1911.08145v3 [cs.LO] 17 Feb 2020

arxiv

Hybrid Compositional Reasoning for Reactive Synthesis
from Finite-Horizon Specifications

Suguman Bansal’, Yong Li**, Lucas M. Tabajara’, Moshe Y. Vardi'
"Department of Computer Science, Rice University
tState Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences
* University of Chinese Academy of Sciences

Abstract

LTLf synthesis is the automated construction of a reactive
system from a high-level description, expressed in LTLf, of
its finite-horizon behavior. So far, the conversion of LTLf for-
mulas to deterministic finite-state automata (DFAs) has been
identified as the primary bottleneck to the scalabity of syn-
thesis. Recent investigations have also shown that the size of
the DFA state space plays a critical role in synthesis as well.

Therefore, effective resolution of the bottleneck for synthe-
sis requires the conversion to be time and memory perfor-
mant, and prevent state-space explosion. Current conversion
approaches, however, which are based either on explicit-state
representation or symbolic-state representation, fail to ad-
dress these necessities adequately at scale: Explicit-state ap-
proaches generate minimal DFA but are slow due to expen-
sive DFA minimization. Symbolic-state representations can
be succinct, but due to the lack of DFA minimization they
generate such large state spaces that even their symbolic rep-
resentations cannot compensate for the blow-up.

This work proposes a hybrid representation approach for the
conversion. Our approach utilizes both explicit and symbolic
representations of the state-space, and effectively leverages
their complementary strengths. In doing so, we offer an LTLf
to DFA conversion technique that addresses all three necessi-
ties, hence resolving the bottleneck. A comprehensive empir-
ical evaluation on conversion and synthesis benchmarks sup-
ports the merits of our hybrid approach.

1 Introduction

Reactive synthesis is the automated construction, from a
high-level description of its desired behavior, of a reac-
tive system that continuously interacts with an uncontrol-
lable external environment (Church 1957). This declarative
paradigm holds the promise of simplifying the task of de-
signing provably correct reactive systems.

This work looks into the development of reactive syn-
thesis from specifications in Linear Temporal Logic over
finite traces (LTLf), or LTLf synthesis, for short. LTLf is
a specification language that expresses rich and complex
temporal behaviors over a finite time horizon (De Gia-
como and Vardi 2013). This formalism has found applica-

Copyright (© 2020, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

tion in specifying task plans in robotics (He et al. 2017;
Lahijanian et al. 2015), safety-critical objectives (Zhu et al.
2017a), business processes (Pesic, Bosnacki, and van der
Aalst 2010), and the like.

Seminal results have established that LTLf synthesis is
2EXPTIME-complete (De Giacomo and Vardi 2015). Since
then, several undertakings have led to algorithmic solutions
for synthesis (De Giacomo and Vardi 2015; Camacho et
al. 2018). The current state-of-the-art reduces synthesis to
a reachability game played on a deterministic finite-state au-
tomaton, or DFA (Zhu et al. 2017b). The DFA is obtained by
converting the input LTLf specification into a DFA that rec-
ognizes the same language. This conversion has been iden-
tified as a primary scalability bottleneck in synthesis (Zhu
et al. 2017b). This is not surprising as the DFA is known to
be double-exponential in the size of the specification in the
worst case (Kupferman and Vardi 1999). In order to be ef-
fective for synthesis the conversion must, in addition to be-
ing time and memory performant, also prevent state-space
explosion, as recent investigations have discovered that the
efficiency of solving the game on a DFA is strongly affected
by the size of the state space (Tabajara and Vardi 2019). This
work contributes towards the development of LTLf-to-DFA
conversion techniques that are aimed at advancing the scal-
ability of LTLf synthesis.

Prior works on LTLf-to-DFA conversion have led to two
contrasting algorithmic approaches. In the first approach
(Zhu et al. 2017b), the state-space of the DFA is represented
explicitly, the construction is syntax driven, and the DFA is
aggressively minimized. This approach first converts LTLf
to an equivalent first-order-logic formula and then constructs
a DFA for this formula using the Mona tool (Henriksen et al.
1995). The Mona algorithm first produces the binary syntax
tree of the specification, then traverses the tree bottom-up
while constructing the minimal DFA at each node. Conse-
quently, it constructs the final DFA at the root of the tree
in its canonical minimal form. Aggressive minimization can
often prevent state-space explosion, as for many specifica-
tions arising from real-life situations the minimal DFAs are
rarely more than exponential in the size of the specifica-
tion, as opposed to double exponential (Tabakov, Rozier, and
Vardi 2012). Yet, an exponential DFA might still be too large

if the set of states is represented explicitly, and the overhead
caused by aggressive DFA minimization grows rapidly with
specification size.

The second approach, inspired by (Tabajara and Vardi
2019), represents the DFA state space symbolically, uses
a compositional construction, and avoids minimizing the
DFAs. In compositional constructions, the specification is
decomposed into multiple smaller sub-specifications for
which explicit DFA conversion is tractable. These interme-
diate DFAs are then composed to get the final DFA. The
symbolic representation encodes the state space of a DFA in
a logarithmic number of bits, potentially achieving a polyno-
mial representation even for an exponential-sized DFA, de-
pending on the complexity of the DFA’s structure. The exist-
ing compositional approach takes advantage of this by repre-
senting the intermediate DFAs symbolically. In this case, the
DFAs are composed by simply taking the symbolic product
without performing minimization. The problem with this,
however, is that each symbolic product results in a DFA with
a larger state space than its minimal DFA, as no minimiza-
tion is performed. When the number of symbolic products is
large, the overhead in the size of the state space magnifies.
Because of this, this approach ultimately produces a state
space that is so enlarged that not even the succinct symbolic
representation can compensate for the blow-up.

The key issue with both approaches is that their critical
operation is effective at small scale but becomes inhibitory at
large scale. Explicit approaches aggressively perform mini-
mization, which is efficient on small DFAs but expensive on
larger ones. Meanwhile, symbolic approaches perform sym-
bolic products without minimization. While few symbolic
products are manageable, too many products may lead to a
large blow-up in the size of the state space.

This work proposes a novel compositional approach that
is able to overcome the drawbacks of both existing ap-
proaches. Our approach utilizes a hybrid state-space repre-
sentation, i.e., at different times it uses both the explicit and
symbolic state representations for the intermediate DFAs.
The core idea is to use explicit-state representation for
the intermediate DFAs as long as minimization is not pro-
hibitively expensive, and to switch over to symbolic state
representation as soon as that occurs. This way, our hybrid-
representation approach applies explicit state representation
to small DFAs, and also delays the point at which switch-
over to symbolic representation occurs, thus ensuring that
fewer symbolic products have to be performed to generate
the final DFA. Therefore, by finding a balance between the
two representations, our hybrid appoach is able to extract
their benefits and mitigate their weaknesses.

We have implemented our LTLf-to-DFA conversion algo-
rithm, and its extension to LTLf synthesis via reachability
games, in tools called Lisa and LisaSynt, respectively. A
comprehensive empirical analysis reveals the merits of the
proposed hybrid compositional approach on both DFA con-
version and LTLf synthesis, as each tool outperforms the
current state-of-the-art in runtime and memory consump-
tion. In addition, the DFAs generated from Lisa have size
comparable to the minimal DFA and significantly smaller
than those obtained from pure symbolic-state methods.

2 Preliminaries
2.1 Linear Temporal Logic over finite traces

Linear Temporal Logic over finite traces (LTLf) (Baier
and Mcllraith 2006; De Giacomo and Vardi 2013) extends
propositional logic with finite-horizon temporal operators.
In effect, LTLf is a variant of LTL (Pnueli 1977) that is in-
terpreted over a finite rather than infinite trace. The syntax
of an LTLf formula over a finite set of propositions Prop is
identical to LTL, and defined as ¢ := a € Prop | —p |
N | Vel Xe | pUp | Fo | Gp. Here X (Nexu),
U (Until), F (Eventually), G (Always) are temporal opera-
tors. The semantics of LTLf can be found in (De Giacomo
and Vardi 2013). W.l.o.g., we assume that every LTLf for-
mula ¢ is written as a conjunction of LTLf subformulas i.e.
© = A\, ¢i- The language of an LTLf formula ¢, denoted

by L(¢), is the set of finite words over 2P™P that satisfy (.
LTLf synthesis is formally defined as follows:

Definition 1 (LTLf synthesis). Let ¢ be an LTLf formula
over Prop = Z U O where the set of input variables T and
output variables O are two disjoint sets of propositions. We
say o is realizable if there exists a strategy v : (27)+ — 2©
such that for every infinite sequence \ = Iy, I, - -- € (21)
of interpretations over I, there exists m > 0 such that p =
(LloUv(1o)), (11Uv(Lo, [1)), -+ s (L;m Uy (Lo, -+, I1n)) sat-
isfies . The problem of LTLf synthesis is to decide whether
a given is realizable and to construct such a strategy if so.

Intuitively, LTLf synthesis can be perceived as a game be-
tween an external environment and the desired system that
take turns to assign values to input and output propositions,
respectively. The system responds to the environment in-
puts using the strategy . The game is won by the system
if its strategy is able to guarantee that the resultant input-
output sequence will satisfy formula ¢ after a finite number
of turns. In our formulation of LTLf synthesis, like in (Taba-
jara and Vardi 2019), the environment plays first. Alterna-
tively, the system may play first (Zhu et al. 2017b). Solving
the alternative formulation requires only slight changes to
the algorithm presented in (§ 5). We adhere to the formula-
tion in Definition 1 in this paper as our benchmarks assume
that formulation and all tools being compared support it.

2.2 DFA and its representations

A deterministic finite automaton (DFA) (Thomas, Wilke,
and others 2002) is a tuple D = (X, S, ¢, A, F') where X is a
finite set of symbols (called an alphabet), S is a finite set of
states, ¢ € S is the initial state, ' C S is the set of accepting
states and A : S x 3 — S is the transition function. A finite
wordw = wg ... w, € X*hasarunp=sy...5,41 € ST
in D if for all i € {0,...n} we have that s;,1 = A(s;, w;)
and sp = t. Arun p = sq ... S,41 1S an accepting run in D
if s,41 € F. A word w is in the language of D, L(D), if w
has an accepting run in D. A DFA is said to be minimal if
the language represented by that DFA cannot be represented
by another DFA with fewer states.

Every LTLf formula ¢ over Prop can be converted into a
DFA D with alphabet ¥ = 2P™P (De Giacomo and Vardi
2013) such that £(D) = L(¢p). If this DFA is constructed

in a form that explicitly enumerates all DFA states, we call
it an explicit-state representation. A DFA over the alpha-
bet X = 2P™P can also be compactly represented sym-
bolically, by also encoding the state space using a log-
arithmic number of propositions. The symbolic-state rep-
resentation of a DFA D = (2P™P S 1 A F) is a tuple
D = (S(2),T(Z,Prop,2'),F(Z)). In this representa-
tion, Z = {z1,...2,} are propositions encoding the state
space S, with n = [log|S||, and their primed counter-
parts 2’ = {z{,...z],} encode the next state. Each state
s € S corresponds to an interpretation Z € 2% over propo-
sitions Z. When representing the next state of the transition
function, the same encoding is used for an interpretation Z’
over Z'. Then, S, T and F are Boolean formulas represent-
ing ¢, A and F, respectively. S(Z) is satisfied only by the
interpretation of the initial state ¢ over Z. T (Z, Prop, 2’)
is satisfied by interpretations Z € 2%, P ¢ 2PrP and
7' e 27" iff A(s,P) = s, where s and s are the states
corresponding to Z and Z'. Lastly, F(Z) is satisfied by the
interpretation Z over Z corresponding to state s € S iff
s € F. The intersection of two DFAs Dy = (81,71, F1)
and Do = (82,72, F2), denoted D; A Do, is given by
(81 A 82, T A Ta, F1 A Fa). In this paper, all Boolean for-
mulas, including S, 7 and F of a symbolic DFA, will be
encoded using Reduced Ordered Binary Decision Diagrams
(BDDs) (Bryant 1986).

2.3 DFA game

A DFA game is a reachability game between two players,
called the environment and the system, played over a DFA
with alphabet 27Y©. The environment player assigns val-
ues to the input variables Z, while the system assigns val-
ues to the output variables O. The DFA game starts at the
initial state of the DFA. At each round of the game, first
the environment chooses an assignment [to the Z variables,
and then the system will choose an assignment O to the O
variables. The combined assignment I U O determines the
unique state the game moves to according to the transition
function of the DFA. The system wins the game if the game
reaches an accepting state of the DFA. Solving a DFA game
corresponds to determining whether there exists a strategy
for the system to always win the game.

DFA games are known to be solvable in polynomial time
with respect to the number of states (Mazala 2002). The al-
gorithm determines if the initial state is a winning state, i.e.,
a state that is either accepting or from which, for every as-
signment [to the 7 variables, the system can always choose
an assignment O to the O variables that leads to a winning
state. More details will be given in (§ 5). If the initial state
is a winning state, then there exists a winning strategy that
can be represented by a Mealy machine that determines the
output of the system given the current state and input. For
more details, refer to (Tabajara and Vardi 2019).

3 Related work

LTLf to DFA conversion There are two commonly used
approaches for the conversion currently. In the current state-
of-the art approach, the LTLf formula is translated into first-

order logic over finite traces, and then converted into a DFA
by Mona, a more general conversion tool from monadic
second-order logic to DFA (Henriksen et al. 1995). The first
LTLf synthesis tool Syft utilizes this method for DFA gen-
eration (Zhu et al. 2017b).

An alternative approach, used by the tool Spot (Duret-
Lutz et al. 2016), is to translate the LT Lf formula into an LTL
formula with equivalent semantics, convert this formula into
a Biichi automaton (Gerth et al. 1995), and then transform
this Biichi automaton into a DFA. Both approaches generate
a DFA in explicit state-space representation.

DFA vs. NFA NFAs are more general than DFAs. In
fact, NFAs can be constructed from an LTLf formula in
a single-exponential blow-up as opposed to the double-
exponential blow-up incurred for DFA construction. Various
approaches for LTLf-to-NFA with single-exponential blow-
up have been described such as (Baier and Mcllraith 2006;
De Giacomo and Vardi 2015). Yet, in practice, single expo-
nential NFA conversion tools do not perform as well as DFA
conversion tools. (Tabakov, Rozier, and Vardi 2012) shows
that minimal DFAs from LTLf formulas tend to be orders of
magnitude smaller than their NFA counterparts constructed
from implementations of the single-exponential algorithms.

LTLf synthesis As aforementioned, current state-of-the-
art tool Syft (Zhu et al. 2017b) uses Mona to construct an
explicit-state DFA, then converts this DFA into a symbolic
representation in order to solve the game using a symbolic
fixed-point computation. The explicit-state DFA construc-
tion has been identified as the primary bottleneck to Syft
as the length of the formula increases. Therefore, recent at-
tempts in synthesis have been made to avoid the explicit
DFA construction. We describe these attempts below.

A recent approach attempted to avoid the full construction
by instead decomposing the specification into conjuncts,
then converting each conjunct to an individual DFA (Taba-
jara and Vardi 2019). Since these conjuncts are smaller for-
mulas, their explicit-state DFAs can be constructed effi-
ciently. The smaller DFAs are then converted into a symbolic
representation and the game is solved over this decomposed
symbolic representation. While the construction was indeed
more efficient in terms of time and memory, the resulting
DFA had a much larger state space. This severely decreased
the performance of the game-solving algorithm, rendering a
poorly scaling procedure for LTLf synthesis.

In another attempt to avoid explicit DFA construction,
(Camacho et al. 2018) first constructs an NFA from the for-
mula and then reduces synthesis to fully-observable non-
deterministic (FOND) planning. The NFA is determinized
on-the-fly during the planning phase. Even here, the speci-
fication is decomposed into conjuncts, which are separately
converted to NFAs and used to encode to FOND. Despite
the generalization to NFAs, in practice FOND-based meth-
ods rely on DFA conversion tools since they are more com-
petitive than existing NFA construction tools that incur a
single-exponential blow up. Previous experiments suggest
the FOND-based approach is complementary with the ap-
proach based on explicit DFA construction, each being able
to solve instances that the other cannot.

Compositional techniques in temporal synthesis Both
(Tabajara and Vardi 2019) and (Camacho et al. 2018) benefit
from compositional techniques as they both decompose the
input formula into conjuncts before construction of the re-
spective automata. Application-specific decomposition has
also been shown to lead to an orders-of-magnitude improve-
ment in LTLf synthesis for robotics (He et al. 2019).

A precedent for compositional techniques exists also in
synthesis of LTL over infinite traces, including in several
state-of-the-art tools such as Strix (Meyer, Sickert, and Lut-
tenberger 2018) and Acacia+ (Bohy et al. 2012). Strix de-
composes the formula semantically, i.e., it generates a sub-
formula if it belongs to a restricted fragment of LTL such as
safety LTL or co-safety LTL. This way it benefits from con-
structing automaton using more efficient fragment-specific
algorithms. On the other hand, Acacia+ decomposes the for-
mula into conjuncts, which are each solved as a separate
safety game. The final solution is obtained by composing
solutions from the separate safety games.

4 Hybrid compositional DFA generation

This section describes the primary contribution of this work.
We present a novel compositional approach for LTLf-to-
DFA conversion. Our approach is based on using a hybrid-
state representation, i.e., at different times it uses both ex-
plicit and symbolic-state representations for intermediate
DFAs, as opposed to prior works in which only one of
the two state-representations is used (Zhu et al. 2017b;
Camacho et al. 2018; Tabajara and Vardi 2019). By diligent
application of both representations, our hybrid approach is
able to leverage their complementary strengths and render
an algorithm that is not only competitive time- and memory-
wise, but also generates DFAs with small number of states.

Our compositional approach is comprised of two phases,
called the decomposition phase and the composition phase.
In the decomposition phase, the input formula is first decom-
posed into smaller subformulas which are then converted
into their equivalent DFAs using standard algorithms. In the
composition phase, the intermediate DFAs are composed to
produce the final DFA. We describe each phase for our hy-
brid approach in detail below. The formal description of our
algorithm has been deferred to the Appendix.

4.1 Decomposition phase

The decomposition phase is the first step in our algorithm.
This phase receives the LTLf formula ¢ as input. We make
an assumption that the formula is given as the conjunction of
multiple small LTLf subformulas, i.e., ¢ = A._, ¢; where
each ¢; is an LTLf formula in itself. This assumption has
been adopted as a standard practice in synthesis domains as
large specifications arising from applications tend to exhibit
this form (Filiot, Jin, and Raskin 2010; 2011).

We interpret formula ¢ as an n-ary syntax tree as op-
posed to a binary-tree. Consequently, the input formula ¢ =
/\;L:1 (p; is decomposed into n-subformulas ¢1,..., p,.
Then each of these subformulas ¢; is converted into its min-
imal DFA D; in explicit-state representation. This can be
performed by an existing tool (De Giacomo and Vardi 2013;

Duret-Lutz et al. 2016; Henriksen et al. 1995; Kupferman
and Vardi 1999). More advanced decomposition schemes
could be adopted from (Camacho et al. 2018).

The rationale behind this step is that existing explicit-state
tools are efficient in generating minimal DFA for small for-
mulas. Since the subformulas are typically small in length,
we are able to benefit from existing literature in this step.

4.2 Composition phase

The composition phase receives the minimal DFAs D; for
subformulas ¢; in the previous phase, which are represented
with explicit states. Our goal in this phase is to construct a
DFA corresponding to . In theory, this can be obtained by
simply taking the intersection of DFAs D;. In practice, the
intersection of n DFAs may lead to state-space explosion
since DFA intersection is done by performing their product
construction. Therefore, the main focus of the composition
phase is about how to efficiently construct the intersection
without incurring state explosion. We discuss the salient fea-
tures of our algorithm before describing it in detail.

Briefly speaking, we perform the composition of DFAs in
iterations. In each iteration, two DFAs are selected based on
a dynamic smallest-first heuristic, which will be described
below, and removed from the set. A new DFA is formed by
the product of the two selected DFAs. The new DFA will be
minimized based on a selective DFA heuristic, which is also
described below. The new DFA is then inserted back into
the set. The new set is the input to the next iteration. This
continues until only one DFA remains, which is presented
as the final DFA. In the following, we denote by S; the set
of DFAs at the j-th iteration. Then S; = {D,..., D, },and
S, = {D} where D is the final output DFA.

In contrast to prior works which either use explicit states
or symbolic states, the central feature of our algorithm is that
it uses hybrid representation for DFAs, i.e., in different iter-
ations all DFAs in S; are either represented in explicit- or
symbolic-state form. Initially, all DFAs in .Sy are in explicit-
state form. This continues while the DFAs in S; have a
small number of states, since the product and minimization
of DFAs are efficient for small DFAs with explicit-state rep-
resentation. But as some DFAs in S; grow in size they re-
quire more memory and longer time to perform minimiza-
tion. So, as soon as some DFA in S; reaches a large number
of states, all DFAs in \S; are converted into symbolic-state
representation, in which the DFAs are represented more suc-
cinctly. By this time, hopefully, we are left with few DFAs in
the set S;. Here onwards, all DFAs are represented in sym-
bolic form until the end of the algorithm. Therefore, fewer
DFAs in S; implies fewer symbolic products need to be per-
formed, and hence limits the blow-up in state-space of the
final DFA. This way, our algorithm balances the strengths of
both approaches, mitigates their individual drawbacks, and
efficiently generates a small DFA, if not the minimal.

We now describe the two heuristics, namely dynamic
smallest-first composition of DFAs and selective DFA min-
imization abbreviated to DSF and SDM, respectively.

We first discuss DSF, which is used to decide which two
DFAs should be composed in each iteration. We observe
that the order in which intersection of DFAs is performed

does not affect the correctness of the final DFA since both
Boolean conjunction and DFA intersection are associative
and commutative operations. In theory, we can design any
criteria to select two DFAs to be composed at each iteration.
In practice, a careless choice of the two DFAs may pro-
duce an unnecessarily large intermediate DFA that causes
the algorithm to fail at the composition phase due to the
large memory footprint. Therefore, we aim to find an order
that can optimize time and space in the composition phase.
To help with that we use DSF, which as the name suggests
chooses the smallest two DFAs in each iteration. The DFAs
with explicit states are chosen based on the number of states,
while the DFAs with symbolic-state representation are cho-
sen based on the number of nodes in the BDD representation
of the transition function. The intuition behind this heuristic
is that if the algorithm would fail on the composition of the
smallest two DFAs in that iteration, then it would probably
fail on the composition of all other pairs of DFAs as well.

Next we discuss SDM, which decides when it is benefi-
cial to perform DFA minimization after the intersection of
DFAs in each iteration. DFA minimization has been proved
to be critical to the performance of DFA generation in (Hen-
riksen et al. 1995) as it helps in maintaining a smaller num-
ber of states, which is also one of our critical parameters.
However, it is also an expensive operation. Currently, the
best known complexity for minimization are O(n logn) and
O(n?) for explicit- and symbolic-state representations, re-
spectively (Hopcroft 1971; Wimmer et al. 2006). Therefore,
there is a tension between reducing the number of states and
achieving efficiency. To resolve this, we conducted an em-
pirical study to evaluate the effect of minimization. We ob-
served that in most cases, minimization reduces the num-
ber of states by 2-3 times. While this is significant when
the states are represented explicitly, in symbolic-state rep-
resentation this leads to a reduction in 1-2 state variables
only. Therefore, we adhere to the SDM heuristic in which
we minimize intermediate DFASs in explicit-state representa-
tion only. There are two advantages to this. First, since min-
imization is performed on explicit-state representation only,
by virtue of our algorithm design this occurs only when the
DFAs are small. For these, the time spent in minimization is
so low that it is worth maintaining minimal DFAs. Second,
by maintaining minimal DFAs in the explicit-form, the al-
gorithm delays the switch over to symbolic form as the DFA
sizes take longer to reach the thresholds. This leads to fewer
symbolic products, which results in curbing the amount of
blow-up in state-space.

A semi-formal description of the steps of the algorithm
are given below. The complete formal description has been
deferred to the Appendix.

Step 0. (Initial) We are given input formula p = A", ¢,
and switch-over threshold values t1,t, > 0. The parameters
t1 and to correspond to the thresholds for the numbers of
states in an individual DFA and in the product of two DFAs,
respectively, to trigger the symbolic representation.

Step 1. (Decomposition) Construct the minimal DFA D,
in explicit-state representation for all ¢ € {1,...,n}. Create
the set Sy = {D1,...,Dy}.

Step 2. (Explicit-state composition) Forj € {1,...,n—
1}, let S; = {Mj,..., M, _j4+1} be the set of DFAs in the
j-th iteration.

If S; has only one DFA, return that as the solution.

Otherwise, if the DFAs in S; become too large, proceed to
Step 3. Assume w.l.0.g. that M; and M, are the two DFAs
chosen by the DSF heuristic. Let |A| denote the number
of states in a DFA A represented in explicit-state form. If
min(|Mi|, |Mz|) > t1 or (|My| - |Ma]) > t2, move to Step
3. Let k be the iteration in which this occurs, i.e. when j = k.

Otherwise, as per SDM, construct DFA P by minimiza-
tion of My N My. Then, create Sj1 = {P, Ms, ..., M,}
for the next iteration, and repeat Step 2.

Step 3. (Change state representation) Convert all DFAs
in S, = {Mi,...,M,_g41} from explicit-state to
symbolic-state representation, and proceed to Step 4. Note
that the state space of each DFA M is encoded symboli-
cally using a different set of state variables Z;, where all Z;
are disjoint. Since no more minimization occurs after this
point, the total set of state variables Z = Z; U... UZ, _j41
defines the state space of the final DFA.

Step 4. (Symbolic-state composition) For j €
{k,...,n}, let S; = {My,...,M,_;+1} be the set of
DFAs in the j-th iteration.

If S; has only one DFA, return that DFA as the solution.

Otherwise, assume w.l.o.g. that M7 and M> are the two
DFAs chosen by the DSF heuristic. Construct P = M; A
M. Recall that, since M7 and M> are in symbolic form,
we do not perform DFA minimization of P. Create S;+; =
{P, Ms,...,M,} for the next iteration, and repeat Step 4.

5 LTLf synthesis

LTLf synthesis can be reduced to solving a DFA game
played on the DFA corresponding to the formula ¢ (De Gia-
como and Vardi 2015). As explained in (§ 2.3), this amounts
to computing the set of winning states. If the initial state of
the DFA is in this set, then the formula is realizable and a
winning strategy can be constructed, otherwise not.

In this section, we describe the winning set computation
algorithm on a DFA game when its states are represented
symbolically. This is a standard least-fixed point algorithm
for reachability games with symbolic state space, and is sim-
ilar to (Zhu et al. 2017b; Tabajara and Vardi 2019). For sake
of completion, we summarize the algorithm here.

Let ¢ be an LTLf formula over disjoint input and
output propositions Z and O, respectively, and G =
(S(2), T(Z,Prop, 2"),F(Z)) be a symbolic DFA for ¢.
The DFA game is played on G. In our case, this DFA is ob-
tained from our hybrid compositional approach (§ 4), which
we assume is in symbolic form, since explicit-state outputs
can easily be converted to symbolic form.

To compute the winning set of G, we compute the least-
fixed point of a Boolean formula W;(Z) that denotes the set
of states from which the system can win in at most ¢ steps of
the DFA game. Initially, Wy (Z) is the set F(Z) of accepting
states. At each iteration, the algorithm constructs W;11(Z)
from W;(Z) by adding those states from which the system

is guaranteed to reach W;(Z) in one step. Formally,
Wi1(2) = Wi(Z2)V(VZ.30, 2. T(Z,7U0, Z"\ AW, (Z))

where W;(Z’) can be obtained from W;(Z) by substituting
variables Z with Z’. This continues until no more states can
be added to W, 1(Z), i.e., until it encounters the first index
i such that W, 1(Z) = W;(2). Since the number of states
in the DFA is finite, the algorithm is guaranteed to terminate.
The initial state is present in the winning set, say Wep(Z2),
if S(2) = Wep(Z2) holds. Details on winning-strategy
construction has been deferred to (Tabajara and Vardi 2019).
In this work, all Boolean formulas for G and all W, 1(Z)
are represented as BDDs. All boolean operations, quantifica-
tion and variable substitution are available in standard BDD
libraries. Finally, = is a constant time operation in BDDs.
The complexity of solving a DFA game is polynomial in
the size of the state space. Therefore, the efficiency of LTLf
synthesis is heavily affected by the size of the constructed
DFA. Therefore, as our hybrid compositional approach gen-
erates small (if not minimal) DFAs, these are suitable for
synthesis, as witnessed also by our experimental evaluation.

6 Experimental evaluation

The goal of the empirical analysis is to examine the perfor-
mance of our hybrid approach in LTLf-to-DFA generation
and LTL synthesis against existing tools and approaches.

6.1 Implementation details

Our hybrid compositional LTLf-to-DFA conversion proce-
dure (§ 4) has been implemented in a tool called Lisa. Lisa
has been extended to LisaSynt to perform LTLf synthesis
using the winning strategy computation described in (§ 5).
Lisa takes an LTLf formula and switch-over thresholds ¢,
to as inputs, and outputs a corresponding DFA with sym-
bolic states. The output may not be minimal. For the same
inputs, LisaSynt internally invokes Lisa, solves the DFA
game given by Lisa’s output, and returns whether the for-
mula is realizable. If so, it can also return a winning strategy.
Lisa and LisaSynt have been written in C++. They em-
ploy BuDDy (Cohen et al. 2014) as their BDD library for
the symbolic representations and operations on DFAs, and
take advantage of dynamic variable ordering for the BDDs.
To generate explicit-state minimal DFAs in the decom-
position phase, Lisa uses Spot (Duret-Lutz et al. 2016) and
the Mona-based method (Henriksen et al. 1995). It borrows
the rich APIs from Spot to conduct DFA intersection and
minimization in the explicit-state composition phase. Per se,
Spot APIs are available for w-automata (automata over in-
finite words). In order to use the Spot API for operations
over DFAs, Lisa stores intermediate explicit DFAs as a weak
deterministic Biichi automata (WDBA) (Dax, Eisinger, and
Klaedtke 2007). Intuitively, if the DFA accepts the language
L, then its wDBA accepts the language £ - ({loop})“, where
loop is a fresh variable not present in Prop. The wDBA can
be constructed from the DFA for £ by making the following
changes (a) add a new state sink, (b) for each accepting state
in the DFA, add a transition from that state to sink on loop,
(c) add a transition from sink to itself on loop , (d) make

States in Number of benchmarks solved
the minimal | Mona- Lisa- Lisa
DFA based | Explicit
> 1K 111 123 137
> 5K 70 82 96
> 10K 48 60 74
> 50K 13 23 35
> 100K 8 16 26
> 250K 1 5 12
> 500K 0 2 4
> 750K 0 2 2
Size unknown - - 21%*
Total solved 307 338 372

Table 1: DFA construction. Hardness of benchmarks is mea-
sured by the size of minimal DFA. **Note: There are 34
benchmarks that were solved only by Lisa. Of these, we were
able to identify the size of the minimal DFA of 13 bench-
marks using a symbolic DFA minimization algorithm (Wim-
mer et al. 2006). The 21 cases with unknown size are those
that could not be minimized even after 24hrs with 190GB.

sink the only accepting state in the wDBA. This automaton
accepts a word iff its run visits sink infinitely often. Since
wDBA is an w-automaton, we use Spot APIs for wDBAS to
conduct intersection and minimization, both of which return
a wDBA as output, in the similar complexity for those oper-
ations in a DFA (Dax, Eisinger, and Klaedtke 2007; Kupfer-
man 2018). Lastly, a wDBA for language £ - ({loop})“ can
be easily converted back to a DFA for language L.

6.2 Design and setup for empirical evaluation '?

The evaluation has been designed to compare the perfor-
mance of Lisa and LisaSynt to their respective existing tools
and approaches. LTLf-to-DFA conversion tools are com-
pared on runtime, number of benchmarks solved, hardness
of benchmarks solved (size of minimal DFA) and the num-
ber of state variables in the output DFA. LTLf synthesis
tools are compared on runtime and the number of bench-
marks solved. We conduct our experiments on a benchmark
suite curated from prior works, spanning classes of realistic
and synthetic benchmarks. In total, we have 454 benchmarks
split into four classes: random conjunctions (400 cases) (Zhu
et al. 2017b), single counters (20 cases), double counters (10
cases) and Nim games (24 cases) (Tabajara and Vardi 2019).
More details on each class can be found in the Appendix.

A good balance between explicit- and symbolic-
representation of states is crucial to the performance of Lisa,
i.e., it is crucial to carefully choose values of the switch-
over thresholds ¢; and 2. Recall the switch is triggered if
either the smallest minimal DFA has more than ¢; states, or
if the product of the number of states in the two smallest
minimal DFAs is more than ¢o. Intuitively, we want £; to be
large enough that the switch is not triggered too soon but

"The source code of our tool is publicly available at https:
//github.com/vardigroup/lisa
“Figures are best viewed online in color.

4000

—— Mona-based
3500 | = Lisa-Explicit
— Lisa-Symbolic

3000} Lisa
)
2 25001
o
S
(7]
&
£ 2000
=
=]
qu
£ 1500
=

1000 -

500}
0 i
0 50 100 150 200 250 300 350 400

Number of benchmarks solved (Total = 454)

Figure 1: DFA construction. Cactus plot indicating number
of benchmarks each tool can solve for a given timeout.

small enough that conversion of all DFAs from explicit- to
symbolic-state representation is not too expensive. Thresh-
old ¢4 is closely related to how effective minimization is,
and hence depends on the benchmark class. If the bench-
mark class is such that minimization reduces the DFA size
by only 2-3 times, then we would set £z to be a low value.
But if the class is such that minimization reduces DFA size
by orders of magnitude, as it does for the Nim game class,
we set to to a higher value to take advantage of minimiza-
tion. Currently, these are determined empirically. We set ¢,
and t5 to 800 and 300000, respectively, for the Nim-game
class and to 800 and 2500, respectively, for all other classes.

For experiments on LTLf-to-DFA conversion, we com-
pare Lisa to the current-state-of-the-art Mona-based method
(Zhu et al. 2017b; Camacho et al. 2018) and two other
derivations of Lisa. Recall the Mona-based method is a
syntax-driven, explicit-state based approach that returns
minimal DFAs. The first derivation is Lisa-Explicit which
is adapted from Lisa by setting t; = to = oo. Therefore,
it is a purely explicit-state compositional approach. Like the
Mona-based method, it also generates the minimal DFA, but
unlike the former it uses the smallest-first heuristic. The sec-
ond derivation is Lisa-Symbolic, adapted from Lisa by set-
ting t; = to = 0. This corresponds to the compositional,
symbolic-state approach referred to in (§ 1).

For experiments on LTLf synthesis, we compared
LisaSynt to an enhanced version of Syft (a tool that uses the
Mona-based method for DFA conversion) (Zhu et al. 2017b)
that we call Syft+, and the partitioned approach from (Taba-
jara and Vardi 2019), referred to as Part. Syft+ was cre-
ated by enabling dynamic variable ordering in Syft. This
was necessary for a fair comparison as Syft, unlike LisaSynt
and Part, uses static variable ordering. We observed that
Syft+ shows upto 75% reduction in runtime compared to
Syft. Note that Part uses the same symbolic-state approach
as Lisa-Symbolic for constructing the DFAs, except that it
skips the composition step, instead performing synthesis di-
rectly over the initial set of symbolic DFAs S;. Ultimately, it
still suffers from the state-space explosion, only in this case
it happens during the winning-state computation.

All experiments were conducted on a single node of a

10

Lisa-Symbolic | ...
Mona-based
Lisa-Explicit
Lisa

111])

10%

o
o

Time (in sec)

100

1071

c

1 2 3 4 5 6 7 8 9 10
Parameter: Number of bits

Figure 2: DFA construction. Runtime for double-counter
benchmarks. Plots touching black line means time/memout.

160

I Lisa-Explicit (Minimal)
Lisa
I Lisa-Symbolic

-
>
o

-
IN)
o

—
o
S

o
=)

Number of state variables
©
o

40

20+

0 2 4 6 8 10 12
Parameter: # of bits

Figure 3: DFA construction. Number of variables needed
to symbolically represent the DFA’s state-space for double-
counter benchmarks. No bar indicates time/memout.

high-performance cluster. Each node consists of four quad-
core Intel-Xeon processor running at 2.6 GHz. LTLf-to-DFA
conversion experiments were run for 1 hour with 8 GB each,
LTLf-synthesis experiments for 8 hours with 32 GB each.

6.3 Observations

Lisa and Lisa-explicit scale better to larger benchmarks
than the Mona-based method, not just solving more total
benchmarks but also being able to handle instances of larger
scale (Table 1). Between Lisa-Explicit and Mona, the former
is more consistent in solving benchmarks with large mini-
mal DFAs due to the DSF heuristic that enables low mem-
ory consumption in intermediate stages. Finally, Lisa solves
benchmarks with even larger minimal DFAsas it is designed
to combine minimal DFAs of explicit state- and succinctness
of symbolic-state representation to solve larger formulas.

Lisa is the most efficient tool among all four options.
This is clear from the cactus plot in Fig. 1. The plot may
seem to indicate that Lisa only has a slight advantage over
Lisa-Symbolic. But, on closer inspection we observe that
Lisa-Symbolic solves most random benchmarks but fares
poorly on the realistic ones (see Fig 2). This is because they

have more sub-specifications, resulting in a large number
of symbolic products. The Mona-based method is still the
fastest in generating small DFAs (fewer than 50K states) but
memouts soon due to explicit-state representation of DFAs.
Finally, Lisa-Explicit is a close second but does not scale
as well as Lisa due to minimization on very large DFAs.
Lisa has been designed to overcome these deficiencies, and
is supported by the current empirical evaluation as well.

Lisa mitigates state-space explosion. Even though Lisa
may not generate the minimal DFAs, we observe that in
most cases the state-space of the final DFA produced by
Lisa is one or two variables more than that of the minimal
DFA. This is significantly lower than the number of state
variables used by Lisa-Symbolic (Fig. 3). Note that Lisa-
Symbolic fails to solve the double counter benchmarks for
1 > 7 (Fig 2). Yet we know the number of state variables im-
mediately after Step 3 (§ 4). Analyzing the benchmarks, we
observed that they were split into 3-200 sub-formulas, yet
only 1-3 symbolic products were conducted to construct the
DFA. This demonstrates that our threshold-values are able
to delay the switch-over to symbolic representations and re-
duce blow-up by the product. This is why the DFAs gener-
ated by Lisa have comparable sizes to the minimal DFAs. An
important future work, therefore, is to design mechanisms to
determine the switch-over thresholds at runtime as opposed
to relyng on user-expertise to assign threshold values.

Lisa’s small DFAs improve synthesis performance. We
evaluate for synthesis on non-random benchmarks only, i.e.,
sequential counters and nim games. We chose to disregard
random benchmarks as their winning set computation time is
negligible, as in those benchmarks the fixed point is reached
in 2-3 iteration irrespective of the DFA size. Figure 4-5 show
that LisaSynt solves most benchmarks and is the most effi-
cient tool. We observed that Syft+ fails because Mona mem-
outs early, while Part suffers from state-space explosion.
LisaSynt is resilient to both as Lisa consumes low memory
by virtue of symbolic representation and small state space.

The time consumed inside the winning set computation
during synthesis depends on the number of iterations before
the fixed-point is reached. Yet, so far not much focus has
been given to optimizing this step as the DFAs generated so
far have not been large enough for the number of iterations to
become an issue. With Lisa’s ability to construct large DFAs,
we were able to observe that the single and double counter
benchmarks can spend more than 90% of the time in the
winning set computation, as the number of iterations is ex-
ponential in the number of bits (Appendix). This provides
concrete evidence of the importance of investigating the de-
velopment of faster algorithms for winning set computation
to improve game-based synthesis.

7 Concluding remarks

This work tackles the primary bottleneck in LTLf synthesis-
LTLf to DFA conversion. The central problem addressed in
this work is the efficient and scalable construction of DFAs
with small state space from LTLf specifications, as a step to
LTLf synthesis. To the best of our knowledge, ours is the first

25

B Part
. Syft+

20l LisaSynt

15+

10+

Num of benchmarks solved

Double C. (10) Single C. (20) Nim (24)

Benchmark set

Figure 4: Synthesis. Number of benchmarks synthesized
from each non-random benchmark class.

10°

— Part
- Syft+
LisaSynt

-
S
W

—
o

Timeout (in seconds)

10t

10° f
0 5 10 15 20 25 30 35 40 45
Number of benchmarks solved (Total = 54)

Figure 5: Synthesis. Cactus plot (non-random benchmarks).

hybrid approach for DFA construction. Our approach com-
bines explicit- and symbolic-state representations in a man-
ner that effectively leverages their strengths and alleviates
their individual shortcomings. Our empirical evaluations on
DFA conversion and LTLf synthesis on Lisa and LisaSynt
outperform the current states of the art, and demonstrate the
merit of our hybrid approach. This indicates promise to fur-
ther develop and explore hybrid approaches for automaton
generation for other specification languages as well, and en-
courages similar investigations into the other building blocks
in synthesis algorithms.

Acknowledgments

We thank A. Camacho, A. M. Wells and S. Zhu for their
valuable inputs at different stages of the project. This work
is partially supported by NSF grants I1IS-1527668, CCF-
1704883, 1IS-1830549, the National Natural Science Foun-
dation of China (Grant Nos. 61761136011, 61532019), the
Guangdong Science and Technology Department (Grant No.
2018B010107004), and the Brazilian agency CNPq through
the Ciéncia Sem Fronteiras program.

References

Baier, J. A., and Mcllraith, S. 2006. Planning with tem-
porally extended goals using heuristic search. In ICAPS,
342-345. AAAI Press.

Bohy, A.; Bruyere, V.; Filiot, E.; Jin, N.; and Raskin, J. 2012.
Acacia+, a tool for LTL synthesis. In CAV.

Bouton, C. L. 1901. Nim, a game with a complete mathe-
matical theory. Annals of Mathematics 3(1/4):35-39.

Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
100(8):677-691.

Camacho, A.; Baier, J. A.; Muise, C.; and Mcllraith, S. A.
2018. Finite LTL synthesis as planning. In ICAPS, 29-38.
AAALI Press.

Church, A. 1957. Applications of recursive arithmetic to the
problem of circuit synthesis. Institute for Symbolic Logic,
Cornell University.

Cohen, H.; Whaley, J.; Wildt, J.; and Gorogiannis, N. 2014.
BuDDy. http://sourceforge.net/p/buddy/.

Dax, C.; Eisinger, J.; and Klaedtke, F. 2007. Mechaniz-
ing the powerset construction for restricted classes of w-
automata. In ATVA, 223-236. Springer.

De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In IJCAI,
854-860. AAAI Press.

De Giacomo, G., and Vardi, M. 2015. Synthesis for LTL and
LDL on finite traces. In IJCAI, 1558-1564. AAALI Press.

Duret-Lutz, A.; Lewkowicz, A.; Fauchille, A.; Michaud, T.;
Renault, E.; and Xu, L. 2016. Spot 2.0 — a framework for Itl
and w-automata manipulation. In ATVA, 122-129. Springer.

Filiot, E.; Jin, N.; and Raskin, J.-F. 2010. Compositional
algorithms for LTL synthesis. In ATVA, 112-127. Springer.

Filiot, E.; Jin, N.; and Raskin, J.-F. 2011. Antichains and
compositional algorithms for LTL synthesis. Formal Meth-
ods in System Design 39(3):261-296.

Gerth, R.; Peled, D.; Vardi, M. Y.; and Wolper, P. 1995.
Simple on-the-fly automatic verification of linear temporal
logic. In PSTV, 3—18. Springer.

He, K.; Lahijanian, M.; Kavraki, L. E.; and Vardi, M. Y.
2017. Reactive synthesis for finite tasks under resource con-
straints. In IROS, 5326-5332. IEEE.

He, K.; Wells, A. M.; Kavraki, L. E.; and Vardi, M. Y. 2019.
Efficient symbolic reactive synthesis for finite-horizon tasks.
In ICRA, 8993-8999. 1IEEE.

Henriksen, J. G.; Jensen, J.; Jorgensen, M.; Klarlund, N.;
Paige, R.; Rauhe, T.; and Sandholm, A. 1995. Mona:
Monadic second-order logic in practice. In TACAS, 89-110.
Springer.

Hopcroft, J. 1971. An nlogn algorithm for minimizing
states in a finite automaton. In Theory of machines and com-
putations. Elsevier. 189-196.

Jobstmann, B., and Bloem, R. 2006. Optimizations for LTL
synthesis. In FMCAD, 117-124. 1EEE.

Kupferman, O., and Vardi, M. Y. 1999. Model checking of
safety properties. In CAV, 172—-183. Springer.

Kupferman, O. 2018. Automata theory and model checking.
In Handbook of Model Checking. Springer. 107-151.
Lahijanian, M.; Almagor, S.; Fried, D.; Kavraki, L. E.; and
Vardi, M. Y. 2015. This time the robot settles for a cost: A
quantitative approach to temporal logic planning with partial
satisfaction. In AAAI, 3664-3671. AAAI Press.

Mazala, R. 2002. Infinite games. In Automata logics, and
infinite games. Springer. 23-38.

Meyer, P. J.; Sickert, S.; and Luttenberger, M. 2018. Strix:
Explicit reactive synthesis strikes back! In CAV, 578-586.
Springer.

Pesic, M.; Bosnacki, D.; and van der Aalst, W. M. P. 2010.
Enacting declarative languages using LTL: avoiding errors
and improving performance. In SPIN, 146-161. Springer.

Pnueli, A. 1977. The temporal logic of programs. In FOCS,
46-57. IEEE.

Tabajara, L. M., and Vardi, M. Y. 2019. Partitioning tech-
niques in LTLf synthesis. In IJCAI, 5599-5606. AAAI
Press.

Tabakov, D.; Rozier, K. Y.; and Vardi, M. Y. 2012. Opti-
mized temporal monitors for SystemC. Formal Methods in
System Design 41(3):236-268.

Thomas, W.; Wilke, T.; et al. 2002. Automata, logics, and
infinite games: A guide to current research, volume 2500.
Springer.

Wimmer, R.; Herbstritt, M.; Hermanns, H.; Strampp, K.; and

Becker, B. 2006. Sigref-a symbolic bisimulation tool box.
In ATVA, 477-492. Springer.

Zhu, S.; Tabajara, L. M.; Li, J.; Pu, G.; and Vardi, M. Y.
2017a. A symbolic approach to safety LTL synthesis. In
HVC, 147-162. Springer.

Zhu, S.; Tabajara, L. M.; Li, J.; Pu, G.; and Vardi, M. Y.
2017b. Symbolic LTLf synthesis. In IJCAI, 1362-13609.
AAAI Press.

Appendix

Lisa: Hybrid compositional DFA generation

The DFA-construction algorithm used in Lisa is described in
(§ 4). We give its psuedo-code here in Algorithm 1.

To recall, Lisa is split into two phases. First is the de-
composition phase, which splits the formula into smaller
subformulas and converts each subformula into its mini-
mal DFA in explicit-state representation (Line 2-6). Sec-
ond is the composition phase (Line 2 onwards), which be-
gins by performing explicit-state composition (Line §-20).
When explicit-state composition becomes prohibitive (con-
dition in Line 11), all DFAs are converted into symbolic-
state representation (Line 22-26). Finally, after this, sym-
bolic composition is conducted (Line 28-32). Crucial heuris-
tics adopted in the algorithm are dynamic smallest-first and
selective DFA minimization.

We implement the smallest-first heuristic using a prior-
ity queue, as using this data structure we can efficiently ob-
tain the smallest elements in the collection. Priority queues
dfaStateNumMinHeap and transNodeNumMinHeap store
DFAs in explicit and symbolic representations, respectively.
The priority queues are implemented such that they give
higher priority to ones with fewer number of states and fewer
number of BDD nodes in the transition relation, respectively.

Theorem 1. Let t1,ts > 0 be threshold values. Given an
LTLSf formula o, Lisa(p,t1,t2) returns a DFA for ¢ with
symbolic state.

Benchmark descriptions

We evaluate on a set of 454 benchmarks split into four
classes:

Randomly generated. We adopt the random LTLf for-
mula generation procedure from literature (Zhu et al. 2017b;
Camacho et al. 2018). For a length parameter /, it selects £
base cases from a pool of LTL benchmarks interpreted with
LTLf semantics (Jobstmann and Bloem 2006), takes their
conjunction and renames propositions so that they are shared
across conjuncts. It must be noted that a large value of ¢ does
not guarantee a larger minimal DFA.

In our experiments, ¢ ranges from 3-10. For each ¢, we
create 50 benchmarks, adding up to 400 random bench-
marks.

Single counter/Double counters. These benchmarks rep-
resent games played over binary counters, and are parame-
terized by the number of bits ¢ (Tabajara and Vardi 2019).
These benchmarks can have either a single counter, which
the system must increment when signaled by the environ-
ment, or two counters, one controlled by each player, where
the goal of the system is to reach the value in the environ-
ment counter. In these cases, larger ¢ results in a larger min-
imal DFA.

In our experiments ¢ ranges from 1-20 and 1-10 for single
and double-counter benchmarks, respectively.

Algorithm 1 Lisa(p, t1,t2)

Input: LTLf formula ¢ = A, ¢i,

DFA size threshold values t1,t5 > 0
Output: A DFA for ¢ with symbolic states

/I Decomposition phase
splitFormulaList < {¢1,...,¢n}
dfaStateNumMinHeap = {}
for ¢; € splitFormulaList do
D < constructExplictDFA(¢;)
dfaStateNumMinHeap.push(D)
/I Composition phase
/I Explicit-state composition
D, + dfaStateNumMinHeap.pop()
Dy + dfaStateNumMinHeap.pop()
: while |D1| < ¢; and |D4| - |D2| < t2 do
Dtemp < (Dl N D2)
D < explicitMinimal(Dyermyp)
dfaStateNumMinHeap.push(D)
if dfaStateNumMinHeap.size() == 1 then
D <+ dfaStateNumMinHeap.pop()
(S, T, F) + makeSymbolic()
return (S,7,F)
D, + dfaStateNumMinHeap.pop()
D5 + dfaStateNumMinHeap.pop()
: // Change state representation
: transNodeNumMinHeap = {}
: while dfaStateNumMinHeap.size() > 0 do
D <+ dfaStateNumMinHeap.pop()
(S, T,F) < makeSymbolic(D)
transNodeNumMinHeap.push((S, T, F))
: // Begin symbolic composition
: while transNodeNumMinHeap.size() > 1 do
(81,71, F1) « transNodeNumMinHeap.pop()
(S2, T, Fz) < transNodeNumMinHeap.pop()
(8, T, F) + (S1 ANS2, Ti AN Ta, Fi A Fa)
transNodeNumMinHeap.push((S, T, F))
: (S, T, F) < transNodeNumMinHeap.pop()
: return (S,7,F)

A A A S ey

W LI LY W LW N DN DN D DN D D D D D M= = = e e e e e e e
FON ISR AT EON TS0 XITTEBNSD0

Nim game. These benchmarks model a generalized ver-
sion of the game of Nim (Bouton 1901) with p heaps and ¢
tokens per heap, taken from (Tabajara and Vardi 2019).

We create a total of 24 such benchmarks.

Experimental evaluation

Optimizing winning-set computation is the next chal-
lenge in LTLf synthesis. Fig. 6 shows that most of the
time spent in synthesis for the double-counter benchmarks
was spent in the winning-set computation. In fact, for coun-
ters with ¢ bits, we observed and can show that the single-
and double-counter benchmark will take 2° and 2/+! — 2
iterations to reach the fixed point in the winning-set compu-
tation.

Winning-set computation takes almost 100% of the time
when ¢ = 1 since for those cases DFA construction requires
less than one tenth of a millisecond to solve. As a conse-
quence, winning-set computation takes very long in com-

e—e Double counter
e—e Single counter

Percentage

2 li é é 1‘0 1‘2 1‘4 16
Parameter # bits

Figure 6: Synthesis. Percentage of time spent in winning set

computation for the sequential counters.

parison.

The plot in Fig. 6 is based on runtimes from LisaSynt. Al-
though similar behavior was observed with Syft+, it solves
fewer benchmarks, therefore we chose our tool to plot this
graph. It must be noted that Syft without dynamic variable
ordering did not scale as far as Syft+.

LisaSynt outperforms the current state-of-the-art Syft+.
This is clear from Table 2. The main reason Syft+ fails to
solve a large number of benchmarks is that Mona fails to
generate the DFAs for larger inputs. For example, Mona
failed to construct the DFA for single counters and double
counters for ¢ > 15 and ¢ > 8, where 7 is the number of bits.
On the contrary, Lisa is able to generate the DFAs for almost
all benchmarks.

There are cases in Table 2 where Lisa has generated the
DFA but LisaSynt times-out. This is because the winning
set computation did not terminate on those cases. Recall,
the number of iterations for the counter benchmarks grows
exponentially with the number of bits. These cases will be
solved by LisaSynt as long as enough time is given to con-
duct all iterations.

Even for the benchmarks that are solved by both tools
Syft+ and LisaSynt, LisaSynt shows lower runtime. Note
that for both tools the number of iterations taken to com-
pute the winning set is the same. This may indicate that the
time taken for winning set computation for each iteration in
Syft+ takes longer that LisaSynt. However, currently we do
not have concrete evidence to back-up this conjecture. We
leave this to future work as it may also lead to a better un-
derstanding of how to improve the winning-set computation.

Benchmark name Syft+ LisaSynt
DFA (Mona) | WS | Total DFA (Lisa) | WS [Total
Single counters
counter-1 0.0845936 0.0063098 | 0.0909034 0.0 4.7624e-05 4.7624e-05
counter-2 0.0905504 0.0077225 | 0.0982729 0.01 0.000124862 | 0.010124862
counter-3 0.0831357 0.0196413 | 0.102777 0.01 0.000266569 | 0.010266569
counter-4 0.0818164 0.0125855 | 0.0944019 0.01 0.000994192 | 0.010994192
counter-5 0.113252 0.067858 0.18111 0.02 0.00242963 0.02242963
counter-6 0.104034 0.149737 0.253771 0.03 0.0172029 0.0472029
counter-7 0.163252 0.463409 0.626661 0.02 0.0793083 0.0993083
counter-8 0.120607 1.477873 1.59848 0.03 0.386659 0.416659
counter-9 0.260158 7.952932 8.21309 0.07 2.22855 2.29855
counter-10 0.383924 40.069576 40.4535 0.09 9.22808 9.31808
counter-11 0.853298 67.246602 68.0999 0.22 50.9045 51.1245
counter-12 1.83989 276.44511 278.285 0.75 270.575 271.325
counter-13 4.77399 474.14001 478.914 1.48 2378.66 2380.14
counter-14 11.19 - - 3.25 6439.63 6442.88
counter-15 - - - 9.93 28250.9 28260.83
counter-16 - - - 43.01 - -
counter-17 - - - 174.04 - -
counter-18 - - - 191.31 - -
counter-19 - - - 2062.73 - -
counter-20 - - - 17499.8 - -
Double counters
counters-1 0.0372115 0.0088049 | 0.0460164 0.0 7.9756e-05 7.9756e-05
counters-2 0.0684606 0.0199104 | 0.088371 0.01 0.00051927 0.01051927
counters-3 0.140466 0.130129 0.270595 0.03 0.00467434 0.03467434
counters-4 0.206383 0.852017 1.0584 0.03 0.0713502 0.1013502
counters-5 0.488736 11.261164 11.7499 0.05 0.61636 0.66636
counters-6 2.71628 160.86572 163.582 0.44 7.42408 7.86408
counters-7 13.768 1871.902 1885.67 0.68 80.2925 80.9725
counters-8 - - - 2.16 1032.24 1034.4
counters-9 - - - 25.11 12372.5 12397.61
counters-10 - - - 12885 - -
Nim benchmarks
nim-1-1 0.165076 0.010547 0.175623 0.08 4.133e-05 0.08004133
nim-1-2 - - - 0.19 0.000140955 | 0.190140955
nim-1-3 - - - 0.06 0.000197191 | 0.060197191
nim-1-4 - - - 0.11 0.000382304 | 0.110382304
nim-1-5 - - - 0.22 0.000372384 | 0.220372384
nim-1-6 - - - 0.43 0.000530033 | 0.430530033
nim-1-7 - - - 0.82 0.00065162 0.82065162
nim-1-8 - - - 1.38 0.000906586 | 1.380906586
nim-2-1 - - - 0.08 0.000329557 | 0.080329557
nim-2-2 - - - 0.46 0.000856596 | 0.460856596
nim-2-3 - - - 2.67 0.00185017 2.67185017
nim-2-4 - - - 13.43 0.00650035 | 13.43650035
nim-2-5 - - - 52.9 0.0162642 52.9162642
nim-2-6 - - - 170.92 0.0330554 170.9530554
nim-2-7 - - - 497.52 0.0535121 497.5735121
nim-2-8 - - - 1257.86 0.106837 1257.966837
nim-3-1 - - — 1.09 0.000209125 | 1.090209125
nim-3-2 - - - 27.15 0.00700274 | 27.15700274
nim-3-3 - - - 393.38 0.0396764 393.4196764
nim-3-4 - — — 3820.42 10.8698 3831.2898
nim-4-1 - - - 29.32 0.00661889 | 29.32661889
nim-4-2 - - - - - -
nim-5-1 - - - - - -
nim-5-2 - - - - - -

Table 2: Runtime chart comparing runtimes of Syft+ and LisaSynt, and the time taken in DFA construction by Mona and Lisa,
respectively, inside the respective synthesis tool. Runtime are given in seconds. — indicates time/memout. Timeout = 28800 sec.

