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Abstract15

We study input compression in a biologically inspired model of neural computation. We demon-16

strate that a network consisting of a random projection step (implemented via random synaptic17

connectivity) followed by a sparsification step (implemented via winner-take-all competition) can18

reduce well-separated high-dimensional input vectors to well-separated low-dimensional vectors. By19

augmenting our network with a third module, we can efficiently map each input (along with any20

small perturbations of the input) to a unique representative neuron, solving a neural clustering21

problem.22

Both the size of our network and its processing time, i.e., the time it takes the network to23

compute the compressed output given a presented input, are independent of the (potentially large)24

dimension of the input patterns and depend only on the number of distinct inputs that the network25

must encode and the pairwise relative Hamming distance between these inputs. The first two steps26

of our construction mirror known biological networks, for example, in the fruit fly olfactory system27

[9, 29, 17]. Our analysis helps provide a theoretical understanding of these networks and lay a28

foundation for how random compression and input memorization may be implemented in biological29

neural networks.30

Technically, a contribution in our network design is the implementation of a short-term memory.31

Our network can be given a desired memory time tm as an input parameter and satisfies the following32

with high probability: any pattern presented several times within a time window of tm rounds will33

be mapped to a single representative output neuron. However, a pattern not presented for c · tm34

rounds for some constant c > 1 will be “forgotten”, and its representative output neuron will be35

released, to accommodate newly introduced patterns.36
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1 Introduction41

In this work we study brain-like networks that receive potentially complex and high-42

dimensional inputs (e.g., from sensory neurons representing odors, faces, or sounds) and43

encode these inputs in a very compressed way. Specifically, we consider networks with n44

input neurons and k output neurons, where n may be very large. When presented with up45

to k sufficiently different but otherwise arbitrary input patterns, the goal of the network is46

to represent the inputs in such a way that they can be recognized when presented again:47

each input should be uniquely mapped to a single representative output neuron that fires if48

that input pattern is reintroduced. Further, any small perturbations of a presented input49

should be recognized by the same representative neuron. We call the above problem the50

neural clustering problem.51

Clustering, input memorization, and compression are fundamental problems in biological52

neural networks. Our work is also inspired by the important novelty detection problem53

[25, 41]. Novelty detection requires detecting inputs that differ significantly from previously54

seen inputs. It is easy to see that this problem can be solved with a neural clustering network,55

in which all sufficiently far inputs are mapped to different representative neurons and all56

sufficiently close inputs are mapped to the same neuron. A novel input is detected whenever57

a new representative neuron is assigned. The novelty detection problem has been considered58

recently in the fruit fly olfactory system [16], where it is believed to be solved using a random59

projection based method. The high level structure of this method closely resembles the initial60

stages of our clustering algorithm, and we see a major contribution of our work as providing61

a theoretical understanding of how random projection can be implemented in biologically62

inspired neural networks. For further discussion about the connection to fruit fly novelty63

detection see Section 1.2.64

1.1 Our Results65

We study the neural clustering problem in a biologically inspired model of stochastic spiking66

neural networks (stochastic SNNs), which was previously defined in [33, 34, 35]. In these67

networks, computation proceeds in discrete rounds with each neuron either firing (spiking) in68

a round or remaining silent. Each neuron spikes randomly, with probability determined by69

its membrane potential. This potential is induced by spikes from neighboring neurons, which70

can have either an excitatory or inhibitory effect (increasing or decreasing the potential). In71

general, the input to an SNN is a stream of binary vectors, corresponding to spikes of the72

input neurons. In our setting we will consider a single binary vector as the input pattern73

and assume that each input vector is presented for a certain number of consecutive rounds74

before changing. This allows the network time to stabilize to the correct output associated75

with the given input.76

We demonstrate that clustering can be solved efficiently in these networks, where the cost77

is measured by (i) the number of auxiliary neurons, besides the input and output neurons,78

that are required to solve the clustering task and (ii) the number of rounds required to79

converge to the correct output for a given input, which corresponds to the number of rounds80

for which the input must be presented for before moving to the next input.81

In the clustering problem, we consider a (potentially large) set of n-length patterns that82

are clustered around k base patterns. It is then required to map all patterns in the same83

cluster to a unique output in [k].84

85

Clustering with Output Reassignment. We also want our network to be reusable,86
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with a memory duration tm that is given as an input parameter. Instead of considering a87

single infinite input stream with at most k distinct patterns (or clusters of patterns), our88

memory module allows one having many distinct patterns, as long as their presentation times89

are sufficiently spaced out. That is, in any window of Θ(tm) rounds, the network is presented90

at most k distinct patterns. To handle distinct patterns in each Θ(tm)-round window, the91

network must forget patterns that have not been introduced for a while and release their92

allocated outputs so that they can be assigned to new inputs. Specifically, for some fixed93

constant c, our network remembers a pattern (its cluster) for at least tm rounds and at most94

c · tm round. The output of any pattern not introduced for c · tm rounds is released with95

high probability and can be reassigned to represent another input.96

97

The Neural Clustering Problem. We now formally define the neural clustering98

problem, which is parametrized by several parameters: the input dimension n, the number of99

distinct input patterns k, the memory duration tm, a bound on the relative distance of input100

patterns ∆, and the allowed failure probability δ. We require that every pattern introduced101

as input, remains the input pattern for at least tp = poly(k, 1/∆, log(1/δ)) (i.e., independent102

of n) consecutive rounds. The tp parameter is the processing time or mapping time, i.e., the103

time it takes for the network to converge to the output neuron. Throughout, we will assume104

that all patterns have p non-zero entries. We conjecture that this assumption can be easily105

removed however keep it to simplify our arguments.106

Define the relative Hamming distance between two inputs Xi, Xj ∈ {0, 1}n to be:

RD(Xi, Xj) = ||Xi −Xj ||1
max{||Xi||1, ||Xj ||1}

.

In the basic clustering problem, the network is introduced to a possibly large number of107

distinct patterns that are clustered around k-centers. That is, in every window of tm rounds,108

the patterns introduced are clustered around a base-set of k patterns X1, . . . , Xk ∈ {0, 1}n109

such that the relative difference between each pair in the base-set is at least ∆, and any other110

pattern introduced is sufficiently close to one of the patterns in the base-set (with relative111

distance ≤ ∆/α for some α = Õ(1)). In the clustering problem the network maps similar112

patterns to the same unique output qi for i ∈ [k] (i.e., the cluster name) and non-similar113

patterns to distinct names. Formally:114

I Definition 1 (Clustering Input Condition). An infinite input sequence Z1, Z2, ... is a well-115

behaved clustering input sequence with input size n, output size k, memory duration tm,116

relative distance parameter ∆, closeness parameter α, and input persistence time tp if:117

For any set of tm rounds T = {t, t+1, ..., t+(tm−1)} there exist X1, X2, ..., Xk ∈ {0, 1}n118

such that RD(Xi, Xj) ≥ ∆ for all i 6= j and for all i ∈ T , RD(Zi, Xj) ≤ ∆/α for some119

j ∈ [k].120

If Zi 6= Zi−1, then Zi = Zi+1 = ... = Zi+tp .121

I Definition 2 (Clustering Network). A network N solves the clustering problem for input size122

n, output size k, memory duration tm, relative distance parameter ∆, closeness parameter α,123

input duration tp, and failure probability δ if, on a well-behaved input sequence for the same124

parameters (Definition 1), on any fixed window of tm rounds, with probability ≥ 1− δ:125

Each input pattern Z is mapped to some output qj for j ∈ [k]. That is, whenever the126

input changes to Z round i (so Zi−1 6= Z but Zi = Z), there is a unique output neuron127

qj that fires at round i+ tp and continues to fire as long as the input remains fixed to Z.128

Any pair of far patterns Z,Z ′ with RD(Z,Z ′) ≥ ∆ introduced within the tm time window129

are mapped to different outputs.130

CVIT 2016



23:4 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

RP +
WTA

RP +
WTA

RP +
WTA

RP +
WTA

Sequential mapping 

𝑋

Output 𝑄

WTA
RP+

𝑅2 ത𝑋 = 𝑍

𝑅1 ത𝑋 = 𝑌

𝑋

Figure 1 High level illustration of the clustering network. Right: The input pattern X̄ ∈ {0, 1}n
is mapped to an intermediate sparser vector in two steps: random projection and WTA sparsification.
Left: In the clustering network, the input X̄ is mapped by applying O(log(k/δ)) parallel repetitions
of the random projection + WTA mapping. As a result, X̄ is mapped to a vector Z̄ with O( log(k/δ)

∆ )
neurons. This vector is mapped to the output unit vector in {0, 1}k via a sequential mapping module.

Any pair of closed-patterns Z,Z ′ with RD(Z,Z ′) ≤ ∆/α introduced within the same tm131

time window will be mapped to the same output neuron.132

Our goal is to design a clustering network that uses small number of auxiliary neurons and133

requires small input persistence time tp. We show the following theorem.134

I Theorem 3. For any parameters n, k, tm, δ and ∆, there is a network N with135

O
(

log(1/∆)3 log(tm/δ) log(1/δ)
∆3/2

)
auxiliary neurons that solves the clustering problem with these136

parameters, input persistence time tp = O
(

log(1/∆)2 log(tm/δ)
∆

)
and closeness parameter137

α = O(log(1/∆)4).138

Note that the number of auxiliary neurons and the convergence time of Theorem 3 are139

independent of the input dimension n, which may potentially be very large. The spiking140

neural network construction that achieves Theorem 3 involves in three steps. The first two141

steps reduce the input from n neurons to m� n neurons, while approximately preserving the142

relative distances between inputs. These steps use a biologically inspired construction that143

mirrors circuits seen, for example, in the fruit fly olfactory system [9, 29, 17]. In particular144

the first step maps the input to a set of intermediate neurons via random projection, and145

the second step sparsifies the outputs of these intermediate neurons to yield a sparse code146

representing the input. The final sequential mapping step then solves the clustering problem147

given these m intermediate neurons as inputs, avoiding the high cost of directly solving the148

problem on the n-dimensional input. See Figure 1 for an illustration.149

1.2 Comparison to Previous Work150

1.2.1 Broader Agenda: Algorithmic Theory for Brain Networks151

Understanding how the brain works, as a computational device, is a central challenge of152

modern neuroscience and artificial intelligence. Different research communities tackle this153

problem in different ways, ranging from studies that examine neural network structure as a154

clue to computational function [43, 3], to functional imaging that studies neural activation155

patterns [40, 31], to theoretical work on simplified models of neural computation [23, 36],156

to the engineering of complex neural-inspired machine learning architectures [21, 27]. This157
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paper joins a recent line of work [44, 37, 45, 38, 33, 30, 46, 34, 28, 32, 39, 10, 22] that158

approach this problem using techniques from distributed computing theory and other branches159

of theoretical computer science. The ultimate goal of this research direction is to develop160

an algorithmic theory for brain networks, based on stochastic graph-based neural network161

models. To understand neural behavior from a theory of computing point of view, we design162

networks to solve abstract problems that are inspired by tasks that seem to be solved in163

actual brains. We believe that the rigorous analysis of such networks in terms of static costs164

(e.g., the number of neurons), and dynamic costs (e.g., the time to converge to a solution)165

will lead to a better understanding of how these tasks may be performed in biological neural166

networks.167

1.2.2 Connections to Sparse Recovery168

Our work is closely related to sparse recovery (compressed sensing), where the goal is to map169

high-dimensional but sparse vectors (with dimension n and s� n nonzero entries) into a170

much lower dimensional space, such that the vectors can be uniquely identified and efficiently171

recovered [19]. We can see that this goal is essentially identical to that of our first two network172

layers, before the sequential mapping step. Two different s-sparse binary vectors have relative173

hamming distance ≥ 1/s. Additionally there are k = O(ns) s-sparse binary vectors in n174

dimensions. Thus, as a Corollary of Lemma 12, our first two layers can uniquely compress175

all such vectors with high probability into dimension m = Õ
(

log k
∆1/2

)
= O(s3/2 log n).176

It is known that optimal sparse recovery reducing the dimension to O(s log n) can be177

achieved using random projections [13]. However, unlike in our setting, these random178

projections have real valued outputs, which cannot be directly represented by binary spiking179

neurons. The case when output of the random projection is thresholded to be a binary value180

has been studied extensively, under the name ‘one-bit compressed sensing’ [6]. In this setting,181

it is known that dimension Θ̃
(
s2 log n

)
can be achieved and is required for general sparse182

recovery [1]. If the input vectors are restricted to be binary (as in our case), dimension183

O(s3/2 log n) is possible [24, 1]. Our results match this bound up to logarithmic factors.184

1.2.3 Connections to Fruit Fly Novelty Detection via Bloom Filters185

Recently, Dasgupta et al. [16] demonstrated that the fruit fly olfactory circuit implements a186

variant of a classic Bloom filter [5] to assess the novelty of odors. A bloom filter is a data187

structure that maintains a set of items, allowing for membership queries, with the possibility188

of occasional false positives. The filter has m bits and r random hash functions mapping189

the input space to integers in 1, ...,m. When an item is inserted, it is hashed using these r190

functions and the bits corresponding to the hashed values are set to 1. A membership query191

is answered by hashing the input in question and checking that all r bits corresponding to192

its hashed values are set to 1.193

Such a filter can be used to implement novelty detection – a novel pattern is detected194

whenever an insertion operation sets a new bit to 1 or an membership query returns false.195

Dasgupta et al. [16] demonstrate that a such a scheme is used in the fly olfactory circuit.196

The hashing step consists of a random projection followed by winner-take-all sparsification,197

which maps each input into a r-sparse binary vector. The r entries of this vector represent198

the r hash function outputs. This step closely resembles the first two layers of our clustering199

network.200

Our third layer operates differently than a bloom filter, associating each sparsified201

intermediate vector to with unique output via sequential mapping rather than simply marking202

CVIT 2016
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the bits corresponding to its entries. However, it can implement the same functionality203

(and correspondingly can implement novelty detection). Specifically, to implement insertion204

and deletion operations we can make the following modifications to the sequential mapping205

sub-network:206

The input layer contains an extra neuron that is set to 1 if the operation is insertion, and207

0 if the operation is a membership query.208

In the sequential mapping step the output layer fires only if this extra neuron fires. In this209

way, new outputs will only be mapped during insertion operations and not membership210

queries.211

For query operations, we add an output neuron that fires only if there exists an index212

j ∈ [k] for which many memory modules mji, as well as an association neuron aji fire.213

Novelty detection can be implemented via an additional output neuron that responds214

when an insertion causes a new output to be mapped or when a query operation returns215

false.216

2 Computational Model and Preliminaries217

We start by defining our model of stochastic spiking neural networks.218

Network Structure. A Spiking Neural Network (SNN) N = 〈X,Q,A,w, b〉 consists of219

n input neurons X = {x1, . . . , xn}, m output neurons Q = {q1, . . . , qm}, and ` auxiliary220

neurons A = {a1, ..., a`}. The directed, weighted synaptic connections between X, Q, and A221

are described by the weight function w : [X ∪Q∪A]× [X ∪Q∪A]→ R. A weight w(u, v) = 0222

indicates that a connection is not present between neurons u and v. Finally, for any neuron223

v, β(v) ∈ R≥0 is the activation bias – as we will see, roughly, v’s membrane potential must224

reach β(v) for a spike to occur with good probability.225

The in-degree of every input neuron xi is zero. That is, w(u, x) = 0 for all u ∈ [X ∪Q∪A]226

and x ∈ X. Additionally, each neuron is either inhibitory or excitatory: if v is inhibitory,227

then w(v, u) ≤ 0 for every u, and if v is excitatory, then w(v, u) ≥ 0 for every u.228

Neuron Chains. In our implementation, we make use of chains of neurons to create a229

delay in a response. For a neuron u, and integer `, let C`(u) be a directed path of length `230

starting with u. All neurons on the chain are excitatory. We then say that a chain C`(u) is231

connected to v if each neuron w ∈ C`(u) has an outgoing edge to v.232

The SNN Model. An SNN evolves in discrete, synchronous rounds as a Markov chain.233

The firing probability of every neuron at time t depends on the firing status of its neighbors234

at time t− 1, via a standard sigmoid function, with details given below. For each neuron u,235

and each time t ≥ 0, let ut = 1 if u fires (i.e., generates a spike) at time t. Let u0 denote the236

initial firing state of the neuron. Our results will specify the initial input firing states x0
j = 1237

and assume that u0 = 0 for all u ∈ [Q ∪A]. The firing state of each input neuron xj in each238

round is the input to the network, and our results will specify to which sequences of input239

firing patterns they apply.240

For each non-input neuron u and every t ≥ 1, let pot(u, t) denote the membrane potential241

at round t and p(u, t) denote the corresponding firing probability (Pr[ut = 1]). These values242

are calculated as:243

pot(u, t) =
∑

v∈X∪Q∪A
wv,u · vt−1 − β(u) and p(u, t) = 1

1 + e− pot(u,t)/λ (1)244

245

where λ > 0 is a temperature parameter, which determines the steepness of the sigmoid. It is246

easy to see that λ does not affect the computational power of the network. A network can247
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be made to work with any λ simply by scaling the synapse weights and biases appropriately.248

For simplicity we assume throughout that λ = 1
Ω(log(n·k·∆·tm·1/δ)) , where n, k, δ,∆, tm are the249

parameters of the clustering problem, defined in Section 1.1. Thus by (1), if pot(u, t) ≥ 1,250

then ut = 1 w.h.p. and if pot(u, t) ≤ −1, ut = 0 w.h.p. , where w.h.p. denotes with251

probability at least 1− (1/δ · n · k ·∆ · tm)−c for some constant c.252

The remainder of the paper is devoted to proving Theorem 3. Our analysis considers the253

three stages of the network in sequence: random projection, sparsification, and sequential254

mapping to the final outputs.255

3 Layer 1: Random Projection256

The goal of this step is to reduce the input size from n input neurons to m� n neurons while257

ensuring that the relative distance between any two n-length input vectors is approximately258

preserved after the mapping. In this way, we can solve the clustering problem working with259

the much smaller m neuron representation instead of the original n neuron input. While260

there are many ways in which distance may be preserved, we consider one in particular,261

based on the membrane potentials induced on the intermediate neurons by the inputs:262

IDefinition 4 (Distance Preserving Dimensionality Reduction). Consider X1, . . . , Xk ∈ {0, 1}n263

with RD(Xi, Xj) ≥ ∆ for i 6= j. Consider a network N mapping n input neurons to m264

intermediate neurons, which are split into b buckets each containing m/b neurons. N is265

distance preserving for X1, . . . , Xk if, for any two Xi, Xj, and any round t, in the large266

majority of buckets, the identity of the neuron that in round t+ 1 has the highest membrane267

potential below a fixed threshold τ is different if Xi is presented at round t than if Xj were268

presented. 1
269

Our network satisfies Definition 4 with parameters m = Õ
(

1√
∆

)
and b = Õ(1). We270

implement the dimensionality reduction step via random projection. We note that random271

projection has been studied extensively as a dimensionality reduction tool in computer272

science, with applications in data analysis [4, 7, 12], fast linear algebraic computation [42, 11],273

and sparse recovery [8]. See [47] for a survey. In neuroscience, it is thought that random274

projection may play a key role in neural dimensionality reduction [20, 2]. Random projection275

for example, underlies sparse coding of inputs in the fruit fly olfactory circuit [9, 17]. Random276

connections have also been studied in theoretical models for memory formation, in which277

inputs are mapped to representative output neurons [45, 38, 28].278

We start with describing the construction and then analyzing its properties. The main279

outputs of this section are Corollaries 9 and 11 which show that, with high probability, the280

identities of the neurons with maximum membrane potential below some threshold τ in each281

bucket of the intermediate layer share little overlap for far inputs (with relative distance ≥ ∆)282

and significant overlap for close inputs (with relative distance ≤ ∆/α for α = O(log(1/∆)4)).283

That is, the network satisfies the distance preserving dimensionality reduction guarantee of284

Definition 4 for far inputs, along with an analogous guarantee for close inputs.285

Our mapping can be understood as an example of local sensitive hashing [18, 15, 17]. In286

each bucket, the input is hashed to the identity of the maximum potential neuron below τ in287

that bucket. Near inputs have many hash collisions, and thus there is significant overlap in288

the identities of the mapped neurons. Far input have fewer collisions and thus less overlap.289

1 We formally define how the membrane potential is calculated in Section 2. ‘Large majority’ will be a
constant fraction of the buckets significantly larger than 1/2, which will be specified in our bounds.

CVIT 2016
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290

Layer Description. The random projection layer consists of m · ` intermediate auxili-291

ary neurons for m = Θ
(

log(1/∆)√
∆

)
and ` = Θ(log(tm/δ)). The layer is subdivided into `292

buckets b1, ..., b` containing m neurons each. Each input neuron has an excitatory connection293

to each neuron in the intermediate layer with weight sampled as a Chi-squared random294

variable (with one degree of freedom). We denote this random weight matrix connecting295

the two layers by A ∈ Rm·`×n. For b ∈ 1, ..., `, we let Ab ∈ Rm×n denote the rows of A296

corresponding to the intermediate neurons in bucket b. In typical applications of random297

projection, the entries of A are most commonly either Gaussian or Rademacher random298

variable. Here we use Chi-squared random variables as they are non-negative, a requirement299

in our setting where the outgoing edge weights from each neuron (corresponding to the300

entries in A) must be either all positive or all negative.301

302

Layer Analysis. When the input neurons X fire with input pattern Xi ∈ {0, 1}n at303

time t, by (1) the vector of membrane potentials of the intermediate neurons at time t+ 1 is304

given by AXi ∈ Rm×`. Our analysis will focus on the properties of this vector of potentials,305

which can be viewed as a real valued compressed representation of the input Xi. Later, we306

will show how these properties lead to desirable properties of the spiking patterns of the307

intermediate neurons.308

For technical reasons, we will not focus on the actual largest entry of AbXi, but on the309

largest entry bounded by some fixed threshold τ which can still be identified via a minor310

modification to a traditional WTA circuit. We begin with a preliminary lemma showing311

that a Chi-squared distribution (the distribution of each entry in AbXi) is roughly uniform312

around its mean. We give a proof in Appendix A.313

I Lemma 5 (Chi-squared uniformity). Let Dp be the Chi-squared distribution with p degrees314

of freedom. For any c with 1 ≤ c < p1/2 there are constants c`, cu (depending on c) such that,315

for any interval [r1, r2] ⊆
[
p− cp1/2, p+ cp1/2], we have: c`(r2−r1)

p1/2 ≤ Prx∼Dp [x ∈ [r1, r2]] ≤316

cu(r2−r1)
p1/2 . That is, Dp is roughly uniform on the range

[
p− cp1/2, p+ cp1/2].317

We also use the fact that the Chi-squared distribution decays far from its mean, which follows318

from standard sub-exponential concentration bounds.319

I Lemma 6 (Chi-squared decay). Let Dp be the Chi-squared distribution with p degrees of320

freedom. For any c ≤ 1 there is a constant c1 (depending on c) such that:321

Pr
x∼Dp

[
x /∈ [p− c1p1/2, p+ c1p

1/2]
]
≤ c.322

323

Using the near-uniform distribution property of Lemma 5, we can show that with good324

probability, for every compressed vector AbXi ∈ Rm the gap between the two largest entries325

(bounded by the threshold) is Ω(p1/2/m) – since there are m entries roughly uniformly326

distributed in a range of size O(p1/2). This gap will be necessary for the neuron with the327

largest membrane potential (and hence the highest firing probability) to be reliably identified328

in the second sparsification layer of our network. We remark that in non-neural applications329

of random projection such a gap would not be necessary: the largest entry in the bucket can330

be typically be identified exactly.331

The complete proof is given in Appendix A.332

I Lemma 7 (Sufficient Gap). Consider our construction with bucket size m = c1. Let
X ∈ {0, 1}n be any input vector with ‖X‖ = p for p ≥ 5. Let τ = p + 2p1/2 and for any
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b ∈ [`] define:

i1,b(X) = arg max
i∈[m]:[AbX](i)≤τ

[AbX](i) and i2,b(X) = arg max
i∈[m]\i1,b(X):[AbX](i)≤τ

[AbX](i),

where we set i1,b(X), i2,b(X) = 0 in the case that no index satisfies the constraint. For333

sufficiently large constants c1, c2, with probability ≥ 99/100 over the random choice of Ab,334

i1,b(X) 6= 0, [AbX](i1,b(X)) ≥ p, and either [AbX](i1,b(X)) − [AbX](i2,b(X)) ≥ p1/2

c2m
or335

i2,b(X) = 0.336

Along with Lemma 7 we prove that, with good probability, the neuron with the maximum337

potential below τ in each bucket differs for any two far inputs.338

I Lemma 8 (Low Collision Probability – Far Inputs). Let X1, X2 ∈ {0, 1}n be two vectors339

with ‖X1‖ = ‖X2‖ = p 2 and RD(X1, X2) ≥ ∆. Assume that p ≥ c for some sufficiently340

large constant c. Consider our construction with bucket size m = c1 log(1/∆)√
∆

. Then for341

sufficiently large constants c1, c2, for any b ∈ [`], defining i1,b(·) and i2,b(·) as in Lemma 7,342

with probability ≥ 0.9165:343

i1,b(X1) 6= i1,b(X2).344

For both j = 1, 2: i1,b(Xj) 6= 0, [AbXj ](i1,b(Xj)) ≥ p, and345

[AbXj ](i1,b(Xj))− [AbXj ](i2,b(Xj)) ≥ p1/2

c2·m or i2,b(Xj) = 0.346

See Appendix A for the complete proof of Lemma 8. Intuitively, if X1 and X2 each347

have Hamming weight p and relative distance ∆ they differ on Ω(∆p) entries. If just the348

shared entries of these vectors fired as inputs, by Lemma 5 each intermediate neuron in349

the bucket of size m would have its potential distributed roughly uniformly in a range of350

width O([(1 − ∆)p]1/2) = O(p1/2). On average these potentials would be spaced out by351

O(p1/2/m). By setting m = Õ(1/
√

∆) we have average spacing Õ(∆1/2p1/2). This is a small352

enough spacing, so that when we consider the Ω(∆p) non-shared neurons in the inputs, their353

contribution to the potential will be large enough to significantly reorder the potentials of354

the intermediate neurons, so that the neuron with maximum potential is unlikely to be the355

same for the two different inputs.356

From Lemma 8 we can show that our network satisfies the distance preserving dimen-357

sionality reduction guarantee of Definition 4, along with the additional condition that the358

gap between the membrane potentials of the neurons with the largest potentials under359

τ = p+ 2p1/2 is sufficiently large, so that these neurons can be distinguished reliably in the360

second sparsification layer:361

I Corollary 9 (Overall Success – Far Inputs). For m = O
(

log(1/∆)√
∆

)
, and ` = O(log(tm/δ)),362

for any window of tm rounds, with probability ≥ 1−δ, for all pairs of inputs X1, X2 presented363

during these rounds with RD(X1, X2) ≥ ∆, on at least 91/100 · ` of the ` buckets, letting364

τ = p+ 2p1/2 and defining i1,b(·) and i2,b(·) as in Lemma 7:365

i1,b(X1) 6= i1,b(X2)366

For both j = 1, 2: i1,b(Xj) 6= 0, [AbXj ](i1,b(Xj)) ≥ p, and367

[AbXj ](i1,b(Xj))− [AbXj ](i2,b(Xj)) = Ω
(
p1/2

m

)
or i2,b(Xj) = 0.368

2 When X is binary we often drop the subscript and just use ‖X‖ to denote the `1 norm which is equal
to the number of nonzero entries, | supp(X)|.
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Proof. By Lemma 8 and a Chernoff bound, since ` = Θ(log(tm/δ)) = Θ(log(t2m/δ)), for any369

fixed pair of inputs with RD(X1, X2) ≥ ∆, the conditions hold on at least 91/100 · ` buckets370

with probability ≥ 1− δ/t2m. The corollary follows since at most tm inputs can be presented371

in tm rounds, and so we can union bound over at most t2m pairs of far inputs. J372

We can give a complementary statement to Lemma 8: if X1 and X2 are close to each373

other, it is relatively likely that the index of the largest value of AbX1 and AbX2 are the374

same. We defer the proof to Appendix A.375

I Lemma 10 (High Collision Probability – Close Inputs). Let X1, X2 ∈ {0, 1}n be two vectors376

with RD(X1, X2) ≤ ∆/α. Consider our construction with bucket size m = c1 log(1/∆)√
∆

. Then377

for sufficiently large constants c1, c2 and α = O(log(1/∆)4), for any b ∈ [`], defining i1,b(·)378

and i2,b(·) as in Lemma 7, with probability ≥ 0.97:379

i1,b(X1) = i1,b(X2).380

For both j = 1, 2: i1,b(Xj) 6= 0, [AbXj ](i1,b(Xj)) ≥ p, and381

[AbXj ](i1,b(Xj))− [AbXj ](i2,b(Xj)) ≥ p1/2

c2·m or i2,b(Xj) = 0.382

Lemma 10 yields an analogous corollary to Corollary 9, which follows via a Chernoff383

bound and a union bound over at most t2m pairs of close inputs that may be presented over384

tm rounds.385

I Corollary 11 (Overall Success – Close Inputs). For m = O
(

log(1/∆)√
∆

)
, ` = O(log(tm/δ)),386

and α = O(log(1/∆)4), for any window of tm rounds, with probability ≥ 1− δ, for all pairs of387

inputs X1, X2 presented during these rounds with RD(X1, X2) ≤ ∆/α, on at least 96/100 · `388

of the ` buckets, letting τ = p+ 2p1/2 and defining i1,b(·) and i2,b(·) as in Lemma 7:389

i1,b(X1) = i1,b(X2)390

For both j = 1, 2: i1,b(Xj) 6= 0, [AbXj ](i1,b(Xj)) ≥ p, and391

[AbXj ](i1,b(Xj))− [AbXj ](i2,b(Xj)) = Ω
(
p1/2

m

)
or i2,b(Xj) = 0.392

4 Layer 2: Sparsification via Winner Takes All393

Corollaries 9 and 11 show that the random projection step preserves significant information394

about input distance, encoded in the membrane potentials of the intermediate neurons, which395

correspond to the entries of AX when the network is given input X. These membrane396

potentials cause the intermediate neurons to fire randomly, as Bernoulli processes with397

different rates. The goal of our second layer is to convert this random behavior to a uniquely398

identifying sparse code for each input. We achieve this through a winner-takes-all (WTA)399

based sparsification process, which is thought to play a major role in neural computation400

[26, 14, 37]. A separate winner-take-all instance is applied to each bucket, ‘selecting’ the401

neuron with the highest membrane potential below τ by inducing its corresponding neuron402

in the sparsification layer to fire with high probability while all other neurons in the bucket403

do not fire.Let Y ∈ Rm denote the vector of membrane potentials of a single bucket of the404

intermediate layer: Y = AbX. Our WTA layer maps each Y into a binary unit-vector Z of405

the same length, in which the only firing neuron corresponds to the neuron with the largest406

potential in Y that is bounded by the threshold parameter τ . As explained in Section 3, the407

random projection step produces ` = O(log(tm/δ)) random compressed vectors, one for each408

of the ` buckets. Each such copy is an input to an independent WTA circuit and thus, in409

this section, we focus on our construction restricted to just a single bucket, bearing in mind410

that in fact our network consists of ` repetitions of this module.411
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The first part of the WTA circuit is devoted to reading: the circuit collects firing statistics412

for a period of T = Õ(m2) rounds to obtain a good estimate of the neuron in the bucket413

that 1) has potential ≤ τ and 2) has the largest firing rate. This neuron corresponds to the414

neuron with the highest potential in Y bounded by τ . This is done by augmenting each415

neuron i in the bucket with a directed chain Hi of neurons of length T . The jth neuron in416

the chain triggers the firing of the (j+ 1)th neuron with high probability. As a result, after T417

rounds, the number of firing neurons in the chain Hi is equal to the number of times i fired418

within the last T rounds, with high probability. We thus refer to this Hi chain as the history419

chain of the ith neuron in the bucket. The second part of the circuit first excludes all neurons420

with potential ≥ τ and then applies a standard WTA circuit to pick the neuron remaining421

that fires the most in this T -length time interval. See Fig. 2 for an illustration of the overall422

clustering network and the WTA module. The main result of this section is as follows.423

I Lemma 12. For every pair of input patterns Xi, Xj presented over a period of tm rounds,424

with probability at least 1− δ the following hold:425

(I) If RD(Xi, Xj) ≥ ∆, then supp(Zi) \ supp(Zj) ≥ 0.9 · `.426

(II) If RD(Xi, Xj) ≤ ∆/α, then supp(Zi) ∩ supp(Zj) ≥ 0.9 · `.427

We first give a detailed description of the specification step via WTA (see Figure 2). We428

focus on a single bucket, bearing in mind that in fact our network consists of ` repetitions of429

this module.430

431

Reading via History Chain. Every neuron i ∈ {1, . . . ,m} in the bucket is connec-432

ted to a chain Hi of length T = Θ(log(1/δ) ·m2) of neurons where the jth neuron in this433

chain fires in round t with high probability iff its incoming neighbor on that chain fires in434

round t− 1. This is done by setting the bias value of each neuron to 1 and the edge weights435

to be 1/2. As a result we get that the number of firing neurons in this chain equals to the436

number of times i fires within the last T rounds with high probability.437

438

Omitting the Neurons Exceeding the Threshold Value. For every neuron i ∈439

{1, . . . ,m} we introduce an inhibitor copy ri that has the same incoming weights as i440

and therefore also has the same potential. We set the bias of ri such that with high probabil-441

ity it fires iff its potential exceeds the threshold value τ . We then connect ri to all neurons442

in the chain Hi with large negative weight. As a result, if the potential of neuron i exceeds τ443

with high probability all neurons in Hi will not fire.444

445

Selecting the Maximum Firing Rate with Pairwise Comparisons. For every ordered446

pair of neurons i, j ∈ [1,m], we have a designated (threshold gate) neuron yi,j that fires iff447

the ith neuron in the bucket fires more than the jth neuron within the last T rounds. To448

accomplish this, each of the neurons in the chain Hi (respectively, Hj) is connected to yi,j449

with a positive (respectively, negative) edge weight of ±1. Hence, the total weighted sum450

incoming to yi,j is exactly the difference between R(i) and R(j) where R(i), R(j) are the451

number of times that the ith and jth neurons fired in the last T rounds. We set the bias of452

yi,j such that it fires with high probability iff R(i) − R(j) ≥ 1. The ith output neuron in453

Z computes the AND-gate of the threshold-gates yi,1, . . . , yi,m. That is, zi fires in round t454

only if every yi,1, . . . , yi,m fired in round t− 1. The AND-gate can be implemented by set-455

ting the incoming edge weight from each yi,j to zi to be 1/m, and the bias of Zi to 1−1/(2m).456

457

Analysis. The requirement from the WTA module is that the firing frequency vector458

R has its largest entry in the same position as the largest entry of Y that is ≤ τ . If this is the459
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case, the WTA circuit indeed selects the neuron corresponding to the largest firing rate ≤ τ ,460

and the only entry in the support of Z is the one corresponding to this entry. For the largest461

entry in R to reflect the largest entry in Y ≤ τ with probability ≥ 1− δ, the gap between the462

largest and second largest firing rates must be Ω
(√

log(1/δ)/T
)
. Using the gap condition of463

Corollary 9 we will show that this gap is Ω(1/m), letting us set T = O(log(1/δ) ·m2). The464

desired gap is achieved in a large fraction of the buckets, this implies that the WTA picks465

the maximal entry in most of the buckets as well.466

B Claim 13. Let Y be a vector with i = arg maxj:Y (j)≤τ Y (j) and Y (i)− Y (j) = Ω(p1/2/m)467

for every3 j 6= i with Y (j) ≤ τ . Then in the output vector Z, Z(i) = 1 and Z(j) = 0 for468

every j 6= i with probability at least 99/100. If Y is first introduced in round t, the desired469

output vector Z fires in round t+ T + 2 w.h.p.470

The proof of Claim 13 and the complete proof of Lemma 12 is given in Appendix B.471

R
an

d
o

m
 

P
ro

je
ct

io
n

s

…

ത𝑋

𝑅1( ത𝑋)

𝐻𝑖

R
ea

d
in

g
W

TA 𝑅2( ത𝑋)

Sequential mapping 
and memory mechanism

𝑅∗( ത𝑋)
1 𝑘2 …

𝑅1( ത𝑋) 𝑅1( ത𝑋)

𝑅2( ത𝑋) 𝑅2( ത𝑋)

𝐻1

𝑧1 𝑧2 𝑧3

𝑦2,1 𝑦2,3

𝑦1 𝑦2 𝑦3

𝐻2

𝐻3

ത𝑌

ҧ𝑍

Figure 2 Left: Overall network description, the input pattern X is mapped to unique output
neuron in [1, k] via three main steps. Right: Description of the WTA circuit. For clarity we only
show the connections for the second output neuron, but same holds for all k output neurons. Every
input neuron i in Y is connected to a history chain Hi of length T that is used to collect firing
statistics. For each pair of input neurons i, j, there is a threshold gate qi,j that fires only if i fired
at least T/2m more times than j within T rounds. Each history neuron in Hi, Hj is connected
with weight 1 (respectively −1) to qi,j and the bias of qi,j is T/2m. Finally, each output neuron qi
computes the AND gate of qi,1, . . . , qi,m, i.e., fires only if all these gates fire in the previous round.
As a result a winner qi is selected only if yi − yj = Ω(1/m) for every j 6= i.

5 Layer 3: Sequential Mapping472

We conclude by discussing the final sequential mapping layer of our network, which maps473

the binary patterns Zi of length r = O(` ·m) to a single output neuron. The inputs to the474

third layer are the r neurons Z = {z1, z2, . . . , zr} and its outputs are the k output neurons475

Q = {q1, q2, . . . , qk}. The r-length patterns will be mapped to their unique output neuron in476

a sequential manner, where at each given round, a newly introduced pattern will be mapped477

to the available output with the smallest index. The mapping will satisfy the following478

properties: (1) patterns Zi, Zj that correspond to far input patterns Xi, Xj respectively will479

3 This required gap is based on Lemma 7/Corollary 9.
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Figure 3 Schematic description.

be mapped to distinct outputs, (2) patterns Zi, Zj that correspond to close input patterns480

presented within the same time window of Θ(tm) rounds will be mapped to the same outputs.481

Recall that tm is the memory duration which is a parameter of the network. A key component482

in our network is the memory module that remembers the association between each previously483

introduced pattern and its selected output for Θ(tm) rounds. Roughly speaking, our network484

has two intermediate layers: an association layer and a memory layer (see Figure 3), which485

we describe below.486

We first describe the construction by considering the case where a new pattern Z is487

introduced (and no close pattern to it was introduced before). When Z is presented to488

the network for the first time, it activates the association layer which contains r neurons489

ai,1, . . . , ai,r for each output qi. Let supp(Z) be the non-zero entries of Z. Since4 | supp(Z)| ≤490

` it can activate at most ` · k many neurons ai,j for every j ∈ supp(Z) and i ∈ {1, . . . , k}.491

Every output qi is connected to its association neurons ai,1, . . . , ai,r and fires only if many of492

them fire.493

Our construction will make sure that the number of active association neurons of a taken494

output (i.e., output already mapped to other pattern, far from Z) will be small, which will495

prevent the firing of these outputs when a far pattern is presented. This will be provided496

due to the memory module appended to each output qi which remembers the pattern (in497

fact the cluster of patterns) that were mapped to qi in the past. For each j in the support498

of the pattern associated with qi, the memory module corresponding to qi and zj inhibits499

all other association neurons associated with qi, while activating the association aij . This500

association will be remembered – by the memory module – for at least c1 · tm rounds and at501

most c2 · tm rounds, for c1 < c2 with high probability.502

For every available output qi, all its association neurons ai,j for j ∈ supp(Z) will start503

firing once Z is presented, which will in turn activate qi. To select exactly one output neuron504

among all the available ones, the output layer is connected via a lateral inhibition, where505

every neuron qi inhibits all qj for j ≥ i+ 1.506

Overall, our sequential mapping module satisfies:507

I Theorem 14 (The Sequential Mapping Module). There exists a sequential mapping module508

with r input neurons, Θ̃(r · k) auxiliary neurons, and k output neurons that for every pattern509

Z that is introduced in round t satisfy the following with probability 1− δ:510

(1) The pattern Z is mapped to one of the outputs q1, . . . , qk in round t+ 6.511

(2) Any pair of close patterns Z,Z ′ introduced within a span of c1 · tm rounds are mapped512

to the same output neuron.513

4 As the WTA module picks at most one winning entry in each of the ` buckets.
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(3) Any pair of far patterns Z,Z ′ introduced within a span of c1 · tm rounds are mapped to514

different output neurons.515

In addition, if a pattern Z (or a pattern close to it) is not introduced for tm rounds, then its516

unique mapped output qj is released after c · tm rounds, for some constant c ≥ 1.517

5.1 Complete Network Description of the Sequential Mapping518

Next we precisely describe the neurons and edge weights of the sequential mapping sub-519

network.520

521

The association layer. For each neuron zi in the input layer, and each neuron qj in522

the output layer, we introduce an association neuron denoted as aj,i. The neuron aj,i has523

positive and negative incoming edges from the memory modules that is described in the next524

paragraph. It also has a positive incoming edge from the neuron zi with weight w(zi, aj,i) = 2`,525

and bias β(aj,i) = (19/10)`−1. We set the connections to this neuron in a way that guarantees526

it fires only if zi fired in the previous round, and no other (far) pattern is already mapped to qj .527

528

The memory modules. For each neuron zi in the input layer and output neuron qj529

we introduce a memory of association module Mj,i which remembers the association of530

neuron zi and qj . The memory module Mj,i contains c · log( 1
δ′ ) excitatory neurons denoted531

as M+
j,i where δ′ = δ/` and c is chosen to be a sufficiently large constant. For every m ∈M+

j,i532

we introduce a feedback neuron fm which starts exciting m once the memory module is being533

activated.In addition, we introduce a delay chain CMj = C5(qj) that starts at the output qj534

and ends at each of the neurons m ∈M+
j,i. Finally, the memory module contains two head535

neurons, an excitatory neuron m+
j,i and an inhibitory neuron m−j,i.536

Each excitatory neuron m ∈M+
j,i has positive incoming edges from aj,i, qj , C

M
j , as well

as from the corresponding feedback neuron fm with the following weights and bias

w(aj,i,m) = 2λ, ∀u ∈ CMj w(u,m) = 2 , w(fm,m) = λ · (χ+ 2) + 9 β(m) = 9 + 2 · λ ,

where χ = log(tm − 1). Note that if the feedback neuron fm fired in the previous round, the537

memory neuron m fires with probability at least 1
1+e−χ = 1− 1/tm. The feedback neuron538

fm for m ∈ M+
j,i has positive incoming edges from m and m+

j,i with weights w(m, fm) =539

2 , w(m+
j,i, fm) = 2 , and bias β(fm) = 3 . Hence, w.h.p. fm fires iff m and m+

j,i fired in540

the previous round. The excitatory head neuron m+
j,i has positive incoming edges from all541

m ∈M+
j,i with weights w(m,m+

j,i) = 2 and bias β(m+
j,i) = c · log(1/δ′) + 1. The head neuron542

m−j,i is an inhibitory copy of m+
j,i with the same incoming edges, bias and potential function.543

Each association neuron aj,i has a positive incoming edge from the head memory neuron544

m+
j,i with weight w(m+

j,i, aj,i) = `. In addition, aj,i has negative incoming edges from the in-545

hibitory memory neurons m−j,i′ for every i′ = {1, 2, . . . k}\{i} with weights w(m−j,i′ , aj,i) = −1.546

Note that w.h.p. aj,i fires in round t only if zi = 1 in round t − 1. In case where there547

are at least 1/10` memory modules mj,i′ that inhibit aj,i, it fires only if its own memory548

module, namely, Mj,i is active. To prevent a situation of partial memory where only part of549

the memory modules associated with a pattern are released, if at most 0.9` of the memory550

modules Mj,1, . . . ,Mj,r are active, we activate the inhibition of these firing modules. For551

that purpose, for every output qj , we introduce 3 deletion neurons d1
j , d

2
j , d

3
j . The neurons552

d1
j , d

2
j detect this situation and the inhibitor d3

j kills the partial memory. The deletion neuron553

d1
j has incoming edges from all head neurons m+

j,i for i = 1 . . . r with weights w(m+
j,i, d

1
j ) = 2554

and bias β(d1
j ) = 1. Hence, w.h.p. d1

j fires in round t iff at least one memory module fired555

in round t− 1. The second deletion neuron has incoming edges from all the inhibitor head556



Y.Hitron, N.Lynch, C.Musco and M.Parter 23:15

neurons m−j,i for i = 1 . . . r with weights w(m−j,i, d2
j ) = −1 and bias β(d2

j ) = −0.9`+ 1. Thus,557

w.h.p. d2
j fires in round t iff at most 0.9` memory module fired in round t− 1. The third558

deletion neuron d3
j has incoming edges from d1

j and d2
j with weights w(d1

j , d
3
j ) = w(d2

j , d
3
j ) = 2559

and bias β(d3
j) = 3. Hence, d3

j fires in round t iff d1
j and d2

j fired in round t − 1. In560

addition, the head neurons m+
j,i,m

−
j,i have a negative incoming edge from d3

j with weight561

w(d3
j ,m

+
j,i) = w(d3

j ,m
−
j,i) = −2c log(1/δ′).562

563

History neurons. If an input pattern Z is already mapped to an output neuron, our564

goal is to map every pattern close to Z to the same output. To make sure that close patterns565

Z,Z ′ are indeed mapped to the same output, for each output neuron qj we introduce an566

inhibitory history neuron hj . The role of the history neuron is to take care of a situation567

where a pattern Z is mapped to output qj , but when a close pattern Z ′ is presented later on,568

an output qi for i < j is free. Recall that in our construction, each pattern is mapped to569

the first available output. To do that, the network parameters of the history neurons are570

defined as follows. Each history neuron hj has positive incoming edges from all associated571

excitatory memory neurons m+
j,i for i = 1 . . . r with weights w(m+

j,i, hj) = 1. In addition, it572

has a positive incoming edge from the output neuron qj with weight w(qj , hj) = ` and bias573

β(hj) = −(3/2)` − 1. Thus, the history neuron hj fires if the output neuron qj fired and574

at least a large fraction of the memory modules corresponding to qj are active (the latter575

indicates that qj is indeed taken). The history neuron hj then inhibits all the preceding576

output neurons q1, . . . , qj−1, preventing the input pattern from being mapped to a different577

output.578

579

The output layer. The output layer Q consists of excitatory neurons. In order to map580

the input pattern sequentially, for each qj ∈ Q we introduce an inhibitor output neuron q−j581

which inhibits the output neurons qj′ for j′ ∈ {j + 1, . . . , k}. The neuron qj is connected to582

q−j via a delay chain of length 3 denoted as CIj = C3(qj). The neuron q−j has incoming edges583

from CIj with weights 2, and a negative bias of β(q−j ) = 5. Hence, w.h.p. q−j fires iff qj fired584

for 3 consecutive rounds.585

Each output neuron qj has positive incoming edges from the association neuron aj,i for
every i = {1, 2, . . . k}. In addition, qj has negative incoming edges from all preceding neurons
q−i for i < j and all successive history neurons hi where i > j. The weights and bias are
given by

w(aj,i, qj) = 2 ∀i ∈ [r], w(q−i , qj) = −3` ∀i < j, w(hi, qj) = −3` ∀i > j, β(qj) = `− 1

Note that qj fires in round t only if at least (1/2)` association neurons fired in round t− 1,586

and no history or inhibitor output neuron inhibit it.587

As in previous sections, we assume that before the first round no neuron fires (i.e v0 = 0588

for every neuron v in the network). Figure 4 illustrates the structure of the network and589

Figure 5 demonstrates the network flow with two inputs.590

5.2 Network Dynamics591

Before providing the detailed analysis of the network, we give a more detailed description592

of the network behavior in the two orthogonal cases: mapping close patterns to the same593

output and mapping far patterns to distinct outputs.594

595

Introduction of a New Pattern Xj. A pattern Xj is introduced in round t where596

q1, . . . , qj−1 are already allocated. We will describe how Xj is mapped to qj . First, in Step597

CVIT 2016



23:16 Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks

Compressed Input

Association 

Output

Memory

𝑧𝑖

𝑞𝑗

𝑎𝑖𝑗

𝑀𝑖𝑗

𝑚𝑖𝑗
+ 𝑚𝑖𝑗

−

𝑚

𝑓𝑚

𝑀𝑖𝑗
+

The Memory Module 𝑴𝒊𝒋

Figure 4 Left: an illustration of the network. The green edges correspond to edges with positive
weight where the red edges correspond to negative weights. For simplicity we omitted the history and
deletion neurons as well as the rest on the association and memory modules. Right: The memory
module and the feedback loop mechanism.

(1), Xj is mapped to a vector Y j = R1(Xj). In Step (2), Y j is mapped to a binary vector598

Zj which is the input to the sequential mapping sub-network. Let t′ be the time in which599

Zj fires. This will cause the firing of the association layer in the following manner. Let600

X1, . . . , Xj−1 be the patterns mapped to q1, . . . , qj−1.601

For every allocated neuron qi, i ≤ j − 1, and every entry i1 ∈ supp(Zj) \ supp(Zi), their602

association neuron ai,i1 is inhibited by the memory modules Mi,i2 for every i2 ∈ supp(Zi).603

Thus, for every allocated neuron qi, when introducing Zj , at most | supp(Zi)∩supp(Zj)| ≤604

0.1 · ` association neurons ai,j′ are active.605

Since an output qi fires only if at least 1/2` association neurons are active, qi would not606

fire.607

For every free output qi for i ∈ {j, . . . , k}, all the association neurons ai,i1 for every608

i1 ∈ supp(Zj) are now active. Hence, in the next round, all qj , . . . , qk fire.609

Since we have a lateral inhibition, qj inhibits5 all other qi for i ∈ {j + 1, . . . , k}.610

Only at the point where qj+1, . . . , qk are inhibited, the memory modules Mj,i1 of the611

winner output qj start being active, for every i1 ∈ supp(Zj). This memory module612

continues firing from that point on for Θ(tm) rounds, even when Xj is not introduced.613

Each activated module Mj,i1 for every i1 ∈ supp(Zj) inhibits each of the other association614

neurons aj,i2 for every i2 6= i1. In addition, each Mj,i1 excites its own association neuron615

aj,i1 for i1 ∈ supp(Zj), thus canceling the inhibition from the other Mj,i2 modules. As a616

result, the only inhibited association neurons are aj,i2 for i2 /∈ supp(Zj).617

Re-Introduction of a Close-Pattern Xj. We now consider the situation where Xj is618

introduced in round t, and a close-pattern Xj′ was introduced in the past (e.g., in a window619

of Θ(tm) rounds). We would like to show that Xj will be mapped to the exact same output620

neuron qj′ as Xj′ .621

For every allocated neuron qi and every entry i1 ∈ supp(Zj) \ supp(Zi), their association622

neuron ai,i1 is inhibited by the memory modules Mi,i2 for every i2 ∈ supp(Zi).623

Thus, for every allocated neuron qi for i 6= j′, when introducing Zj , at most | supp(Zi) ∩624

supp(Zj)| ≤ 0.1 · ` association neurons ai,i1 are active. As a result, qi1 will not fire.625

In contrast, for the desired output neuron qj′ , only | supp(Zj) \ supp(Zj′)| association626

neurons are inhibited, while the remaining ones, namely, aj′,i1 for i1 ∈ supp(Zj)∩supp(Zj′)627

are active. Since | supp(Zj) ∩ supp(Zj′)| is sufficiently large, qj′ will fire.628

5 In fact, its inhibitor copy will do this inhibition.
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Figure 5 Left: network’s state where first pattern (1, 1, 0) is presented. Since all outputs are
free at that point, the pattern is mapped to the first output q1, which activates all its memory
modules. Right: network description when the second input (1, 0, 1) is presented. Because the
memory modules M1,1 and M1,2 are active, the association neuron a1,3 is inhibited and this q1 will
not fire. As a result, (1, 0, 1) is mapped to q2, activating corresponding memory modules M2,1 and
M2,3.

Due to lateral inhibition of qj′ , all other free outputs qi′ for i′ ≥ j′ + 1 will not fire.629

It remains to show that all other free outputs qi for i ≤ j′ − 1 will not be active. Recall630

that these outputs have a lateral inhibition on qj′ that starts inhibiting qj′ within a631

small number of rounds since the activation of qi. It is therefore important to neutralize632

these outputs before their inhibition on qj′ comes into play. Indeed this is the reason for633

introducing the delay to the lateral inhibition mechanism.634

To indicate the fact that qj′ was already allocated to a pattern close to Xj , we have a635

history neuron hj′ that works as follows. It gets input from all the memory modules of636

qj′ , as well as from qj′ itself. Since the close patterns Xj and Xj′ have many entries in637

common, sufficiently many memory modules of qj′ will activate hj′ . For a free output638

qi for i ≤ j′ − 1, the memory modules of qi are not active and hence the history neuron639

would not be active.640

The history neuron hj′ then inhibits all prior outputs qi for i ≤ j′ − 1 just before their641

lateral inhibition chain affects qj′ . In addition, the inhibition on qi also occurs before the642

memory modules of qi start being active. That is, since we want to remember only the643

association to the correct output qj′ , we delay the activation of the memory model. The644

latter starts only after qj′ fires for a consecutive constant number of rounds.645

5.2.1 Correctness646

The following definitions are useful in our context.647

I Definition 15. A pattern Z is mapped to an output neuron qj in round t if when presenting648

Z to the sequential mapping network in round t− 1, qj is the only firing output neuron in649

round t.650

I Definition 16. Mj,i is active in round t, if its head neurons m+
j,i, m

−
j,i fired in round t.651

In order to prove the main Theorem 14, we start by establishing useful auxiliary claims652

and observations.653

B Observation 17. For every output neuron qj if the number of active memory modules Mij654

in round t is between 1 and 0.9`, then w.h.p. there are no active memory modules in round655

t+ 3.656
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Proof. For output neuron qj if the number of active memory modules Mij in round t is at657

least 1 w.h.p. the deletion neuron d1
j fires in round t+ 1. If the number of active memory658

modules Mij is also less than 0.9` then w.h.p. d2
j fires in round t+ 1 and therefore d3

j fires in659

round t+ 2, inhibiting all memory modules Mij for i = 1, . . . , r. J660

B Observation 18. Given that the deletion neurons of output qj did not fire in round t− 1,661

w.h.p. a memory module Mj,i is active in round t iff at least (c/2) log(1/δ′) neurons m ∈M+
j,i662

fired in round t− 1.663

Proof. Recall that a memory module Mj,i is active in round t if the excitatory neuron m+
j,i

fired. The potential function of m+
j,i is given by

pot(m+
j,i, t) =

∑
m∈M+

j,i

2 ·mt−1 − 2c log(1/δ′)(d3
j )t−1 − c log(1/δ′) + 1 .

If at least c
2 log(1/δ′) neurons in M+

j,i fired in round t−1, the potential of m+
j,i in round t is at664

least 1 and the probability that m+
j,i fire in round t is at least 1

1+e−1/λ ≥ 1−Θ( δ
n·k·∆·tm·log 1/δ ).665

On the other hand, if less than c
2 log(1/δ′) neurons inM+

j,i fired, the potential ofm
+
j,i is at most666

−1 and the probability that m+
j,i fired in round t is at most 1

1+e1/λ ≤ Θ( δ
n·k·∆·tm·log 1/δ ). J667

B Claim 19. If Z1, Z2 are close and Z2, Z3 are close, then Z1, Z3 are close.668

Proof. Let X1, X2, X3 be the corresponding input patterns, where Zi = R2(Xi) for i ∈669

{1, 2, 3}. By the definition of the clustering instance, every pair of patterns Xi, Xj are either670

with relative distance at least ∆/2 (i.e., if these patterns belong to different clusters), or have671

relative distance at most ∆/α (i.e., if they belong to the same cluster) for α = Ω(log(1/∆)).672

By Lemma 12, input patterns Xi, Xj that belong to different (resp., same) clusters are673

mapped to far (resp., close) vectors Zi, Zj . We therefore have that X1, X2 are in the same674

cluster, and also X2, X3 are in the same cluster, concluding that X1, X2, X3 are all in the675

same cluster. J676

B Claim 20. For every j ∈ [k] and i ∈ [`] w.h.p. the memory module Mj,i is active in round677

t given that it was not active in round t− 3, only if CMj and aj,i fired in round t− 2.678

Proof. By Observation 18 Mj,i is activated in round t only if at least (c/2) log(1/δ′) neurons679

m ∈M+
j,i fire in round t− 1. Since Mj,i was not active in round t− 3 all feedback neurons680

fm for m ∈M t
j,i was not active in round t− 2 and the potential of each m ∈M+

j,i in round681

t− 1 is
∑
u∈CM

j
2 · (u)t−2 + 2λ · (aij)t−2 − 9− 2λ. Hence, if CMj and aj,i fired in round t− 2,682

in the next round the potential of each m ∈ M+
j,i is at least 1 and m fires in round t − 1683

with probability at least 1 − Θ( δ
n·k·∆·tm·log 1/δ ). Thus, by Chernoff bound w.h.p. at least684

(c/2) log(1/δ′) neurons m ∈M+
j,i fired in round t− 1.685

On the other hand if CMj and aj,i did not fire together in round t− 2, the potential of686

every m ∈ M t
j,i in round t − 1 is at most −2λ and m fires with probability at most 1

1+e2 .687

Using Chernoff bound and choosing c to be sufficiently large, we conclude that (c/2) log(1/δ′)688

neurons m ∈M+
j,i fire in round t− 1 with probability at most δ′. J689

B Observation 21. For every output qj at each round w.h.p. the number of memory modules690

Mj,i that are active is at most `.691

Proof. Since every pattern has at most ` non zero entries, in each round at most ` association692

neurons aj,i fire. By Claim 20, at each round at most ` memory modules Mj,i are activated693
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for the first time. If in round t− 3 more then 0.1` memory modules were active, the only694

association neurons firing in round t− 2 correspond to the activated memory modules and695

therefore w.h.p. no new modules are activated in round t. Else, by Observation 17 w.h.p.696

the deletion neuron d3
j kills the active memory modules and no memory module is active in697

round t. J698

Using the same arguments, since the deletion neurons erase the partial memory, we can also699

conclude that for every output neuron all its active memory modules correspond to the same700

input pattern.701

B Observation 22. For each output neuron qi in each round if it has active memory modules,702

there exists an input pattern Z s.t if Mi,j is active then j ∈ supp(Z).703

B Claim 23. If Z is mapped to qj in round t, with probability greater than 1− δ at least 0.8`704

memory modules Mj,i where i ∈ supp(Z) are active for c1 · tm consecutive round starting705

from round t+ 8.706

Proof. Let Z be a pattern mapped to qj in round t. Recall that we assume persistence and707

therefore w.h.p. Z is also mapped to qj in rounds t+ 1 to t+ 8.708

First we argue that at least 0.8` of the association neurons aj,i for i ∈ sup(Z) fire in709

round t+ 6. From Observation 17 either there where no memory modules corresponding710

to qj active before Z was introduces or at least 0.9` 6. If there where no memory modules711

active, all association neurons aj,i for i ∈ sup(Z) fire starting round t+ 1 ahead as long712

as Z persist. Otherwise, since qj fired in round t + 7, we conclude that at least 0.5`713

association neurons aj,i fired in round t + 6. The association neurons that fired are714

from the support of Z and together with Observation 22 we conclude that the pattern715

previously mapped to qj is close to Z and at least 0.8` association neurons fired in rounds716

t+ 6 (due to Lemma 12).717

For i ∈ sup(Z) for which aij fired in rounds t+ 6, we now calculate the probability that
Mij is active in round t+ 8. By Observation 18 its enough to calculate the probability
that at least (c/2) log(1/δ′) neurons m ∈M+

j,i fired in round t+ 7. The potential function
of every m ∈M+

j,i is given by

pot(m, t) =
∑
u∈CM

j

2 · (u)t−1 + 2λ · (aij)t−1 + (9 + λ · (2 + χ)) · (fm)t−1 − 9− 2λ .

Since qj fires in rounds t to t + 7, the delay chain CMj fired in round t + 6, and the718

probability m fires in round t+ 7 is at least 1−Θ( δ
n·k·∆·tm·log 1/δ ). Using Chernoff bound719

with probability greater than 1 − δ/3` at least c log(1/δ′)
2 neurons in Mj,i fire in round720

t+ 7 and the head memory neuron m+
j,i fires in round t+ 8.721

Next we calculate the probability that m ∈M+
j,i fires c1tm consecutive rounds starting722

round t+ 8 given that m+
j,i fires in round t+ 8. Since m+

j,i fired in round t+ 8, for every723

m ∈M+
j,i that fired in round t+8, the feedback neuron fm is activated in round t+9 andm724

fires in round t+10 with probability at least 1−1/tm. Hence, the probabilitym ∈M+
j,i fires725

in rounds t+8, t+9 and c1tm consecutive rounds is at least (1−Θ( δ
n·k·∆·tm·log 1/δ ))2 ·( 1

ec1 ).726

We chose c1 such that this is greater than 1/2. Thus, using Chernoff bound and a large727

enough c (depending on c1) the probability that at least c log(1/δ′)
2 neurons m ∈M+

j,i fire728

in rounds t+ 8, t+ 9 and then for c1tm consecutive rounds is at least 1− δ′/3 = 1− δ/3`.729

6 up too ±3 rounds, but since we assume persistence its ok.
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Summing things up, the probability Mj,i is active for c1 · tm consecutive rounds from
round t+ 8 ahead is at least the probability that m+

j,i fired in round t+ 8 and c log(1/δ′)
2

neurons in M+
j,i fires c1tm consecutive rounds starting round t+ 8. By union bound this

probability is greater than
1− 3 · (δ/3`) = 1− δ/`.

Thus, we conclude that the probability all 0.8` modules Mj,i s.t aj,i fired in round t+ 6 are730

active for c1 · tm consecutive rounds is greater than 1− δ.731

J732

We are now ready to prove the correctness of the sequential mapping step.733

Proof of Theorem 14734

Proof. We start by proving the 3 main properties of the network. Given a pattern Z735

introduced in round t we will show:736

(1) Z is mapped to one of the outputs q1, . . . , qk in round t+ 6737

(2) For any pattern Z ′ which is close to Z and was introduced within a span of c1 · tm738

rounds from t, Z and Z ′ are mapped to the same output neuron.739

(3) For any pattern Z ′ which is far from Z and was introduced within a span of c1 · tm740

rounds from t, Z and Z ′ are mapped to a different output neuron.741

By induction on the order of arrival of the patterns. Let Z be the first pattern arrived in
round 0. We show that Z is mapped to the first (available) neuron q1 in round 6. For every
i ∈ sup(Z) the potential function of the association neuron a1,i is given by:

pot(a1,i, t) = 2`(zi)t−1 + `(m+
1,i)

t−1 −
∑
j 6=i

(m−1,j)
t−1 − (19/10)`− 1 .

Since Z is the first pattern seen, no neuron has fired in round zero and pot(a1,i, 1) =742

(1/10)`− 1 > 1, and w.h.p. each a1,i for i ∈ sup(Z) fires in round 1.743

Since q1 is the first output, no preceding output neuron inhibits it, and its potential is:

pot(q1, t) =
r∑
i=1

(2 · a1,i)t−1 −
k∑
i=2

3`hi − `+ 1 .

By Claim 13, w.h.p. each input pattern Z (to the sequential mapping network) has at744

least 0.98` non-zero entries (and at most `). Therefore, at least 0.98` association neurons745

a1,i excite q1 in round 2. Recall that the history neurons hi fire only if at least 1/2 of the746

corresponding memory modules are active in the previous round. Hence w.h.p. in round 1,747

no history neuron fires.748

We conclude that q1 fires in round 2 w.h.p. By Claim 20 every memory module Mi,j749

becomes active only after having qi firing for 5 consecutive rounds (due to the delay chain750

CMi ). For that reason, no memory module fires before round 5. Since the memory neurons751

are not active, a1,i keeps firing in rounds 1 to 6, and q1 keeps firing in rounds 2 to 7. Since752

q1 is connected to q−1 via a delay chain CI1 of length 3, starting round 5 (and as long as q1753

fires), the inhibitor q−1 inhibits all other output neuron qi for i ≥ 2. Thus, for every i ≥ 2 the754

potential of qi in round 6 is at most `− 2`− 1/2`+ 1 < −1. As a result, for i ≥ 2 neuron qi755

does not fire starting round 6.756

We next argue that at this point, no memory modules are yet active and consequently the757

history neurons are inactive as well. This is due to the fact that the delay in the inhibition758
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of qi by q1 is shorter then the delay chain CMi that starts at qi and ends at the memory759

modules. Thus qi is inhibited before its memory modules are activated. We conclude that if760

Z is observed, starting from round 6, the output neuron q1 is the only active output neuron,761

and Z is mapped to q1.762

Assume the claim holds for the first i− 1 presented patterns, we next consider the ith763

pattern Z presented in round t.764

We first show that for every Z ′ that is far from Z introduced in round t′ ∈ [t−c1 ·tm, t−1],765

the pattern Z will be mapped to a different output. By the induction assumption, Z ′766

is mapped in round t′ + 6 to some output neuron, qj . Since Z ′ was introduced within767

c1 · tm rounds, by Claim 23 at least 0.8` many memory modules Mj,i for i ∈ sup(Z ′) are768

active it round t.769

Let X, X ′ be the inputs corresponding to Z and Z ′ respectively. From Lemma 12,770

‖ sup(Z) ∩ sup(Z ′)‖ ≤ 0.1`. By Observation 21, the number of active memory modules771

Mj,i in round t is at most `. Thus, the number of active memory modules Mj,i in round772

t for i ∈ sup(Z) is at most 0.2`+ 0.1` = 0.3`.773

For every association neuron aj,i whose memory module Mj,i is inactive in round t, there774

are at least 0.8` memory modules that inhibit it. Therefore its potential is 2`− 8/10`−775

(19/10)` + 1 < −1, and w.h.p. it does not fire in round t + 1. Overall, at most 0.3`776

association neurons aj,i start firing from round t+ 1 and as long as the pattern persists.777

We conclude that qj will stop firing from round t+ 2.778

Next we show that two close patterns Z ′ and Z, introduced within a span of c1 · tm779

rounds are mapped to the same output. First note that by Claim 19, all patterns that780

are close to Z are close to each other. Hence, by the induction assumption, all patterns781

close to Z introduced within the last c1tm rounds were mapped to the same output.782

We now consider a pattern Z ′ close to Z introduced in round t′ ∈ [t − c1 · tm, t − 10].783

By the induction assumption, the pattern Z ′ was mapped to output qj in round t′ + 6.784

By claim 23, 0.8` many memory modules Mj,i are active in round t′ + 7 < t onward785

(i.e., for Θ(tm) rounds). Combining with Lemma 12 because Z is close to Z ′, at least786

0.7` many memory modules Mj,i, i ∈ sup(Z) are active in round t. Since there are at787

most ` many active memory modules associated with qj in round t, the potential of the788

association neuron aj,i for which the memory neuron is active in round t+ 1 is at least789

2`+ `− (`− 1)− 1.9`− 1 = 0.1` > 1. We have that at least 0.7` many association neuron790

aj,i fire in round t+ 1, leading to the firing of qj in round t+ 2.791

Next, because at least 0.8` memory modules Mj,i are active from round t+ 3 ahead, the792

history neuron hj fires, and by that inhibits all output neurons qi for i ≤ j − 1 starting793

from round t+ 4. Recall that every inhibitor neuron q−i for i ≤ j − 1 starts firing only794

after the delay chain CIi fired, i.e. after 3 rounds that qi fired. Hence the history neuron795

hj inhibits every qi for i ≤ j − 1, just before q−i starts firing. We next show that no796

other qi fires for i ≥ j + 1. This holds since q−j inhibits any such qi in round t+ 6 via797

the delay chain CIj . Finally, we show that qj continues firing as long the pattern persists.798

Because at least 0.5` of the association neurons aj,i are firing, and no preceding inhibitor799

q−i is currently firing (thanks to the history neuron hj), it remains to show that no other800

history neuron hi for i 6= j inhibits qj . By the induction assumption, all patterns close801

to Z were mapped to qj . Hence if for some other output qi for i 6= j, at least 0.5` of its802

associated memory modules are active, by Observation 17 at least 0.9` memory modules803

are active. Since the pattern Z ′′ that was mapped to qi is far from Z, we have that at804

most 0.2` many memory modules Mi,i′ for i′ ∈ sup(Z) are active, thus qi does not fire805

and consequently hi does not fire.806
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We now consider the case of a newly presented pattern, i.e., no close pattern to it has807

been presented in the last Θ(tm) rounds. We will show that in such a case, Z will be808

mapped to the left-most available output qj , where by available we mean that no memory809

module Mj,i is active in round t. Let qi1 , qi2 . . . qis be the available output neurons in810

round t. Hence all the association neurons ai1,i for i ∈ sup(Z) start firing in round t+ 1.811

This is because no memory module Mi1,j is active. Thus, in round t + 2 the output812

neuron qi1 starts firing. As for the unavailable neurons qj , by Observation 17 at least813

0.9` memory modules Mji are active and by Observation 22 they are associated with a814

pattern Z ′′ which was mapped to qj . The pattern Z ′′ is far from Z (Z is a new pattern)815

and therefore at most 0.2` memory module Mj,i for i ∈ sup(Z) are active in round t.816

Hence, at most 0.2` association neurons aj,i fire starting round t+ 1 and w.h.p. qj will817

not fire starting round t+ 2 (and also no history neuron inhibits qi1). Since we assume818

persistence, and due to the delay in the activation of the memory modules, qi1 fires also819

in rounds t+ 3 and t+ 4, and in round t+ 5 the inhibitor q−i1 starts firing, inhibiting all820

the successive output neurons qj for j ≥ i1 + 1.821

In order to finish the proof of Theorem 14 we will prove th following Lemma.822

I Lemma 24 (Reset, Clearance of Memory). Let Z be a pattern last introduced in round t and823

mapped to qj . If no close pattern Z ′ is introduced in rounds [t, t+ c2 · tm], then qj is released824

in some round τ ≤ t+ c2tm, i.e., all memory modules Mj,i stop firing with probability greater825

than 1− δ.826

Proof. Let Z be a pattern last introduced in round t and mapped to qj . By Observation 17827

if in some round τ there are less than 0.9` memory modules corresponding to qj firing, after828

3 round 0 memory modules are active and w.h.p. qj is released. As long as there are at least829

0.9` memory modules firing, since all patterns introduced in rounds t to t + c2tm are far830

from Z by the same arguments used in Lemma 14 starting from round t+ 1 less than 0.5`831

association neurons associated with qj fire and qj will not fire for c2tm consecutive rounds832

starting from round t + 2 (as long as it is not already released). Thus, from round t + 7833

ahead w.h.p. all neurons in the delay chain CMj do not fire.834

Therefore, the probability neuron m ∈M+
j,i fires in round τ ∈ [t+ 8, t+ c2tm] given that835

fm did not fire in round τ − 1 is at most Θ( δ
log 1/δ·n·k·∆·tm ). Moreover, by union bound the836

probability that there exists a neuron m ∈M+
j,i that fired in some round τ ∈ [t+ 8, t+ c2tm]837

given that fm did not fire in round τ − 1 is at most δ/2`.838

Next we calculate the probability at least half of the neurons m ∈ M+
j,i fire for c2tm839

consecutive rounds. Because the delay chain CMj do not fire starting round t+7 the potential of840

each neuronm ∈M+
j,i in round t′ ∈ [t+7, t+c2tm] is bounded by λ·(χ+2) = λ(log(tm−1)+2).841

Hence, the probability m ∈M+
j,i fires in round t′ is at most 1− 1

e2(tm−1)+1 < 1− 1
e2tm

. We842

conclude that the probability a neuron m ∈M+
j,i fires for c2tm consecutive rounds is at most843

ec2/e
2 which for c2 > e2log(3) is less than 1/3. Using Chernoff bound and a sufficient large c844

(constant depending on c2) the probability that at least (c/2) log(1/δ′) neurons in M+
j,i fire845

for c2 · tm consecutive rounds starting round t+ 7 is at most δ/2`.846

If m+
j,i fires for c2tm consecutive rounds starting round t+ 8, be Observation 18 at each847

round at least 1/2 of the neurons in M+
j,i fired. Given that no neuron m ∈ M+

j,i fires in848

round τ ∈ [t + 8, t + c2tm] unless fm fired in round τ − 1, the head neuron m+
j,i fires for849

c2tm consecutive rounds only if at least 1/2 of the neurons in M+
j,i fires for c2tm consecutive850

rounds. Thus we conclude that m+
j,i fired for c2tm consecutive rounds starting round t+ 8851

with probability at most δ/(2`) + δ/(2`) = δ/`. Note that by Observation 21 at most `852
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memory neurons Mij are active at each round and using union bound we conclude that with853

probability at least 1− δ the output neuron qj is release in round τ < t+ c2tm J854

This concludes Theorem 14 and therefore also Theorem 3. J855
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A Additional Proofs: Random Projection966

We first prove Lemma 5, that a Chi-squared distribution is nearly uniform within a constant967

number of standard deviations from its mean.968

B Lemma 5. Let Dp be the Chi-squared distribution with p degrees of freedom. For any969

c with 1 ≤ c < p1/2 there are constants c`, cu (depending on c) such that, for any interval970

[r1, r2] ⊆
[
p− cp1/2, p+ cp1/2], we have:971

c`(r2 − r1)
p1/2 ≤ Pr

x∼Dp
[x ∈ [r1, r2]] ≤ cu(r2 − r1)

p1/2972

973

That is, Dp is roughly uniform on the range
[
p− cp1/2, p+ cp1/2].974

Proof. It is well known that Dp has mean p, density d(x) = 1
2p/2Γ(p/2)x

p/2−1e−x/2. Since we975

assume p1/2 > c ≥ 1 we have p ≥ 2 and the distribution has mode p− 2. Additionally, we976

have p− cp1/2 > 0. So for x ∈
[
p− cp1/2, p+ cp1/2] we can bound:977

d(x) ≤ d(p− 2) = 1
2p/2Γ(p/2)

(p− 2)p/2−1e−p/2+1 ≤ 1
Γ(p/2) ·

( p
2e

)p/2−1
978

979

By Stirling’s approximation, Γ(p/2) ≥
√

2π
p/2
(
p
2e
)p/2 which gives:980

d(x) ≤
√

p

4π ·
2e
p

= e√
π · p1/2 . (2)981

982

On the other side, since p− cp1/2 > 0, and since the density of the Chi-squared distribution983

is monotonically decreasing as x moves further from the mode p− 2 either left or right:984

d(x) ≥ min(d(p− cp1/2), d(p+ cp1/2)). (3)985
986

We lower bound each term in the minimum.987

d(p− cp1/2) = 1
2p/2Γ(p/2)

(p− cp1/2)p/2−1e−p/2+(c/2)p1/2
988

= 1
2Γ(p/2)

( p
2e

)p/2−1
·
(

1− c

p1/2

)p/2−1
· e(c/2)p1/2−1

989

990
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Again using Stirling’s approximation, and a similar argument to the proof of (2), for some991

constant c1, 1
2Γ(p/2)

(
p
2e
)p/2−1 is lower bounded by c1

p1/2 . Thus,992

d(p− cp1/2) ≥ c1
p1/2 ·

(
1− c

p1/2

)p/2−1
· e(c/2)p1/2−1

993

≥ c1
p1/2 ·

(
1− c

p1/2

)( p1/2
c −1

)
·(c/2)p1/2

· e(c/2)p1/2−1 ·
(

1− c

p1/2

)(c/2)p1/2−1
994

≥ c1
p1/2

1
e(c/2)p1/2 · e(c/2)p1/2−1 ·

(
1− c

p1/2

)(c/2)p1/2−1
995

≥ c1
ep1/2 ·

(
1− c

p1/2

)( p1/2
c −1

)
·(c2/2)+(c2/2−1)

996

≥ c1 · ec
2/2

ep1/2 ·
(

1− c

p1/2

)c2/2−1
≥ c′

p1/2 (4)997

998

for some constant c′ that depends on c. We give a similar bound for p+ cp1/2.999

d(p+ cp1/2) = 1
2Γ(p/2)

( p
2e

)p/2−1
·
(

1 + c

p1/2

)−p/2−1
· e(c/2)p1/2−1

1000

≥ c1
p1/2 ·

(
1 + c

p1/2

)−p/2−1
· e(c/2)p1/2−1

1001

= c1
p1/2 ·

(
1 + c

p1/2

)− p1/2
c ·(c/2)p1/2

· e(c/2)p1/2−1 ·
(

1 + c

p1/2

)−1
1002

≥ c

ep1/2 ·
(

1 + c

p1/2

)−1
≥ c′

p1/2 (5)1003

1004

for some c′. Combining (4) and (5) with (3) and (2) gives that there exist constants c`, cu
such that for all x ∈ [p− cp1/2, p+ cp1/2],

c`
p1/2 ≤ d(x) ≤ cu

p1/2 .

Thus for any r1, r2:1005

c`(r2 − r1)
p1/2 ≤ Pr

x∼Dp
[x ∈ [r1, r2]] ≤ cu(r2 − r1)

p1/2 ,1006

1007

completing the lemma. J1008

We next give a complete proof of Lemma 7.1009

A.1 Proof of Lemma 71010

Since each [AbX](i) is a Chi-squared random variable with p degrees of freedom, which has1011

median ≤ p, each [AbX](i) is upper bounded by p ≤ τ = p+ 2p1/2 with probability ≥ 1/2.1012

Thus, by Lemma 5 applied with c = 2, conditioned on [AbX](i) ≤ p+ 2p1/2, there is some c`1013

with:1014

Pr
[
[AbX](i) ∈

[
p, p+ 2p1/2

] ∣∣[AbX](i) ≤ p+ 2p1/2
]
≥ c` · 2p1/2

p1/2 = 2c`.1015

1016
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Thus, for large enough constant c1 and m = c1, with probability at least 199
200 , we have1017

i1,b(X) 6= 0 and [AbX](i1,b(X)) ≥ p. Call this event E1. Condition on the event that E11018

occurs and, in particular, that [AbX](i1,b(X)) = x for any x ∈ [p, p+ 2p1/2]. Call this event1019

E1,x. Then for all j 6= i1,b(X), [AbX](j) is an independent Chi-squared random variable1020

with p degrees of freedom conditioned on either 1) [AbX](j) ≤ x or 2) [AbX](j) ≥ p+ 2p1/2.1021

Since [AbX](j) ≤ p ≤ x with probability at least 1/2, this conditioning at most doubles the1022

density at any one value. Thus, by Lemma 5,1023

Pr
[
[AbX](j) ∈

[
x− p1/2

c2m
,x

] ∣∣E1,x] ≤ 2cu · p
1/2

c2m

p1/2 .1024

1025

By a union bound, we thus have:1026

Pr
[
∃j : [AbX](j) ∈

[
x− p1/2

c2m
,x

] ∣∣E1,x] ≤ 2cu · p
1/2

c2

p1/2 = 2cu
c2
.1027

1028

Setting c2 sufficiently large ensures that this quantity is bounded by 1
200 . Thus, by a union1029

bound with the probability that E1 occurs, with probability ≥ 99
100 : i1,b(X) 6= 0 and 2) no1030

[AbX](j) falls in
[
x− p1/2

mc2
, x
]

=
[
[AbX](i1,b(X))− p1/2

mc2
, [AbX](i1,b(X))

]
. This completes1031

the proof.1032

A.2 Proof of Lemma 81033

We first use the relative distance assumption to give a basic claim:1034

B Claim 25. Write X1, X2 as X1 = χ + δ1 and X2 = χ + δ2 where χ ∈ {0, 1}n is the1035

common vector with χ(i) = 1 iff X1(i) = X2(i) = 1. Note that since ‖X1‖ = ‖X2‖ = p we1036

have ‖δ1‖ = ‖δ2‖. Letting ∆ = RD(X1, X2),1037

‖δ1‖
p

= ∆
2 .1038

1039

Proof. We can write:1040

∆ = RD(X1, X2) = ‖X1 −X2‖
p

= ‖δ1 − δ2‖
p

= ‖δ1‖+ ‖δ2‖
p

.1041

1042

The claim follows since ‖δ1‖ = ‖δ2‖. J1043

B Claim 26. For i ∈ [2] and j ∈ [m] ∪ 0 let Ej be the event that j = i1,b(X1). With1044

probability ≥ 999/1000 over the choice of Ab χ, for all j we have:1045

Pr[Ej | Ab χ] ≤ 1
16 .1046

1047

Proof. Let ∆ = RD(X1, X2) and assume for simplicity that ∆ ≤ 1 (we will latter see that
it is easy to remove this assumption). By Claim 25, ‖δ1‖ = ‖δ2‖ ≤ p

2 and thus ‖χ‖ ≥ p
2 . For

a constant c3 (to be set later) sub-divide the range
[
‖χ‖ − c3p1/2, ‖χ‖+ c3p

1/2] into 1
∆1/2

subranges of width:
2c3p1/2∆1/2 = 2

√
2c3‖δ1‖1/2,

where the equality follows from Claim 25. By Lemma 5 (applied with the constant c1048

in the Lemma set to c3) for any i ∈ [m], [Abχ](i) falls into each range with probability1049

Θ(c3 ·∆1/2). Thus, by a standard Chernoff bound, for m = c1 log 1/∆√
∆

for sufficiently large1050
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c1, with probability 1999/2000 over the choice of Ab, at least c4 indices of Abχ fall within1051

each bucket where c4 is a constant to be set later. Note that c1 depends on c3, c4. Call the1052

event that c4 indices fall into each bucket Efull−buckets. Additionally, as argued in Lemma1053

7, for sufficiently large m, the maximum value [AbX̄1](i1,b(X̄1)) below p + p1/2 satisfies1054

[AbX̄1](i1,b(X̄1)) ≥ p with probability at least 1999/2000. Thus, with probability 1999/20001055

over the choice of Ab,1056

Pr
[
[AbX̄1](i1,b(X̄1)) ≥ p

∣∣Abχ] ≥ 1999/2000. (6)1057
1058

Let Egood be the event that both Efull−buckets and (6) hold. Egood holds with probability
≥ 999/1000 over the choice of Ab. First note that conditioning on Egood, Pr[E0

∣∣Ab χ] ≤ 1
2000 ,

easily giving the claim for j = 0. We now consider j ∈ [m]. We consider any bucket,

R =
{
j : [Abχ](j) ∈

[
r, r + 2

√
2c3‖δ1‖1/2

]}
,

where r is be some integer multiple of 2
√

2c3‖δ1‖1/2. Roughly, since each index in R has a1059

very similar value in Abχ, each has nearly the same likelihood of being the largest entry in1060

AbX1 below τ = p+ 2p1/2. Since Efull−buckets occurs, there are at least c4 of these indices1061

and thus if c4 is large, none has very high probability of being the largest entry. Formally,1062

we will show that, assuming Egood holds, for each j ∈ R,1063

Pr[Ej | Ab χ] ≤ 1
16 . (7)1064

1065

Since this bound holds for all buckets in the range [‖χ‖ − c3p1/2, ‖χ‖+ c3p
1/2] , it will give1066

the claim after arguing that no index with Abχ falling outside this range is likely to have1067

E(1, j) occur either.1068

Indices in Buckets: Each entry of Abδ1 is identically distributed as an independent Chi-1069

squared random variable with ‖δ1‖ degrees of freedom. Additionally, Abδ1 is independent of1070

Abχ since δ1 and χ have disjoint supports. Consider j ∈ R with Pr[[AbX̄1](j) ≥ τ
∣∣Abχ] ≥1071

15/16. In this case, since E(1, j) can only hold if [AbX̄1](j) ≤ τ , (7) trivially holds.1072

Next consider j ∈ R with Pr[[AbX̄1](j) ≥ τ
∣∣Abχ] ≤ 15/16. By Lemma 6 there is some c1073

with:1074

Pr
[
[Abδ1](j) ≥ ‖δ1‖+ c‖δ1‖1/2

]
= 1

64 ,1075
1076

or equivalently since [AbX1](j) = [Abχ](j) + [Abδ1](j):1077

Pr
[
[AbX1](j) ≥ [Abχ](j) + ‖δ1‖+ c‖δ1‖1/2

∣∣Abχ] = 1
64 ,1078

1079

Setting r2 = min
(
[Abχ](j) + ‖δ1‖+ c‖δ1‖1/2, τ

)
we thus have that1080

Pr[[AbX1](j) ∈ [r2, τ ]
∣∣Abχ] ≤ 1

64 . (8)1081
1082

Additionally, by Lemma 5 there is some r1 with r2 − r1 = Θ(‖δ1‖1/2) such that:1083

Pr
[
[AbX1](j) ∈ [r1, r2]

∣∣Abχ] = 1
32 .1084

1085

Since for all j′ ∈ R, |[Abχ](j)− [Abχ](j′)| ≤ 2
√

2c3‖δ1‖1/2 = O(‖δ1‖1/2) we have r2 =1086

[Abχ](j′) +O(‖δ1‖1/2) and thus again by Lemma 5, for all j′ ∈ R:1087

Pr
[
[AbX1](j′) ∈ [r1, r2]

∣∣Abχ] = Ω(1).1088
1089
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If we set the constant c4 large enough, since assuming Egood, |R| ≥ c4 we have:1090

Pr
[
∃ j′ ∈ R \ j : [AbX1](j′) ∈ [r1, r2]

∣∣Abχ] ≥ 31
32 .1091

1092

If this event holds, we can only have E(1, j) occur if [AbX1](j) falls in [r2, τ ], which by (8)1093

occurs with probability ≤ 1
64 conditioned on Abχ. Thus by a union bound we have:1094

Pr[Ej | Ab χ] ≤ 1
16 ,1095

1096

giving (7) in this case.1097

Indices Outside Buckets: We now consider indices not falling in any bucket: that is,1098

j with [Abχ](j) ≤ ‖χ‖ − c3p1/2 or [Abχ](j) ≥ ‖χ‖ + c3p
1/2. For the later, to have Eb(1, j)1099

occur we must have [AbX1](j) ≤ τ = p+ 2p1/2 and thus [Abδ1](j) ≤ ‖δ1‖ − (c3 − 2)p1/2 ≤1100

‖δ1‖ − (c3 − 2)
√

2‖δ1‖. By Lemma 6, this occurs with probability < 1/16 for all ‖δ1‖1101

as long as we set c3 large enough. Similarly, for j with [Abχ](j) ≤ ‖χ‖ − c3p
1/2, with1102

probability ≥ 15/16, we will have [Abδ1](j) ≤ ‖δ1‖+ c3p
1/2 and thus [AbX1](j) ≤ p. Since1103

assuming Egood, the maximum value of AbX1 bounded by ≤ τ is ≥ p, if [AbX1](j) ≤ p,1104

Eb(1, j) will not occur. Thus completes the argument in this case, giving that for all j with1105

[Abχ](j) ≤ ‖χ‖ − c3p1/2 or [Abχ](j) ≥ ‖χ‖+ c3p
1/2, Pr[Eb(1, j) | Ab χ] ≤ 1

16 .1106

Removing Bound on ∆: Finally, we note that we can remove the assumption that ∆ ≤ 1.1107

If ∆ ≥ 1 we can simply have χ encompass some of the non-shared entries in X1 until ‖χ‖ ≥ p
21108

and ‖δ1‖ ≤ p
2 as desired. The bound will go through as argued up to constants, since we will1109

still have ‖δ‖1
p = Θ(∆) as in Claim 25 (note that we always have ∆ ≤ 2).1110

J1111

We can now complete the proof of Lemma 8. We have:1112

Pr[i1,b(X1) = i1,b(X2) | Ab χ] =
m∑
j=0

Pr
[
i1,b(X1) = i1,b(X2) = j | Ab χ

]
1113

=
m∑
j=0

Pr
[
i1,b(X1) = j | Ab χ

]
· Pr

[
i1,b(X2) = j|Ab χ

]
(9)

1114

1115

where the second line follows from the fact that AbX1 and AX2 are independent conditioned1116

on Ab χ since δ1, δ2 are disjoint vectors. By Claim 26, with probability ≥ 999/1000 over the1117

choice of Ab χ we can bound (9) by:1118

Pr[i1,b(X1) = i1,b(X2) | Ab χ] ≤
m∑
j=0

Pr
[
i1,b(X2) = j | Ab χ

]
· 1/16 = 1/16 (10)1119

1120

where the last line follows simply since
∑m
j=0 Pr

[
i1,b(X2) = j | Ab χ

]
= 1. Since (10) holds1121

with probability ≥ 999/1000 over the choice of Ab χ, overall Pr[i1,b(X1) = i1,b(X2)] ≤1122

1/16 + 1/1000.1123

Applying Claim 7 and a union bound gives that i1,b(X1) 6= i1,b(X2) and the gaps between1124

the largest and second largest entries of AbX1 and AbX2 (bounded by τ) are both at least1125

≥ p1/2

c2·m (or there is at most one such entry), and [AbX1](i1(X1)), [AbX2](i1(X2)) ≥ p with1126

probability ≥ 1− (1/16 + 1/1000)− 2/100 = .9165, giving the lemma.1127
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A.3 Proof of Lemma 101128

We now give the deferred proof of Lemma 10, which shows that two close inputs are likely to1129

have the same intermediate neuron with the maximum potential ≤ τ in each bucket. We1130

restate the lemma below.1131

B Lemma 10. Let X1, X2 ∈ {0, 1}n be two vectors with RD(X1, X2) ≤ ∆/α. Consider our1132

construction with bucket size m = c1 log(1/∆)√
∆

. Then for sufficiently large constants c1, c2 and1133

α = O(log(1/∆)4), for any b ∈ [`], defining i1,b(·) and i2,b(·) as in Lemma 7, with probability1134

≥ 0.97:1135

i1,b(X1) = i1,b(X2).1136

For both j = 1, 2: i1,b(Xj) 6= 0, [AbXj ](i1,b(Xj)) ≥ p, and1137

[AbXj ](i1,b(Xj))− [AbXj ](i2,b(Xj)) ≥ p1/2

c2·m or i2,b(Xj) = 0.1138

Proof. By Lemma 7, with probability ≥ 99/100, for all i ∈ [m]\ i1,b(X1) with [AbX1](i) ≤ τ :1139

[AbX1](i1,b(X1))− [AbX1](i) = Ω
(
p1/2

m

)
, (11)1140

1141

By a similar argument, with probability ≥ 99/100, for all i ∈ [m],1142

|τ − (AbX1)i| = Ω
(
p1/2

m

)
. (12)1143

1144

Additionally, by standard sub-exponential concentration (as used in Lemma 6) with
probability ≥ 99/100, for both j = 1, 2 and all i ∈ m we have [Ab δj ](i) ∈ ‖δi‖ ±O(logm ·
‖δi‖1/2). Note that logm = O(log(1/∆)). Additionally, by Claim 25, since RD(X1, X2) ≤
∆/α for α = O(log(1/∆)4), we have for both i = 1, 2, ‖δi‖p ≤

∆
2α = O

(
∆

log(1/∆)4

)
. This gives

that

O(logm · ‖δ1‖1/2) = O

(
∆1/2p1/2

log(1/∆)

)
= O

(
p1/2

m

)
.

So for both j = 1, 2 and all i ∈ m, (Ab δj)i ∈ ‖δi‖ ±O
(
p1/2

m

)
. So by (11) we have for all1145

i 6= i1,b(X1) with [AbX1](i) ≤ τ :1146

[AbX2](i1,b(X1))− [AbX1](i) =1147

[AbX1](i1,b(X1))− [Ab δ1](i1,b(X1)) + [Ab δ2](i1,b(X1))− [AbX1](i) = Ω
(
p1/2

m

)
.1148

1149

By (12) we also have,1150

[AbX2](i1,b(X1)) = [AbX1](i1,b(X1))− [Ab δ1)](i1,b(X1)) + [Ab δ2](i1,b(X1)) ≤ τ.1151
1152

and similarly, for all i 6= i1,b(X1) with [AbX1](i) ≥ τ :1153

[AbX2](i) ≥ τ.1154
1155

That is, i1,b(X1) is the largest entry of AbX2 under τ , and thus i1,b(X1) = i1,b(X2).1156

Applying Lemma 7 and a union bound gives the second claim with overall probability1157

1− 1/100− 1/100− 1/100 = 97/100.1158
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B Detailed Analysis of the Sparsification Step via WTA1160

Proof of Claim 131161

Proof. Let i = arg maxj:Y (j)≤τ Y (j). For every neuron j ∈ {1, . . . ,m} in the input vector1162

Y , let R(j) be the random variable that counts the number of rounds in which j fires in a1163

window of T = Θ(m2 logm) rounds. By the construction described above in which all j with1164

Y (j) ≥ τ are inhibited with very strong weight, R(j) = 0 w.h.p. for all such j. Thus we focus1165

on j with Y (j) ≤ τ . We show that if Y (i) − Y (j) = Ω
(
p1/2

m

)
for j 6= i, then R(i) � R(j)1166

with probability at least 1−Θ(1/m).1167

First, let P be the vector of firing probabilities of each intermediate neuron induced by1168

the potentials in Y (ignoring the entries that have been zero’d out since Y (j) ≥ τ). By (1)1169

we have P (i) = 1
1+e−Y (i)

. Letting s(x) = 1/(1 + e−x), we have s′(x) ∈
[ 1

2 ,
3
4
]
for x ∈ [0, 1]1170

and can see that if Y (i)− Y (j) = Ω(1/m), then also s(Y (i))− s(Y (j)) = Ω(1/m). That is,1171

a gap of Ω(1/m) between Y (i) and Y (j) translates to a gap of Ω(1/m) between the firing1172

probabilities P (i) and P (j). To ensure that Y (i), Y (j) are in [0, 1] we can simply rescale the1173

weights of the random connection matrix A by 1
2p and shift them by p by adding a bias of p to1174

each intermediate neuron. By Corollary 9, before this shift and scaling, Y (i) ∈ [p, p+ 2p1/2],1175

so afterwards, Y (i) ∈ [0, 1]. For all j 6= i, since by Corollary 9 we had Y (i)−Y (j) = Ω
(
p1/2

m

)
1176

we still have Y (i)− Y (j) = Ω
( 1
m

)
as required and thus P (i)− P (j) = Ω

( 1
m

)
.1177

By Chernoff bound, with probability of at least 1− c/m,

R(i) ≥ T · P (i)−
√
T · P (i) · c logm and R(j) ≤ T · P (j) +

√
T · P (j) · c logm) .

Hence, with probability 1− 2c/m we get that1178

R(i)−R(j) ≥ T · (P (i)− P (j))−
√
T · P (i) · c logm)−

√
T · P (j) · c logm.1179

≥ T · (P (i)− P (j))− 2
√
T · P (i) · logm = Ω(T/m)−O(

√
T · logm)1180

= Ω(T/m) ,1181

by taking T = c′ ·m2 logm for a sufficiently large constant c′.1182

Since the incoming weight of each neuron yi,j is R(i)−R(j) = ω(1), we get that yi,j fires1183

with probability of 1−Θ(1/m). By doing a union bound over all m− 1 neurons, and taking1184

large enough constants, we get that with probability at least 99/100, all neurons yi,j fire for1185

every j 6= i. Hence, zi is the only firing neuron in Z. J1186

Recall that in Step (1), every input vector Xi is projected into ` vectors Y i,b = Ab ·Xi1187

for every b ∈ {1, . . . ,m}. On each such vector Y i,b we apply the WTA circuit and get a1188

vector Zi,b. Let Zi = Zi,1 ◦ Zi,2 ◦ . . . ◦ Zi,` for ` = O(log(tm/δ)), where ◦ denotes vector1189

concatenation.1190

We conclude this section by showing that the relative gap between input patterns Xi, Xj1191

is reflected in their output vectors of the WTA circuit. By combining Claim 13 with Cor. 91192

and 11, we prove Lemma 12 which completes the correctness of Step (II).1193

Proof of Lemma 121194

First observe that for every input Xi, there are at most ` non-zero entries in Zi since the1195

threshold gates fire only if there is a sufficient gap in the firing rates. (I) For a fixed pair Xi, Xj1196

of far patterns, let Bi,j be the set of all buckets b where arg maxr∈[m]:Y i,b(r)≤τ Y i,b(r) 6=1197
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arg maxr∈[m]:Y j,b(r)≤τ Y j,b(r) and the gap between largest and second largest entries in both1198

vectors Y i,b and Y j,b is Ω(p1/2/m). By Cor. 9, with probability 1− δ, for every pair of far1199

patterns Xi, Xj , |Bi,j | ≥ 0.9 · `.1200

By Claim 13, if Y i,b has a desired gap between the largest entry and other entries1201

then, with probability p = 99/100, Zi,b has exactly one winning entry corresponding to1202

arg max(Y i,b). In expectation the vectors Zi,b differ in p · |Bi,j | buckets. Thus by applying1203

Chernoff bound overall k2 pairs, in 0.9` of the buckets, the WTA picks a distinct winner for1204

the Xi and Xj patterns. Thus, supp(Zi) \ supp(Zj) ≥ 0.9`.1205

(II) For a fixed pair Xi, Xj of close patterns, let Bi,j be the set of all buckets b where1206

arg maxr∈[m]:Y i,b(r)≤τ Y i,b(r) = arg maxr∈[m]:Y j,b(r)≤τ Y j,b(r) and the gap between largest1207

and second largest entries in both vectors Y i,b and Y j,b is Ω(p1/2/m). By Cor. 11 with1208

probability 1− δ, for every pair of close patterns Xi, Xj , |Bi,j | ≥ 0.91 · `. By applying Claim1209

13 and Chernoff bound overall k2 pairs, in at least 0.9 · ` of the buckets, the selected winner1210

is the same with probability of 1− δ, implying that supp(Zi) ∩ supp(Zj) ≥ 0.9 · `.1211
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