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ABSTRACT

It is well-known that the process of developing machine learn-
ing (ML) workflows is a dark-art; even experts struggle to find an
optimal workflow leading to a high accuracy model. Users cur-
rently rely on empirical trial-and-error to obtain their own set of
battle-tested guidelines to inform their modeling decisions. In this
study, we aim to demystify this dark art by understanding how
people iterate on ML workflows in practice. We analyze over 475k
user-generated workflows on OpenML, an open-source platform
for tracking and sharing ML workflows. We find that users often
adopt a manual, automated, or mixed approach when iterating
on their workflows. We observe that manual approaches result in
fewer wasted iterations compared to automated approaches. Yet,
automated approaches often involve more preprocessing and hy-
perparameter options explored, resulting in higher performance
overall—suggesting potential benefits for a human-in-the-loop ML
system that appropriately recommends a clever combination of the
two strategies.

1 INTRODUCTION

Machine learning (ML) has become a critical component of almost
every domain, with users of all different levels of expertise rely-
ing on ML models to accomplish specific tasks. Developing an ML
workflow can be tedious and time-consuming. Anecdotally, it may
take dozens of iterations for a novice to converge on a satisfactory
combination of ML model type, hyperparameters, and data prepro-
cessing. Meanwhile, an expert might need only a small number
of modifications to their original workflow to achieve comparable
performance on the same task. In such cases, novices can benefit
greatly from learning strategies employed by experts to accelerate
the process of developing effective ML workflows. With a large-
scale database of user-generated workflows and evaluation scores,
it becomes possible to extract aggregate workflow iteration patterns
to enable this transfer of knowledge.

In this work, we present useful insights about ML workflow de-
velopment behavior of users on the OpenML[22] platform. OpenML
is an open-source, hosted platform for users to upload datasets and
run ML workflows on these datasets by calling an API A relatively
diverse mix of user skill levels is present on OpenML, from students
just getting started with ML to experienced data scientists and ML
researchers. OpenML publishes a database of the user-uploaded
datasets as well as the workflow specifications submitted by users
and their corresponding executions. By performing targeted analy-
ses on the most common ML models and preprocessing operators
as well as their associated performance, we shed light on common
ML workflow design patterns and their general effectiveness. We
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study trends in iterative ML workflow changes across 295 users,

475,297 runs, and 793 tasks on the OpenML platform; and draw

quantitative conclusions from this crowd-sourced dataset, leading

to actionable insights that help inform the development of future

human-in-the-loop ML systems targeting novices and experts alike.
Our main contributions can be summarized as follows:

e We characterize the frequency and performance of popular
ML models and preprocessing operators used by OpenML
users. We highlight the impact of the operator combinations
and discuss their implications on general user awareness (or
lack thereof) of particular ML concepts (Section 4).

e We analyze sequences of changes to workflows to extract dif-
ferent styles of ML workflow iteration and shed light on the
most common types of changes for each iteration style, the
amount of exploration typically performed, and performance
gain users are generally able to achieve (Section 5).

e We conduct case studies on exemplary instances to under-
stand effective iteration practices. (Section 6).

Outline. The rest of this paper is organized as follows. After a
discussion of related work in Section 2, welay out terminology
and briefly explain our data processing procedure in Section 3. In
Section 4, we shed light on key characteristics of the workflows
commonly designed by OpenML users. We investigate the shape
and evolution of workflows across iterations in Section 5, examine
case studies in Section 6, and present final concluding insights and
future work in Section 7.

2 RELATED WORK

There is an incredible wealth of knowledge that can inform the
design of automated and semi-automated ML (autoML) systems
by understanding how people develop machine learning models.
Studies through empirical code analysis and qualitative studies
offer different lenses into studying human-centered practices in
developing ML workflows.

Psallidas et al.[18] analyzed publicly-available computational
notebooks and enterprise data science code and pipelines to illus-
trate growing trends and usage behavior of data science tools. Other
studies have employed qualitative, semi-structured interviews to
study how different groups of users engage with ML development,
including how software engineers [2] and non-experts [25] develop
ML-based applications, and how ML practitioners iterate on their
data in ML development [11].

In this study, we analyze practices and behaviors for users iterat-
ing on ML workflows, based on data collected from OpenML [22]—
an online platform for organizing and sharing ML experiments
to encourage open science and collaboration. Data from OpenML
has been used extensively for meta-learning [21] to recommend



optimal workflow configurations, such as preprocessing [5, 17], hy-
perparameters [20], and models [4, 19] for a given dataset and task.
Benchmark datasets from OpenML, as well as other similar dataset
repositories [1, 15], have also been used for evaluating AutoML
algorithms [6, 8, 9]. However, these papers focus solely on using
the dataset, model and result from each workflow and do not study
the iterative behavior of users.

Our research differs from existing work in that we analyze the
trace of user-generated ML workflow iterations leading to insights
such as which stages (preprocessing, model selection, hyperparam-
eter tuning) users focus most of their iterations on, their impact on
the effectiveness of the workflow, and which specific combinations
of model and preprocessing operators are the most widely used. Our
approach offers a more reliable view of iterative ML development
than the previous work using experiments reported in applied ML
papers to approximate iterations [24]. Moreover, our study offers a
complementary perspective to existing interview studies by pro-
viding empirical (based on code), population-level statistics and
insights on how people iterate on machine learning workflows.

These insights are valuable for helping AutoML and mixed-
initiative-ML system builders understand the trends in the ML
development practices of target users. System builders can lever-
age this information about the ML model and preprocessing usage
behaviors of the target population to design tools that cater to the
needs and iterative styles of the user base. In particular, learning
common user habits would help inform interactive machine learn-
ing, a space in which it is especially imperative to have a strong
understanding of the user, and which existing systems sometimes
fail to account for [3]. Therefore, the data-driven insights that we
provide are a step towards understanding machine learning strate-
gies and bottlenecks from the masses that can help inform the
creation of effective crowd-powered systems.

3 DATA & METHODOLOGY

We define important terms used in our study, describe our dataset,
and define the metrics for quantifying workflow effectiveness.

3.1 Terminology

Some terms that will be frequently used throughout this paper are:

e Task: A task consists of a dataset along with a machine
learning objective, such as clustering or supervised classifi-
cation.

e Model: A model is an implementation of a machine learning
algorithm, also known as a classifier or learner. A list of
models that are prevalent on OpenML, and therefore will be
discussed throughout this paper, is shown in Table 1.

e Preprocessing: A preprocessing operator is an implemen-
tation of an algorithm that transforms or subsets the data
before a model is applied to it. Examples include data clean-
ing (such as imputation), sampling, feature scaling, or nor-
malization.

o Workflow: A workflow is a directed acyclic graph of data
preprocessing and ML model operators with their associated
hyperparameters.

e Run: A run is a workflow applied to a particular task. Each
run is associated with performance measures, such as classi-
fication accuracy or Area Under the ROC Curve (AUC).

e Sequence: A sequence consists of the time-ordered set of
runs from a single user for a particular task.

For instance, say a user is working on building an ML workflow
for a binary classification task. The user constructs an initial work-
flow consisting of a two data preprocessing steps—first Standard
Scaler, then Principal Component Analysis (PCA) for dimension-
ality reduction—followed by the application of a Random Forest
model. The user tests the workflow on the dataset for the task,
views the AUC score, then tweaks a few hyperparameters to try to
increase the AUC, running and evaluating the workflow after each
adjustment. After iterating on the workflow ten times, the user has
produced a sequence of ten runs. A more detailed illustration of a
workflow is shown in the blue box in Figure 1.

3.2 The Dataset

Our dataset is derived from a snapshot of the OpenML database
from December 4, 2019. The OpenML database contains dozens of
tables holding information about datasets and runs uploaded by
users, math functions for generating metrics such as evaluation
scores for the runs, meta-data about dataset features, and the com-
ponents of the algorithms that utilized in each run. We extract the
workflow-specific information through a WorkflowManager class
that we designed as shown in Figure 1. The OpenML data (handled
by DBManager) is parsed into workflow objects, which consist of
a list of nodes corresponding to each machine learning operator
used in the workflow. A set of parameters is associated with each
node as well.
We focus on a specific subset of the runs on OpenML that:

o Were uploaded by users who are not OpenML developers. We
filtered out runs uploaded by the core team and key con-
tributors! or bots (users whose names contained “bot”). Our
motivation for doing this was to focus on realistic human
user behavior so that our insights would be grounded on data
pertaining to a more accurate representation of the general
ML community. Removing developers and bots left us with
6.1% of the total number of runs on OpenML.

o Use the Scikit-Learn package [16]. Focusing on a single pack-
age made it more convenient to parse machine learning op-
erator names and structures (rather than needing to build a
separate parser for each library). Furthermore, Scikit-Learn is
the most popular machine learning package used on OpenML,
with usage in 79% of the non-developer/non-bot runs. There-
fore, even when we limited our processing to only Scikit-
Learn workflows, we were still analyzing a representative
population.

e Have an associated AUC score associated with them. By filter-
ing out runs with missing AUC scores, we eliminated missing
values when calculating workflow performance metrics. This
final subset contains 475,297 runs (4.8% of the total number
of runs).

!listed on https://www.openml.org/contact
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Figure 1: Simplified diagram showing the extraction of workflows from the OpenML database, and an example of what a
workflow could look like (blue box).



Scikit-Learn Model

l Brief Description

|

Decision Tree

A tree structure in which each internal node splits into children nodes based on the outcome of a “test” on an attribute,
and each leaf node contains a class label. From root to leaf, each path represents a classification rule.

Random Forest

An ensemble of Decision Tree classifiers trained on sub-samples of the dataset and averaged to improve predictive
accuracy and control over-fitting.

Extra Tree

A randomized tree classifier in which the best split for the samples of a node is chosen from a set of random splits for
each of the randomly selected features.

Extra Trees

An ensemble of Extra Tree classifiers.

C-Support Vector | A Support Vector Machine (SVM) with regularization parameter C. The general idea of an SVM is to find hyperplanes
Classification (SVC) that best divide the dataset into classes.
Linear SVC Similar to SVC but with a linear kernel and implemented in a way that provides more flexibility in the choice of penalties

and loss functions, allowing it to scale better with high numbers of samples.

Logistic Regression

Models the probability of the default class (in a binary classification problem) using the logistic function.

KNeighbors

A classifier implementing the k-nearest neighbors voting rule, in which the labels of the k training samples closest in
distance to the new sample are used to predict the label of that new sample.

Gaussian Naive Bayes
(GaussianNB)

An application of Bayes’ theorem (assuming conditional independence between each pair of features given the class
label), with the additional assumption that the likelihood of the features is Gaussian.

Gaussian Process

A probabilistic model where a Gaussian Process prior is placed on a latent function, which is then passed through a link
function to get the probabilistic classification.

Multi-layer Percep- | A neural network model that optimizes the log-loss function using quasi-Newton methods or stochastic gradient descent.
tron (MLP)
AdaBoost A meta-estimator that starts by fitting a base classifier on the dataset, then increases the weights of erroneously classified

instances to train subsequent copies of the classifier (with the adjusted weighting) to focus on the more difficult cases.
These weak learners contribute to the final strong learner based on their performance.

Gradient Boosting

Similar to AdaBoost, but instead of iteratively training on the original dataset (with new sample weights), weak learners
are trained on only the remaining errors. The strong learner is then computed through a gradient descent optimization
process.

XGBoost (XGB)

An implementation of gradient boosted decision trees designed with system and algorithmic optimizations for speed
and performance.

Voting

Majority rule voting for the class labels predicted by a list of inputted estimators.

Table 1: Brief description of the most commonly used Scikit-Learn[16] (sklearn) models on OpenML. Note that the “Classifier”
suffix in models such as “Voting Classifier” are omitted throughout this paper so that the eye can be drawn towards the key
points rather than having tables and plots cluttered with the same suffix in every other model name.

Limitations: While the OpenML dataset provides a valuable probe
into how users iterate on ML models, the typical OpenML user may
not be representative of general ML practitioners. The OpenML
traces provide a limited view of the useraAZs motivation and
thought process behind their iteration choices. Our following analy-
sis is intended to present a formative picture of how people iterate in
ML development. Future studies with larger sample sizes and more
representative samples are required to generalize these findings.

3.3 Workflow Effectiveness Metrics

Due to the variability in the range of evaluation metric values across
tasks, raw AUC values of runs are not directly comparable across
tasks. For instance, an AUC of 0.75 may be below average for a
given task, but it may be in the top tenth percentile for another task
that is much more difficult. Therefore, we account for the difficulty
of each task by measuring each run’s relative AUC, defined as the
difference between the run’s raw AUC and the average AUC of all
the runs for the same task. More formally, let ¢ be an arbitrary task,
and R; be the set of runs that were done on that task. For r € R;
with a raw AUC of a,, its relative AUC p;, is calculated as:

We measure the performance of a sequence S by the relative
maximum sequence AUC,

1
pPs =maxay — — Z maxaqg
res il §o7. a<Q

, where 7; is the set of all sequences for task t. In other words, ps
is the difference between the maximum AUC in the sequence S
and the mean of the maximum AUCs of all sequences for task ¢.
We use maximum AUC per sequence to capture the fact that the
best-performing workflow out of all attempts is the final one that
the user adopts. The ps metric is used as one of the measures of
performance in Section 5, while p;, is used in Section 4 on run-level
insights.

4 RUN-LEVEL INSIGHTS

To better understand how users develop ML workflows, we first
sought to understand: What are the most prevalent ML operators in
practice? In what combinations are these operators used together and
when do they lead to better performance? Are there any less prevalent
combinations that lead to high performance, indicative of “tricks of
the trade” that only experts seem to know about?
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Figure 2: Frequency and performance of the most com-
mon (Scikit-Learn model, preprocessing) combinations on
OpenML. The top heatmap displays frequency in terms of
the user count, while the bottom shows run count.

Figure 2 shows the most common model and preprocessing com-
binations used by more than four users on OpenML. Certain models
(AdaBoost Classifier, Bagging Classifier, Dummy Classifier, Gradi-
ent Boosting Classifier, Grid Search CV, Randomized Search CV,
and Voting Classifier) were intentionally excluded from the plot.
Dummy Classifier was excluded because it is known to be used for
comparisons rather than for solving real problems [16]. The others
were excluded because they are wrappers that can take in one or
more base estimators, and the most frequently used of these base
estimators are already shown in the plot.

The color of the square for each combination indicates the perfor-
mance of the combination, measured by p,, averaged over all runs
that include the combination. The size of each circle is scaled by
the number of users (Figure 2 top) and runs (Figure 2 bottom) that
contain the specific combinations. Both the rows and columns are

sorted based on their performance across all of the specified opera-
tors. In other words, the best-performing combinations are located
at the top-right corner of the chart, whereas the worst-performing
combinations are on the bottom-left.

Histograms showing the marginal distribution of frequency and
performance for each operator are displayed on the sides. For in-
stance, the uppermost user frequency histogram shows the average
user count for each preprocessing operator, averaged across the
models that were used in combination with it, normalized by the
total number of users.

We highlight various insights from Figure 2, with the enumerated
points corresponding to the enumerated boxed regions in the figure.

(1) Performance of Specific Combinations: Some combina-
tions consistently yield high relative AUC when compared to
other combinations used for the same ML task. For instance,
there is a clear difference in performance between Random
Forest (RF) (1a), the model used by the most OpenML users,
and SVC (C-Support Vector Classification) (1b), the model
used in the most runs. On average, the relative AUC of runs
that include Random Forest is p, = 9.89%. RF works espe-
cially well with Simple Imputer as an added preprocessing
step (for replacing missing values), achieving p, = 15.57% on
average. On the other hand, users tend to perform worse on
average (p, = —7.84%) when using SVC models for OpenML
tasks.

(2) Effect of Preprocessing: Around 81% of users have run ML
models on a dataset without performing any data preprocess-
ing beforehand (2a). This could be attributed to the fact that
many of the datasets on OpenML are already in a relatively
clean, preprocessed state. However, it is evident from Figure
2 that users can often still achieve higher performance by in-
cluding some form of dimensionality reduction, feature scal-
ing and transformations, or data sampling, indicating how
preprocessing is often an overlooked but important aspect in ML
development. For instance, ADASYN and SMOTE [14], which
are preprocessing strategies for over-sampling data, are rela-
tively infrequent among OpenML users (2b). However, when
combined with K-Nearest Neighbors (KNeighbors) models,
users are able to consistently achieve higher AUC scores (by
around p, = 19.4% for ADASYN and p, = 15.6% for SMOTE).
This suggests that when working with imbalanced datasets,
certain techniques such as over-sampling are extremely valu-
able in achieving high classification performance, and that
there needs to be increased awareness of such data prepro-
cessing methods and/or when to use them.

(3) Frequency of Specific Combinations: The frequency dis-
tributions for both models and preprocessing operators vary
depending on whether we look at the number of runs or the
number of users (shown in box 3). For example, the most
popular model measured by the number of unique users is
RF (used by 70.9% of plotted users and 68.2% of all users?),
followed by KNeighbors (38.9% of plotted users and 37.4% of
all users) with SVC in third place (24.8% of plotted users and
24.2% of all users). However, when determining frequency

2We refer to “all users” and “all runs” out of the complete set of runs containing
Scikit-Learn operators and set of uploaders for those runs.



Model Run Freq User Freq Avgp,
DecisionTree 65.64% 6.06% 0.57%
KNeighbors 19.02% 60.61% 0.48%

RandomForest 9.82% 18.18% 3.1%

Table 2: Frequency and average distance from task mean
AUC of the three most commonly used models for large
datasets.

from the perspective of the number of runs that included the
model, SVC makes up 59.0% of plotted runs and 47.4% of all
runs, while RF accounts for 39.4% of plotted runs and 32.3%
of all runs. This suggests that there are variations in the iter-
ation behavior across different users: some focus on tuning
the same model for many iterations, while others experiment
with several different models. We explore these trends and
provide insights on their effectiveness in section 5.

Application of Run-Level Insights: Analyses such as those high-
lighted from (1)-(3) not only shed light on the usefulness of partic-
ular ML operators, but can also be used to validate whether users’
existing practices aligns with conventional wisdom in the form of
guidelines from the ML community or whether there is a gap in
adopting these guidelines. As an example of this application, we
examine a particular case study of how users select which models
to use for handling large datasets.

First of all, we observe that for large datasets, users do indeed
focus on specific models in a different distribution than the overall
trends shown in Figure 2. Table 2 shows the model frequencies for
only the runs on large datasets (with greater than 110,313 instances—
the mean across all the datasets that Scikit-Learn users constructed
workflows for).

According to conventional guidelines [23], Decision Trees and
ensemble methods like RF are well-suited for medium to large
datasets, while KNeighbors works well for small to medium datasets.
Although Decision Tree makes up 65.64% of the runs, it is used by
only 6% of the users, as shown in Table 2. Instead, 60.61% of the
users opted for KNeighbors for the largest datasets on OpenML.
However, KNeighbors resulted in the lowest performance, (average
pr = 0.48%), compared to average p, = 3.1% for RF and 0.57% for
Decision Tree. While the performance validates the efficacy of the
guidelines, the usage statistics reveal that most users fail to follow
these guidelines.

Insights drawn from empirical run-level data as demonstrated in
this section can inform the ML community about the prevalence of
different operators and whether or not users are able to effectively
use them. By knowing which models and preprocessing operators
are most commonly used in practice, ML system designers can learn
which algorithms and tools users are already aware of and able to
utilize successfully, as well as which ones people are less likely to
use yet have high potential for large performance improvements.
A human-in-the-loop ML system [13] could surface these lesser-
known but high-potential operators to educate the users and bridge
the gap between the system’s capabilities and the user’s knowledge
on specific capabilities.

In this section, we have explored various facets of common
workflow trends in individuals runs. But to better understand the
process of how users are constructing their workflows and iterating
on them, we must shift to the wider view of looking at sequences
of runs for each user and task as a single entity, rather than each
run as its own entity. In the next section, we delve into analyzing
sequences to gain a perspective on the impact of different iterative
changes on the performance of the workflows.

5 SEQUENCE-LEVEL INSIGHTS

Users have a wide range of ML workflow development styles—
some use a more manual approach where they run a model, look
at the results, make a change or two to address the issue, and
then repeat the process. Others may choose a more automated
technique, e.g., looping through a set of pre-determined values for
certain hyperparameters of a model. In the manual case, the human
remains in the loop, while in the automated case, the user has already
set a search space a-priori and the changes to the workflow at each
iteration are independent of the previous iteration’s result. Others
use a mixed sometimes-manual, sometimes-automated strategy.

To classify a sequence as manual, automated, and mixed, we
introduce the following metrics.

e Interval (At): difference between start times of consecutive
runs

o Interval difference (A?t): difference between consecutive Ats

e Sequence length (|S[): the number of runs in sequence S

Based on these metrics, we categorize each sequence S as follows:

e Manual: (|S| < 2, OR At > 10 minutes for > 50% of the runs
in the sequence, OR A%t > 3 minutes for > 75% of the runs
in the sequence), AND |S| < 300

e Automated (Auto): |S| > 2, AND At > 10 minutes for < 50%
of the runs in the sequence, AND A%t > 3 minutes for < 25%
of the runs in the sequence

e Mixed: the remaining sequences not in the two categories
above

The thresholds were empirically determined through a process
of random sampling and spot-checking two sequences from the
manual category that had over 30 iterations and two from the
automated category that had under 30 iterations (since these would
be the more ambiguous cases than shorter manual sequences and
longer auto sequences). After the final thresholds were set, five
sequences from each of the categories were randomly sampled and
spot-checked to validate the sequence labels.

The motivation behind looking at both At and A%t is that we
would expect the actual time difference between run submissions to
be at least a couple of minutes if the user was making adjustments
manually, and we would expect the change in these At’s to also be
non-zero due to the variability in making changes (while constant
time differences are often indicative of a loop). Sequence length
is also highly indicative of whether or not most of the runs were
manual, since it would be unlikely to find hundreds or thousands
of manual runs, and indeed the highest number of runs in a manual
sequence (after setting the 300 iteration threshold) is 69. This cate-
gorization results in 2181 manual, 208 automated, and 168 mixed
sequences.
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Figure 3: (a) Cumulative distribution of sequence length, (b)
% iterations after reaching maximum AUC.

Across the three categories, users exert varying amounts of effort
(number of iterations and number of model and preprocessing com-
binations attempted) and focus on different areas of their workflow
(choosing the best model, optimizing a hyperparameter, or deter-
mining which data preprocessing operation to add). Our in-depth
analyses of the three categories of sequences reveal the following
three major insights on the effectiveness of users iterating with
manual and automated iterations:

e OnEfficiency: Users who manually iterate on their work-
flows are typically more efficient but less effective in
improving their ML workflow than those who iterate
in an automated manner. Manual users tend to waste

fewer iterations searching after reaching their highest-performing

workflow than people who do mostly automated iterations,
and they achieve the same performance gain in a small frac-
tion of the number of iterations as automated, meaning that
manual users are more efficient. However, from the perspec-
tive of effectiveness, on average, automated users reach a
higher maximum AUC than manual for the same task. This
implies that there is still merit to an automated, exhaustive
search, indicating the potential benefits of AutoML tools.

e On Exploration: In general, manual users cover the same
number of different models in their sequences as auto-
mated users, but a lower variety of data preprocessing
techniques. Trying a greater number of different model
and preprocessing operators results in a positive impact
on performance in manual sequences. However, this trend
becomes less visible the more automated the sequences be-
come, and this is likely attributed to the increased amount
of sub-optimal hyperparameter tuning present in automated
sequences.

e On Model Tuning: Manual users iterate more on model
selection than hyperparameter tuning or data prepro-
cessing. When looking at the specific model changes that
are most frequently made, we find (from the percentage of
the sequence dedicated to each model and the transition
probabilities between the models) that most users are able
to eventually converge on higher-performing models.

Figure 4: Cumulative distribution of (a) model and (b) pre-
processing operators used across all iterations in a sequence.

Iteration Type Mean Median Standard Deviation
Manual 6.63%  3.69% 8.63%
Mixed 475%  0.36% 9.29%
Automated  7.06%  1.01% 12.66%

Table 3: Maximum improvement in AUC from the starting
iteration of the sequence.

5.1 On Efficiency

Users iterating with manual sequences are more efficient,
achieving the same performance gain in a small frac-
tion of the number of iterations as automated sequences,
while wasting fewer iterations searching after reaching
their highest-performing workflow. However, users iter-
ating with automated sequences reach a higher ps than
manual for the same task.

Even though manual sequences® are on average < 0.2% the

length of automated sequences, Table 3 shows that the maximum
increase in AUC is equal for manual and automated (Welch’s ¢t =
—0.471, p = 0.638). Therefore, manual users more efficient in reach-
ing their best-performing workflow than mixed and auto users,
and the performance gain (relative to the performance of the first
attempt) of much longer auto sequences is only an insignificant
amount higher than manual sequences with far fewer iterations.
Moreover, Figure 3(b) shows that the manual group has a lower
percentage of wasted iterations, i.e., the iterations after pg has been
achieved, than the other two groups (manual: ; = 31%; mixed:
[ = 49%; auto: p = 47%). This means that on average, manual users
waste 1 iteration, mixed users waste 41 iterations, and auto users
waste 1026 iterations.

However, automated and mixed sequences result in a 3% higher
ps compared to manual sequences for the same task (Welch’s
t = —12.96,p < 0.05). This is likely due to a greater coverage
of search space from the mixed and automated sequences com-
pared to manual. There is a delicate balance between iterating in an
efficient manner but exploring enough to achieve better results. We
now detail our approach to quantitatively estimating a sequence’s
breadth of exploration.

3 All sequences with a length of 1 were excluded from this and other appropriate
analyses in this section to avoid inflation by deltas of 0, counts of 1, or percentages of
100.



5.2 On Exploration

Users iterating with manual sequences cover the same
number of different models as automated sequences, but
a lower variety of preprocessing techniques. Manual ex-
ploration of more model and preprocessing operators re-
sults in higher ps. However, automated sequences with
more combinations of model and preprocessing opera-
tors do not necessarily lead to better performance.

As shown in Figure 4, manual sequences explore a similar num-
ber of models as mixed and automated sequences (manual: y =
3.08,0 = 1.63; mixed: p = 2.64,0 = 1.37; auto: pg = 3.31,0 = 1.48).
However, there tends to be less manual exploration on data pre-
processing when compared to the mixed and automated groups
(manual: g = 1.51,0 = 1.82; mixed: g = 2.49,0 = 1.44; auto:
p = 3.22,0 = 1.91). It is interesting to note that automated se-
quences explore the same number of preprocessing operators as
models on average, while manual sequences have a higher tendency
to completely leave out data preprocessing from their workflows.

When examining the number of model and preprocessing op-
erators jointly, as shown in Figure 5, we can see that for manual
iterations, trying more combinations leads to better performance,
but this is not the case in mixed and auto sequences. For each of
the combinations that auto sequences explore, they typically per-
form many more iterations of hyperparameter tuning than manual
sequences do for a given combination, evident from the fact that
most auto iteration sequences comprise of hyperparameter tuning,
as shown in Table 4, and that auto sequences are much longer.

These trends reveal two phenomena: 1) when a combination is
explored using default or rule-of-thumb hyperparameters in just
a few iterations, as is the case in typical manual sequences, the
performance gap between different combinations is large; 2) when
a combination is explored with many hyperparameter tuning iter-
ations, as is the case in typical auto sequences, the performance
gap shrinks between different combinations, leading to diminishing
returns from exploring more combinations on pg improvement. In
other words, auto sequences often waste most iterations on hy-
perparameter tuning to improve the performance of suboptimal
combinations without improving pg, while the potential of a combi-
nation can be estimated quickly with just a few iterations. However,
there is merit to extensive hyperparameter tuning, evident in the
fact that auto sequences achieve a 3% higher pg than manual ones
as discussed in Section 5.1. Together, these insights suggest that a
hybrid approach, wherein coarse-grained search is first performed
over the combinations of preprocessing and model operators, fol-
lowed by fine-grained search doing hyperparameter tuning on the
most promising combinations, would be both effective and also
efficient at finding a high-performing workflow.

5.3 On Model Tuning

While automated sequences are dominated by hyperpa-
rameter changes, users iterating with manual sequences
focus on model selection and eventually converge on
high-performing models.

Since changing the ML model is the most common type of manual
workflow change, making up 45.04% of all manual runs as shown

Auto Mixed Manual
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Figure 5: Joint distribution of model and preprocessing op-
erators per sequence. Max AUC is relative to only the se-
quences within the same category (manual, mixed, or auto).

Change Type Manual Mixed  Auto

Model Operator 45.04% 3.95%  0.18%
Model Hyperparameter 28.31% 75.23% 92.69%

Preprocessing Operator 0.53% 0.55% 0.01%

Preprocessing Hyperparameter  0.18% 0.17% 0.04%
Model & Preprocessing 21.96%  6.60% 5.45%
No Change 3.98%  13.49%  1.63%

Table 4: Percentage of runs for each change type across
all runs in manual, mixed, and automated sequences. The
“Model & Preprocessing” change type refers to a model op-
erator or hyperparameter change, in conjunction with a pre-
processing operator or hyperparameter change.

Model Manual Mixed Auto
RandomForest 40.83% 76.90% 53.32%
KNeighbors 37.99% 37.74% 50.54%
SvC 28.25%  23.73% 46.26%

Table 5: Mean percentage of iterations in a sequence that in-
cluded RandomForest, KNeighbors, and SVC (the three most
frequently used models) out of the sequences with at least 3
iterations that used the model.

in Table 4, we look into which models are abandoned and which
are kept from one iteration to the next. From Table 5, we can see
that in all groups (manual, mixed, and auto), whenever SVC is used,
it does not get used for the majority of iterations—users tend to not
stick with it as much as RF or KNN. For instance, whenever SVC is
used in a manual sequence, it accounts for only 28.25% of the runs,
compared to 40.83% for RF and 37.99% for KNN. Combined with
our findings from Figure 2 in section 4 which demonstrate that on
average, RF and KNN perform better than SVC, we conclude that
users are able to waste less time (percentage of their iterations) on
models that do not work as well.

Furthermore, the transition probabilities between different pairs
of models in Figure 6 reveal users tend to stay with the same model



Model Transition Probability for Manual Iterations

RandomForest (RF) { - 0.6

KNeighbors (KNN) - . 05
DecisionTree (DT) =
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Figure 6: Transition matrix showing the probability of tran-
sitioning between different models in consecutive iterations
in manual sequences. The model on the y-axis represents
the model being used at the current iteration, and the model
on the x-axis is the model in the next iteration. The ten most
frequent models are displayed and ordered from top to bot-
tom and left to right from highest to lowest user frequency.
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Figure 7: Probability of remaining with the same model in
the next iteration (out of manual sequences) for the ten most
frequent models.

from one iteration to the next, as evidenced by the high probabilities
along the diagonal of the matrix. Extra Tree, Gradient Boosting
Classifier, and Logistic Regression are the models with the highest
probability of not changing between iterations, as displayed in
Figure 7. Meanwhile, MLP has a notably low probability (3.3%)
of being used again in the following iteration. This presents an
interesting area of further investigation to learn why certain models
such as MLP are quickly abandoned.

But whenever a switch occurs (from the model listed on the
matrix row to the model on the column), the model that is switched
to the most is Random Forest, with 26.22% of all model changes
transitioning to RF, as shown by Table 6. Interestingly though, when
transitioning away from Random Forest, the most common model
in the subsequent iteration is SVC, as can be seen from Figure 6.
Then from SVC, Decision Tree is the most probable transition, with
an even higher probability than remaining with SVC.

Model [ Transition Probability to Another Model ‘
RandomForest 0.2622
SvC 0.1328
KNeighbors 0.1045
LogisticRegression 0.0594
DecisionTree 0.0579
Voting 0.0446
GradientBoosting 0.0418
MLP 0.0241
GaussianNB 0.0127
ExtraTree 0.0089

Table 6: Average probability of transitioning to the model
from one of the other ten most frequent models.

Insights that span multiple workflow iterations, which we have
provided in this section, allow us to discover general patterns and
better understand common ML development habits. To form an
even more detailed view on this subject, we dive into a set of exem-
plary case studies of individual sequences in the following section.

6 CASE STUDIES

So far, we have described insights aggregated across multiple users,
reflecting the population-level trends in ML development. In this
section, we dive deep into some case studies for concretely visual-
izing the three categories of iterative behavior, as well as example
instances of both effective and ineffective practices to offer a com-
plementary view on user behavior.

6.1 On Iterative Behavior

Whereas in the previous section we focused on characterizing auto,
mixed, and manual workflows at an aggregate scale, we now present
a representative sequence from each of the three categories of
iterative styles to provide concrete examples of the differences
between these patterns. We randomly sampled from sequences that
fall within a small range of total iterations (between 30 and 100),
and depict one of each sequence type in Figure 8. The examples
for auto, mixed, and manual iterations are comparable in length,
having between 32 and 48 iterations.

The sequence shown in Figure 8(A) was for a supervised classifi-
cation task on a bioresponse dataset*: predicting whether or not
each molecule (row in the dataset) was seen to elicit a biological
response to the molecular descriptors that capture some of the
characteristics of the molecule (features). 54.23% of the instances
were positive, and there were 1776 already normalized features. In
Figure 8(A), it can be seen that the user started out trying several
different ML models before settling on Random Forest because it
resulted in the highest AUC out of all the models that the user tried.
The user then manually adjusted a few of the hyperparameters for
Random Forest for the rest of the iterations, which ended up only
raising the maximum AUC by an almost imperceptible amount
(0.004).

“https://www.openml.org/d/4134



The mixed sequence shown in Figure 8(B) was also done on the
same task as the manual example. In the mixed case study, some of
the hyperparameters, such as “learning_rate” (from iterations 24 to
29) and “max_depth” (from iterations 30 to 37) were tuned in a loop;
meanwhile others were adjusted manually, such as “n_estimators”
(from iterations 2 to 6, and again from 10 to 12 and 16, right before
switching from Random Forest to Gradient Boosting Classifier). For
both Random Forest and Gradient Boosting models, the user was
able to have an overall upward trend in AUC over time.

The automated iterations shown in Figure 8(C) were created for
classifying the CIFAR-10 small dataset [12], which contains 2000
images for each of the 10 classes of objects. This sequence contains
a very visible initial subpattern, with no noticeable progress be-
ing made overall (outside of the subpattern). The subpattern was
likely due to nested loops being run—with the outer loop being
the number of neighbors parameter for the KNeighbors model, and
the inner loop being the number of components for PCA, one of
the preprocessing operators. In this auto sequence, there were only
two notable manual iterations: the first was when the model was
switched from KNeighbors to Logistic Regression at iteration 26,
and the second was at iteration 31 when the user moved from tuning
“n_components” in PCA to tuning “C,” the inverse regularization
strength in Logistic Regression.

Two additional interesting examples are shown in Figure 9. The
manual sequence with the highest number of iterations among all
manual sequences is shown in (A) of the figure, while the longest
auto sequence is shown in (B). The task in the manual sequence (A)
was supervised classification on EEG data with 14 different EEG
measurements for the features, with a binary label for whether
the eye was closed or open (55.12% closed) [7]. The auto sequence
(B) was performed for a supervised classification task on a chess
dataset, with 36 board positions for the features, and a binary label
for whether or not White can win over Black (52% positive) [7]. In
the auto example, the high fluctuation (dense zig-zagging pattern)
in AUC over time seems to be due to random values being used for
hyperparameters. While certain models (SVC in this instance) have
a wide range of possible AUC scores, others (such as FKCEigenPro)
have a much narrower range that AUC bounces around in. This
kind of behavior is less visible in manual sequences, where the AUC
range of each model is much smaller, while the biggest differences
are a result of switching to a different model. For instance, from
Figure 9(A), there is a noticeable drop in AUC when going from
Random Forest to Gradient Boosting, and from Random Forest to
MLP. However, within the Random Forest iterations themselves,
we do not see high fluctuations, and this holds true for the MLP
and ExtraTrees models as well.

These five examples in Figures 8 and 9 not only provide a glimpse
of potential differences between iterative development styles and
their resulting performance patterns, but also demonstrate the use-
fulness of tracking changes to an ML workflow and visualizing
progress over time. If there were a real-time visualization tool that
displayed the kind of information shown in these figures, this could
potentially help users catch ineffective patterns earlier on in their
iterations. For instance, perhaps if the user in Figures 8(C) were to
see the stairstep-like subpattern occurring two or three times in
a row, they would have realized that incrementing the number of

neighbors in KNeighbors followed by the number of components
in PCA is an ineffective strategy in raising the maximum AUC.

Next, we will discuss specific indicators of effective and inef-
fective workflow sequences. In order to make fair comparisons
across sequences, we choose from among the most effective and
least effective of sequences belonging to the same task.

6.2 On Performance on the Same Task

To learn what sets apart sequences that are highly effective and ones
that are ineffective, we first define a highly effective sequence as one
that achieves a high AUC score over just a few iterations, wasting
few to no iterations after the maximum AUC has been achieved.
Meanwhile, ineffective sequences exhibit opposite characteristics,
namely, they span many more iterations but do not achieve high
AUC scores.

In Figure 10, we show examples of highly-effective sequences
(A and B) and ineffective sequences (C and D) for the supervised
classification task that was attempted by the highest number of
users on OpenML. The speech dataset used in this task has 3,686
instances, 400 features, and 2 classes: whether the speaker (row) had
an American accent or not [10]. Most notably, there is a very im-
balanced class distribution, with 98.35% of the instances belonging
to the majority class (positive for American accent). Case studies
for this task demonstrate that workflows that account for the class
imbalance problem are able to achieve higher performance than
those who do not.

Figure 10(A) illustrates one such example of a user who was
successful in creating the best ML workflow for this task, with a
higher maximum AUC score than any other user. This expert user
(who will we refer to as User A) iterated on the workflow using a
manual sequence (based on our definition in Section 5), starting
off by selecting a model, then adding data preprocessing, begin-
ning with StandardScaler and Principal Component Analysis (PCA).
User A then incorporated an oversampling strategy, ADASYN, to
counter the the class imbalance problem, resulting in a significant
performance boost. Perhaps to validate that KNeighbors in con-
junction with the 3 preprocessing operators are contributing to the
high AUC, rather than solely the preprocessing operators, User A
switched back to SVC at iteration 6, resulting in a large drop in
performance. In the next iteration, they quickly returned to KNeigh-
bors, demonstrating strong iterative development skills due to the
fact that the user was able to quickly verify a hypothesis without
wasting more than one iteration; they were able to recognize the
exact operator combinations that worked well and move forward
accordingly.

Similarly, Figure 10(B) illustrates another user who iterated with
a manual sequence and experimented with different combinations
of model and preprocessing operators before discovering the high
impact of data oversampling. It took this user more iterations than
User A, but as soon as they incorporated ADASYN, they too were
able to quickly run through a final model selection phase to achieve
one of the highest AUC scores for the task. In both of these examples
of effective sequences of workflow changes, the evolution of the
preprocessing steps included in the workflow show that the user
was actively reasoning about whether or not certain kinds of data
operations were needed as they adjusted the workflow. However,
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until that point, the red text describes model changes, and the purple text describes preprocessing changes.

not all users put as much thought into deciding on a strong data
preprocessing combination.

For instance, User C (shown in Figure 10(C)) had an ineffective
sequence of mostly automated hyperparameter (and preprocess-
ing hyperparameter parameter) changes. Extensively fine-tuning
model and preprocessing hyperparameters might have been use-
ful once a high-potential model and preprocessing combination
was determined. But because the tuning was done prematurely to
finding a solution to handle the imbalanced classes, User C was
unable to develop a workflow that performed as well as the highly
effective users (Users A and B). This user would have benefited from
experimenting with other preprocessing combinations rather than
completing all 168 iterations with the same set of preprocessing
operators (MinMaxScaler and PCA). However, still other users were
excluding preprocessing from their workflows completely.

As shown in Figure 10(D), the user was seemingly off to a strong
start, having chosen the same model that Users A and B began with,
then quickly moving on to KNeighbors, which was the model that
the two experts ended up selecting. However, User D then spent
over one hundred automated iterations exhaustively tuning some
hyperparameters, resulting in over 95% of their iterations being
wasted, i.e., they did not improve their maximum AUC. In both
examples of ineffective iterations, the variety of model and prepro-
cessing combinations covered was relatively limited (or nonexistent
in the case of User D’s lack of preprocessing), especially given the
number of iterations spent on developing the workflow. Their gen-
erally ineffective pattern appears to be tuning each model for a
few dozen iterations before trying a different model and possibly
revisiting old models. Users C and D could benefit from learning
the strategy adopted in manual approaches in Figure 10(A) and (B)
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to first examine dataset characteristics to guide modeling decisions,
instead of optimizing hyperparameters prematurely.

These case studies demonstrate the potential benefits of knowl-
edge transfer from experts to novices, conceivably through a human-
in-the-loop system for ML workflow development using crowd-
sourced best practices to guide users towards constructing optimal
workflows.

7 DISCUSSION AND CONCLUSION

In this paper, we set out to demystify the dark art of machine learn-
ing workflow development. Our analyses spanned multiple different
levels—from aggregate statistics at the run-level, using over 475
thousand user-generated runs on OpenML; to aggregate statistics
at the sequence-level, using 2557 sequences of runs (grouped by
user and task); to individual case studies of sequences to learn from

concrete real-world examples. We discovered that the performance
improvement gap between manual and automated approaches to
workflow iteration is negligible, but the manual approach is able
to find the best performing workflow with much fewer wasted
iterations. The model performance parity explains the general en-
thusiasm around automated machine learning (auto-ML) systems in
recent years, but the massive discrepancy in efficiency explains the
sluggish growth in adoption of auto-ML despite the hype. Our case
studies revealed how human users are often far better at minimizing
wasted work than non-optimized automation.

While we believe that the insights we have compiled are gen-
eralizable to the larger machine learning community, there is a
chance that the conclusions we have drawn are applicable to only
the population of users on the OpenML platform. We leave it to
future work to perform similar analyses on ML workflow data from



other platforms such as D3M [1] or Kaggle®. If the insights vary
significantly between the different platforms, it would be interest-
ing to further investigate the cause of these differences and learn
what factors are driving certain kinds of ML developers into using
certain platforms.

Another potential extension of this work would be to examine
even more finer-grained categories of workflow changes. For in-
stance, rather than grouping all kinds of model hyperparameter
changes together, we could distinguish between the number of hy-
perparameters that were changed from one iteration to the next (so
changing only one hyperparameter would be a different category
than changing three). The drawback to these finer-grained analyses
is that the more detailed the categorization, the more sparse the
samples that fall into each category, resulting in weaker (less gen-
eralizable) aggregate findings. Many of the decisions that we made
in designing our analyses required such balancing acts, but because
we have not exhaustively tried all possibilities, we cannot claim to
have reached the optimal categorizations and thresholds. However,
we have made a great effort to boost the integrity and robustness
of our insights through our multi-faceted data summarizations and
multiple levels of granularity as mentioned earlier.

In addition, while our study surfaced many interesting patterns
in iterative ML workflow development, our dataset provides a lim-
ited view into the user’s thought process behind performing the
manual iterations, as shown in the case studies. A more in-depth
user study is a promising direction for future work towards under-
standing the motivations and cognitive processes behind how and
why users select certain iterative workflow changes. This under-
standing can form the basis of an improved auto-ML strategy that
is drastically more efficient by mimicking human experts, thus low-
ering the barriers to entry to auto-ML adoption. Likewise, human-
in-the-loop ML systems can similarly benefit from automated guid-
ance suggesting areas of exploration that the ML developer may
not have thought of. Our study aims to shed light on design insights
for building more usable and more intelligent machine learning
development systems, towards the ultimate goal of democratizing
machine learning.
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