space to store the ghost cache information.
Idler does not introduce a significant CPU overhead either since
updating ghost cache information for each request only modi-
fies several variables and report_zone is called infrequently. The
differences in CPU utilization among no control, AT-IC, and
Idler under different I/O threads are less than 10 percent.

However, the results of Figs. 12 and 13 shows that when
the workload has a higher ratio of non-sequential writes
(24.66 percent), both AT-IC and Idler can not help to
reduce the response time. The distributions of the response
time of AT-IC and Idler are similar to those of no controls.
Both of the P99.9 response time and workload completion
time are close to those of no controls. Therefore, we
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recommend that Idler can be deployed in the workloads
with low ratios of non-sequential writes under 10 percent.

We further evaluate Idler with three more traces (usr_1,
usr_2, proj_2) with 16 I/O threads. The characteristics of
those workloads are shown in Table 3. Fig. 16 shows the
tail response time of these three traces. The results indicate
that Idler can significantly reduce the tail response time in
the workloads with a small non-sequential write ratio (under
10 percent) compared with the results with no control.

Idler can reduce the response time compared to that
without any control in workloads with low non-sequential
write ratios. However, the response time of Idler can still
be large. The P99.9 response time can be up to seconds
depending on the configurations of maximal idle length.
Besides, for workloads with high non-sequential write
ratios, Idler can not avoid the blocking cleaning. Therefore,
we further integrate the Idler with a write buffer on SSD.
The buffer can absorb the non-sequential writes and tem-
porarily hold the requests during an idle duration. To
demonstrate the effectiveness, we only use a small buffer
(64 MB). The performance results will have no significant
differences if we deploy the buffer in host memory. When
executing workloads on the CMR drive with a write buffer,
we use regular LRU instead of ZLRU evictions.

Figs. 14 and 15 shows the P99.9 response time and the
total finish time of Idler with a write buffer. For “No” and
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AT-IC, a write buffer cannot reduce the tail I/O response time
since blocking cleaning is triggered. The page evictions and
buffer-missed reads are still delayed. The results of Idler indi-
cate that with the help of a small write buffer, the P99.9
response time can be further reduced compared to those with-
out a write buffer in Fig. 11a. When the ratio of non-sequential
writes is small (Fig. 14), the P99.9 response time can be shorter
than a second. In the workloads with 10 percent ratio of non-
sequential writes, the P99.9 response time is reduced by 71.3-
87.7 percent. Meanwhile, Fig. 15 shows that with a write buffer,
Idler can reduce the P99.9 response time by 70-85.2 percent in a
workload with a higher ratio of non-sequential writes. The rea-
son is that the write buffer absorbs a good amount of non-
sequential traffics, Idler only triggers short idle durations.

6 RELATED WORK

Most of the existing researches including file systems [20],
[21], key-value stores [22], [23] and other storage systems
[24], [25], [26], [27] target at HM-SMR drives. However,
applications or systems have to be modified significantly or
even re-designed since HM-SMR drives do not accept non-
sequential workloads. Other studies also intend to help
HM-SMR drive handle non-sequential workloads [28].

For DM/HA-SMR drives, existing studies focus on per-
formance modeling and evaluations of the drives. Skylight
[10] and Wu et al. [2] conduct evaluations on DM- and HA-
SMR drives respectively to find the internal structure, clean-
ing policies, etc. Mhalagi develops a simulator to simulate
the drive performance [29]. Shafaei also accurately models
the performance of DM-SMR drives [30]. Aghayev involves
ext4 in DM-SMR drives [31], [32].

Besides, there are other designs for HA-SMR drives to
avoid the long response time. H-Buffer [2] and VPC [3]
intend to improve the performance of HA-SMR drives by
utilizing a log-structured buffer/cache on shingled zones in
additions to the Media Cache. SMRC is another design
using an SSD as the upper-layer cache for SMR drives [16].
Idler can also be integrated with them.
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7 CONCLUSION AND FUTURE WORK

In this paper, we evaluate the cleaning process of HA-SMR
drives. We identify how data cleaning affects the drive per-
formance. We propose a scheme called Idler. Our evaluations
show that Idler can avoid the extremely long and unpredict-
able I/O response time in workloads with an NSSW ratio
smaller than 10 percent. In the future, we would like to
deploy Idler with some applications like database and key-
value store to verify the performance improvement.
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