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Predicting re-emergence times of dengue epidemics at low reproductive

numbers: DENV1 in Rio de Janeiro, 1986-1990.

Rahul Subramanian, Victoria Romeo-Aznar, Edward lonides, Claudia T. Codeco, and

Mercedes Pascual

Abstract:

Predicting arbovirus re-emergence remains challenging in regions with limited off-
season transmission and intermittent epidemics. Current mathematical models treat the
depletion and replenishment of susceptible (non-immune) hosts as the principal drivers
of re-emergence, based on established understanding of highly transmissible childhood
diseases with frequent epidemics. We extend an analytical approach to determine the
number of ‘skip’ years preceding re-emergence for diseases with continuous seasonal
transmission, population growth and under-reporting. Re-emergence times are shown
to be highly sensitive to small changes in low Ry (secondary cases produced from a
primary infection in a fully susceptible population). We then fit a stochastic SIR
(Susceptible-Infected-Recovered) model to observed case data for the emergence of
dengue serotype DENV1 in Rio de Janeiro. This aggregated city-level model
substantially over-estimates observed re-emergence times either in terms of skips or
outbreak probability under forward simulation. The inability of susceptible depletion and
replenishment to explain re-emergence under ‘well-mixed’ conditions at a city-wide
scale demonstrates a key limitation of SIR aggregated models including those applied
to other arboviruses. The predictive uncertainty and high skip sensitivity to
epidemiological parameters suggest a need to investigate the relevant spatial scales of
susceptible depletion and the scaling of microscale transmission dynamics to formulate

simpler models that apply at coarse resolutions.
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Introduction:

Epidemics of arboviruses such as dengue (1), Zika (2, 3), and chikungunya (4)
result in substantial global morbidity. Over the past decade, invasions of several
arboviruses have triggered large outbreaks in the Western Hemisphere. In Brazil, these
invasions include dengue serotype DENV4 in 2012 (5) as well as Zika (2, 6) and
chikungunya (7) between 2014-2016. Predicting and understanding the re-emergence
of arboviruses after these invasions has important consequences for epidemic
preparedness, particularly in regions where climate factors limit mosquito transmission
in the off-season. These regions typically exhibit highly intermittent seasonal
epidemics, lasting one to three years with long periods of no, or low, reported cases in
between, and low mean reproductive numbers (the number of secondary cases arising
from each primary case in a completely susceptible population, Ry) (5, 8-10). Several
proposed explanations include the depletion of susceptible individuals following initial
epidemics (11) and the time required for their replenishment via population growth (12),
inter-annual variation in climate (13-17), and antigenic interactions between strains of
different serotypes (18-21). These temporal patterns contrast with the recurrent
seasonal outbreaks observed in childhood diseases with high reproductive numbers,
whose extensive study has provided the basis for our theoretical understanding of SIR
(Susceptible-Infected-Recovered) dynamics in infections that confer lifelong or lasting

immune protection (22-29).

Statistical models of dengue transmission that take into account climate
dependencies can be used to make short-term re-emergence forecasts on the order of
4 months (30) or 16 weeks (15). Many epidemiological models that predict the re-

emergence of arboviruses such as Zika (11, 31) on longer time-scales of a year (11) or
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several decades (31) rely however on compartmental formulations such as SIR-type
approaches (11) or Ross-McDonald equations that explicitly incorporate vector
transmission (31). Both formulations assume transmission between any two individuals
in the population (‘well-mixed’ conditions), typically at aggregated spatial scales. These
process-based formulations, for example those recently applied to Zika, represent the
acquisition of immunity in the population and its loss via demographic growth and
turnover. These models do take into account seasonality of transmission and spatial
heterogeneity in the intensity of transmission due to climate at coarse resolutions (at
large city, state, or country-level scales). Nevertheless, the replenishment of a well-
mixed susceptible population is frequently assumed to be the principal driver
determining when the disease will re-emerge given a particular seasonal pattern for Ry
at a particular location(31). Stochasticity can also play an important role in long-term
models of re-emergence (31). Variation in reporting rates of arboviruses between

locations (32) can add further complexity.

Although childhood diseases with high reproductive numbers display different
dynamics from emergent arboviruses (22-26), their compartmental models share a
basic SIR structure given the acquisition of long-term immunity after infection. The
resulting depletion and replenishment of the susceptible population is known to clearly
drive inter-annual variability and re-emergence in the former (25, 27, 28). In particular,
recent theory (29) has derived analytical expressions for the number of “skip” years for
a measles-like disease in the pre-vaccine era, where “skips” are defined as seasons
when transmission occurs but does not cause susceptible depletion. In other words,
although the number of infections increases in such seasons, it is not large enough to
offset the growth in the susceptible population due to demography. The resulting

expressions specifically provide a threshold condition for the number of skips expected
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following an initial invasion as a function of Ry. Their derivation did not include under-
reporting and assumed a closed-population SIR model with ‘school-term’ seasonality,

alternating two different rates for low and high transmission.

We examine in this work whether replenishment of susceptible individuals under
the typical ‘well-mixed’ assumption explains dengue (DENV1) re-emergence at the
whole-city aggregated level. We specifically address the uncertainty inherent in such
predictions at the low reproductive numbers characteristic of arboviruses, not previously
considered in applications of the analytical approach. To this end, we first extend the
threshold derivation to take into account population growth, continuous (sinusoidal)
seasonality, and under-reporting of cases. We then fit a stochastic SIR model to
observed monthly dengue case counts from the DENV1 invasion in Rio de Janeiro,
Brazil from 1986-1988 (8, 10, 33) and numerically predict expected times to re-
emergence. We describe high uncertainty in re-emergence times for these seasonal,
low transmission regions, and show the insufficiency of susceptible replenishment in a
simple SIR model to explain the short periods observed in DENV1 re-emergence. We
discuss possible explanations and the need for model formulations that would scale to

coarse spatial resolutions.

Results:

We start with the analytical approach for a seasonally forced SIR system with in-
termittent outbreaks and population turnover, to consider general features of re-
emergence at low Rop. In such a system, the onset of the off-season can bring an end to
an initial outbreak, and the replenishment of susceptible individuals due to births and

population turnover can be a major determinant of recurrence times. Let S represent
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the number of susceptible individuals in a population and sy, the fraction of the popula-
tion still susceptible at the end of an initial epidemic, to, when a prediction for the time
to the next outbreak will be made. If there are enough susceptible individuals left in the
population (i.e. if sp is large), another outbreak will occur in the following year once the
on-season resumes. However, if the initial outbreak was very large, sp may be too small,
and the outbreak may “skip” one or more years. A skip year is defined as a year in
which the susceptible population does not decrease, whether or not infections increase.
The smaller the fraction of the susceptible population at the time of prediction (so), the
longer it will take for the susceptible population to replenish, and the larger the number
of skips that will occur. Previous theory(29) allows prediction of the number of skips
that will occur given sg. Specifically, it demonstrated that so must fall below some
threshold s (k) for k skips to occur. An analytical expression was provided for s¢(k) in
terms of the reproductive number and population turnover rate for a closed-population
SIR model with school-term seasonality (29). The derivation of the threshold presented
in (29) requires the assumption that the transmission rate or reproductive number of the
disease is high and that the fraction of the population susceptible at the time of predic-

tion (so) is small.

We extend this approach to take into account population growth and sinusoidal
seasonality (which describes the transmission rate of dengue more accurately than a
discrete high-low representation). Our derivation does not require assuming that the
transmission rate or reproductive number are high or that the fraction of the population
susceptible at the time of prediction is small. We follow the criteria developed in (29)
(see details in (34)), which essentially consider the sign of the logarithm of the ratio
between the respective number of infections at two times, to and t,>t,. A positive value

indicates that an outbreak will still occur at t,; conversely a negative value indicates no
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outbreak at that time. By setting the logarithm of this ratio to zero, the threshold s; is

obtained (See Section 1 of the Supporting Information for details).

The resulting expression for s¢(n), the critical fraction of susceptible individuals

required at the time of prediction for n or more skip seasons to occur, is

n(2n+1)(1—%)—26
wf(w,8,rn) (1)

sc(n)=1+

where f(w,8,7,n) = (1 + e 7@ )0 §/(w? + r2) — (1 — e To@D) /r, Ryis the
annual mean of the reproductive number, 8, the amplitude of seasonal transmission (as
infectious contacts per person per day), w, the transmission frequency (in days™)and r,
the population growth rate (also in days™). The full expression for the seasonal
transmission rate is given by f(t) = B,(1 + dsin(wt + ¢), where ¢ corresponds to the
phase (in radians) and o, to the mean seasonal transmission rate (infectious contacts
per person per day). The quantity Bo is related to the annual mean reproductive number

R, via the expression R, = B,/y, where y is the recovery rate (in days™).

Figure 1 illustrates the implications of this formula. As before, t, corresponds to
the time of prediction, in practice usually after a large initial epidemic or invasion. Like-
wise, so represents the fraction of the population susceptible at the time of prediction.
Intuitively, the smaller the fraction of the population susceptible at the time of prediction
(so0), the longer it will take for the susceptible population to replenish, and the larger the
number of skips that will occur. In practice, as we will illustrate below, values of sy can

be computed from surveillance data provided one has an estimate of the reporting rate.

For n skips to occur, the fraction of the population susceptible at the time of pre-
diction (sp) must fall below the susceptibility threshold s¢(n). Figure 1A shows that the

larger the number of skips n one is considering, the smaller the threshold s¢(n) that sg
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must fall below for at least n skips to occur. Let n. denote the critical skip number cor-
responding to the number of skips expected at the time of prediction (tp). We use the
fraction of the population susceptible at the time of prediction (s¢) and identify the max-
imum value of n for which sqg is smaller than s¢(n). In the example shown in Fig. 1A, this
fraction sp= 0.7 is smaller than s.(n = 6) and bigger than s.(n = 7), which means n, = 6.
We therefore expect six years of skips followed by re-emergence in the seventh year.

Formally, for a given value of spat the end of the transmission season, we define the

critical skip number n. as the value of n for which s;(n;) > sp > s¢(nc+1).
A) B) C)
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—_— * * 0.2 — 75_ * * 0.7
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Fig 1. A) Graphical illustration of how the expected number of skips (nc) is
calculated. The black dots represent the threshold fraction of the population
susceptible at the time of prediction required for n skips to occur (s¢(n)). The plot
shows (s¢(n)) as a function of n (the number of skips) obtained from Equation 1 with
seasonality amplitude 06=0.2 ( contacts per person per day) and reproductive number
Ro=1.4. In this example, the red line represents the fraction of the population
susceptible at the time of prediction (sp). If sg is smaller than s¢(n), at least n skips will
occur. To find the expected number of skips (n.), we identify the largest number of skips
n such that sy is smaller than the susceptibility threshold required for those skips s¢(n).
In this example, the red line intersects the s¢(n) curve between s;(n=6) and s;(n=7).
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Therefore, a critical skip number of n.=6 is obtained. B) and C) The critical skip value
nc as a function of R, for (B) different values of the amplitude of seasonal transmission
o with sp=0.7 and (C) different values of the fraction of the population susceptible at the
time of prediction (sg) with ¢=0.70. In all three panels, the frequency of transmission o,
the population turnover rate p, and population growth rate r are fixed at respective
values o = (2n/365) day' corresponding to an annual periodicity, u= 1/ (74.46*365))
day™ corresponding to an average lifespan of ~75 years, and r=1.55u day ™' consistent
with the growth of the city of Rio de Janeiro. These values were chosen for the purpose
of illustration, based on the inverse of the average life expectancy in Brazil in 2012
according to the 2010 census (35), and the interpolation of population estimates for the
resident population of the municipality of Rio de Janeiro from the 1991 (36) and 2000
(37) censuses assuming exponential growth.

With this general approach at hand, we explored the effects of the reproductive
number Ry, amplitude of seasonal transmission 6 and fraction of the population
susceptible at time of prediction sy on the critical number of skips n. (Figure 1 Panels B
and C). Consideration of both the variation of the reproductive number R, and fraction
of the population susceptible at time of prediction sy is relevant here. Different
combinations of transmission rate (y) and duration of the infection (1/ y) can yield the
same R, but different fractions of the population susceptible at the time of prediction
(Supplemental Figure S16). Importantly, Fig. 1 panels B and C show that the time to re-
emergence is very sensitive to Ry. A singularity is observed as Ry approaches 1 where
the expected number of skips goes to infinity. The approach to that singularity can be
very steep, meaning that small changes in Ry can result in large increases in the
expected re-emergence time. The obtained values of nc.are not as sensitive to the
amplitude of seasonal transmission (Fig. 1 Panel B) but are sensitive to the fraction of
the population susceptible at the time of prediction (Fig. 1 Panel C). The shift of the
curve in Fig 1 Panel C for small values of the fraction of the population susceptible at
time of prediction sy means that, for a given Ry, more time is required to replenish the

susceptible population and therefore to observe a re-emergence.
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We next apply this approach to the surveillance data from the 1986 invasion of
DENV1 in Rio de Janeiro (Figure 2). The initial DENV1 invasion in Rio de Janeiro is an
ideal initial test case for this technique given the lack of widespread prior immunity from
to prior dengue epidemics, vaccination campaigns, cross-immunity from other disease
outbreaks. Specifically, the 1986 invasion occurred prior to the development of dengue
vaccines. The outbreak was the first dengue invasion in the area since the initial eradi-
cation of the Aedes aegypti mosquito in Brazil in the 1950s (38-41) following a sus-
tained intervention program that began in the 1930s and 1940s in Rio de Janeiro and
other cities (39). Cross-immunity from yellow fever vaccination appears to be very lim-
ited (42). Given the young age distribution of the population in 1986 (43), most individu-
als were not alive during the period when mass yellow fever vaccination or prior dengue

epidemics occurred.

We let our time of prediction ty be equal to September 1, 1987, corresponding to
the end of the initial DENV1 invasion (see panel A of Figure 2). In panel B of Figure 2,
we evaluate the number of expected skips expected in Rio de Janeiro, n., on the basis
of a range of Ry values from 1.18 to 2.02 from the literature (44, 45). The critical
susceptibility threshold for n skips to occur (s¢(n)) is calculated using Equation 1 with an
annual seasonality, a population growth rate interpolated from the census (see Materials
and Methods section), and 6 =0.7 (44). The fraction of the population susceptible at the
time of the prediction (sy) is estimated as the difference between the total population Ny
(total population N at (top=Sep. 1987)) and the total number of people infected between
the start of the invasion and the time of prediction (September 1, 1987). The total
number of infected people during the outbreak is computed by summing the ratio
between the observed monthly cases and the reporting rate for DENV1 in the city.

Literature estimates from serology during the DENV1 invasion in Rio de Janeiro indicate
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a reporting rate of around 3% (33) which we use and fix for this analysis. For
comparison purposes, we also include the number of skips expected under a higher
reporting rate of 10%. These curves show that the expected re-emergence could be
very sensitive to small variation in Ry and p, two quantities that are difficult to estimate
with precision in the absence of serology. In particular, assuming a reporting rate of 3%,
a reproductive number of 1.2 with 20% uncertainty can yield large changes in the
expected re-emergence time. We highlight the potential sensitivity of the expected
number of skips to the reporting rate as well to illustrate the importance of uncertainty in

this parameter in cities or epidemics where its value is unknown.
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Fig 2. (A) Observed dengue case data. Monthly reported dengue cases in the city of
Rio de Janeiro, Brazil from April 1986-1995. The grey shaded region denotes
observations that were included in the fitting of the stochastic model from May 1, 1986
to July 1, 1988 inclusive. Serotype DENV1 re-emerged in 1990. DENV2 was first
detected in the state of Rio de Janeiro in 1990 but did not become dominant until 1991
(8, 9). Both co-circulated afterwards. We focus on the invasion of DENV1 from 1986-
1987 and its initial re-emergence in DENV1 in 1990 using a single serotype
transmission model. This allows us to evaluate this transmission model in a region
where only one serotype was circulating, where cross-immunity could not easily be
invoked to explain the absence or reduction of dengue in a given year. (B)
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Deterministic critical number of DENV1 skips n. for Rio de Janeiro from
September 1988. Expected number of skips n; with amplitude of seasonal transmission
6=0.7 and the fraction of the population susceptible after the first DENV1 invasion as of
September 1, 1987 (sp) calculated from the data (A). We use a reporting rate p of 3%
when calculating sp , consistent with serological estimates from the literature (33). For
comparison purposes, we also include the expected number of skips n. assuming a
reporting rate of 10%.

Replenishment of Susceptible Individuals is Insufficient to Explain Re-Emergence

To obtain more precise bounds for the reporting rate and Ry and to determine if
the depletion and replenishment of susceptible individuals could explain the rapid re-
emergence of dengue in Rio de Janeiro, we fit a stochastic aggregate SIR model to
case data from the DENV1 invasion from 1986-1988. The stochastic SIR model
assumes that the underlying deterministic transmission rate varies seasonally as a
sinusoidal function with annual mean By, seasonal transmission amplitude o, frequency
o (equal to 2/365), and phase ¢. The model takes into account demographic
stochasticity, environmental stochasticity in the transmission rate, and measurement
error due to under-reporting and variation in reporting of cases (See Materials and
Methods and the Supporting Information). Panels A,B, and C of Figure 3 show the
likelihood profile of the annual mean transmission rate, 3y, the amplitude of seasonal
transmission 6, and the reporting rate p, respectively. In particular, our estimate of the

reporting rate matches that from serology in the literature (Panel C).

11
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Fig 3. A-C) Selected parameter profiles for the stochastic model. Profiles of the
mean annual transmission rate Bo (A), seasonal transmission amplitude & (B), and
reporting rate p (C). The red curve is a polynomial fit to the subset of the profile points
shown on the figure. The single dashed grey horizontal line represents the likelihood
value 2 log likelihood units below the maximum likelihood estimate. This line provides
an estimate of confidence intervals for the given parameter. The grey vertical line
denotes the parameter value of the maximum likelihood estimate. The maximum
likelihood estimate for the reporting rate in panel C is very close to the literature value
obtained from serology (approximately 3 percent). (33).

Overall, the model is able to capture key dynamics of the DENV1 invasion
including the two peaks of incidence in 1986 and 1987 and the subsequent reduction of
transmission in 1988. This is shown by comparing the trajectories for an ensemble of
simulations with the fitted model to the observed values of cases (Fig. 4). Estimated
values for the transmission rate indicate a low value for Ry (Figure 4 Panel C). Both of
these conclusions generally hold even if one takes into account uncertainty in
parameter estimates by examining all parameter combinations with log likelihoods
within 2 log likelihood units of the maximum likelihood estimate (the grey region in

Figure 4 Panel C as well as Supplemental Figure S1), although some parameter

12
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Fig 4. A-B) Comparison of simulated values with the fitted model and observed
data on a log (A) and regular (B) scale. Observed monthly cases from April 1986 to
June 1988 are shown in blue. Median values from 100 simulations with the maximum
likelihood parameter combination are shown in red. The shaded red region denotes the
2.5% and 97.5%th quantile boundaries from those simulations. C) Estimates for Ry(?).
The black line denotes the trajectory of Ry(t) for the maximum likelihood estimate. The
shaded grey region represents the 2.5% and 97.5%th quantile boundaries for
trajectories from all parameter combinations within 2 log likelihood units of the maximum
likelihood estimate. Each parameter combination has only one seasonal trajectory for
Ro(t) since Ry(t) is a deterministic quantity. Ry(t) for all parameter estimates ranges from
1.79-2.09 in the on season to 0.31-0.52 in the off-season.

We now apply the obtained parameter estimates from the fitted model to
address the expected re-emergence time on the basis of, first, the analytical expression
for the skip calculation (Equation 1), and then the stochastic simulations of the fitted
model. The parameter estimates used here are those for the reporting rate p, the
reproductive number Ry, and the amplitude of seasonal transmission & from all
combinations within 2 log likelihood units of the MLE. The expected number of skips
following the DENV1 invasion in 1986-1988 is considerably higher than the observed 2
years. Depending on the parameter combination used, we obtain anywhere from 27 to
100 skips (Panel A of Figure 5). Even the fastest estimated return from the skip analysis

(27 years) is much slower than the observed re-emergence time.

Forward simulation of the stochastic model likewise does not predict the rapid re-
emergence of DENV1 (Panel B of Figure 5). Under a pulse of 20 infected individuals
arriving per day, there was a low probability of re-emergence for parameter
combinations with low process noise (Panel B of Figure 5). Only parameter
combinations with high amounts of process noise (which have limited predictive value)

had a non-zero emergence probability. We consider alternate pulse rates in
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Supplemental Figure S14. Re-emergence probabilities under forward simulation of the
stochastic model thus corroborated the deterministic skip findings. The depletion of
susceptible individuals from 1986-1988 and their replenishment via population growth
from 1989-1990 under an aggregate SIR model was unable to explain the rapid re-

emergence of DENV1 in 1990.
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Fig 5. A) Expected number of skips (n¢) calculated using parameters obtained
from the fitted stochastic model. The open circles show the expected number of
skips n. from Equation 1 using parameters and the fraction of the population susceptible
after the initial DENV1 invasion (sp) estimated from the fitted stochastic model. Each
circle corresponds to one parameter combination, and we included here all parameter
combinations for the fitted model with a seasonal transmission amplitude (3) of 0.7 (
contacts per person per day) and a likelihood value within two log-likelihood units of the
maximum likelihood estimate (MLE). See Figure S15 for expected skips from
parameter combinations with different values of 6, and Figure S10 for parameter
combinations from the profile of the recovery rate, y. For comparison purposes, the
black line shows the expected number of skips for the deterministic skip calculation from
panel B of Figure 2 with the reporting rate p fixed at the literature value of 3%. B)
Probability of epidemic in 1990 under forward stochastic simulation of fitted
model. The fitted stochastic model was simulated forward in time from 1986-1990 with
population growth. A pulse of 20 infected individuals were assumed to arrive each day
in January 1990. Each parameter combination within 2 log likelihood units of the
maximum likelihood estimate was simulated 100 times. The re-emergence probability
was calculated by determining the number of simulations in which the susceptible
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population decreased in 1990. The plot shows re-emergence probability as a function of
the process noise intensity op. Each point represents a single parameter combination.
The maximum likelihood estimate parameter combination is circled in red.

Sensitivity Analysis:

To examine the robustness of our findings to adding an incubation period or
altering the form of seasonality, we conducted a sensitivity analysis by considering both
SIR and SEIR models with spline seasonality. The results are presented and discussed
in the Supporting Information and show that our conclusions remain unchanged. (See
the Supporting Information including Supplemental Figures S2-S7 and Supplemental

Tables ST2 and ST3).
Comparison with Vector Model and literature Rq

The fitted stochastic SIR model uses a cosine function as a simplification to rep-
resent the seasonal forcing that would be created by climate variation (temperature
(46)) via the changes in infected mosquitos. To evaluate whether this simplification is
realistic, we take two approaches. The first one compares the mean seasonal R, result-
ing from our model to values of this reproductive number directly estimated from time
series data in the literature for DENV1 and DENV4 in Rio de Janeiro from 2010-2016.
There is a close match between these very different ways to estimate Ry, and in particu-
lar the shape of the seasonality produced by our model is realistic (Supplemental Figure

s18).

The second approach considers a simple temperature-driven vector model. To
this end, we initially show that the seasonal variation in temperature in Rio de Janeiro
can be approximated via a cosine function (Panel A of Supplemental Figure S19 and

use this approximation to drive a transmission rate that includes the vector explicitly.
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To obtain an expression for the seasonal transmission rate we consider an ex-
plicit mosquito model with compartments for infectious and susceptible mosquitoes in
which a number of parameters depend on temperature (T) (see Section 4 of the Sup-
porting Information). By assuming fast dynamics of the mosquito (so that levels of in-
fection in the mosquito population quickly equilibrate to the dynamics of infection in the
human population), we derive the following expression for the effective transmission
rate in the mosquito-human model in terms of the biting rate a(T), probability of human
infection given an infectious bite b(T), probability of mosquito infection given biting of an
infectious human pMI(T), adult mosquito mortality rate uy, carrying capacity K of the

mosquito population, human population size N, and mosquito demographic function

g(T):

a(T)*b(T) (pMI(T)) 5(1 _ Hu )

e iy N g(T)

(2)

The function g(T) is the product of the eggs laid per female mosquito per gono-
trophic cycle, the mosquito egg-to-adult survival probability, and the mosquito egg-adult
development rate divided by the adult mosquito mortality rate py. The temperature-
dependence of these components was borrowed from the literature (47, 48) (see Sup-

porting Information Section 4 for details).

Under the fast dynamics assumption, this effective transmission rate Beg is an
implicit representation of the force of infection inflicted on humans by the vectors of the
coupled human-vector model. When re-scaled between 0 and 1, Bes corresponds
closely with Bume, the transmission rate from the fitted stochastic SIR cosine model

(Panel B of Supplemental Figure S19). This close correspondence indicates that the
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SIR cosine model is able to capture the shape of the seasonality of DENV1 in Rio de

Janeiro.

Discussion

We developed two lines of evidence regarding the uncertainty and predictability
of the time to re-emergence for diseases with low reproductive numbers on the basis of
a seasonally forced SIR model under the ‘well-mixed’ assumption at aggregated, city-
wide, scales. We showed with an analytical approach that the time to re-emergence
(expressed as the number of “skip” years) was highly sensitive to small changes in Ry
and the fraction of the population still susceptible s, at the time of prediction (e.g. at
the end of the initial outbreak). This sensitivity applies to dengue in Rio de Janeiro
where re-emergence times can vary on the order of decades based on literature
parameters. This uncertainty contrasts with previous applications of this analytical
approach to SIR dynamics in childhood diseases such as measles with much higher Ry
values where accurate predictions of much shorter skip times have been made (29). We
also showed with a stochastic SIR model with seasonal transmission fit to DENV1
observed case data for Rio de Janeiro from 1986-1988 that susceptible depletion and
replenishment are insufficient to explain dengue re-emergence. The fitted model failed
to predict by far the re-emergence of DENV1 in 1990 in terms of either the number of

skips expected or the outbreak probability under forward simulation.

Transmission parameters like Ry are generally defined with respect to a particular
model. Given that we aggregated cases at the city level and used a short time series,
care should be taken in interpreting parameter values. Nevertheless, fitted transmission

parameters correspond well with literature values and exhibit well-defined confidence
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intervals. Estimates of the reporting rate in particular closely match the 3% value (8)
obtained via a serological study conducted during the 1986 invasion (8, 33). Reporting
rates during the onset of an epidemic may be much lower in regions that have not
recently experienced transmission (33, 49) than in those with re-occurring outbreaks
and an established surveillance network. This may explain why serological studies of
the 1986 invasion (8, 33) and our results, estimate a lower reporting rate for dengue
than studies conducted in later years in Brazil (50). Even though different combinations
of the transmission rate and duration of infection can yield the same reproductive
number, the parameter estimates that compose R, across all models considered in the
sensitivity analysis (which take into account those different combinations) are relatively
well-defined. These values are also consistent with the effective reproductive number
estimated for local dengue epidemics from 2012-2016 (44) and 1996-2014 (45) taking
into account differences in serotype circulation and population size during those

periods.

More complex model structures are possible and often used for arboviruses that
include an explicit representation of the vector. We expect our results to hold as this
vector component should largely affect the phase and shape of seasonality in the
transmission between human hosts, which we have modeled phenomenologically as a
cosine wave. With two typical successive epidemic years from an emergent virus,
parameter inference from such short observation period is unlikely to justify a more
complex model. Nevertheless, to examine transmission seasonality further, we
compared the seasonal Ry resulting from the fitted model to the seasonal Ry directly
estimated from time series of cases in the literature (44). We also considered the
transmission rate experienced by humans in a simple vector-human model forced by

the typical seasonality of temperature in Rio de Janeiro. The shape and timing of the
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vector-human model’s transmission rate was comparable to that of the cosine
transmission rate we employed. More complex models that do not assume fast
dynamics of infection in the vector relative to epidemic spread would likely exhibit a
difference relative to our transmission rate, especially a delayed phase, whose
consequences should be examined in future work. We posit that this difference would
not influence our results on the predictability and uncertainty of re-emergence, since the
values of other parameters (such as the length of infection in humans) can compensate

for it.

Factors that could explain the observed rapid re-emergence include inter-annual
climate anomalies, antigenic evolution, or micro-scale spatial heterogeneity in
transmission intensity and associated susceptible depletion. Larvae washout following
flooding coupled with temperature-driven seasonality in transmission could have
temporarily halted the invasion in 1988 and delayed the epidemic in 1989. Widespread
flooding was reported in February 1988 (51). Large amounts of rainfall washed away
mosquito larvae in lab and field studies (562). High rainfall negatively affected dengue
transmission in Singapore (53, 54) and India (55). The impact could be compounded in
Rio de Janeiro if the high rainfall occurs during the transmission season. If the larvae
population has not fully recovered before the start of the off-season, the impact of the

rainfall anomaly could extend to the subsequent season.

The large amount of process noise observed in the aggregate model would be
consistent with this effect, given that the process noise parameter op represents random
variation in the transmission rate due to environmental factors. However, the model’s
inherent structure limits its ability to take into account flooding events via op, since the

magnitude of the process noise does not change between years. Incorporating an inter-
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annual climate driver could provide more accurate re-emergence predictions. The
response to rainfall would be nonlinear: positive at low to moderate levels and negative

at higher ones.

Intra-serotype antigenic evolution from 1986-1990 could also facilitate faster re-
emergence. Many models focus on inter-serotype variation and assume long-lasting
homosubtypic immunity (18, 19, 21). However, the antigenic variation within and across
dengue serotypes is comparable (56), and antigenic differences between strains of the
same serotype influence overall dengue evolution(57) . Sequences associated with
case data were unavailable, making direct analysis challenging. We cannot rule out the
possibility that genetic differences between the circulating strains enabled re-infection. A
future SIRS-type model (Susceptible-Infected-Recovered-Susceptible) could

incorporate this intra-serotype antigenic evolution.

Micro-scale spatial heterogeneity in transmission intensity and the effects of
human movement between neighborhoods could also explain the rapid re-emergence.
Small-scale differences in socioeconomic status and population density between
neighborhoods in a large city can result in different relationships between mosquito and
human population sizes, resulting in widespread heterogeneity in Ry across
neighborhoods (58). Previous studies of mosquito trap data in the city have
demonstrated that neighborhoods with differing socioeconomic characteristics have
different vector population patterns (46). In fact, schoolchildren from neighborhoods
with divergent socioeconomic characteristics had varying levels of seroconversion
during the 1986 invasion (33). Human movement between neighborhoods may also
influence transmission within (59) and between (60) those neighborhoods, potentially

resulting in non-uniform depletion of susceptible populations between highly connected
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and isolated areas of a city. Whether arising through the effects of spatial heterogeneity
in transmission or intra-city movement, non-uniform levels of herd immunity could

enable faster re-emergence.

Our findings reveal the uncertainty of re-emergence predictions with the simplest
SIR models, those that would be most useful at times of emergent public health threats.
Consideration of the above factors in transmission models whose goal is to inform
public health over large regions, and to do so soon after, if not during, an emergent
outbreak, is clearly a challenge. For example, coarse resolutions are typically used
because of the scales at which the observed cases are reported, the scales at which the
climate covariates are available, and the difficulties inherent in incorporating microscale
variation including connectivity. Our results should motivate further research into the
central question of how we can scale microscale heterogeneity to formulate aggregated
models that include it implicitly. It should also motivate the related further understanding
of how such microscale heterogeneity influences susceptible depletion and
replenishment in particular case studies. From such efforts, we should be able to
evaluate whether the increasing availability of high-resolution data makes it feasible to
parameterize transmission models at higher resolutions, or to inform new model

formulations at coarser resolutions.

The inability of susceptible depletion and replenishment in a simple seasonal SIR
formulation at a large, city-wide scale, to explain DENV1 re-emergence has potential
implications for other arboviruses. Recent long-term Zika forecasts (31) assume that
susceptible depletion and replenishment brought an end to the 2015-2017 epidemics
and will determine when re-emergence occurs. DENV1 and Zika share the same vector

and invaded a completely susceptible population (not accounting for pre-existing cross-
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immunity from dengue). If factors absent from the basic model were key drivers of
DENV1 inter-annual variability, it would not be unreasonable to infer that similar types of
factors could have played a major role in the Zika dynamics observed from 2015-2017.

Zika re-emergence could similarly occur much earlier than expected.

With changing temperature patterns due to climate change, cities in Asia,
Europe, and the western hemisphere that currently do not have recurrent local
transmission may transition in the near future to the kinds of dynamics studied here. Our
results suggest that estimates should be interpreted in the context of this sensitivity to
small changes in the reporting rate and reproductive number. Factors like variation in
reporting rates, micro-scale transmission heterogeneity and inter-annual climate drivers
that are often ignored in long-term forecasts may thus become critical in determining re-
emergence times. Overall, the large uncertainty in re-mergence times may be
unavoidable for these regions. Improved models are needed together with richer data
than currently used, to address the question of the relevant spatial scales of susceptible

depletion.

Materials and methods

The derivation of the expression for the number of skip years (Equation 1) is
included in Section 1 of the Supporting Information. We fitted a stochastic version of the
SIR model to observed monthly case counts in Rio de Janeiro from 1986-1988 to
estimate parameters needed to apply this expression, and also to separately predict in
parallel the time to re-emergence via numerical simulation Expected re-emergence

times were then compared for the two approaches.
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Data Description

We used monthly dengue case estimates in the city of Rio de Janeiro, Brazil
from 1986-1990. Cases were reported to the local public health surveillance system (9,
10). The case counts did not contain serotype information, but prior studies indicated
that the dengue serotype DENV1 invaded the city of Rio de Janeiro in 1986 (10) and
was the dominant serotype in circulation in the state of Rio de Janeiro from 1986-1990

(8) prior to the arrival of DENVZ2 in 1990. DENV2 did not become dominant until 1991
9).
Basic Model Formulation

Because dengue infection confers full immunity to the same serotype, we
considered an SIR (Susceptible-Infected-Recovered) model. The deterministic model

for the number of individuals in the Susceptible (S), Infected (/), or Recovered (R) class

is given by the following system of ordinary differential equations:

ds
—=1rN — A(t)S — uyS

dt
3)
dI—)ltS I I
i (®)S —vyl—uy
(4)
dR _ . r
dt_y Un

(4)

I
A = BOG)
(5)
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B(t) = Bo(1 + Ssin(wt + P))
(6)

Deaths occur at rate (uy) given by the inverse of the life expectancy of Brazil in
2012 (74.49 years(35)). All individuals are born susceptible. The term r represents
population growth. The human population growth rate was estimated from census
resident population estimates in 1991 (36) and 2000 (37) assuming exponential growth.
This rate was used to interpolate the estimated population in 1986 (See Supporting

Information Section 2.1.1 for details).

The per capita rate at which susceptible individuals become infected was given
by the force of infection A(t) (Equation 5). Individuals recovered at per-capita rate y
whose inverse is the duration of infection. Estimates of the duration of infection in den-
gue vary. One analysis estimated that symptoms of dengue infection last 2-7 days fol-
lowing an incubation period of 4-10 days (61, 62). For our analysis, we fixed the recov-
ery rate y to be 1/17, assuming an exponentially distributed duration of infection with
mean of 17 days encapsulating the maximum extent of the combined incubation and
symptomatic period in humans. We take into account the possibility that duration of in-
fection could vary by profiling over the duration of infection in the sensitivity analysis.
The short duration of the available time series meant that fitting a formal vector model
could prove difficult and could require additional assumptions in terms of which parame-
ters could be fitted or fixed from existing formulations in the literature. We therefore
used an SIR framework in which the infected stage served as a proxy for the exposed
and infected human compartments in a vector model of dengue transmission, and we

assumed infection levels in vector rapidly equilibrate with those in humans (as de-
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scribed later when we consider the vector explicitly (See Section 4 of the Supporting In-
formation). A duration of infection was thus chosen that corresponds to the upper bound
of the estimated pre-infectious period (4-10 days) and infectious period (2-7 days) in
humans (61, 62). We profiled over the duration of infection in the sensitivity analysis to

verify that this parameterization is reasonable.

This transmission rate f(t) was represented as a cosine function with mean fy,
(units of contacts per person per day) and seasonal oscillations of amplitude 6 (same
units as Bo) and frequency , which was assumed to be annual (o = 27/365) days™. The

annual mean R, was thus given by:

_ B
y+u
®

Ro

The observed dengue data in Rio de Janeiro consisted of monthly case counts.
Serological studies of the DENV1 invasion in Rio de Janeiro also indicated substantial
under-reporting (8, 33). Let C represent the true number of monthly cases that would be
obtained by summing the number of individuals entering the infected class (/) over the
course of a month. For the purposes of the skip analysis, we assume that a fixed

fraction p of the true cases C are observed, where p is the reporting rate.

The stochastic model is an approximation of the deterministic one used for the
skip analysis. For simplicity and given the short time interval, we assumed that there
was no population growth over the two and half years of the DENV1 invasion (r =uy)
and that births and deaths occurred at rate uy = (1/(74.9*365)), which is equal to the
inverse of the average life expectancy in Brazil from the 2010 census (35). However,

population growth is taken into account when simulating forward in time from the fitted

26



592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

stochastic model. We also assumed that there were no recovered individuals at the start
of the epidemic, so all other individuals in the population not initially infected were

susceptible. We considered time in units of days and used a time step At of 1 day.

The stochastic model is a discrete-time model with fixed time step At and a discrete
state space (i.e. the number of people in each compartment S, /, R, and C, at any point
in time must be integers). The number of individuals who moved from one compartment
to another over the course of each day was calculated via Euler simulation from the
deterministic equations (See Supporting Information). Demographic stochasticity was
then incorporated into the Euler approximations to obtain integer state variable values
after each time step. We specifically assumed that the number of individuals making
each state transition was drawn from a binomial distribution with exponentially decaying
probability (See Supporting Information). Environmental noise (variation in the
transmission rate (t) due to random environmental variation) was captured via
multiplicative gamma white noise in the transmission rate as described by (63, 64). On

time step size A t, we multiplied the transmission rate by AI' / At, where AI' / A t was

drawn from a Gamma distribution with mean 1 and variance cp2 /At

The measurement model assumed that the observed number of monthly dengue
cases (Y(t) at time t were drawn from a negative binomial distribution with mean equal
to the true number of monthly cases C multiplied by a reporting rate p, with dispersion
parameter oy. More details of the measurement model can be found in Section 2.4 of

the Supporting Information.

Fitting the stochastic model
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We fitted the transmission parameters (o and d), reporting rate (p), process
noise parameter (op), measurement noise parameter (ou), and the number of infected
individuals at the start of the outbreak in May 1986 (/p). While the first cases of DENV1
were reported in April 1986, we started the model fitting in May 1986 to avoid
complications from changes in the reporting rate as the surveillance system was
established during the start of the DENV1 invasion. We used in an interpolated initial
population size of 5,281,842 for Rio de Janeiro in May 1986.The model was fit using the
mif2 method in the R-package pomp. The model fitting method is described further in

the Supporting Information and in (65).
Calculating expected skips using parameter estimates from stochastic model

Following the completion of the Monte Carlo Profiles, a maximum likelihood
estimate (MLE) parameter combination was obtained from the Monte Carlo Profiles of
the fitted model by selecting the parameter combination with the highest likelihood
across all profiles. The table of MLE parameter values is shown in Supplemental Table
ST1. All sets of parameter combinations within 2 log-likelihood units of the maximum
likelihood estimate (from all profiles) were used for the expected skip calculation. The
reporting rate (p), Bo, and & value of each parameter combination within 2 log likelihood
units of the maximum likelihood estimate were applied to a finer gridded version of the
deterministic skip calculation described earlier. A distribution for the number of skips
expected in Rio de Janeiro following the DENV1 invasion from 1986-1988 was

obtained.
Stochastic Simulation

We then simulated re-emergence probabilities under the stochastic model. Each

parameter combination within 2 log likelihood units of the MLE estimate from the
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stochastic fit was simulated again without any immigration from 1986 until 1990 but with
population growth. During January 1990, “sparks” of infectious individuals were
assumed to have arrived in the city at some fixed rate. There were low but non-zero
levels of DENV1 incidence from 1988-1989. We chose to wait until January 1990 before
introducing new DENV1 infections to be conservative, as this is when an uptick in
DENV1 incidence was first observed. Had we introduced sparks earlier in 1988-1989,
we would likely have observed even earlier re-emergence times. We explored rates
from 5 to 100 infected individuals per day. This process was repeated 100 times, and
the probability of an epidemic occurring in 1990 was calculated. An epidemic
occurrence in this situation was defined as a net decrease in the susceptible population
over the course of the year (after taking into account population growth), to best match

the definition of an epidemic used in the skip analysis.
Sensitivity Analysis

We assessed how parameter estimates of Ry and p may depend on the model
formulation by fitting several more complex SIR-type models to the same data using the
fitting procedure described in the Methods section: an SIR Spline Model and SEIR
Spline Model. As an additional sensitivity analysis, we profiled over the recovery rate for
the SIR Cosine Model (Supplemental Figure S9). For details, see the Supporting

Information.
Comparison with Vector Model and literature Ry

For a full description of the explicit coupled human-mosquito model with
compartments for infectious and susceptible mosquitoes and comparison of
transmission rates between this model and the simpler seasonally forced SIR , see the

Supporting Information.
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