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Abstract: 5 

Predicting arbovirus re-emergence remains challenging in regions with limited off-6 

season transmission and intermittent epidemics.  Current mathematical models treat the 7 

depletion and replenishment of susceptible (non-immune) hosts as the principal drivers 8 

of re-emergence, based on established understanding of highly transmissible childhood 9 

diseases with frequent epidemics.  We extend an analytical approach to determine the 10 

number of ‘skip’ years preceding re-emergence for diseases with continuous seasonal 11 

transmission, population growth and under-reporting.  Re-emergence times are shown 12 

to be highly sensitive to small changes in low R0 (secondary cases produced from a 13 

primary infection in a fully susceptible population).  We then fit a stochastic SIR 14 

(Susceptible-Infected-Recovered) model to observed case data for the emergence of 15 

dengue serotype DENV1 in Rio de Janeiro. This aggregated city-level model 16 

substantially over-estimates observed re-emergence times either in terms of skips or 17 

outbreak probability under forward simulation. The inability of susceptible depletion and 18 

replenishment to explain re-emergence under ‘well-mixed’ conditions at a city-wide 19 

scale demonstrates a key limitation of SIR aggregated models including those applied 20 

to other arboviruses. The predictive uncertainty and high skip sensitivity to 21 

epidemiological parameters suggest a need to investigate the relevant spatial scales of 22 

susceptible depletion and the scaling of microscale transmission dynamics to formulate    23 

simpler models  that apply at coarse resolutions.  24 
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Introduction: 25 

Epidemics of arboviruses such as dengue (1), Zika (2, 3), and chikungunya (4) 26 

result in substantial global morbidity. Over the past decade, invasions of several 27 

arboviruses have triggered large outbreaks in the Western Hemisphere. In Brazil, these 28 

invasions include dengue serotype DENV4 in 2012 (5) as well as Zika (2, 6) and 29 

chikungunya (7) between 2014-2016.  Predicting and understanding the re-emergence 30 

of arboviruses after these invasions has important consequences for epidemic 31 

preparedness, particularly in regions where climate factors limit mosquito transmission 32 

in the off-season. These  regions typically exhibit highly intermittent seasonal 33 

epidemics, lasting one to three years with long periods of no, or low, reported cases in 34 

between, and low mean reproductive numbers (the number of secondary cases arising 35 

from each primary case in a completely susceptible population, R0) (5, 8-10). Several 36 

proposed explanations include the depletion of susceptible individuals following initial 37 

epidemics (11) and the time required for their replenishment via population growth (12), 38 

inter-annual variation in climate (13-17), and antigenic interactions between strains of 39 

different serotypes (18-21). These temporal patterns contrast with the recurrent 40 

seasonal outbreaks observed in childhood diseases with high reproductive numbers, 41 

whose extensive study has provided the basis for our theoretical understanding of SIR 42 

(Susceptible-Infected-Recovered) dynamics in infections that confer lifelong or lasting 43 

immune protection (22-29). 44 

Statistical models of dengue transmission that take into account climate 45 

dependencies can be used to make short-term re-emergence forecasts on the order of 46 

4 months (30) or 16 weeks (15). Many epidemiological models that predict the re-47 

emergence of arboviruses such as Zika (11, 31) on longer time-scales of a year (11) or 48 



 3 

several decades (31) rely however on compartmental formulations such as SIR-type 49 

approaches (11) or Ross-McDonald equations that explicitly incorporate vector 50 

transmission (31). Both formulations assume transmission between any two individuals 51 

in the population (‘well-mixed’ conditions), typically at aggregated spatial scales. These 52 

process-based formulations, for example those recently applied to Zika, represent the 53 

acquisition of immunity in the population and its loss via demographic growth and 54 

turnover. These models do take into account seasonality of transmission and spatial 55 

heterogeneity in the intensity of transmission due to climate at coarse resolutions (at 56 

large city, state, or country-level scales). Nevertheless, the replenishment of a well-57 

mixed susceptible population is frequently assumed to be the principal driver 58 

determining when the disease will re-emerge given a particular seasonal pattern for R0 59 

at a particular location(31).  Stochasticity can also play an important role in long-term 60 

models of re-emergence (31). Variation in reporting rates of arboviruses between 61 

locations (32) can add further complexity.   62 

 Although childhood diseases with high reproductive numbers display different 63 

dynamics from emergent arboviruses (22-26), their compartmental models share a 64 

basic SIR structure given the acquisition of long-term immunity after infection.  The 65 

resulting depletion and replenishment of the susceptible population is known to clearly 66 

drive inter-annual variability and re-emergence in the former (25, 27, 28). In particular, 67 

recent theory (29) has derived analytical expressions for the number of “skip” years for 68 

a measles-like disease in the pre-vaccine era, where “skips” are defined as seasons 69 

when transmission occurs but does not cause susceptible depletion. In other words, 70 

although the number of infections increases in such seasons, it  is not large enough to 71 

offset the growth in the susceptible population due to demography. The resulting 72 

expressions specifically provide a threshold condition for the number of skips expected 73 
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following an initial invasion as a function of R0. Their derivation did not include under-74 

reporting and assumed a closed-population SIR model with ‘school-term’ seasonality, 75 

alternating two different rates for low and high transmission. 76 

We examine in this work whether replenishment of susceptible individuals under 77 

the typical ‘well-mixed’ assumption explains  dengue (DENV1) re-emergence at the 78 

whole-city aggregated level.  We specifically address the uncertainty inherent in such 79 

predictions at the low reproductive numbers characteristic of arboviruses, not previously 80 

considered in applications of the analytical approach. To this end, we first extend the 81 

threshold derivation to take into account population growth, continuous (sinusoidal) 82 

seasonality, and under-reporting of cases. We then fit a stochastic SIR model to 83 

observed monthly dengue case counts from the DENV1 invasion in Rio de Janeiro, 84 

Brazil from 1986-1988 (8, 10, 33) and numerically predict  expected times to re-85 

emergence. We describe high uncertainty in re-emergence times for these seasonal, 86 

low transmission regions, and show the insufficiency of susceptible replenishment in a 87 

simple SIR model to explain the short periods observed in DENV1 re-emergence. We 88 

discuss possible explanations and the need for model formulations that would scale to 89 

coarse spatial resolutions.  90 

 91 

Results: 92 

We start with the analytical approach for a seasonally forced SIR system with in-93 

termittent outbreaks and population turnover, to consider general features of re-94 

emergence at low R0. In such a system, the onset of the off-season can bring an end to 95 

an initial outbreak, and the replenishment of susceptible individuals due to births and 96 

population turnover can be a major determinant of recurrence times.  Let S represent 97 



 5 

the number of susceptible individuals in a population and  s0, the fraction of the popula-98 

tion still susceptible at the end of an initial epidemic, t0,  when a prediction  for the time 99 

to the next  outbreak will be made.  If there are enough susceptible individuals left in the 100 

population (i.e. if s0 is  large), another outbreak will occur in the following year once the 101 

on-season resumes. However, if the initial outbreak was very large, s0 may be too small, 102 

and the outbreak may “skip” one or more years. A skip year is defined as a year in 103 

which the susceptible population does not decrease, whether or not infections increase. 104 

The smaller the fraction of the susceptible population at the time of prediction (s0), the 105 

longer it will take for the susceptible population to replenish, and the larger the number 106 

of skips that will occur.  Previous theory(29) allows prediction of the number of skips 107 

that will occur given s0. Specifically, it demonstrated that s0 must fall below some 108 

threshold sc (k) for k skips to occur. An analytical expression was provided for sc(k) in 109 

terms of the reproductive number and population turnover rate for a closed-population 110 

SIR model with school-term seasonality (29). The derivation of the threshold presented 111 

in (29) requires the assumption that the transmission rate or reproductive number of the 112 

disease is high and that the fraction of the population susceptible at the time of predic-113 

tion (s0) is small.  114 

We extend this approach to take into account population growth and sinusoidal 115 

seasonality (which describes the transmission rate of dengue more accurately than a 116 

discrete high-low representation). Our derivation does not require assuming that the 117 

transmission rate or reproductive number are high or that the fraction of the population 118 

susceptible at the time of prediction is small. We follow the criteria developed in (29) 119 

(see details in (34)), which essentially consider the sign of the logarithm of the ratio 120 

between the respective number of infections at two times, t0 and tn>t0. A positive value 121 

indicates that an outbreak will still occur at tn; conversely a negative value indicates no 122 
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outbreak at that time. By setting the logarithm of this ratio to zero, the threshold sc is 123 

obtained (See Section 1 of the Supporting Information for details). 124 

The resulting expression for sc(n), the critical fraction of susceptible individuals 125 

required at the time of prediction for n or more skip seasons to occur, is 126 

s𝑐(𝑛) = 1 +
𝜋(2𝑛+1)(1−

1

𝑅0
)−2𝛿

𝜔𝑓(𝜔,𝛿,𝑟,𝑛)
         (1) 127 

where 𝑓(𝜔, 𝛿, 𝑟, 𝑛) = (1 + 𝑒−𝑟
𝜋

𝜔
(2𝑛+1))𝜔 δ (𝜔2 + 𝑟2)⁄ − (1 − 𝑒−𝑟

𝜋

𝜔
(2𝑛+1)) 𝑟⁄ , R0 is the 128 

annual mean of the reproductive number,  the amplitude of seasonal transmission (as 129 

infectious contacts per person per day), 𝜔, the transmission frequency (in  days-1) and r, 130 

the population growth rate (also in  days-1). The full expression for the seasonal 131 

transmission rate  is given by 𝛽(𝑡) = 𝛽0(1 + 𝛿𝑠𝑖𝑛(𝜔𝑡 + 𝜙), where  corresponds to the 132 

phase (in radians) and  0, to the mean seasonal transmission rate (infectious contacts 133 

per person per day). The quantity0  is related to the annual mean reproductive number  134 

R0 via the expression  𝑅0 =  𝛽0/𝛾, where is the recovery rate (in days-1).  135 

Figure 1 illustrates the implications of this formula. As before, t0 corresponds to 136 

the time of prediction, in practice usually after a large initial epidemic or invasion. Like-137 

wise, s0 represents the fraction of the population susceptible at the time of prediction. 138 

Intuitively, the smaller the fraction of the population susceptible at the time of prediction 139 

(s0), the longer it will take for the susceptible population to replenish, and the larger the 140 

number of skips that will occur.  In practice, as we will illustrate below, values of s0 can 141 

be computed from surveillance data provided one has an estimate of the reporting rate. 142 

For n skips to occur, the fraction of the population susceptible at the time of pre-143 

diction (s0) must fall below the  susceptibility threshold sc(n). Figure 1A shows that the 144 

larger the number of skips n one is considering, the smaller the threshold sc(n) that s0 145 
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must fall below for at least n skips to occur.  Let  nc  denote the critical skip number cor-146 

responding to the number of skips  expected at the time of prediction (t0).  We use the 147 

fraction of the population susceptible at the time of prediction (s0) and identify the max-148 

imum value of n for which s0 is smaller than sc(n).   In the example shown in Fig. 1A, this 149 

fraction s0 = 0.7 is smaller than sc(n = 6) and bigger than sc(n = 7), which means nc = 6.  150 

We therefore expect six years of skips followed by re-emergence in the seventh year. 151 

Formally, for a given value of s0 at the end of the transmission season, we define the 152 

critical skip number nc as the value of n for which sc(nc) > s0 > sc(nc + 1).   153 

 154 

 155 

Fig 1. A) Graphical illustration of how the expected number of skips (nc) is 156 

calculated. The black dots represent the threshold fraction of the population 157 

susceptible at the time of prediction required for n skips to occur (sc(n)).   The plot 158 

shows (sc(n)) as a function of n (the number of skips) obtained from Equation 1 with 159 

seasonality amplitude  =0.2 ( contacts per person per day) and reproductive number 160 

R0=1.4. In this example, the red line represents the fraction of the population 161 

susceptible at the time of prediction (s0). If s0 is smaller than sc(n), at least n skips will 162 

occur. To find the expected number of skips (nc), we identify the largest number of skips 163 

n such that s0 is smaller than the susceptibility threshold required for those skips sc(n). 164 

In this example, the red line  intersects the sc(n) curve between sc(n=6) and sc(n=7). 165 
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Therefore, a critical skip number of nc=6 is obtained. B) and C) The critical skip value 166 

nc as a function of R0 for (B) different values of the amplitude of seasonal transmission 167 

 with s0=0.7 and (C) different values of the fraction of the population susceptible at the 168 

time of prediction (s0 with =0.70. In all three panels, the frequency of transmission , 169 

the population turnover rate  and population growth rate r are fixed at respective 170 

values =  (2/365) day-1  corresponding to an annual periodicity, = 1/ (74.46*365)) 171 

day-1 corresponding to an average lifespan of ~75 years, and  r=1.55day-1 consistent 172 

with the growth of the city of Rio de Janeiro.  These values were chosen for the purpose 173 

of illustration, based on the inverse of the average life expectancy in Brazil in 2012 174 

according to the 2010 census (35), and  the interpolation of  population estimates for the 175 

resident population of the municipality of Rio de Janeiro from the 1991 (36) and 2000 176 

(37) censuses assuming exponential growth.  177 

 178 

With this general approach at hand, we explored the effects of the reproductive 179 

number R0, amplitude of seasonal transmission and fraction of the population 180 

susceptible at time of prediction s0, on the critical number of skips nc (Figure 1 Panels B 181 

and C). Consideration of both the variation of the reproductive number  R0 and fraction 182 

of the population susceptible at time of prediction s0 is relevant here. Different 183 

combinations of transmission rate (β0) and duration of the infection (1/ γ) can yield the 184 

same R0 but different fractions of the population susceptible at the time of prediction 185 

(Supplemental Figure S16). Importantly, Fig. 1 panels B and C show that the time to re-186 

emergence is very sensitive to R0. A singularity is observed as R0 approaches 1 where 187 

the expected number of skips goes to infinity. The approach to that singularity can be 188 

very steep, meaning that small changes in R0 can result in large increases in the 189 

expected re-emergence time. The obtained values of nc are not as sensitive to the 190 

amplitude of seasonal transmission  (Fig. 1 Panel B) but are sensitive to the fraction of 191 

the population susceptible at the time of prediction (Fig. 1 Panel C).  The shift of the 192 

curve in Fig 1 Panel C for small values of the fraction of the population susceptible at 193 

time of prediction s0 means that, for a given R0, more time is required to replenish the 194 

susceptible population and therefore to observe a re-emergence.  195 
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 We next apply this approach to the  surveillance data from the 1986 invasion of 196 

DENV1 in Rio de Janeiro (Figure 2). The initial DENV1 invasion in Rio de Janeiro is an 197 

ideal initial test case for this technique given the lack of widespread prior immunity from 198 

to prior dengue epidemics, vaccination campaigns, cross-immunity from other disease 199 

outbreaks. Specifically, the 1986 invasion occurred prior to the development of dengue 200 

vaccines. The outbreak was the first dengue invasion in the area since the initial eradi-201 

cation of the Aedes aegypti mosquito in Brazil in the 1950s (38-41) following a sus-202 

tained intervention program that began in the 1930s and 1940s in Rio de Janeiro and 203 

other cities (39). Cross-immunity from yellow fever vaccination appears to be very lim-204 

ited (42). Given the young age distribution of the population in 1986 (43), most individu-205 

als were not alive during the period when mass yellow fever vaccination or prior dengue 206 

epidemics occurred.  207 

We let our time of prediction t0 be equal to September 1, 1987, corresponding to 208 

the end of the initial DENV1 invasion (see panel A of Figure 2). In panel B of Figure 2, 209 

we evaluate the number of expected skips expected in Rio de Janeiro, nc,  on the basis 210 

of a range of R0 values from 1.18 to 2.02 from the literature (44, 45). The critical 211 

susceptibility threshold for n skips to occur (sc(n)) is calculated using Equation 1 with an 212 

annual seasonality, a population growth rate interpolated from the census (see Materials 213 

and Methods section), and  =0.7 (44). The fraction of the population susceptible at the 214 

time of the prediction (s0) is estimated as the difference between the total population N0 215 

(total population N at (t0=Sep. 1987)) and the total number of people infected between 216 

the start of the invasion and the time of prediction (September 1, 1987).  The total 217 

number of infected people during the outbreak is computed by summing the ratio 218 

between the observed monthly cases and the reporting rate for DENV1 in the city.  219 

Literature estimates from serology during the DENV1 invasion in Rio de Janeiro indicate 220 
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a reporting rate of around 3% (33) which we use and fix for this analysis. For 221 

comparison purposes, we also include  the number of skips expected under a higher 222 

reporting rate of 10%. These curves show that the expected re-emergence could be 223 

very sensitive to small variation in R0 and ρ, two quantities that are difficult to estimate 224 

with precision in the absence of serology. In particular, assuming a reporting rate of 3%, 225 

a reproductive number of 1.2 with 20% uncertainty can yield large changes in the 226 

expected re-emergence time. We highlight the potential sensitivity of the expected 227 

number of skips to the reporting rate as well to illustrate the importance of uncertainty in 228 

this parameter in cities or epidemics where its value is unknown.  229 

 230 

Fig 2. (A) Observed dengue case data. Monthly reported dengue cases in the city of 231 

Rio de Janeiro, Brazil from April 1986-1995. The grey shaded region denotes 232 

observations that were included in the fitting of the stochastic model from May 1, 1986 233 

to July 1, 1988 inclusive. Serotype DENV1 re-emerged in 1990. DENV2 was first 234 

detected in the state of Rio de Janeiro in 1990 but did not become dominant until 1991 235 

(8, 9). Both co-circulated afterwards. We focus on the invasion of DENV1 from 1986-236 

1987 and its initial re-emergence in DENV1 in 1990 using a single serotype 237 

transmission model.  This allows us to evaluate  this  transmission model  in a region 238 

where only one serotype was circulating, where cross-immunity could not easily be 239 

invoked to explain the absence or reduction of dengue in a given year. (B) 240 
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Deterministic critical number of DENV1 skips nc for Rio de Janeiro from 241 

September 1988. Expected number of skips nc with amplitude of seasonal transmission  242 

=0.7 and the fraction of the population susceptible after the first DENV1 invasion as of 243 

September 1, 1987 (s0) calculated from the data (A). We use a reporting rate  of 3% 244 

when calculating s0 , consistent with serological estimates from the literature (33). For 245 

comparison purposes, we also include the expected number of skips nc assuming a 246 

reporting rate of 10%. 247 

 248 

 249 

Replenishment of Susceptible Individuals is Insufficient to Explain Re-Emergence 250 

To obtain more precise bounds for the reporting rate and R0 and to determine if 251 

the depletion and replenishment of susceptible individuals could explain the rapid re-252 

emergence of dengue in Rio de Janeiro, we fit a stochastic aggregate SIR model to 253 

case data from the DENV1 invasion from 1986-1988. The stochastic SIR model 254 

assumes that the underlying deterministic transmission rate varies seasonally as a 255 

sinusoidal function with annual mean, seasonal transmission amplitude , frequency 256 

(equal to 2/365), and phase  The model takes into account demographic 257 

stochasticity, environmental stochasticity in the transmission rate, and measurement 258 

error due to under-reporting and variation in reporting of cases (See Materials and 259 

Methods and the Supporting Information). Panels A,B, and C of Figure 3 show the 260 

likelihood profile of the annual mean transmission rate, ,  the amplitude of seasonal 261 

transmission   and  the reporting rate  respectively. In particular, our estimate of the 262 

reporting rate matches that from serology in the literature (Panel C). 263 
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 264 

Fig 3. A-C) Selected parameter profiles for the stochastic model. Profiles of the 265 

mean annual transmission rate 0 (A), seasonal transmission amplitude  (B), and 266 

reporting rate  (C). The red curve is a polynomial fit to the subset of the profile points 267 

shown on the figure.  The single dashed grey horizontal line represents the likelihood 268 

value 2 log likelihood units below the maximum likelihood estimate. This line provides 269 

an estimate of confidence intervals for the given parameter. The grey vertical line 270 

denotes the parameter value of the maximum likelihood estimate. The maximum 271 

likelihood estimate for the reporting rate in panel C is very close to the literature value 272 

obtained from serology (approximately 3 percent).  (33). 273 

 274 

 Overall, the model is able to capture key dynamics of the DENV1 invasion 275 

including the two peaks of incidence in 1986 and 1987 and the subsequent reduction of 276 

transmission in 1988. This is shown by comparing the trajectories for an ensemble of 277 

simulations with the fitted model to the observed values of cases (Fig. 4).  Estimated 278 

values for the transmission rate indicate a low value for R0 (Figure 4 Panel C). Both of 279 

these conclusions generally hold even  if one takes into account uncertainty in 280 

parameter estimates by examining all parameter combinations with log likelihoods 281 

within  2 log likelihood units of the maximum likelihood estimate (the grey region in 282 

Figure 4 Panel C as well as Supplemental Figure S1), although some parameter 283 
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combinations (not the maximum likelihood estimate) have substantial process noise 284 

(Supplemental Figure S1). 285 

 286 

 287 

 288 
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 289 

Fig 4. A-B) Comparison of simulated values with the fitted model and  observed 290 

data on a log (A) and regular (B) scale. Observed monthly cases from April 1986 to 291 

June 1988 are shown in blue. Median values from 100 simulations with  the maximum 292 

likelihood parameter combination are shown in red. The shaded red region denotes the 293 

2.5% and 97.5%th quantile boundaries from those simulations. C) Estimates for R0(t).  294 

The black line denotes the trajectory of R0(t) for the maximum likelihood estimate. The 295 

shaded grey region represents the 2.5% and 97.5%th quantile boundaries for 296 

trajectories from all parameter combinations within 2 log likelihood units of the maximum 297 

likelihood estimate. Each parameter combination has only one seasonal trajectory for 298 

R0(t) since R0(t) is a deterministic quantity. R0(t) for all parameter estimates ranges from 299 

1.79-2.09 in the on season to 0.31-0.52 in the off-season. 300 

 301 

We  now apply the obtained parameter estimates from the fitted model to 302 

address the expected re-emergence time on the basis of, first, the analytical expression 303 

for the skip calculation (Equation 1), and then the stochastic simulations of the fitted 304 

model.  The parameter estimates used here are those for the  reporting rate , the 305 

reproductive number R0, and the amplitude of seasonal transmission  from all 306 

combinations within 2 log likelihood units of the MLE. The expected number of skips 307 

following the DENV1 invasion in 1986-1988 is considerably higher than the  observed 2 308 

years. Depending on the parameter combination used, we obtain anywhere from 27 to 309 

100 skips (Panel A of Figure 5). Even the fastest estimated return from the skip analysis 310 

(27 years) is much slower than the observed re-emergence time. 311 

Forward simulation of the stochastic model likewise does not predict the rapid re-312 

emergence of DENV1 (Panel B of Figure 5).  Under a pulse of 20 infected individuals 313 

arriving per day, there was a low probability of re-emergence for parameter 314 

combinations with low process noise (Panel B of Figure 5). Only parameter 315 

combinations with high amounts of process noise (which have limited predictive value) 316 

had a non-zero emergence probability. We consider alternate pulse rates in 317 
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Supplemental Figure S14. Re-emergence probabilities under forward simulation of the 318 

stochastic model thus corroborated the deterministic skip findings. The depletion of 319 

susceptible individuals from 1986-1988 and their replenishment via population growth 320 

from 1989-1990 under an aggregate SIR model was unable to explain the rapid re-321 

emergence of DENV1 in 1990.   322 

 323 

 324 

Fig 5. A) Expected number of skips (nc) calculated using parameters obtained 325 

from the fitted stochastic model.    The open circles show the expected number of 326 

skips nc from Equation 1 using parameters and the fraction of the population susceptible 327 

after the initial DENV1 invasion (s0) estimated from the fitted stochastic model. Each 328 

circle corresponds to one parameter combination, and we included here all parameter 329 

combinations for the fitted model with  a seasonal transmission amplitude () of 0.7 ( 330 

contacts per person per day) and a likelihood value  within two log-likelihood units of the 331 

maximum likelihood estimate (MLE).   See Figure S15 for expected skips from 332 

parameter combinations with different values of , and Figure S10 for parameter  333 

combinations  from the profile of the recovery rate,  .  For comparison purposes, the 334 

black line shows the expected number of skips for the deterministic skip calculation from 335 

panel B of Figure 2 with the reporting rate  fixed at the literature value of 3%. B) 336 

Probability of epidemic in 1990 under forward stochastic simulation of fitted 337 

model.  The fitted stochastic model was simulated forward in time from 1986-1990 with 338 

population growth. A pulse of 20 infected individuals were assumed to arrive each day 339 

in January 1990. Each parameter combination within 2 log likelihood units of the 340 

maximum likelihood estimate was simulated 100 times. The re-emergence probability 341 

was calculated by determining the number of simulations in which the susceptible 342 
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population decreased in 1990. The plot shows re-emergence probability as a function of 343 

the process noise intensity P. Each point represents a single parameter combination. 344 

The maximum likelihood estimate parameter combination is circled in red.  345 

 346 

Sensitivity Analysis: 347 

To examine the robustness of our findings to adding an incubation period or 348 

altering the form of seasonality, we conducted a sensitivity analysis by considering both 349 

SIR and  SEIR models with spline seasonality. The results are presented and discussed 350 

in the Supporting Information and show that our conclusions remain unchanged.  (See 351 

the Supporting Information including Supplemental Figures S2-S7 and Supplemental 352 

Tables ST2 and ST3).  353 

Comparison with Vector Model and literature R0 354 

The fitted stochastic SIR model uses a cosine function as a simplification to rep-355 

resent the seasonal forcing that would be created by  climate variation (temperature 356 

(46)) via the changes in infected mosquitos. To evaluate whether this simplification is 357 

realistic, we take two approaches. The first one compares the mean seasonal R0 result-358 

ing from our model to values of this reproductive number directly estimated from time 359 

series data in the literature for DENV1 and DENV4 in Rio de Janeiro from 2010-2016. 360 

There is a close match between these very different ways to estimate R0, and in particu-361 

lar the shape of the seasonality produced by our model is realistic (Supplemental Figure 362 

S18).  363 

The second approach considers a simple temperature-driven vector model. To 364 

this end, we initially show that the seasonal variation in  temperature in Rio de Janeiro 365 

can be approximated via a cosine function (Panel A of Supplemental Figure S19 and 366 

use this approximation to drive a transmission rate that includes the vector explicitly.   367 
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 To obtain an expression for the seasonal transmission rate we consider an ex-368 

plicit mosquito model with compartments for infectious and susceptible mosquitoes in 369 

which a number of parameters depend on temperature (T) (see Section 4 of the Sup-370 

porting Information).  By assuming fast dynamics  of the mosquito (so that levels of in-371 

fection in the mosquito population quickly equilibrate to the dynamics of infection in the 372 

human population), we derive the following expression for the effective transmission 373 

rate in the mosquito-human model in terms of the biting rate a(T), probability of human 374 

infection given an infectious bite b(T), probability of mosquito infection given biting of an 375 

infectious human pMI(T),  adult mosquito mortality rate  carrying capacity K of the 376 

mosquito population, human population size N, and mosquito demographic function 377 

g(T): 378 

𝛽𝑒𝑓𝑓 =
𝑎(𝑇)2𝑏(𝑇)(𝑝𝑀𝐼(𝑇))

𝜇𝑀
 
𝐾

𝑁
(1 − 

𝜇𝑀

𝑔(𝑇)
)              (2) 

 379 

The function g(T) is the product of the eggs laid per female mosquito per gono-380 

trophic cycle, the mosquito egg-to-adult survival probability, and the mosquito egg-adult 381 

development rate divided by the adult mosquito mortality rate .  The temperature-382 

dependence of these components was borrowed from the literature (47, 48) (see Sup-383 

porting Information Section 4 for details).   384 

Under the fast dynamics assumption, this effective transmission rate eff is an 385 

implicit representation of the force of infection inflicted on humans by the vectors  of the 386 

coupled human-vector model. When re-scaled between 0 and 1, eff corresponds 387 

closely with MLE,  the transmission rate from the fitted stochastic SIR cosine model 388 

(Panel B of Supplemental Figure S19). This close correspondence indicates that the 389 
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SIR cosine model is able to capture the shape of the seasonality of DENV1 in Rio de 390 

Janeiro.    391 

 392 

Discussion 393 

We developed two lines of evidence regarding the uncertainty and predictability 394 

of the time to re-emergence for diseases with low reproductive numbers, on the basis  of 395 

a seasonally forced SIR model under the ‘well-mixed’ assumption at aggregated, city-396 

wide, scales.  We showed with an analytical approach that the time to re-emergence 397 

(expressed as the number of “skip” years) was highly sensitive to small changes in R0 398 

and the fraction of the population  still  susceptible s0 at the time of prediction (e.g. at 399 

the end of the initial outbreak).  This sensitivity applies to dengue in Rio de Janeiro 400 

where re-emergence times can vary on the order of decades based on literature 401 

parameters. This uncertainty contrasts with previous applications of this analytical 402 

approach to SIR dynamics in childhood diseases such as measles with much higher R0 403 

values where accurate predictions of much shorter skip times have been made (29). We 404 

also showed with a stochastic SIR model with seasonal transmission fit to DENV1 405 

observed case data for Rio de Janeiro from 1986-1988 that susceptible depletion and 406 

replenishment are insufficient to explain dengue re-emergence.  The fitted model failed 407 

to predict by far the re-emergence of DENV1 in 1990 in terms of either the number of 408 

skips expected or the outbreak probability under forward simulation.   409 

Transmission parameters like R0 are generally defined with respect to a particular 410 

model. Given that we aggregated cases at the city level and used a short time series, 411 

care should be taken in interpreting parameter values.  Nevertheless, fitted transmission 412 

parameters correspond well with literature values and exhibit well-defined confidence 413 
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intervals.  Estimates of the reporting rate in particular closely match the 3% value (8) 414 

obtained via a serological study conducted during the 1986 invasion (8, 33). Reporting 415 

rates during the onset of an epidemic may be much lower in regions that have not 416 

recently experienced transmission (33, 49) than in those with re-occurring outbreaks 417 

and an established surveillance network. This may explain why serological studies of 418 

the 1986 invasion (8, 33) and our results, estimate a lower reporting rate for dengue 419 

than studies conducted in later years in Brazil (50).  Even though different combinations 420 

of the transmission rate and duration of infection can yield the same reproductive 421 

number, the parameter estimates that compose R0 across all models considered in the 422 

sensitivity analysis (which take into account those different combinations) are relatively 423 

well-defined. These values are also consistent with the effective reproductive number 424 

estimated for local dengue epidemics from 2012-2016 (44) and 1996-2014 (45) taking 425 

into account differences in serotype circulation and population size during those 426 

periods.  427 

More complex model structures are possible and often used for arboviruses that 428 

include an explicit representation of the vector. We expect our results to hold as this 429 

vector component should largely affect the phase and shape of seasonality in the 430 

transmission between human hosts, which we have  modeled phenomenologically as a 431 

cosine wave. With two typical successive epidemic years from an emergent virus, 432 

parameter inference from such short observation period is unlikely to justify a more 433 

complex model. Nevertheless, to examine transmission seasonality further, we 434 

compared the seasonal R0 resulting from the fitted model to the seasonal R0 directly 435 

estimated from time series of cases in the literature (44). We also considered the 436 

transmission rate experienced by humans in a simple vector-human model forced by 437 

the typical seasonality of temperature in Rio de Janeiro. The  shape and timing of the 438 
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vector-human model’s transmission rate was comparable to that of the cosine 439 

transmission rate we employed. More complex models that do not assume fast 440 

dynamics of infection in the vector relative to epidemic spread would likely exhibit a 441 

difference relative to our transmission rate, especially a delayed phase, whose 442 

consequences should be examined in future work. We posit that this difference would 443 

not influence our results on the predictability and uncertainty of re-emergence, since the 444 

values of other parameters (such as the length of infection in humans) can compensate 445 

for it. 446 

Factors that could explain the observed rapid re-emergence include inter-annual 447 

climate anomalies, antigenic evolution, or micro-scale spatial heterogeneity in 448 

transmission intensity and associated susceptible depletion. Larvae washout following 449 

flooding coupled with temperature-driven seasonality in transmission could have 450 

temporarily halted the invasion in 1988 and delayed the epidemic in 1989.  Widespread 451 

flooding was reported in February 1988 (51). Large amounts of rainfall washed away 452 

mosquito larvae in lab and field studies (52). High rainfall negatively affected dengue 453 

transmission in Singapore (53, 54) and India (55). The impact could be compounded in 454 

Rio de Janeiro if the high rainfall occurs during the transmission season. If the larvae 455 

population has not fully recovered before the start of the off-season, the impact of the 456 

rainfall anomaly could extend to the subsequent season. 457 

The large amount of process noise observed in the aggregate model would be 458 

consistent with this effect, given that the process noise parameter P represents random 459 

variation in the transmission rate due to environmental factors.  However, the model’s 460 

inherent structure limits its ability to take into account flooding events viaP, since the 461 

magnitude of the process noise does not change between years. Incorporating an inter-462 
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annual climate driver could provide more accurate re-emergence predictions. The 463 

response to rainfall would be nonlinear: positive at low to moderate levels and negative 464 

at higher ones. 465 

Intra-serotype antigenic evolution from 1986-1990 could also facilitate faster re-466 

emergence. Many models focus on inter-serotype variation and assume long-lasting 467 

homosubtypic immunity (18, 19, 21). However, the antigenic variation within and across 468 

dengue serotypes is comparable (56), and antigenic differences between strains of the 469 

same serotype influence overall dengue evolution(57) . Sequences associated with 470 

case data were unavailable, making direct analysis challenging. We cannot rule out the 471 

possibility that genetic differences between the circulating strains enabled re-infection. A 472 

future SIRS-type model (Susceptible-Infected-Recovered-Susceptible) could 473 

incorporate this intra-serotype antigenic evolution.   474 

Micro-scale spatial heterogeneity in transmission intensity and the effects of 475 

human movement between neighborhoods could also explain the rapid re-emergence.  476 

Small-scale differences in socioeconomic status and population density between 477 

neighborhoods in a large city can result in different relationships between mosquito and 478 

human population sizes, resulting in widespread heterogeneity in R0 across 479 

neighborhoods (58). Previous studies of mosquito trap data in the city have 480 

demonstrated that neighborhoods with differing socioeconomic characteristics have 481 

different vector population patterns (46).  In fact, schoolchildren from neighborhoods 482 

with divergent socioeconomic characteristics had varying levels of seroconversion 483 

during the 1986 invasion (33).  Human movement between neighborhoods may also 484 

influence transmission within (59) and between (60) those neighborhoods, potentially 485 

resulting in non-uniform depletion of susceptible populations between highly connected 486 



 22 

and isolated areas of a city.  Whether arising through the effects of spatial heterogeneity 487 

in transmission or intra-city movement, non-uniform levels of herd immunity could 488 

enable faster re-emergence.  489 

Our findings reveal the uncertainty of re-emergence predictions with the simplest 490 

SIR models, those that would be most useful at times of emergent public health threats. 491 

Consideration of the above factors in transmission models whose goal is to inform 492 

public health over large regions, and to do so soon after, if not during, an emergent 493 

outbreak, is clearly a challenge. For example, coarse resolutions are typically used 494 

because of the scales at which the observed cases are reported, the scales at which the 495 

climate covariates are available, and the difficulties inherent in incorporating microscale 496 

variation including connectivity. Our results should motivate further research into the 497 

central question of how we can scale microscale heterogeneity to formulate aggregated 498 

models that include it implicitly. It should also motivate the related further understanding 499 

of how such microscale heterogeneity influences susceptible depletion and 500 

replenishment in particular case studies. From such efforts, we should be able to 501 

evaluate whether the increasing availability of high-resolution data makes it feasible to 502 

parameterize transmission models at higher resolutions, or to inform new model 503 

formulations at coarser resolutions.  504 

 The inability of susceptible depletion and replenishment in a simple seasonal SIR 505 

formulation at a large, city-wide scale, to explain DENV1 re-emergence has potential 506 

implications for other  arboviruses. Recent long-term Zika forecasts (31) assume that 507 

susceptible depletion and replenishment brought an end to the 2015-2017 epidemics 508 

and will determine when re-emergence occurs. DENV1 and Zika share the same vector 509 

and invaded a completely susceptible population (not accounting for pre-existing cross-510 
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immunity from dengue). If factors absent from the basic model were key drivers of 511 

DENV1 inter-annual variability, it would not be unreasonable to infer that similar types of 512 

factors could have played a major role in the Zika dynamics observed from 2015-2017. 513 

Zika re-emergence could similarly occur much earlier than expected. 514 

With changing temperature patterns due to climate change, cities in Asia, 515 

Europe, and the western hemisphere that currently do not have recurrent local 516 

transmission may transition in the near future to the kinds of dynamics studied here. Our 517 

results suggest that estimates should be interpreted in the context of this sensitivity to 518 

small changes in the reporting rate and reproductive number. Factors like variation in 519 

reporting rates, micro-scale transmission heterogeneity and inter-annual climate drivers 520 

that are often ignored in long-term forecasts may thus become critical in determining re-521 

emergence times. Overall, the large uncertainty in re-mergence times may be 522 

unavoidable for these regions. Improved models are needed together with richer data 523 

than currently used, to address the question of the relevant spatial scales of susceptible 524 

depletion. 525 

 526 

Materials and methods 527 

The derivation of the expression for the number of skip years (Equation 1) is 528 

included in Section 1 of the Supporting Information. We fitted a stochastic version of the 529 

SIR model to observed monthly case counts in Rio de Janeiro from 1986-1988 to 530 

estimate parameters needed to apply this expression, and also to separately predict in 531 

parallel the time to re-emergence via numerical simulation   Expected re-emergence 532 

times were then compared for the two approaches. 533 
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Data Description 534 

 We used monthly dengue case estimates in the city of Rio de Janeiro, Brazil 535 

from 1986-1990. Cases were reported to the local public health surveillance system (9, 536 

10). The case counts did not contain serotype information, but prior studies indicated 537 

that the dengue serotype DENV1 invaded the city of Rio de Janeiro in 1986 (10) and 538 

was the dominant serotype in circulation in the state of Rio de Janeiro from 1986-1990 539 

(8) prior to the arrival of DENV2 in 1990. DENV2 did not become dominant until 1991 540 

(9). 541 

Basic Model Formulation 542 

Because dengue infection confers full immunity to the same serotype, we 543 

considered an SIR (Susceptible-Infected-Recovered) model.  The deterministic model 544 

for the number of individuals in the Susceptible (S), Infected (I), or Recovered (R) class 545 

is given by the following system of ordinary differential equations: 546 

𝑑𝑆

𝑑𝑡
= 𝑟𝑁 − 𝜆(𝑡)𝑆 − 𝜇𝐻𝑆

(3)
 

𝑑𝐼

𝑑𝑡
= 𝜆(𝑡)𝑆 − 𝛾𝐼 − 𝜇𝐻𝐼

(4)
 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝐻𝑅

(4)
 

 547 

𝜆(𝑡) = 𝛽(𝑡)(
𝐼

𝑁
)

(5)
 

 548 
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 549 

𝛽(𝑡) = 𝛽0(1 + 𝛿𝑠𝑖𝑛(𝜔𝑡 + 𝜙))

(6)
 

Deaths occur at rate (H) given by the inverse of the life expectancy of Brazil in 550 

2012 (74.49 years(35)). All individuals are born susceptible. The term r represents 551 

population growth.  The human population growth rate was estimated from census 552 

resident population estimates in 1991 (36) and 2000 (37) assuming exponential growth. 553 

This rate was used to interpolate the estimated population in 1986 (See Supporting 554 

Information Section 2.1.1 for details).  555 

The per capita rate at which susceptible individuals become infected was given 556 

by the force of infection (t) (Equation 5). Individuals recovered at per-capita rate  557 

whose inverse is the duration of infection. Estimates of the duration of infection in den-558 

gue vary. One analysis estimated that symptoms of dengue infection last 2-7 days fol-559 

lowing an incubation period of 4-10 days (61, 62).  For our analysis, we fixed the recov-560 

ery rate 𝛾 to be 1/17, assuming an exponentially distributed duration of infection with 561 

mean of 17 days encapsulating the maximum extent of the combined incubation and 562 

symptomatic period in humans. We take into account the possibility that duration of in-563 

fection could vary by profiling over the duration of infection in the sensitivity analysis.  564 

The short duration of the available time series meant that fitting a formal vector model 565 

could prove difficult and could require additional assumptions in terms of which parame-566 

ters could be fitted or fixed from existing formulations in the literature. We therefore 567 

used an SIR framework in which the infected stage served as a proxy for the exposed 568 

and infected human compartments in a vector model of dengue transmission, and we 569 

assumed infection levels in vector rapidly equilibrate with those in humans (as de-570 
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scribed later when we consider the vector explicitly (See Section 4 of the Supporting In-571 

formation). A duration of infection was thus chosen that corresponds to the upper bound 572 

of the estimated pre-infectious period (4-10 days) and infectious period (2-7 days) in 573 

humans (61, 62). We profiled over the duration of infection in the sensitivity analysis to 574 

verify that this parameterization is reasonable. 575 

This transmission rate (t) was represented as a cosine function with mean 0, 576 

(units of contacts per person per day)  and seasonal oscillations of amplitude (same 577 

units as 0) and frequency , which was assumed to be annual ( = 2/365) days-1. The 578 

annual mean R0 was thus given by: 579 

𝑅0 =
𝛽0

𝛾 + 𝜇
(8)

 

The observed dengue data in Rio de Janeiro consisted of monthly case counts. 580 

Serological studies of the DENV1 invasion in Rio de Janeiro also indicated substantial 581 

under-reporting (8, 33). Let C represent the true number of monthly cases that would be 582 

obtained by summing the number of individuals entering the infected class (I) over the 583 

course of a month. For the purposes of the skip analysis, we assume that a fixed 584 

fraction  of the true cases C are observed, where  is the reporting rate.  585 

 The stochastic model is an approximation of the deterministic one used for the 586 

skip analysis. For simplicity and given the short time interval, we assumed that there 587 

was no population growth over the two and half years of the DENV1 invasion (r =H) 588 

and that births and deaths occurred at rate H = (1/(74.9*365)), which is equal to the 589 

inverse of the average life expectancy in Brazil from the 2010 census (35). However, 590 

population growth is taken into account when simulating forward in time from the fitted 591 
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stochastic model. We also assumed that there were no recovered individuals at the start 592 

of the epidemic, so all other individuals in the population not initially infected were 593 

susceptible. We considered time in units of days and used a time step t of 1 day. 594 

The stochastic model is a discrete-time model with fixed time step t and a discrete 595 

state space (i.e. the number of people in each compartment S, I, R, and C, at any point 596 

in time must be integers). The number of individuals who moved from one compartment 597 

to another over the course of each day was calculated via Euler simulation from the 598 

deterministic equations (See Supporting Information). Demographic stochasticity was 599 

then incorporated into the Euler approximations to obtain integer state variable values 600 

after each time step. We specifically assumed that the number of individuals making 601 

each state transition was drawn from a binomial distribution with exponentially decaying 602 

probability (See Supporting Information). Environmental noise (variation in the 603 

transmission rate (t) due to random environmental variation) was captured via 604 

multiplicative gamma white noise in the transmission rate as described by (63, 64).  On 605 

time step size  t, we multiplied the transmission rate by  /  t,  where  /  t was 606 

drawn from a Gamma distribution with mean 1 and variance P
2 / t. 607 

The measurement model assumed that the observed number of monthly dengue 608 

cases (Y(t)) at time t  were drawn from a negative binomial distribution with mean equal 609 

to the true number of monthly cases C multiplied by a reporting rate , with dispersion 610 

parameter M. More details of the measurement model can be found in Section 2.4 of 611 

the Supporting Information.  612 

Fitting the stochastic model 613 
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We fitted the transmission parameters (0 and ), reporting rate (), process 614 

noise parameter (P), measurement noise parameter (M), and the number of infected 615 

individuals at the start of the outbreak in May 1986 (I0). While the first cases of DENV1 616 

were reported in April 1986, we started the model fitting in May 1986 to avoid 617 

complications from changes in the reporting rate as the surveillance system was 618 

established during the start of the DENV1 invasion. We used in an interpolated initial 619 

population size of 5,281,842 for Rio de Janeiro in May 1986.The model was fit using the 620 

mif2 method in the R-package pomp. The model fitting method is described further in 621 

the Supporting Information and in (65). 622 

Calculating expected skips using parameter estimates from stochastic model 623 

Following the completion of the Monte Carlo Profiles, a maximum likelihood 624 

estimate (MLE) parameter combination was obtained from the Monte Carlo Profiles of 625 

the fitted model by selecting the parameter combination with the highest likelihood 626 

across all profiles. The table of MLE parameter values is shown in Supplemental Table 627 

ST1. All sets of parameter combinations within 2 log-likelihood units of the maximum 628 

likelihood estimate (from all profiles) were used for the expected skip calculation.  The 629 

reporting rate (), 0, and value of each parameter combination within 2 log likelihood 630 

units of the maximum likelihood estimate were applied to a finer gridded version of the 631 

deterministic skip calculation described earlier.  A distribution for the number of skips 632 

expected in Rio de Janeiro following the DENV1 invasion from 1986-1988 was 633 

obtained. 634 

Stochastic Simulation 635 

We then simulated re-emergence probabilities under the stochastic model. Each 636 

parameter combination within 2 log likelihood units of the MLE estimate from the 637 
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stochastic fit was simulated again without any immigration from 1986 until 1990 but with 638 

population growth. During January 1990, “sparks” of infectious individuals were 639 

assumed to have arrived in the city at some fixed rate. There were low but non-zero 640 

levels of DENV1 incidence from 1988-1989. We chose to wait until January 1990 before 641 

introducing new DENV1 infections to be conservative, as this is when an uptick in 642 

DENV1 incidence was first observed. Had we introduced sparks earlier in 1988-1989, 643 

we would likely have observed even earlier re-emergence times. We explored rates 644 

from 5 to 100 infected individuals per day. This process was repeated 100 times, and 645 

the probability of an epidemic occurring in 1990 was calculated. An epidemic 646 

occurrence in this situation was defined as a net decrease in the susceptible population 647 

over the course of the year (after taking into account population growth), to best match 648 

the definition of an epidemic used in the skip analysis. 649 

Sensitivity Analysis  650 

 We assessed how parameter estimates of R0 and may depend on the model 651 

formulation by fitting several more complex SIR-type models to the same data using the 652 

fitting procedure described in the Methods section: an SIR Spline Model and SEIR 653 

Spline Model. As an additional sensitivity analysis, we profiled over the recovery rate for 654 

the SIR Cosine Model (Supplemental Figure S9). For details, see the Supporting 655 

Information. 656 

Comparison with Vector Model and literature R0 657 

 For a full description of the explicit coupled human-mosquito model with 658 

compartments for infectious and susceptible mosquitoes and comparison of 659 

transmission rates between this model and the simpler seasonally forced SIR , see the 660 

Supporting Information.    661 
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