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—— Abstract
We consider m-colorings of the edges of a complete graph, where each color class is defined semi-
algebraically with bounded complexity. The case m = 2 was first studied by Alon et al., who applied
this framework to obtain surprisingly strong Ramsey-type results for intersection graphs of geometric
objects and for other graphs arising in computational geometry. Considering larger values of m is
relevant, e.g., to problems concerning the number of distinct distances determined by a point set.

For p > 3 and m > 2, the classical Ramsey number R(p;m) is the smallest positive integer
n such that any m-coloring of the edges of K, , the complete graph on n vertices, contains a
monochromatic K. It is a longstanding open problem that goes back to Schur (1916) to decide
whether R(p;m) = 20(m) for a fixed p. We prove that this is true if each color class is defined
semi-algebraically with bounded complexity, and that the order of magnitude of this bound is tight.
Our proof is based on the Cutting Lemma of Chazelle et al., and on a Szemerédi-type regularity
lemma for multicolored semi-algebraic graphs, which is of independent interest. The same technique
is used to address the semi-algebraic variant of a more general Ramsey-type problem of Erdds and
Shelah.
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1 Introduction

The Ramsey number R(p;m) is the smallest integer n such that any m-coloring on the edges
of the complete n-vertex graph contains a monochromatic copy of K,. The existence of
R(p;m) follows from the celebrated theorem of Ramsey [18] from 1930, and for the special
case when p = 3, Issai Schur proved the existence of R(3;m) in 1916 in his work related to
Fermat’s Last Theorem [19]. He showed that

Q(2™) < R(3:m) < O(m)).

While the upper bound has remained unchanged over the last 100 years, the lower bound
was successively improved and the current record is R(3;m) > ©(3.199™) due to Xiaodong
et al. [22]. Tt is a major open problem in Ramsey theory, for which Erdés offered some price
money, to close the gap between the lower and upper bounds for R(3;m).
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Semi-Algebraic Colorings of Complete Graphs

In this paper, we study edge-colorings of complete graphs where each color class is defined
algebraically with bounded complexity. Over the last decade, several researchers have shown
that some of the classical theorems in extremal combinatorics can be significantly improved
if the underlying graphs are intersection graphs of geometric objects of bounded “description
complexity” or bounded VC-dimension, graphs of incidences between points and hyperplanes,
distance graphs, or, more generally, semi-algebraic graphs [1, 10, 5, 9, 20]. To make this
statement more precise, we need to introduce some terminology. Let V be an ordered point
set in R%, and let E C (‘2/) We say that E is a semi-algebraic relation on V' with complexity
at most t if there are at most ¢ polynomials g1,...,9s € R[z1,...,224], s < ¢, of degree at
most t and a Boolean formula ® such that for vertices u,v € V' such that u comes before v
in the ordering,

(u,v) e E &  P(g1(u,v) >0;...59s(u,v) >0)=1.

At the evaluation of gy(u,v), we substitute the variables z1,...,z4 with the coordinates
of u, the variables z441,...,z9q with the coordinates of v. We may assume that the semi-
algebraic relation F is symmetric, i.e., for all points u,v € R?, (u,v) € E if and only if
(v,u) € E. Indeed, given such an ordered point set V C R? and a not necessarily symmetric
semi-algebraic relation E of complexity at most ¢, we can define V* € R4 with points (v, 1)
where v € V and v is the ith smallest element in the given ordering of V. Then we can define
a symmetric semi-algebraic relation E* on the pairs of V* with complexity at most 2¢ + 2,
by comparing the value of the last coordinates of the two points, and checking the relation
E using the first d coordinates of the two points. We will therefore assume throughout this
paper that all semi-algebraic relations we consider are symmetric, and the vertices are not
ordered. Hence, all edges are unordered and we denote uv = {u,v}. We also assume that
the dimension d and complexity ¢ are fixed parameters, and n = |V| tends to infinity.

Let Rg,:(p;m) be the minimum n such that every n-element point set V in R? equipped
with m semi-algebraic binary relations (edge-colorings) F1,..., E, C (‘2/), each of complexity
at most ¢, where F1 U---UFE,, = (‘2/), contains a subset S C V of size p such that (g) C Ey
for some k. Note that the relations E; are not necessarily disjoint, that is, an edge uv may
have several colors. Clearly Ry .(p;m) < R(p;m). It was known that for fixed d,¢ > 1,
Ry ¢(3;m) = 200nloglogm) " which is much smaller than Schur’s bound R(3;m) = O(m!)
mentioned in the first paragraph of the Introduction; see [20]. In this paper, we completely
settle Schur’s problem for semi-algebraic graphs, by showing that in this setting Schur’s lower
bound (which is semi-algebraic with bounded complexity) is tight. In fact, we prove this in a
more general form, for any p > 3.

» Theorem 1. For fixed integers d,t > 1 and p > 3, we have

Rdﬂg (p, m) = 20(m)

Our proof uses geometric techniques and is based on the Cutting Lemma of Chazelle,
Edelsbrunner, Guibas, and Sharir [3] described in Section 2.

Edge-colorings of semi-algebraic graphs with m colors can be used, e.g., for studying
problems concerning the number of distinct distances determined by a point set; see [11].
One can explore the fact that multicolored semi-algebraic graphs have a very nice structural
characterization, reminiscent of Szemerédi’s classic regularity lemma for general graphs [21],
but possessing much stronger homogeneity properties. Our next theorem provides such a
characterization, which is of independent interest. To state our result, we need some notation
and terminology.
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A partition is called equitable if any two parts differ in size by at most one. According to
Szemerédi’s lemma, for every € > 0 there is a K = K(g) such that the vertex set of every
graph has an equitable partition into at most K parts such that all but at most an e-fraction
of the pairs of parts are e-regular.! It follows from Szemerédi’s proof that K(e) may be

~O(). Gowers [13] used a probabilistic

taken to be an exponential tower of 2s of height e
construction to show that such an enormous bound is indeed necessary.

Alon et al. [1] (see also Fox, Gromov et al. [8]) established a strengthening of the regularity
lemma for point sets in R? equipped with a semi-algebraic relation E. It was shown in [1]
that for any semi-algebraic graph of bounded complexity defined on the vertex set V c R¢
(that is, for any semi-algebraic binary relation E C (‘2/)), V has an equitable partition into
a bounded number of parts such that all but at most an e-fraction of the pairs of parts
(V1, Va) behave not only regularly, but homogeneously in the sense that either Vi x Vo C E
or V1 x Vo N E = (). The first proof of this theorem was essentially qualitative: it gave a
poor estimate for the number of parts in such a partition. Fox, Pach, and Suk [10] gave a
stronger quantitative form of this result, showing that the number of parts can be taken to
be polynomial in 1/e.

Let V be an n-element point set in R% equipped with m semi-algebraic relations E1, . . ., E,,
such that FhyU---UE,, = (‘2/) of bounded complexity. In other words, suppose that the edges

of the complete graph on V" are colored with m colors, where each color class is semi-algebraic.

Then, for any € > 0, an m-fold repeated application of the result of Fox, Pach, and Suk
[10] gives an equitable partition of V' into at most K < (1/¢)“™ parts such that all but an
e-fraction of the pairs of parts are complete with respect to some relation Fy, i.e., all edges
between the two parts are of color k, for some k. In Section 4, we strengthen this result by
showing that the number of parts can be taken to be polynomial in m/e.

» Theorem 2. For any positive integers d,t > 1 there exists a constant ¢ = ¢(d,t) > 0 with
the following property. Let 0 < e < 1/2 and let V be an n-element point set in RY equipped
with semi-algebraic relations E1, ..., E,, such that each E} has complexity at most t and
(‘2/) =FEU---UE,,. ThenV has an equitable partition V =V, U---U Vg into at most
4/e < K < (m/e)® parts such that all but an e-fraction of the pairs of parts are complete
with respect to some relation EY.

In Section 5, we apply this result to solve a problem of Erdds and Shelah [6] in the
semi-algebraic setting. Let d,t,p,q,n be positive integers, p > 3, and 2 < ¢ < (g) Let
fa.t(n,p,q) be the minimum m such that there exists a semi-algebraic m-coloring of the edges
of the complete graph of n vertices (with parameters d and ¢, as above) with the property
that each edge has exactly one color and any set of p vertices induce at least ¢ distinct
colors. Notice that here we must assume that the color classes F; are disjoint, since otherwise
fa.t(n,p,q) = q by assigning all ¢ colors to every edge. Our next theorem precisely determines
the smallest ¢ for a given p, where fq.(n,p,q) changes from a logn to a power of n.

» Theorem 3. For fized integers d,t > 1, there is a ¢ = ¢(d,t) > 0 such that for p > 3, we
have

faa(n.p, Tlogp] +1) > Q (n7e7s )
Moreover, fort > 4,

fa.t(n,p, [logp]) < O(logn).

L For a pair (Vi, V;) of vertex subsets, e(V;, V) denotes the number of edges in the graph running between
Vi and Vj;. The density d(V;,V;) is defined as Tg/vhy\) The pair (V;,V;) is called e-regular if for all

V/ C Vi and V] C V; with |V/| > ¢|V;| and |V]| > 8|Vj|7 we have |d(V/,V]) — d(Vi, V;)| <e.
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In [11], we studied a geometric instance of this problem, where every set of p points
induces at least q distinct distances.

Our paper is organized as follows. In the next section, we describe the Cutting Lemma of
Chazelle et al., which is the main geometric tool used in all proofs. In Section 3, we establish
Theorem 1. Section 4 contains the proof of our multicolored semi-algebraic regularity lemma,
Theorem 2, which is applied in the following section to deduce Theorem 3. We end this
paper with some concluding remarks.

2  The cutting lemma

The main tool we use to prove Theorems 1 and 2 is commonly referred to as the cutting
lemma, which we now recall. A set A C R? is semi-algebraic if there are polynomials g1, . . ., g;
and a boolean formula ® such that

A={zeR: ®(gi(x) >0;...;9:(x) >0) =1}

We say that a semi-algebraic set in d-space has description complexity at most ¢ if the number
of inequalities is at most ¢, and each polynomial g; has degree at most t. Let 0 C R? be a
surface in R, that is, o is the zero set of some polynomial h € R[z1,...,z4]. The degree of
a surface 0 = {x € R? : h(x) = 0} is the degree of the polynomial h. We say that the surface
o C R? crosses a semi-algebraic set A if c N A # () and A ¢ 0.

Let ¥ be a collection of surfaces in R?, each having bounded degree. A (1/r)-cutting for
Y is a family ¥ of disjoint (possibly unbounded) semi-algebraic sets of bounded complexity
such that
1. each A € ¥ is crossed by at most |X|/r surfaces from ¥, and
2. the union of all A € ¥ is R,
In [3], Chazelle et al. (see also [14]) proved the following.

» Lemma 4 (Cutting lemma). Let ¥ be a multiset of N surfaces in R?, each surface having
degree at most t, and let r be an integer parameter such that 1 < r < N. Then there is a
constant ¢; = c1(d,t) such that ¥ admits a (1/r)-cutting ¥, where |¥| < ¢;72?, and each
semi-algebraic set A € U has complexity at most cy.

We note that the original statement of Chazelle et al. [3] and Koltun [14] is stronger. Namely,
they also guarantee that the number of cells in the cutting ¥ is at most r2?=4+¢ for d > 4.

Here, for simplicity, we use the weaker bound of ¢;7%%, as stated above.

3  Multicolor Ramsey numbers for small cliques — Proof of Theorem 1

Theorem 1 will easily follow from Theorem 5 below. For integers p1,...,pm > 2, d,t > 1,
let Rq+(p1,-..,pm) be the minimum integer n with the following property. Every complete
graph K,,, whose n vertices lie in R¢ and whose edges are colored with m colors such that
each color class is defined by a semi-algebraic relation of description complexity ¢, contains a
monochromatic copy of K, in color k for some 1 < k < m.

» Theorem 5. For any d,t > 1 and p > 3, there exists a constant ¢ = c(d,t,p) satisfying

the following condition. For any m integers p1,...,pm < p, we have

m

Rai(prs- s pm) < 20200 P,
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Proof. Fix d,t > 1, p > 3 and set ¢ = ¢(d, t,p) to be a large constant that will be determined
later. We will show that Ry :(p1,...,pm) < 2¢2 iy P by induction on s = 7" | py. The
base case s < 10 - 2109 follows for ¢ sufficiently large.

Now assume that the statement holds for s’ < s. Set n = 2° and let V be an n-
element point set in R? equipped with semi-algebraic relations Ei, ..., E, C (%) such that
(‘2/) = F1U---UE,, and each Ej has complexity at most ¢. Recall that an edge uv may
have several colors. We will show that there is a subset S C V' of size py such that (g) C Ey,
for some k € [m], in other words, we will find a monochromatic copy of K,,, in color k for
some k € [m]. Throughout the proof, we will let ¢; be as defined in Lemma 4.

For each relation Ej, there are ¢t polynomials gy 1,..., gk, of degree at most ¢, and a
Boolean function ®; such that

uv € Ej, < Dp(gra(u,v) >0,..., 0k (u,v) >0) =

For 1 <k <m,1<{<tveV,we define the surface o1 o(v) = {x € R? : gj o(v,z) = 0}.

Before we continue, let us briefly sketch the idea of the proof. We start by applying
Lemma 4 (the cutting lemma) to 3 = {0y ¢(v) : k € [m], £ € [t],v € V}, the set of surfaces
which determines the neighborhoods of each vertex, and obtain a space partition which
induces a partition of the vertex set V =V U---U Vk. If there is a “large” part V; with
many distinct colors appearing in V; x (V' \ Vj), then we show that V; induces few distinct
colors, and by induction we can find a monochromatic copy of K, for some k € [m]. If none
of the “large” parts has the above property, the colors of nearly all edges can be defined by
much fewer polynomial inequalities, i.e., by a much smaller set of surfaces ¥’ C ¥ . Now we
can repeat.

In what follows, we spell out these ideas in full detail. Set mg = m and define m; =
4dlog(cym;—1t) for i > 0. We will establish the following claim.

> Claim 6. Let V and E4,...,E,, C (‘2/) be defined as above. Then for ¢ > 0 we will

recursively find either

1. a monochromatic copy of K,, in color k for some k € [m], or

2. a function x; : V — 2™l such that |y;(v)| < m;, and the number of edges uv € (‘2/) with
the property that for one of its endpoints, say u, no color assigned to uv belongs to x;(u),
is at most ; 4” . We will refer to these edges as bad at stage i. All edges that are not
bad are called good at this stage, meaning that, there is a color k appearing on uv such
that k € x;(u), and there is a color k' appearing on uv such that k&’ € y;(v).

Proof. We start by setting xo(v) = [m] for all v € V, and my = m. Having found y; with
the properties above, we will produce x;1 as follows. We have mZH = 4dlog(cym;t), and
let us assume that m; > (8cidtp)?. . Let X be the
set of surfaces o ¢(v), where v € V, k € Xz( ),and 1 <<t ThlS implies that |X| < nm;t.

We apply Lemma 4 to ¥ with parameter r = (tm;)? to obtain a (1/(tm;)?)-cutting
U = {A},Ay,...,Ak,}, such that Ky < ¢;(tm;)*?. Hence, we have a partition Py : V =
ViU---UVk,, where V; = VNA; for Aj € W. For each part V; of size greater than 2n/(tm;),
we (arbitrarily) partition V} into parts of size |2n/(tm;)] and possibly one additional part
of size less than 2n/(tm;). Let P : V = V3 U--- U Vg be the resulting partition, where
K < 2¢1(tm;)* and |V;| < 2n/(tm;) for all j.

Now we define y;41(v) for allv € V.

Case 1. If v € V; for some V; with |V}| < e (AT, We set Xit1(v) = 0.

36:5
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Case 2. Suppose v € V; such that |V}| > W In order to define x;4+1(v), we need
some preparation. Let A; € ¥ such that V; C A;. We define X; C V'\ V; to be the set
of vertices from V'\ V; that gives rise to a surface in 3 that crosses A;. By Lemma 4,
the cutting lemma, we have |X;| < n/(tm;).
Fix a vertex v € V' \ {V}, X;}. Since none of the surfaces of the form oy (v), where
k€ xi(v) and £ € {1,...,t}, cross Aj, either v x V; is monochromatic with color k for
some k € x;(v), or none of the colors in x;(v) appear in v x V;. Let S; be the set of
vertices v € V\{V}, X;} satisfying the former condition and let 7; denote a set of vertices
v e V\{V;, X;} satisfying the latter one. Since there are at most 4n?/(tm;_1) bad edges,
we have

7| n < 4n?
J 201(tmi)4d+1 - tmi_1’

which implies

8ncy (tm;)4d+! <

IT;| < <
tmi_l tmi

)

where the last inequality follows from the fact that m;_; = 27/4?/(cit), and the
assumption m; > (8cidtp)?. Now, suppose there are at least m; 1 = 4dlog(citm;)

distinct colors between V; and Sj. Let I = {k1,...,kn,., } C [m] be the set of these m;;;
distinct colors. Then there are m;, 1 vertices vy,..., vy, , € Sj, possibly with repetition,
such that v,, x V} is monochromatic with color k,, € I, for each w € {1,...,m;y1}.

Hence, if V; contains a monochromatic copy of K, _; in color k € I, we would have
a monochromatic copy of K, in color k. On the other hand, if V; does not contain a

monochromatic copy of K, _1 in color k for no k € I, then, using that

n - ; —my (Do, =1+ pk)
Vil > > 9cs 8d log(cim;t) > 2c(s mig1) -9 ( kel kel
| J| = 201(tmi)4d+1

for a sufficiently large ¢, we obtain by induction that there is a monochromatic copy of
K, in color k where k ¢ I.

Therefore, we can assume that the number of distinct colors between V; and §; is less
than m; 1 = 4dlog(cim;t). For every vertex v € V}, define x;41(v) as the set of all colors
that appear on the edges belonging to v x S;.

Now that we have defined m;;1 and x;41 such that |x;11(v)] < mipq for all v € Vit
remains to show that the number of edges uv € (‘2/) with the property that for one of its
endpoints, say u, no color assigned to uv belongs to x(u), is at most % Let B C (‘2/) be
the collection of such edges. Notice that if uv € B, then either
1. both w and v lie inside the same part in the partition P, or
2. wor v lies inside a part V; such that |V;| < Ser(im @1 OF
3. u eV, with \VﬂzWandverUTj,or
4. v € V; with |Vj\ZWandueruTj.

Since each part in P has at most 2n/(tm;) vertices, the number of edges of type 1 is at most

2
tnu (t%lz) /2 =n?/(tm;). The number of edges of type 2 is at most

TL2

n
———— | K-n< .
(261 (tmi)‘ld*l) "= tmi

Since | X, |T;| < n/(tm;), the number of edges of types 3 and 4 is at most

2n 2n?
D_Vilim < o
7 tm; tm,;
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Hence, |B| < %%. Therefore, either we have found a monochromatic copy of K, in color k
for some k € [m], or we have found m;1; and x;4+1 with the desired properties. <

Let w be the minimum integer such that m,, < (8c1dtp)?. Then either we have found a
monochromatic copy of K, in color k for some k € [m], or we have obtained m,, and x,, with
the desired properties. Since there are at most 4n?/(tm,,_1) < n*/8 bad edges, there is a
vertex v € V incident to at least n/2 good edges. Moreover, since |x.,(v)| < my, < (8ci1dtp)?,
at least m of these edges incident to v have color &k’ for some color k' € y,,(v). Let
S C V be the set of endpoints of these edges. If S contains a monochromatic copy of K, , 1
in color K/, then we are done. On the other hand, if S does not contain a monochromatic

copy of K, ,_1 in color k', and using the lower bound

n _ 27 o et =)
(8cidtp)?  2(8cydtp)? —

i

>

for ¢ = ¢(d, t, p) sufficiently large, we conclude by induction that S contains a monochromatic
copy of K, for some k # k’. This completes the proof of Theorem 5. <

4  Multicolor semi-algebraic regularity lemma — Proof of Theorem 2

First, we prove the following variant of Theorem 2, which easily implies Theorem 2.

» Theorem 7. For anye > 0, every n-element point set V. C R? equipped with semi-algebraic
binary relations E1, ..., E,, C (‘2/) such that (‘2/) = F1U---UFE,, and each Ey has complexity
at most t, can be partitioned into K < 02(%)5‘12 parts V.=ViU-- UV, where ca = ca(d, t),
such that

Z |ViH2Vj| <.
n

where the sum is taken over all pairs (i, j) such that (V;,V;) is not complete with respect to
Ey forallk=1,....,m.

Proof. For each relation Ej, let gi1,-.., 9k € Rlz1,...,x24] be polynomials of degree at
most t, and let &, be a boolean formula such that

wv € By, & Dr(gr1(u,v) >0;.. .5 98¢(u,v) >0) = 1.
For each point x € RY, k € {1,...,m}, and £ € {1,...,t}, we define the surface
ore(z) = {y € R? : gpo(x,y) = 0}.

Let ¥ be the family of tmn surfaces in R? defined by
Y={ope(u):uecV,1<k<m,1</{<t}

We apply Lemma 4 to ¥ with parameter r = tm/e to obtain a (1/r)-cutting ¥, where
V| =s<ac (%")Qd, such that each semi-algebraic set A; € ¥ has complexity at most ¢y,
where ¢; is defined in Lemma 4. Hence, at most tmn/r = en surfaces from ¥ cross A; for
every i. This implies that at most en points in V' give rise to at least one surface in ¥ that
crosses A\;.

Let U; = V N A, for each i < s. We now partition A; as follows. For k € {1,...,m} and
je{l,...,s}, define A, ;, C RY by

Aijr={r€Aj:op1(x)U---Uop(r) crosses Aj}.

36:7
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That is, A; jx will correspond to the vertices in A; that may not be homogeneous to the set
of vertices in A; with respect to color k.

» Observation 8. For any i, j, and k, the semi-algebraic set A; ;1 has complexity at most
C3 = Cg(d, t).

Proof. Set oy(x) = op1(x) U+ Uoy,(z), which is a semi-algebraic set with complexity at
most ¢4 = c4(d,t). Then
Jy1 € R s.t. y1 € op(x) N A, and
Ai = S A,L : & .
Fik {33 Jy2 € RY 5.8, yo € A\ op ().

We can apply quantifier elimination (see Theorem 2.74 in [2]) to make A; ; , quantifier-free,
with description complexity at most c3 = c3(d, t). <

Set F; ={A;jr:1<k<m,1<j<s}. We partition the points in U; into equivalence
classes, where two points u,v € U; are equivalent if and only if u belongs to the same
members of F; as v does. Since F; gives rise to at most c¢3|F;| polynomials of degree at most
¢3, by the Milnor-Thom theorem (see [16] Chapter 6), the number of distinct sign patterns of
these ¢3|F;| polynomials is at most (50cs(cs|F;|))*. Hence, there is a constant ¢5 = c5(d, t)
such that U; is partitioned into at most c5(ms)? equivalence classes. After repeating this
procedure to each U;, we obtain a partition of our point set V=V, U--- U Vg with

m 5d° m 5d°

K < scs(ms)? = csmsdTl < est2d(d+) i+l (?) = co (;) ,
where we define ¢y = c5t23 (41 g+

For fixed i, consider the part V;. Then there is a semi-algebraic set A,,, obtained from
Lemma 4 such that U,, = VNA,, and V; C U,, C A,,. Now consider all other parts V;
such that not all of their elements are related to every element of V; with respect to any
relation Ej, where 1 < k < m. Then each point u € V; gives rise to a surface in ¥ that
crosses A,,. By Lemma 4, the total number of such points in V' is at most en. Therefore,

we have
D IVilIVi = Vil D IVl < [Vilen,
J J

where the sum is over all j such that V; x Vj is not contained in the relation £}, for any k.
Summing over all ¢, we have

> Villvi] < en?,

4,3

where the sum is taken over all pairs , j such that (V;, V}) is not complete with respect to
Ey, for all k. <

Proof of Theorem 2. Apply Theorem 7 with approximation parameter €/2. Hence, there
is a partition @ : V. = Uy U--- U Uk into K’ < (m/e)® parts with ¢ = ¢(d,t) and
S UU;| < (£/2)|V]?, where the sum is taken over all pairs (4,7) such that (U;, U;) is not
complete with respect to Ej for all k.

Let K = 8 !K’. Partition each part U; into parts of size |V|/K and possibly one
additional part of size less than |V|/K. Collect these additional parts and divide them into
parts of size |V|/K to obtain an equitable partition P : V =V, U---U Vg into K parts. The
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number of vertices of V' which are in parts V; that are not contained in a part of Q is at
most K'|V|/K. Hence, the fraction of pairs V; x V; with not all V;, V; are subsets of parts of
Q is at most 2K'/K =¢/4. As /2 +¢/4 < &, we obtain that less than an e-fraction of the
pairs of parts of P are not complete with respect to any relation Eq, ..., E,,. |

5 Generalized Ramsey numbers for semi-algebraic colorings — Proof
of Theorem 3

Due to the lack of understanding of the classical Ramsey number R(p;m), Erdés and
Shelah (see [6]) introduced the following generalization, which was studied by Erdds and
Gyérfas in [7].

» Definition 9. For integers p and q with 2 < g < (g), a (p, q)-coloring is an edge-coloring
of a complete graph in which every p vertices induce at least q distinct colors.

Let f(n,p,q) be the minimum integer m such that there is a (p, ¢)-coloring of K,, with at
most m colors. Here, both p and ¢ are considered fixed integers, where p > 3, 2 < ¢ < (12’),
and n tends to infinity. Trivially, we have f(n,p, (’2’)) = (g), and at the other end, estimating
f(n,p,2) is equivalent to estimating R(p;m) since f(n,p,2) is the inverse of R(p;m). In

particular,

logn
. — < < .
Q <loglogn) < f(n,3,2) < O(logn)

Erdés and Gyarfas [7] determined certain ranges for g € {2,3,..., (5)} for which f(n,p,q) is
quadratic, linear, and subpolynomial in n. In particular, they showed that

Q (n77) < f(n.pp) < 0 (n77).

which implies that f(n,p,q) is polynomial in n for ¢ > p. Surprisingly, estimating f(n,p,p—1)
is much more difficult. They [7] asked for p fixed if f(n,p,p — 1) = n°(") . The trivial lower
bound is f(n,p,p —1) > f(n,p,2) > Q ( logn ), which was improved by several authors

loglogn
[15, 12], and it is now known [4] that f(n,p,p—1) > Q(logn). In the other direction, Mubayi
[17] found an elegant construction which implies f(n,4,3) < eo(\/@), and later, Conlon et
al. [4] gave another example which implies f(n,p,p — 1) < ellogn)!~H/(rm2Fe) Hence, it is
now known that f(n,p,p — 1) does not grow as a power in n.

Here, we study the variant of the function f(n,p,q) for point sets V C R equipped
with semi-algebraic relations. Let fq.(n,p,q) be the minimum m such that there is a (p, ¢)-
coloring of K,, with m colors, whose vertices can be chosen as points in R?, and each color
class can defined by a semi-algebraic relation on the point set with complexity at most ¢.
We note that here we require that each edge receives exactly one color. Clearly, we have
f(n,p,q) < far(n,p,q). Theorem 3 stated in the Introduction shows the exact value of ¢ for
which fq.:(n,p,q) changes from logn to a power of n.

In the rest of this section, we prove Theorem 3. Let V be a set of points in R? equipped
with semi-algebraic relations FE1,..., E, such that each Ej has complexity at most t,
(‘2/) =FEU---UE,,, and E, N E, = () for all k # £. Let S1,S3 C V be g-element subsets
of V. We say that S; and S5 are isomorphic, denoted by S; ~ S5, if there is a bijective
function h : S; — Sy such that for u,v € S; we have uv € Ej, if and only if A(u)h(v) € Ej.

Let S C V be such that |S| = 2° for some positive integer s. We say that S is s-layered
if s = 1 or if there is a partition S = S; U Sy such that |S;| = |S2| = 2571, S and S are
(s — 1)-layered, S1 ~ Sa, and for all uw € S; and v € Sy we have uv € Ej for some fixed k.

36:9
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Notice that given an s-layered set .S, there are at most s relations FEj,, ..., E, such that
(“29) C Ej, U---UEy, . Hence, the lower bound in Theorem 3 is a direct consequence of the
following result.

» Theorem 10. Let s > 1 and let V be an n-element point set in R? equipped with semi-

algebraic relations E1, ..., By, such that each Ey has complexity at most t, E1U---UE,, = (‘2/) ,

and ExyNEy =0 for allk #£. If m < ncﬁ, then there is a subset S C V such that |S| = 2°
and S is s-layered, where ¢ = ¢(d,t).

Proof. We proceed by induction on s. The base case s = 1 is trivial. For the inductive step,
assume that the statement holds for s’ < s. We will specify ¢ = ¢(d, t) later. We start by
applying Theorem 2 with parameter € = nis to the point set V', which is equipped with semi-

algebraic relations Ff, ..., E,,, and obtain an equitable partition P : V = V3 U- - -UVk, where

m 5d° 10sd?
K é C2 (*) < Com 8 5
e

and co = co(d,t). Since all but an ¢ fraction of the pairs of parts in P are complete with
respect to Ej, for some k, by Turan’s theorem, there are m*~1 + 1 parts V € P such that

each pair (V/,V]) € P x P is complete with respect to some relation Ej. Since P is an

n

. - ,
equitable partition, we have |V/| > popms 7

. By picking ¢ = ¢(d, t) sufficiently large, we have

2 m c(s—1)2 Z m.

1
"o Si n e(s—1)2 05271002(125
VAR (m) e
By the induction hypothesis, each V; contains an (s—1)-layered set S; fori € {1,...,m*"1+1}.
By the pigeonhole principle, there are two (s — 1)-layered sets S;, S; such that S; ~ S;. Since
Si x Sj C Ey, for some k, the set S = S;U S} is an s-layered set. This completes the proof. <«

To prove the upper bound for fq.(n,p, [logp]), when d > 1 and ¢ > 100, it is sufficient
to construct a 2"-element point set V C R equipped with m distinct semi-algebraic relations

Ey, ..., E,, that is m-layered. More precisely, for each integer m > 1, we construct a set V,,
of 2™ points in R equipped with semi-algebraic relations Fj,. .., F,, such that
1. V,, with respect to relations F1,..., E,, is m-layered,

FiU---UFE, = (Vz’") is a partition,

2.
3. each F; has complexity at most four, and
4. each E; is shift invariant, that is uv € E; if and only if (u+ ¢,v + ¢) € E; for ¢ € R.

We start by setting V4 = {1,2} and defining Fy = {u,v € V : l[u—v| = 1}. Having defined
the point set V; and relations Ey, ..., F;, we define V;11 and F;;1 as follows. Let C = C(4)
be a sufficiently large integer such that C' > 10 max,ev, u. Then we have V;; = V;U(V;+C),
where V; 4+ C is a translated copy of V;. We now define the relation F;; by

wekby < COR2<lu—v <2C.

Hence, V;;1 with respect to relations F1, ..., E; 11 satisfies the properties stated above
and is clearly (i 4 1)-layered. One can easily check that any set of p points in V;,, induces at
least [log p] distinct relations (colors).

Let us remark that the arguments above hold for semi-algebraic relations Fy, ..., Ep,
that are not necessarily disjoint if one defines a (p, g)-coloring as follows. Given a coloring
X : (V(g{")) — 2l on the edges of K,,, where each edge receives at least one color among
[m], x is a (p, q)-coloring if for every set S C V of size p, no matter how you choose one
color in y(uv) for each edge uv € (%), S will induce at least ¢ distinct colors.
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6 Concluding remarks

In [20], it was shown that R; ,(3;m) > (1681)™/7 for t > 5, thus implying that the upper
bound in Theorem 1 is tight up to a constant factor in the exponent. This can be improved as
follows. Let C(p) = lim,, o R(p;m)*/™. Note that this limit exists by considering product
colorings, but may be finite or infinite. Then for each C' < C(p), there is a t = t(C, p), such
that for all m sufficiently large we have

Ry ¢(p;m) > C™.

Indeed, take a fixed coloring of the edges of Ky which realizes R(p;mg) > C™°, and
recursively blow up this graph by introducing mg new colors at each stage. Then this coloring
can be realized semi-algebraically in R with t = O(m2) linear constraints for each color class
based on distances.
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